1
|
Spice DM, Cooper TT, Lajoie GA, Kelly GM. Never in Mitosis Kinase 2 regulation of metabolism is required for neural differentiation. Cell Signal 2022; 100:110484. [PMID: 36195199 DOI: 10.1016/j.cellsig.2022.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Wnt and Hh are known signalling pathways involved in neural differentiation and recent work has shown the cell cycle regulator, Never in Mitosis Kinase 2 (Nek2) is able to regulate both pathways. Despite its known function in pathway regulation, few studies have explored Nek2 within embryonic development. The P19 embryonal carcinoma cell model was used to investigate Nek2 and neural differentiation through CRISPR knockout and overexpression studies. Loss of Nek2 reduced cell proliferation in the undifferentiated state and during directed differentiation, while overexpression increased cell proliferation. Despite these changes in proliferation rates, Nek2 deficient cells maintained pluripotency markers after neural induction while Nek2 overexpressing cells lost these markers in the undifferentiated state. Nek2 deficient cells lost the ability to differentiate into both neurons and astrocytes, although Nek2 overexpressing cells enhanced neuron differentiation at the expense of astrocytes. Hh and Wnt signalling were explored, however there was no clear connection between Nek2 and these pathways causing the observed changes to differentiation phenotypes. Mass spectrometry was also used during wildtype and Nek2 knockout cell differentiation and we identified reduced electron transport chain components in the knockout population. Immunoblotting confirmed the loss of these components and additional studies showed cells lacking Nek2 were exclusively glycolytic. Interestingly, hypoxia inducible factor 1α was stabilized in these Nek2 knockout cells despite culturing them under normoxic conditions. Since neural differentiation requires a metabolic switch from glycolysis to oxidative phosphorylation, we propose a mechanism where Nek2 prevents HIF1α stabilization, thereby allowing cells to use oxidative phosphorylation to facilitate neuron and astrocyte differentiation.
Collapse
Affiliation(s)
- Danielle M Spice
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada.
| | - Tyler T Cooper
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada.
| | - Gilles A Lajoie
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; Don Rix Protein Identification Facility, University of Western, Ontario, London, ON N6G 2V4, Canada.
| | - Gregory M Kelly
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada; Child Health Research Institute, 345 Westminster Ave, London, ON N6C 4V3, Canada.
| |
Collapse
|
2
|
Spice DM, Dierolf J, Kelly GM. Suppressor of Fused Regulation of Hedgehog Signaling is Required for Proper Astrocyte Differentiation. Stem Cells Dev 2022; 31:741-755. [PMID: 36103394 DOI: 10.1089/scd.2022.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hedgehog signaling is essential for vertebrate development; however, less is known about the negative regulators that influence this pathway. Using the mouse P19 embryonal carcinoma cell model, suppressor of fused (SUFU), a negative regulator of the Hedgehog (Hh) pathway, was investigated during retinoic acid (RA)-induced neural differentiation. We found Hh signaling increased activity in the early phase of differentiation, but was reduced during terminal differentiation of neurons and astrocytes. This early increase in pathway activity was required for neural differentiation; however, it alone was not sufficient to induce neural lineages. SUFU, which regulates signaling at the level of Gli, remained relatively unchanged during differentiation, but its loss through CRISPR-Cas9 gene editing resulted in ectopic expression of Hh target genes. Interestingly, these SUFU-deficient cells were unable to differentiate toward neural lineages without RA, and when directed toward these lineages, they showed delayed and decreased astrocyte differentiation; neuron differentiation was unaffected. Ectopic activation of Hh target genes in SUFU-deficient cells remained throughout RA-induced differentiation and this was accompanied by the loss of Gli3, despite the presence of the Gli3 message. Thus, the study indicates the proper timing and proportion of astrocyte differentiation requires SUFU, likely acting through Gli3, to reduce Hh signaling during late-stage differentiation.
Collapse
Affiliation(s)
- Danielle M Spice
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| | - Joshua Dierolf
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Gregory M Kelly
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Lee DG, Kim YK, Baek KH. The bHLH Transcription Factors in Neural Development and Therapeutic Applications for Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232213936. [PMID: 36430421 PMCID: PMC9696289 DOI: 10.3390/ijms232213936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The development of functional neural circuits in the central nervous system (CNS) requires the production of sufficient numbers of various types of neurons and glial cells, such as astrocytes and oligodendrocytes, at the appropriate periods and regions. Hence, severe neuronal loss of the circuits can cause neurodegenerative diseases such as Huntington's disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), and Amyotrophic Lateral Sclerosis (ALS). Treatment of such neurodegenerative diseases caused by neuronal loss includes some strategies of cell therapy employing stem cells (such as neural progenitor cells (NPCs)) and gene therapy through cell fate conversion. In this report, we review how bHLH acts as a regulator in neuronal differentiation, reprogramming, and cell fate determination. Moreover, several different researchers are conducting studies to determine the importance of bHLH factors to direct neuronal and glial cell fate specification and differentiation. Therefore, we also investigated the limitations and future directions of conversion or transdifferentiation using bHLH factors.
Collapse
Affiliation(s)
- Dong Gi Lee
- Joint Section of Science in Environmental Technology, Food Technology, and Molecular Biotechnology, Ghent University, Incheon 21569, Korea
| | - Young-Kwang Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam 13488, Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7134
| |
Collapse
|
4
|
Moazeny M, Salari A, Hojati Z, Esmaeili F. Comparative analysis of protein-protein interaction networks in neural differentiation mechanisms. Differentiation 2022; 126:1-9. [DOI: 10.1016/j.diff.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/03/2022]
|
5
|
Yu WB, Cao L, Zhao YY, Xiao W, Xiao BG. Comparing the role of Ginkgolide B and Ginkgolide K on cultured astrocytes exposed to oxygen‑glucose deprivation. Mol Med Rep 2018; 18:4417-4427. [PMID: 30221704 PMCID: PMC6172388 DOI: 10.3892/mmr.2018.9450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/27/2018] [Indexed: 12/28/2022] Open
Abstract
Ginkgolide B (GB) and ginkgolide K (GK) are two main active monomers of ginkgolides that present a unique group of diterpenes found naturally in the leaves of the Ginkgo biloba tree. Astrocytes are the most abundant cell type within the central nervous system (CNS) and serve essential roles in maintaining healthy brain function. The present study compared the biological effects of GB and GK on astrocytes exposed to oxygen-glucose deprivation (OGD). The results demonstrated that GB and GK exhibit many different actions. The level of the platelet-activating factor (PAF) was elevated on astrocytes exposed to OGD, and inhibited by GB and GK treatment. Although GB and GK inhibited the expression of p-NF-κB/p65, GK exerted stronger anti-inflammatory and antioxidant effects on astrocytes exposed to OGD than GB by inhibiting interleukin (IL)-6 and tumor necrosis factor-α, and inducing IL-10 and the nuclear factor-erythroid 2-related factor 2/HO-1 signaling pathway. When compared with GB treatment, GK treatment maintained high levels of phosphoinositide 3-kinase/phosphorylated-protein kinase B expression, and induced a marked upregulation of Wnt family member 1 and brain derived neurotrophic factor, indicating that GK, as a natural plant compound, may have more attractive prospects for clinical application in the treatment of neurological disorders than GB.
Collapse
Affiliation(s)
- Wen-Bo Yu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P.R. China
| | - Liang Cao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222047, P.R. China
| | - Yan-Yin Zhao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P.R. China
| | - Wei Xiao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu 222047, P.R. China
| | - Bao-Guo Xiao
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
6
|
Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res 2018; 1705:48-65. [PMID: 29544733 DOI: 10.1016/j.brainres.2018.03.013] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/16/2023]
Abstract
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate. Transcription factors of the basic-helix-loop-helix (bHLH) family have emerged as key determinants of neural cell fate specification and differentiation, ensuring that appropriate numbers of specific neuronal and glial cell types are produced. Recent studies have further revealed that the functions of these bHLH factors are strictly regulated. Given their essential developmental roles, it is not surprising that bHLH mutations and de-regulated expression are associated with various neurological diseases and cancers. Moreover, the powerful ability of bHLH factors to direct neuronal and glial cell fate specification and differentiation has been exploited in the relatively new field of cellular reprogramming, in which pluripotent stem cells or somatic stem cells are converted to neural lineages, often with a transcription factor-based lineage conversion strategy that includes one or more of the bHLH genes. These concepts are reviewed herein.
Collapse
Affiliation(s)
- Daniel J Dennis
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada
| | - Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Kelly GM, Gatie MI. Mechanisms Regulating Stemness and Differentiation in Embryonal Carcinoma Cells. Stem Cells Int 2017; 2017:3684178. [PMID: 28373885 PMCID: PMC5360977 DOI: 10.1155/2017/3684178] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 02/06/2023] Open
Abstract
Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced, embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived from teratocarcinomas. This original work was broad in scope, but eventually led the way for us to focus on the components involved in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism shapes the epigenetic landscape and hence the pluripotency of all stem cells.
Collapse
Affiliation(s)
- Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
- Department of Paediatrics and Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Child Health Research Institute, London, ON, Canada
- Ontario Institute for Regenerative Medicine, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Mohamed I. Gatie
- Department of Biology, Molecular Genetics Unit, Western University, London, ON, Canada
- Collaborative Program in Developmental Biology, Western University, London, ON, Canada
| |
Collapse
|
8
|
Kobayashi T. Expression and Regulation of Tal2 during Neuronal Differentiation in P19 Cells. YAKUGAKU ZASSHI 2017; 137:61-71. [PMID: 28049897 DOI: 10.1248/yakushi.16-00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T-cell acute lymphocytic leukemia 2 (Tal2) is a gene encoding a member of the basic helix-loop-helix transcription factor family, which is essential for the normal development of the mouse brain. We found that Tal2 was induced during neural differentiation in P19 cells, which are pluripotent mouse embryonal carcinoma cells that differentiate into the neural lineage upon both exposure to all-trans retinoic acid (atRA) and the formation of cell aggregation. Tal2 expression during neural differentiation in P19 cells was detected within 3 h after induction with atRA and retinoic acid receptor α (RARα). The atRA-RARα complex is known to bind to a characteristic retinoic acid response element (RARE) located in the promoter of target genes. We found a RARE-like element in the intron of Tal2. We also found a TATA-box-like element in the 5' region. The TATA-box-like element functioned as a core promoter, and TATA- box binding protein bound to this element upstream of Tal2 in P19 cells. The RARE-like element responded to atRA signaling that activated the transcription, and RARα was bound to this element in the intron of Tal2 in P19 cells. Furthermore, the interaction between these elements on Tal2 was confirmed in a chromatin immunoprecipitation assay. Because the neural differentiation of P19 cells mimics in part the development of the nervous system, P19 cells are useful for studying the mechanism underlying the role of Tal2 in neural differentiation. Further work is underway to clarify the function of Tal2 in neural differentiation using the differentiation system of P19 cells.
Collapse
|
9
|
MiR-218 Induces Neuronal Differentiation of ASCs in a Temporally Sequential Manner with Fibroblast Growth Factor by Regulation of the Wnt Signaling Pathway. Sci Rep 2017; 7:39427. [PMID: 28045049 PMCID: PMC5206743 DOI: 10.1038/srep39427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
Differentiation of neural lineages from mesenchymal stem cells has raised the hope of generating functional cells as seed cells for nerve tissue engineering. As important gene regulators, microRNAs (miRNAs) have been speculated to play a vital role in accelerating stem cell differentiation and repairing neuron damage. However, miRNA roles in directing differentiation of stem cells in current protocols are underexplored and the mechanisms of miRNAs as regulators of neuronal differentiation remain ambiguous. In this study, we have determined that miR-218 serves as crucial constituent regulator in neuronal differentiation of adipose stem cells (ASCs) through Wnt signaling pathway based on comprehensive annotation of miRNA sequencing data. Moreover, we have also discovered that miR-218 and Fibroblast Growth Factor-2 (FGF2) modulate neuronal differentiation in a sequential manner. These findings provide additional understanding of the mechanisms regulating stem cell neuronal differentiation as well as a new method for neural lineage differentiation of ASCs.
Collapse
|
10
|
Chen Y, Reese DH. Corexit-EC9527A Disrupts Retinol Signaling and Neuronal Differentiation in P19 Embryonal Pluripotent Cells. PLoS One 2016; 11:e0163724. [PMID: 27684493 PMCID: PMC5042420 DOI: 10.1371/journal.pone.0163724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/03/2016] [Indexed: 11/18/2022] Open
Abstract
Corexit-EC9500A and Corexit-EC9527A are two chemical dispersants that have been used to remediate the impact of the 2010 Deepwater Horizon oil spill. Both dispersants are composed primarily of organic solvents and surfactants and act by emulsifying the crude oil to facilitate biodegradation. The potential adverse effect of the Corexit chemicals on mammalian embryonic development remains largely unknown. Retinol (vitamin A) signaling, mediated by all-trans retinoic acid (RA), is essential for neural tube formation and the development of many organs in the embryo. The physiological levels of RA in cells and tissues are maintained by the retinol signaling pathway (RSP), which controls the biosynthesis of RA from dietary retinol and the catabolism of RA to polar metabolites for removal. RA is a potent activating ligand for the RAR/RXR nuclear receptors. Through RA and the receptors, the RSP modulates the expression of many developmental genes; interference with the RSP is potentially teratogenic. In this study the mouse P19 embryonal pluripotent cell, which contains a functional RSP, was used to evaluate the effects of the Corexit dispersants on retinol signaling and associated neuronal differentiation. The results showed that Corexit-EC9500A was more cytotoxic than Corexit-EC9527A to P19 cells. At non-cytotoxic doses, Corexit-EC9527A inhibited retinol-induced expression of the Hoxa1 gene, which encodes a transcription factor for the regulation of body patterning in the embryo. Such inhibition was seen in the retinol- and retinal- induced, but not RA-induced, Hoxa1 up-regulation, indicating that the Corexit chemicals primarily inhibit RA biosynthesis from retinal. In addition, Corexit-EC9527A suppressed retinol-induced P19 cell differentiation into neuronal cells, indicating potential neurotoxic effect of the chemicals under the tested conditions. The surfactant ingredient, dioctyl sodium sulfosuccinate (DOSS), may be a major contributor to the observed effect of Corexit-EC9527A in the cell.
Collapse
Affiliation(s)
- Yanling Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, United States of America
- * E-mail:
| | - David H. Reese
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, 20708, United States of America
| |
Collapse
|
11
|
Trindade P, Hampton B, Manhães AC, Medina AE. Developmental alcohol exposure leads to a persistent change on astrocyte secretome. J Neurochem 2016; 137:730-43. [PMID: 26801685 PMCID: PMC5471499 DOI: 10.1111/jnc.13542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/08/2015] [Accepted: 12/28/2015] [Indexed: 01/03/2023]
Abstract
Fetal alcohol spectrum disorder is the most common cause of mental disabilities in the western world. It has been quite established that acute alcohol exposure can dramatically affect astrocyte function. Because the effects of early alcohol exposure on cell physiology can persist into adulthood, we tested the hypothesis that ethanol exposure in ferrets during a period equivalent to the last months of human gestation leads to persistent changes in astrocyte secretome in vitro. Animals were treated with ethanol (3.5 g/kg) or saline between postnatal day (P)10-30. At P31, astrocyte cultures were made and cells were submitted to stable isotope labeling by amino acids. Twenty-four hour conditioned media of cells obtained from ethanol- or saline-treated animals (ET-CM or SAL-CM) were collected and analyzed by quantitative mass spectrometry in tandem with liquid chromatography. Here, we show that 65 out of 280 quantifiable proteins displayed significant differences comparing ET-CM to SAL-CM. Among the 59 proteins that were found to be reduced in ET-CM we observed components of the extracellular matrix such as laminin subunits α2, α4, β1, β2, and γ1 and the proteoglycans biglycan, heparan sulfate proteoglycan 2, and lumican. Proteins with trophic function such as insulin-like growth factor binding protein 4, pigment epithelium-derived factor, and clusterin as well as proteins involved on modulation of proteolysis such as metalloproteinase inhibitor 1 and plasminogen activator inhibitor-1 were also reduced. In contrast, pro-synaptogeneic proteins like thrombospondin-1, hevin as well as the modulator of extracelular matrix expression, angiotensinogen, were found increased in ET-CM. The analysis of interactome maps through ingenuity pathway analysis demonstrated that the amyloid beta A4 protein precursor, which was found reduced in ET-CM, was previously shown to interact with ten other proteins that exhibited significant changes in the ET-CM. Taken together our results strongly suggest that early exposure to teratogens such as alcohol may lead to an enduring change in astrocyte secretome. Despite efforts in prevention, fetal alcohol spectrum disorders are a major cause of mental disabilities. Here, we show that developmental exposure to alcohol lead to a persistent change in the pattern of proteins secreted (secretome) by astrocytes. This study is also the first mass spectrometry-based assessment of the astrocyte secretome in a gyrencephalic animal. Cover Image for this issue: doi: 10.1111/jnc.13320.
Collapse
Affiliation(s)
- Pablo Trindade
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Brian Hampton
- Protein Analysis Laboratory, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alex C Manhães
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Department of Physiology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre E Medina
- Department of Pediatrics, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Tabe S, Hikiji H, Ariyoshi W, Hashidate‐Yoshida T, Shindou H, Okinaga T, Shimizu T, Tominaga K, Nishihara T. Lysophosphatidylethanolamine acyltransferase 1/membrane‐bound
O
‐acyltransferase 1 regulates morphology and function of P19C6 cell‐derived neurons. FASEB J 2016; 30:2591-601. [DOI: 10.1096/fj.201500097r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/28/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Shirou Tabe
- Division of Infections and Molecular BiologyDepartment of Health PromotionKyushu Dental UniversityKitakyushuJapan
- Division of Oral and Maxillofacial SurgeryDepartment of Science of Physical FunctionsKyushu Dental UniversityKitakyushuJapan
| | - Hisako Hikiji
- Department of Oral Functional ManagementKyushu Dental UniversityKitakyushuJapan
| | - Wataru Ariyoshi
- Division of Infections and Molecular BiologyDepartment of Health PromotionKyushu Dental UniversityKitakyushuJapan
| | - Tomomi Hashidate‐Yoshida
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
| | - Hideo Shindou
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
- Agency for Medical Research and Development‐Core Research for Evolutionary Science and Technology (AMED‐CREST)TokyoJapan
| | - Toshinori Okinaga
- Division of Infections and Molecular BiologyDepartment of Health PromotionKyushu Dental UniversityKitakyushuJapan
| | - Takao Shimizu
- Department of Lipid SignalingResearch InstituteNational Center for Global Health and MedicineTokyoJapan
- Department of LipidomicsGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial SurgeryDepartment of Science of Physical FunctionsKyushu Dental UniversityKitakyushuJapan
| | - Tatsuji Nishihara
- Division of Infections and Molecular BiologyDepartment of Health PromotionKyushu Dental UniversityKitakyushuJapan
| |
Collapse
|
13
|
Maruyama Y, Arahara K, Kinoshita E, Arai K. AP-1-mediated expression of brain-specific class IVa β-tubulin in P19 embryonal carcinoma cells. J Vet Med Sci 2014; 76:1609-15. [PMID: 25649943 PMCID: PMC4300376 DOI: 10.1292/jvms.14-0343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of brain-specific
phenotypes increased in all trans retinoic acid (ATRA)-induced neural
differentiation of mouse P19 embryonal carcinoma cells. Among these phenotypes, expression
of class IVa β-tubulin isotype (TUBB4a) was particularly enhanced in neural
differentiation. Transient transfection assays employing a reporter construct found that
ATRA-mediated regulatory region of the TUBB4a gene lay in the region from −83 nt to +137
nt relative to the +1 transcription start site. Site-directed mutagenesis in the AP-1
binding site at −29/−17 suggested that the AP-1 binding site was a critical region for
ATRA-mediated TUBB4a expression. Chromatin immunoprecipitation experiments suggested
participation of JunD and activating transcription factor-2 (ATF2) in TUBB4a expression.
Additionally, exogenous induction of the dominant-negative (dn) type of JunD canceled
ATRA-induced upregulation of TUBB4a, and the dn type of ATF2 suppressed even the basal
activity. Further immunoblot study revealed an ATRA-mediated increase in JunD protein,
while a significant amount of ATF2 protein was constantly produced. These results suggest
that differentiation-mediated activation of JunD results in enhanced TUBB4a
expression.
Collapse
Affiliation(s)
- Yuka Maruyama
- Department of Tissue Physiology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
14
|
Inner ear stem cells derived feeder layer promote directional differentiation of amniotic fluid stem cells into functional neurons. Hear Res 2014; 316:57-64. [PMID: 25124154 DOI: 10.1016/j.heares.2014.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 01/15/2023]
Abstract
Intact spiral ganglion neurons are required for cochlear implantation or conventional hearing amplification as an intervention for sensorineural hearing loss. Treatment strategies to replace the loss of spiral ganglion neurons are needed. Recent reports have suggested that amniotic fluid-derived stem cells are capable of differentiating into neuron-like cells in response to cytokines and are not tumorigenic. Amniotic fluid stem cells represent a potential resource for cellular therapy of neural deafness due to spiral ganglion pathology. However, the directional differentiation of amniotic fluid stem cells is undetermined in the absence of cytokines and the consequence of inner ear supporting cells from the mouse cochlea organ of Corti on the differentiation of amniotic fluid stem cells remains to be defined. In an effort to circumvent these limitations, we investigated the effect of inner ear stem cells derived feeder layer on amniotic fluid stem cells differentiation in vitro. An inner ear stem cells derived feeder layer direct contact system was established to induce differentiation of amniotic fluid stem cells. Our results showed that inner ear stem cells derived feeder layer successfully promoted directional differentiation of amniotic fluid stem cells into neurons with characteristics of functionality. Furthermore, we showed that Wnt signaling may play an essential role in triggering neurogenesis. These findings indicate the potential use of inner ear stem cells derived feeder layer as a nerve-regenerative scaffold. A reliable and effective amniotic fluid stem cell differentiation support structure provided by inner ear stem cells derived feeder layer should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
|
15
|
Liu M, Guo J, Wang J, Zhang L, Pang T, Liao H. Bilobalide induces neuronal differentiation of P19 embryonic carcinoma cells via activating Wnt/β-catenin pathway. Cell Mol Neurobiol 2014; 34:913-23. [PMID: 24838256 PMCID: PMC11488897 DOI: 10.1007/s10571-014-0072-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/29/2014] [Indexed: 12/15/2022]
Abstract
Bilobalide, a natural product extracted from Ginkgo biloba leaf, is known to exhibit a number of pharmacological activities. So far, whether it could affect embryonic stem cell differentiation is still unknown. The main aim of this study was to investigate the effect of bilobalide on P19 embryonic carcinoma cells differentiation and the underlying mechanisms. Our results showed that bilobalide induced P19 cells differentiation into neurons in a concentration- and time-dependent manner. We also found that bilobalide promoted neuronal differentiation through activation of Wnt/β-catenin signaling pathway. Exposure to bilobalide increased inactive GSK-3β phosphorylation, further induced the nuclear accumulation of β-catenin, and also up-regulated the expression of Wnt ligands Wnt1 and Wnt7a. Neuronal differentiation induced by bilobalide was totally abolished by XAV939, an inhibitor of Wnt/β-catenin pathway. These results revealed a novel role of bilobalide in neuronal differentiation from P19 embryonic cells acting through Wnt/β-catenin signaling pathway, which would provide a better insight into the beneficial effects of bilobalide in brain diseases.
Collapse
Affiliation(s)
- Mei Liu
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
| | - Jingjing Guo
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
| | - Juan Wang
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
| | - Luyong Zhang
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009 People’s Republic of China
| | - Tao Pang
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009 People’s Republic of China
| | - Hong Liao
- Neurobiology Laboratory, National Center for Drug Screening, China Pharmaceutical University, #24 Tongjiaxiang Street, Nanjing, 210009 People’s Republic of China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, 210009 People’s Republic of China
| |
Collapse
|
16
|
Kim DH, Kim HR, Choi EJ, Kim DY, Kim KK, Kim BS, Park JW, Lee BJ. Neural epidermal growth factor-like like protein 2 (NELL2) promotes aggregation of embryonic carcinoma P19 cells by inducing N-cadherin expression. PLoS One 2014; 9:e85898. [PMID: 24465772 PMCID: PMC3897553 DOI: 10.1371/journal.pone.0085898] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 12/03/2013] [Indexed: 11/18/2022] Open
Abstract
NELL2 was first identified as a mammalian homolog of chick NEL (Neural EGF-like) protein. It is almost exclusively expressed in neurons of the rat brain and has been suggested to play a role in neural differentiation. However, there is still no clear evidence for the detailed function of NELL2 in the differentiation of neurons. In this study, we identified NELL2 function during neural differentiation of mouse embryonic carcinoma P19 cells. Endogenous expression of NELL2 in the P19 cells increased in parallel with the neuronal differentiation induced by retinoic acid (RA). We found that the mouse NELL2 promoter contains RA response elements (RAREs) and that treatment with RA increased NELL2 promoter activity. Transfection of P19 cells with NELL2 expression vectors induced a dramatic increase in cell aggregation, resulting in the facilitation of neural differentiation. Moreover, NELL2 significantly increased N-cadherin expression in the P19 cell. These data suggest that NELL2 plays an important role in the regulation of neuronal differentiation via control of N-cadherin expression and cell aggregation.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Han Rae Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Eun Jung Choi
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Dong Yeol Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byung Sam Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- * E-mail:
| |
Collapse
|
17
|
Martin PM, Yang X, Robin N, Lam E, Rabinowitz JS, Erdman CA, Quinn J, Weiss LA, Hamilton SP, Kwok PY, Moon RT, Cheyette BNR. A rare WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. Transl Psychiatry 2013; 3:e301. [PMID: 24002087 PMCID: PMC3784764 DOI: 10.1038/tp.2013.75] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/01/2023] Open
Abstract
Wnt signaling, which encompasses multiple biochemical pathways that regulate neural development downstream of extracellular Wnt glycoprotein ligands, has been suggested to contribute to major psychiatric disorders including autism spectrum disorders (ASD). We used next-generation sequencing and Sequenom genotyping technologies to resequence 10 Wnt signaling pathway genes in 198 ASD patients and 240 matched controls. Results for single-nucleotide polymorphisms (SNPs) of interest were confirmed in a second set of 91 ASD and 144 control samples. We found a significantly increased burden of extremely rare missense variants predicted to be deleterious by PolyPhen-2, distributed across seven genes in the ASD sample (3.5% in ASD vs 0.8% in controls; Fisher's exact test, odds ratio (OR)=4.37, P=0.04). We also found a missense variant in WNT1 (S88R) that was overrepresented in the ASD sample (8 A/T in 267 ASD (minor allele frequency (MAF)=1.69%) vs 1 A/T in 377 controls (MAF=0.13%), OR=13.0, Fisher's exact test, P=0.0048; OR=8.2 and P=0.053 after correction for population stratification). Functional analysis revealed that WNT1-S88R is more active than wild-type WNT1 in assays for the Wnt/β-catenin signaling pathway. Our findings of a higher burden in ASD of rare missense variants distributed across 7 of 10 Wnt signaling pathway genes tested, and of a functional variant at the WNT1 locus associated with ASD, support that dysfunction of this pathway contributes to ASD susceptibility. Given recent findings of common molecular mechanisms in ASD, schizophrenia and affective disorders, these loci merit scrutiny in other psychiatric conditions as well.
Collapse
Affiliation(s)
- P-M Martin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - X Yang
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - N Robin
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington School of Medicine, University of Washington, Seattle, WA, USA
| | - E Lam
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - J S Rabinowitz
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington School of Medicine, University of Washington, Seattle, WA, USA
| | - C A Erdman
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - J Quinn
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - L A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - S P Hamilton
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - P-Y Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - R T Moon
- Department of Pharmacology and Howard Hughes Medical Institute, University of Washington School of Medicine, University of Washington, Seattle, WA, USA
| | - B N R Cheyette
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA,Department of Psychiatry, University of California, Rock Hall Room 284D, 1550 4th Street, San Francisco, CA 94158-2324, USA. E-mail:
| |
Collapse
|
18
|
Komori R, Kobayashi T, Matsuo H, Kino K, Miyazawa H. Csn3 gene is regulated by all-trans retinoic acid during neural differentiation in mouse P19 cells. PLoS One 2013; 8:e61938. [PMID: 23613978 PMCID: PMC3629135 DOI: 10.1371/journal.pone.0061938] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/14/2013] [Indexed: 12/21/2022] Open
Abstract
κ-Casein (CSN3) is known to play an essential role in controlling the stability of the milk micelles. We found that the expression of Csn3 was induced by all-trans retinoic acid (ATRA) during neural differentiation in P19 embryonal carcinoma cells from our study using DNA microarray. In this paper, we describe the detailed time course of Csn3 expression and the induction mechanism of Csn3 transcription activation in this process. The Csn3 expression was induced rapidly and transiently within 24 h of ATRA treatment. Retinoic acid receptor (RAR)-specific agonists were used in expression analysis to identify the RAR subtype involved upregulation of Csn3; a RARα-specific agonist mimicked the effects of ATRA on induction of Csn3 expression. Therefore, RARα may be the RAR subtype mediating the effects of ATRA on the induction of Csn3 gene transcription in this differentiation-promoting process of P19 cells. We found that the promoter region of Csn3 contained a typical consensus retinoic acid response element (RARE), and this RARE was necessary for ATRA-dependent transcriptional regulation. We confirmed that RARα bound to this RARE sequence in P19 cells. These findings indicated that the Csn3 expression is upregulated via ATRA-bound RARα and binding of this receptor to the RARE in the Csn3 promoter region. This will certainly serve as a first step forward unraveling the mysteries of induction of Csn3 in the process of neural differentiation.
Collapse
Affiliation(s)
- Rie Komori
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Takanobu Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Hikaru Matsuo
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Katsuhito Kino
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Hiroshi Miyazawa
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, Japan
- * E-mail:
| |
Collapse
|
19
|
Chong ZZ, Shang YC, Mu Y, Cui S, Yao Q, Maiese K. Targeting erythropoietin for chronic neurodegenerative diseases. Expert Opin Ther Targets 2013; 17:707-20. [PMID: 23510463 DOI: 10.1517/14728222.2013.780599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Since erythropoietin (EPO) and EPO receptor (EPOR) are expressed in the central nervous system (CNS) beyond hematopoietic system, EPO illustrates a robust biological function in maintaining neuronal survival and regulating neurogenesis and may play a crucial role in neurodegenerative diseases. AREAS COVERED EPO is capable of modulating multiple cellular signal transduction pathways to promote neuronal survival and enhance the proliferation and differentiation of neuronal progenitor cells. Initially, EPO binds to EPOR to activate the Janus-tyrosine kinase 2 (Jak2) protein followed by modulation of protein kinase B (Akt), mammalian target of rapamycin, signal transducer and activators of transcription 5, mitogen-activated protein kinases, protein tyrosine phosphatases, Wnt1 and nuclear factor κB. As a result, EPO may actively prevent the progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis and motor neuron diseases. EXPERT OPINION Novel knowledge of the cell signaling pathways regulated by EPO in the CNS will allow us to establish the foundation for the development of therapeutic strategies against neurodegenerative diseases. Further investigation of the role of EPO in neurodegenerative diseases can not only formulate EPO as a therapeutic candidate, but also further identify novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- University of Medicine and Dentistry of New Jersey, Cancer Center, New Jersey NJ 07103, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Yamada T, Urano-Tashiro Y, Tanaka S, Akiyama H, Tashiro F. Involvement of crosstalk between Oct4 and Meis1a in neural cell fate decision. PLoS One 2013; 8:e56997. [PMID: 23451132 PMCID: PMC3581578 DOI: 10.1371/journal.pone.0056997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022] Open
Abstract
Oct4 plays a critical role both in maintaining pluripotency and the cell fate decision of embryonic stem (ES) cells. Nonetheless, in the determination of the neuroectoderm (NE) from ES cells, the detailed regulation mechanism of the Oct4 gene expression is poorly understood. Here, we report that crosstalk between Oct4 and Meis1a, a Pbx-related homeobox protein, is required for neural differentiation of mouse P19 embryonic carcinoma (EC) cells induced by retinoic acid (RA). During neural differentiation, Oct4 expression was transiently enhanced during 6–12 h of RA addition and subsequently disappeared within 48 h. Coinciding with up-regulation of Oct4 expression, the induction of Meis1a expression was initiated and reached a plateau at 48 h, suggesting that transiently induced Oct4 activates Meis1a expression and the up-regulated Meis1a then suppresses Oct4 expression. Chromatin immunoprecipitation (ChIP) and luciferase reporter analysis showed that Oct4 enhanced Meis1a expression via direct binding to the Meis1 promoter accompanying histone H3 acetylation and appearance of 5-hydoxymethylcytosine (5hmC), while Meis1a suppressed Oct4 expression via direct association with the Oct4 promoter together with histone deacetylase 1 (HDAC1). Furthermore, ectopic Meis1a expression promoted neural differentiation via formation of large neurospheres that expressed Nestin, GLAST, BLBP and Sox1 as neural stem cell (NSC)/neural progenitor markers, whereas its down-regulation generated small neurospheres and repressed neural differentiation. Thus, these results imply that crosstalk between Oct4 and Meis1a on mutual gene expressions is essential for the determination of NE from EC cells.
Collapse
Affiliation(s)
- Takeyuki Yamada
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Yumiko Urano-Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Saori Tanaka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Hirotada Akiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Fumio Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
21
|
Krawetz RJ, Taiani J, Greene A, Kelly GM, Rancourt DE. Inhibition of Rho kinase regulates specification of early differentiation events in P19 embryonal carcinoma stem cells. PLoS One 2011; 6:e26484. [PMID: 22140430 PMCID: PMC3227584 DOI: 10.1371/journal.pone.0026484] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Rho kinase pathway plays a key role in many early cell/tissue determination events that take place in embryogenesis. Rho and its downstream effector Rho kinase (ROCK) play pivotal roles in cell migration, apoptosis (membrane blebbing), cell proliferation/cell cycle, cell-cell adhesion and gene regulation. We and others have previously demonstrated that inhibition of ROCK blocks endoderm differentiation in embryonal carcinoma stem cells, however, the effect of ROCK inhibition on mesoderm and ectoderm specification has not been fully examined. In this study, the role of ROCK within the specification and differentiation of all three germ layers was examined. METHODOLOGY/PRINCIPAL FINDINGS P19 cells were treated with the specific ROCK inhibitor Y-27623, and increase in differentiation efficiency into neuro-ectodermal and mesodermal lineages was observed. However, as expected a dramatic decrease in early endodermal markers was observed when ROCK was inhibited. Interestingly, within these ROCK-inhibited RA treated cultures, increased levels of mesodermal or ectodermal markers were not observed, instead it was found that the pluripotent markers SSEA-1 and Oct-4 remained up-regulated similar to that seen in undifferentiated cultures. Using standard and widely accepted methods for reproducible P19 differentiation into all three germ layers, an enhancement of mesoderm and ectoderm differentiation with a concurrent loss of endoderm lineage specification was observed with Y-27632 treatment. Evidence would suggest that this effect is in part mediated through TGF-β and SMAD signaling as ROCK-inhibited cells displayed aberrant SMAD activation and did not return to a 'ground' state after the inhibition had been removed. CONCLUSIONS/SIGNIFICANCE Given this data and the fact that only a partial rescue of normal differentiation capacity occurred when ROCK inhibition was alleviated, the effect of ROCK inhibition on the differentiation capacity of pluripotent cell populations should be further examined to elucidate the role of the Rho-ROCK pathway in early cellular 'fate' decision making processes.
Collapse
Affiliation(s)
- Roman J Krawetz
- Department of Surgery, University of Calgary, Calgary, Canada.
| | | | | | | | | |
Collapse
|
22
|
Takayama Y, Saito A, Moriguchi H, Kotani K, Suzuki T, Mabuchi K, Jimbo Y. Simultaneous induction of calcium transients in embryoid bodies using microfabricated electrode substrates. J Biosci Bioeng 2011; 112:624-9. [PMID: 21903466 DOI: 10.1016/j.jbiosc.2011.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/05/2011] [Accepted: 08/09/2011] [Indexed: 12/20/2022]
Abstract
Precise control of differentiation processes of pluripotent stem cells is a key component for the further development of regenerative medicine. For this purpose, combining a cell-aggregate-size treatment for regulating intercellular signal transmissions and an electrical stimulation technique for inducing cellular responses is a promising approach. In the present study, we developed microfabricated electrode substrates that allow simultaneous stimulation of embryoid bodies (EBs) of P19 cells. Mouse embryonal carcinoma P19 cells can be induced to differentiate into three germ layers and serve as a promising stem cell model. Microcavity-array patterns were fabricated onto indium-tin-oxide (ITO) substrates using a standard photo-lithography technique, and uniform-sized EBs of P19 cells were inserted into each microcavity. Electrical stimulation was applied to the EBs through substrate electrodes and stimulus-induced intracellular calcium transients were monitored. We confirmed that the developed electrode device could simultaneously stimulate smaller (200μm diameter) and larger (500μm diameter) EBs inserted in the microcavities and induce specific spatio-temporal patterns of intracellular calcium transients in the EBs with fine reproducibility. We concluded that the developed microcavity array with embedded electrodes could simultaneously and effectively stimulate uniform-sized EBs inserted in it. Therefore, it is a promising experimental tool for precisely controlling cell differentiation processes.
Collapse
Affiliation(s)
- Yuzo Takayama
- Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cytokines regulate neuronal gene expression: Differential effects of Th1, Th2 and monocyte/macrophage cytokines. J Neuroimmunol 2011; 238:19-33. [DOI: 10.1016/j.jneuroim.2011.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 12/19/2022]
|
24
|
Cardozo AJ, Gómez DE, Argibay PF. Transcriptional characterization of Wnt and Notch signaling pathways in neuronal differentiation of human adipose tissue-derived stem cells. J Mol Neurosci 2011; 44:186-94. [PMID: 21360053 DOI: 10.1007/s12031-011-9503-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/07/2011] [Indexed: 01/01/2023]
Abstract
Since the nervous system has limited self-repair capability, a great interest in using stem cells is generated to repair it. The adipose tissue is an abundant source of stem cells and previous reports have shown the differentiation of them in neuron-like cells when cultures are enriched with growth factors involved in neurogenesis. Regarding this, it could be thought that a functional parallelism between neurogenesis and neuronal differentiation of human adipose stem cells (hASCs) exists. For this reason, we investigated the putative involvement of Notch and Wnt pathways in neuronal differentiation of hASCs through real-time PCR. We found that both Wnt and Notch signaling are present in proliferating hASCs and that both cascades are downregulated when cells are differentiated to a neuronal phenotype. These results are in concordance with previous works where it was found that both pathways are involved in the maintenance of the proliferative state of stem cells, probably through inhibition of the expression of cell-fate-specific genes. These results could support the notion that hASCs differentiation into neuron-like cells represents a regulated process analogous to what occurs during neuronal differentiation of NSCs and could partially contribute to elucidate the molecular mechanisms involved in neuronal differentiation of adult human nonneural tissues.
Collapse
Affiliation(s)
- Alejandra Johana Cardozo
- Instituto de Ciencias Básicas y Medicina Experimental Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | |
Collapse
|
25
|
Piens M, Muller M, Bodson M, Baudouin G, Plumier JC. A short upstream promoter region mediates transcriptional regulation of the mouse doublecortin gene in differentiating neurons. BMC Neurosci 2010; 11:64. [PMID: 20509865 PMCID: PMC2891791 DOI: 10.1186/1471-2202-11-64] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 05/28/2010] [Indexed: 11/23/2022] Open
Abstract
Background Doublecortin (Dcx), a MAP (Microtubule-Associated Protein), is transiently expressed in migrating and differentiating neurons and thereby characterizes neuronal precursors and neurogenesis in developing and adult neurogenesis. In addition, reduced Dcx expression during development has been related to appearance of brain pathologies. Here, we attempt to unveil the molecular mechanisms controlling Dcx gene expression by studying its transcriptional regulation during neuronal differentiation. Results To determine and analyze important regulatory sequences of the Dcx promoter, we studied a putative regulatory region upstream from the mouse Dcx coding region (pdcx2kb) and several deletions thereof. These different fragments were used in vitro and in vivo to drive reporter gene expression. We demonstrated, using transient expression experiments, that pdcx2kb is sufficient to control specific reporter gene expression in cerebellar cells and in the developing brain (E14.5). We determined the temporal profile of Dcx promoter activity during neuronal differentiation of mouse embryonic stem cells (mESC) and found that transcriptional activation of the Dcx gene varies along with neuronal differentiation of mESC. Deletion experiments and sequence comparison of Dcx promoters across rodents, human and chicken revealed the importance of a highly conserved sequence in the proximal region of the promoter required for specific and strong expression in neuronal precursors and young neuronal cells. Further analyses revealed the presence in this short sequence of several conserved, putative transcription factor binding sites: LEF/TCF (Lymphoid Enhancer Factor/T-Cell Factor) which are effectors of the canonical Wnt pathway; HNF6/OC2 (Hepatocyte Nuclear Factor-6/Oncecut-2) members of the ONECUT family and NF-Y/CAAT (Nuclear Factor-Y). Conclusions Studies of Dcx gene regulatory sequences using native, deleted and mutated constructs suggest that fragments located upstream of the Dcx coding sequence are sufficient to induce specific Dcx expression in vitro: in heterogeneous differentiated neurons from mESC, in primary mouse cerebellar neurons (PND3) and in organotypic slice cultures. Furthermore, a region in the 3'-end region of the Dcx promoter is highly conserved across several species and exerts positive control on Dcx transcriptional activation. Together, these results indicate that the proximal 3'-end region of the mouse Dcx regulatory sequence is essential for Dcx gene expression during differentiation of neuronal precursors.
Collapse
Affiliation(s)
- Marie Piens
- Laboratory for Animal Physiology, Université de Liège, B-4000 Liège, Sart-Tilman, Belgium
| | | | | | | | | |
Collapse
|
26
|
Tang K, Xie X, Park JI, Jamrich M, Tsai S, Tsai MJ. COUP-TFs regulate eye development by controlling factors essential for optic vesicle morphogenesis. Development 2010; 137:725-34. [PMID: 20147377 DOI: 10.1242/dev.040568] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transcriptional networks, which are initiated by secreted proteins, cooperate with each other to orchestrate eye development. The establishment of dorsal/ventral polarity, especially dorsal specification in the optic vesicle, is poorly understood at a molecular and cellular level. Here, we show that COUP-TFI (Nr2f1) and COUP-TFII (Nr2f2) are highly expressed in the progenitor cells in the developing murine eye. Phenotype analysis of COUP-TFI and COUP-TFII single-gene conditional knockout mouse models suggests that COUP-TFs compensate for each other to maintain morphogenesis of the eye. However, in eye-specific COUP-TFI/TFII double-knockout mice, progenitor cells at the dorso-distal optic vesicle fail to differentiate appropriately, causing the retinal pigmented epithelium cells to adopt a neural retina fate and abnormal differentiation of the dorsal optic stalk; the development of proximo-ventral identities, neural retina and ventral optic stalk is also compromised. These cellular defects in turn lead to congenital ocular colobomata and microphthalmia. Immunohistochemical and in situ hybridization assays reveal that the expression of several regulatory genes essential for early optic vesicle development, including Pax6, Otx2, Mitf, Pax2 and Vax1/2, is altered in the corresponding compartments of the mutant eye. Using ChIP assay, siRNA treatment and transient transfection in ARPE-19 cells in vitro, we demonstrate that Pax6 and Otx2 are directly regulated by COUP-TFs. Taken together, our findings reveal novel and distinct cell-intrinsic mechanisms mediated by COUP-TF genes to direct the specification and differentiation of progenitor cells, and that COUP-TFs are crucial for dorsalization of the eye.
Collapse
Affiliation(s)
- Ke Tang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | | | | | | |
Collapse
|
27
|
Felthaus O, Ernst W, Driemel O, Reichert TE, Schmalz G, Morsczeck C. TGF-beta stimulates glial-like differentiation in murine dental follicle precursor cells (mDFPCs). Neurosci Lett 2010; 471:179-184. [PMID: 20100544 DOI: 10.1016/j.neulet.2010.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 01/15/2010] [Accepted: 01/15/2010] [Indexed: 01/03/2023]
Abstract
Dental stem cells such as dental follicle precursor cells (DFPCs) are capable of neural-like differentiation. However, compared to neuroectodermal progenitor cells such as murine retinal progenitor cells (mRPCs) they show only a limited capacity for glial cell differentiation. In this study we tested the influence of cell signaling on glial differentiation of mDFPCs. These cells were treated with inhibitors and activators of the Sonic hedgehog-, the Wnt/beta-Catenin-, and the TGF-beta-pathway. After incubation only an activation of the TGF-beta-pathway showed a remarkable glial-like cell differentiation. In contrast gene expression of neural cell markers was not regulated. In conclusion, TGF-beta improved glial-like, but not neural-like, differentiation of mDFPCs.
Collapse
Affiliation(s)
- Oliver Felthaus
- Department of Operative Dentistry and Periodontology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Amano M, Yamaguchi M, Takegawa Y, Yamashita T, Terashima M, Furukawa JI, Miura Y, Shinohara Y, Iwasaki N, Minami A, Nishimura SI. Threshold in stage-specific embryonic glycotypes uncovered by a full portrait of dynamic N-glycan expression during cell differentiation. Mol Cell Proteomics 2009; 9:523-37. [PMID: 20008832 DOI: 10.1074/mcp.m900559-mcp200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although various glycoforms appear to participate independently in multiple molecular interactions in cellular adhesion that contribute to embryogenesis and organogenesis, a full portrait of the glycome diversity and the effect of the structural variations of cellular glycoforms on individual cell stages in proliferation and differentiation remain unclear. Here we describe a novel concept for the characterization of dynamic glycoform alteration during cell differentiation by means of "glycoblotting-based cellular glycomics," the only method allowing for rapid and quantitative glycan analysis. We demonstrated that processes of dynamic cellular differentiation of mouse embryonic carcinoma cells, P19CL6 and P19C6, and mouse embryonic stem cells into cardiomyocytes or neural cells can be monitored and characterized quantitatively by profiling entire N-glycan structures of total cell glycoproteins. Whole N-glycans enriched and identified by the glycoblotting method (67 glycans for P19CL6, 75 glycans for P19C6, and 72 glycans for embryonic stem cells) were profiled and bar-coded quantitatively with respect to the ratio of subgroups composed of characteristic glycoforms, namely glycotypes.
Collapse
Affiliation(s)
- Maho Amano
- Laboratory of Advanced Chemical Biology, Graduate School of Life Science, and Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, N21 W11, Kita-ku, Sapporo 001-0021, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Garcia-Morales C, Liu CH, Abu-Elmagd M, Hajihosseini MK, Wheeler GN. Frizzled-10 promotes sensory neuron development in Xenopus embryos. Dev Biol 2009; 335:143-55. [PMID: 19716814 DOI: 10.1016/j.ydbio.2009.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/20/2009] [Accepted: 08/21/2009] [Indexed: 12/23/2022]
Abstract
Formation of the vertebrate nervous system requires coordinated cell-cell interactions, intracellular signalling events, gene transcription, and morphogenetic cell movements. Wnt signalling has been involved in regulating a wide variety of biological processes such as embryonic patterning, cell proliferation, cell polarity, motility, and the specification of cell fate. Wnt ligands associate with their receptors, members of the frizzled family (Fz). In Xenopus, five members of the frizzled family are expressed in the early nervous system. We have investigated the role of Xenopus frizzled-10 (Fz10) in neural development. We show that Fz10 is expressed in the dorsal neural ectoderm and neural folds in the region where primary sensory neurons develop. Fz10 mediates canonical Wnt signalling and interacts with Wnt1 and Wnt8 but not Wnt3a as shown in synergy assays. We find that Fz10 is required for the late stages of sensory neuron differentiation. Overexpression of Fz10 in Xenopus leads to an increase in the number of sensory neurons. Loss of Fz10 function using morpholinos inhibits the development of sensory neurons in Xenopus at later stages of neurogenesis and this can be rescued by co-injection of modified Fz10B and beta-catenin. In mouse P19 cells induced by retinoic acid to undergo neural differentiation, overexpression of Xenopus Fz10 leads to an increase in the number of neurons generated while siRNA knockdown of endogenous mouse Fz10 inhibits neurogenesis. Thus we propose Fz10 mediates Wnt1 signalling to determine sensory neural differentiation in Xenopus in vivo and in mouse cell culture.
Collapse
|
30
|
Wang X, Lee JE, Dorsky RI. Identification of Wnt-responsive cells in the zebrafish hypothalamus. Zebrafish 2009; 6:49-58. [PMID: 19374548 DOI: 10.1089/zeb.2008.0570] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In all vertebrate brains, there is a period of widespread embryonic neurogenesis followed by specific regional neurogenesis that continues into adult stages. The Wnt signaling pathway, which is essential for numerous developmental processes, has also been suggested to be involved in neurogenesis. To help investigate the exact roles of canonical Wnt signaling in neurogenesis, here we examine the identity of Wnt-responsive cells in the zebrafish hypothalamus. This tissue is a useful diencephalic neurogenesis model containing evolutionarily conserved populations of neurons. We first performed in situ hybridization to show the expression patterns of Tcf family members and a canonical Wnt signaling reporter in the 50 hpf embryonic hypothalamus and larval/adult hypothalamus. We then used immunohistochemistry to identify the cell types of Wnt-responsive and Lef1-positive cells in both 50 hpf embryonic and adult hypothalamus. Our results indicate that Wnt-responsive cells in the hypothalamus are likely to be both mitotic progenitors and postmitotic precursors at embryonic stages, but only precursors at the adult stage. These data suggest that canonical Wnt signaling may be functionally required for maintenance of neural progenitor and precursor pools in the embryo, and for ongoing neurogenesis in the adult zebrafish.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
31
|
Tissue and developmental regulation of fragile X mental retardation 1 exon 12 and 15 isoforms. Neurobiol Dis 2009; 35:52-62. [PMID: 19362146 DOI: 10.1016/j.nbd.2009.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/24/2009] [Accepted: 03/29/2009] [Indexed: 11/22/2022] Open
Abstract
The pre-mRNA of the fragile X mental retardation 1 gene (FMR1) is subject to exon skipping and alternative splice site selection, which can generate up to 12 isoforms. The expression and function of these variants in vivo has not yet been fully explored. In the present study, we investigated the distribution of Fmr1 exon 12 and exon 15 isoforms. Exon 12 encodes an extension of KH(2) domain, one of the RNA binding domains in the FMR1 gene product (FMRP) and we show that exon 12 variant proteins differentially interact with kissing complex RNA. Alternative splicing at exon 15 produces FMRPs differing in RNA binding ability and each is distinguished by unique post-translational modifications. Using semiquantitative RT-PCR and Northern blotting, we found that particular Fmr1 exon 12 and exon 15 isoforms change during neuronal differentiation. Interestingly, Fmr1 exon 12 variants display tissue-specific and developmental differences, while exon 15-containing transcripts vary less. Altogether, the spatio-temporal plasticity of FMR1 mRNA is consistent with complex RNA processing that is mis-regulated in fragile X syndrome.
Collapse
|
32
|
Jin Z, Liu L, Bian W, Chen Y, Xu G, Cheng L, Jing N. Different transcription factors regulate nestin gene expression during P19 cell neural differentiation and central nervous system development. J Biol Chem 2009; 284:8160-73. [PMID: 19147497 PMCID: PMC2658109 DOI: 10.1074/jbc.m805632200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/26/2008] [Indexed: 12/17/2022] Open
Abstract
Nestin is a molecular marker for neural progenitor cells. Rat and human nestin genes possess a central nervous system-specific enhancer within their second introns. However, the transcription factors that bind to the nestin enhancer have not been fully elucidated. Here, we show that the second intron of the mouse nestin gene is sufficient to drive reporter gene expression in the developing nervous system. The core sequence of this central nervous system-specific enhancer localizes to the 3' 320-bp region. The cis-elements for Sox and POU family transcription factors and the hormone-responsive element are essential for nestin expression during embryonic carcinoma P19 cell neural differentiation and in the developing chick neural tube. Interestingly, different transcription factors bind to the nestin enhancer at different stages of P19 cell neural differentiation and central nervous system development. Sox2 and SF1 may mediate basal nestin expression in undifferentiated P19EC cells, whereas Sox2, Brn1, and Brn2 bind to the enhancer in P19 neural progenitor cells. Similarly, in vivo, Oct1 binds to the nestin enhancer in embryonic day 8.5 (E8.5) mouse embryos, and Oct1, Brn1, and Brn2 bind to this enhancer in E10.5 and E12.5 mouse embryos. Our studies therefore suggest a temporal coordination of transcription factors in determining nestin gene expression.
Collapse
Affiliation(s)
- Zhigang Jin
- Laboratory of Molecular Cell Biology and State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
33
|
Gao X, Tian HY, Liu L, Yu ML, Jing NH, Zhao FK. Comparative Proteomic Analysis of Proteins Involved in Cell Aggregation during Neural Differentiation of P19 Mouse Embryonic Carcinoma Cells. J Proteome Res 2009; 8:1765-81. [DOI: 10.1021/pr800889p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xia Gao
- State Key of Molecular Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hong-Yu Tian
- State Key of Molecular Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Liu
- State Key of Molecular Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mei-Lan Yu
- State Key of Molecular Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nai-He Jing
- State Key of Molecular Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fu-Kun Zhao
- State Key of Molecular Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
34
|
Yin ZS, Zu B, Chang J, Zhang H. Repair effect of Wnt3a protein on the contused adult rat spinal cord. Neurol Res 2009; 30:480-6. [PMID: 18953739 DOI: 10.1179/174313208x284133] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To explore the repair effect of Wnt3a on injured spinal cord in rats. METHODS Moderate spinal cord contusion injury was made in 40 adult Sprague-Dawley rats at T10. Fifteen rats served as contusion controls (Group 1). Fifteen rats were treated with Wnt3a 3 days after injury (Group 2). Ten additional rats received only T10 laminectomies to serve as non-injured controls (Group 0). The functional recovery of the rats was observed through Basso-Beattie-Bresnahan (BBB) open field locomotor score. Rats were killed at 14 or 28 days after injury, then spinal cords were removed for histopathologic examinations, and the expression of the bromodeoxyuridine (BrdU) plus neural cell markers was stained with immunohistochemical method. RESULTS After an initial complete hindlimb paralysis, rats of all groups receiving a contusive injury recovered substantial function within 1 week. By 28 days, the BBB score for rats in Group 2 is better than that for rats in Group 1 by 7 points (Group 2 = 16.94, after 28 days versus Group 1 = 9.89 points; p < 0.05). Light and electron microscopic works showed that the Wnt3a-treated group had moderate repair effect of myelin and axons. Immunohistochemical analysis showed a significant increase in the number of the inducing differentiated neurons in Wnt3a-treated rats compared with control rats 2 weeks after injury. CONCLUSIONS Exogenous Wnt3a administration can improve axonal conduction and spinal cord function in the injured spinal cord, and the administration of Wnt3a result in the increase in the populations of neurons, suggesting that these cells may be derived from neural precursors and stem cells.
Collapse
Affiliation(s)
- Zong-Sheng Yin
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | | | |
Collapse
|
35
|
Jing XT, Wu HT, Wu Y, Ma X, Liu SH, Wu YR, Ding XF, Peng XZ, Qiang BQ, Yuan JG, Fan WH, Fan M. DIXDC1 promotes retinoic acid-induced neuronal differentiation and inhibits gliogenesis in P19 cells. Cell Mol Neurobiol 2009; 29:55-67. [PMID: 18629627 PMCID: PMC11506024 DOI: 10.1007/s10571-008-9295-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
Human DIXDC1 is a member of Dishevelled-Axin (DIX) domain containing gene family which plays important roles in Wnt signaling and neural development. In this report, we first confirmed that expression of Ccd1, a mouse homologous gene of DIXDC1, was up-regulated in embryonic developing nervous system. Further studies showed that Ccd1 was expressed specifically in neurons and colocalized with early neuronal marker Tuj1. During the aggregation induced by RA and neuronal differentiation of embryonic carcinoma P19 cells, expressions of Ccd1 as well as Wnt-1 and N-cadherin were dramatically increased. Stable overexpression of DIXDC1 in P19 cells promoted the neuronal differentiation. P19 cells overexpressing DIXDC1 but not the control P19 cells could differentiate into Tuj1 positive cells with RA induction for only 2 days. Meanwhile, we also found that overexpression of DIXDC1 facilitated the expression of Wnt1 and bHLHs during aggregation and differentiation, respectively, while inhibited gliogenesis by down-regulating the expression of GFAP in P19 cells. Thus, our finding suggested that DIXDC1 might play an important role during neurogenesis, overexpression of DIXDC1 in embryonic carcinoma P19 cells promoted neuronal differentiation, and inhibited gliogenesis induced by retinoic acid.
Collapse
Affiliation(s)
- Xiao-Tang Jing
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Hai-Tao Wu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Yan Wu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xin Ma
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Shu-Hong Liu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Yan-Rui Wu
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xue-Feng Ding
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Xiao-Zhong Peng
- State Key Lab of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 People’s Republic of China
| | - Bo-Qin Qiang
- State Key Lab of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 People’s Republic of China
| | - Jian-Gang Yuan
- State Key Lab of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005 People’s Republic of China
| | - Wen-Hong Fan
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| | - Ming Fan
- Department of Brain Protection & Plasticity Research, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing, 100850 People’s Republic of China
| |
Collapse
|
36
|
A critical importance of polyamine site in NMDA receptors for neurite outgrowth and fasciculation at early stages of P19 neuronal differentiation. Exp Cell Res 2008; 314:2603-17. [PMID: 18586028 DOI: 10.1016/j.yexcr.2008.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/27/2008] [Accepted: 06/05/2008] [Indexed: 01/16/2023]
Abstract
We have investigated the role of N-methyl-d-aspartate receptors (NMDARs) and gamma-aminobutyric acid receptors type A (GABA(A)Rs) at an early stage of P19 neuronal differentiation. The subunit expression was profiled in 24-hour intervals with RT-PCR and functionality of the receptors was verified via fluo-3 imaging of Ca(2+) dynamics in the immature P19 neurons showing that both NMDA and GABA excite neuronal bodies, but only polyamine-site sensitive NMDAR stimulation leads to enhanced Ca(2+) signaling in the growth cones. Inhibition of NR1/NR2B NMDARs by 1 muM ifenprodil severely impaired P19 neurite extension and fasciculation, and this negative effect was fully reversible by polyamine addition. In contrast, GABA(A)R antagonism by a high dose of 200 microM bicuculline had no observable effect on P19 neuronal differentiation and fasciculation. Except for the differential NMDAR and GABA(A)R profiles of Ca(2+) signaling within the immature P19 neurons, we have also shown that inhibition of NR1/NR2B NMDARs strongly decreased mRNA level of NCAM-180, which has been previously implicated as a regulator of neuronal growth cone protrusion and neurite extension. Our data thus suggest a critical role of NR1/NR2B NMDARs during the process of neuritogenesis and fasciculation of P19 neurons via differential control of local growth cone Ca(2+) surges and NCAM-180 signaling.
Collapse
|
37
|
Yin ZS, Zhang H, Wang W, Hua XY, Hu Y, Zhang SQ, Li GW. Wnt-3a protein promote neuronal differentiation of neural stem cells derived from adult mouse spinal cord. Neurol Res 2008; 29:847-54. [PMID: 17609021 DOI: 10.1179/016164107x223539] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND Wnt proteins as growth factor have multiple functions in neural development, and especially serve key roles in differentiation and development. Wnt-3a is an intercellular signaling molecule that is involved in a variety of morphogenetic events. The purpose of this study was to investigate the effects of Wnt-3a signal protein on proliferation and differentiation of neural stem cells derived from adult mouse spinal cord. METHODS Adult mouse neural stem cells were cultured with serum free incubation. The recombined plasmid pSecTag2/Hygro B-Wnt3a for eukaryotic expression transfected adult neural stem cell, then the expression protein was detected by Western blot. The differentiation of adult neural stem cells was identified by the immunocytochemical technique. RESULTS The inducing differentiated rates of neurons were improved greatly by Wnt-3a protein compared with control (p<0.05). CONCLUSION Wnt-3a has obvious influence on the neuronal differentiation of adult neural stem cell.
Collapse
Affiliation(s)
- Zong-Sheng Yin
- Department of Orthopaedics, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Inberg A, Bogoch Y, Bledi Y, Linial M. Cellular processes underlying maturation of P19 neurons: Changes in protein folding regimen and cytoskeleton organization. Proteomics 2007; 7:910-20. [PMID: 17370269 DOI: 10.1002/pmic.200600547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Embryonal carcinoma P19 cells provide an ideal model to study molecular programs along differentiation. Upon induction by retinoic acid (RA), the cells undergo a program of differentiation that generates functioning neurons within 60 h. RA induced cells that were plated as sparse (1000 cells/mm(2)) or dense (4000 cells/mm(2)) cultures showed a marked difference in the culture morphology with the dense cultures exhibiting rapid maturation and accelerated neurite outgrowth. The protein expression levels of the sparse and dense cultures were compared 48 h following RA. Cell extracts were separated by 1-DE and 2-DE and differential expression (>four-fold) proteins were identified by MS. Here, we focus on 20 proteins associated with cytoskeletal regulation and stress-dependent protein refolding. The first group includes drebrin, cofilin, alpha-internexin, vimentin, and nestin. Among the proteins in the second group are subunits of the TCP-1, and several chaperones of the Hsp70 and Hsp90 families. We show that coordinated remodeling of the cytoskeleton and modulations in chaperone activity underlie the change in neurite extension rate. Furthermore, a proteomics-based analysis applied on P19 neurons demonstrated pathways underlying neuronal outgrowth, suggesting that a malfunction of such pathways leads to neuropathological conditions.
Collapse
Affiliation(s)
- Alex Inberg
- Department of Biological Chemistry, Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
39
|
Xia C, Wang C, Zhang K, Qian C, Jing N. Induction of a high population of neural stem cells with anterior neuroectoderm characters from epiblast-like P19 embryonic carcinoma cells. Differentiation 2007; 75:912-27. [PMID: 17573917 DOI: 10.1111/j.1432-0436.2007.00188.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epiblast, derived from the inner cell mass (ICM), represents the final embryonic founder cell population of mouse embryo and can give rise to all germ layer lineages including the neuroectoderm. The generation of neural stem cells from epiblast-like cells is of great value for studying the mechanism of neural determination during gastrulation stages of embryonic development. Mouse embryonic carcinoma (EC) P19 cells are equivalent to the epiblast of early post-implantation blastocysts. In this study, we establish a feasible induction system that allows rapid and efficient derivation of a high percentage ( approximately 95%) of neural stem cells from P19 EC cell in N2B27 serum-free medium. The induced neural stem cells bear anterior neuroectoderm characters, and can be efficiently caudalized by retinoic acid (RA). These neural stem cells have multilineage potential to differentiate into neurons, astrocytes, and oligodendrocytes. Mechanistic analysis indicates that inhibition of the bone morphogenetic protein (BMP) pathway may be the main reason for N2B27-neural induction, and that fibroblast growth factor (FGF) signaling is also involved in this process. This method will provide an in vitro system to dissect the molecular mechanisms involved in neural induction of early mouse embryos.
Collapse
Affiliation(s)
- Caihong Xia
- Laboratory of Molecular Cell Biology, Key Laboratory of Stem Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
40
|
Hwang CK, Song KY, Kim CS, Choi HS, Guo XH, Law PY, Wei LN, Loh HH. Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol 2007; 27:4720-36. [PMID: 17452465 PMCID: PMC1951474 DOI: 10.1128/mcb.00073-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The pharmacological effect of morphine as a painkiller is mediated mainly via the mu opioid receptor (MOR) and is dependent on the number of MORs in the cell surface membrane. While several studies have reported that the MOR gene is regulated by various cis- and trans-acting factors, many questions remain unanswered regarding in vivo regulation. The present study shows that epigenetic silencing and activation of the MOR gene are achieved through coordinated regulation at both the histone and DNA levels. In P19 mouse embryonal carcinoma cells, expression of the MOR was greatly increased after neuronal differentiation. MOR expression could also be induced by a demethylating agent (5'-aza-2'-deoxycytidine) or histone deacetylase inhibitors in the P19 cells, suggesting involvement of DNA methylation and histone deacetylation for MOR gene silencing. Analysis of CpG DNA methylation revealed that the proximal promoter region was unmethylated in differentiated cells compared to its hypermethylation in undifferentiated cells. In contrast, the methylation of other regions was not changed in either cell type. Similar methylation patterns were observed in the mouse brain. In vitro methylation of the MOR promoters suppressed promoter activity in the reporter assay. Upon differentiation, the in vivo interaction of MeCP2 was reduced in the MOR promoter region, coincident with histone modifications that are relevant to active transcription. When MeCP2 was disrupted using MeCP2 small interfering RNA, the endogenous MOR gene was increased. These data suggest that DNA methylation is closely linked to the MeCP2-mediated chromatin structure of the MOR gene. Here, we propose that an epigenetic mechanism consisting of DNA methylation and chromatin modification underlies the cell stage-specific mechanism of MOR gene expression.
Collapse
Affiliation(s)
- Cheol Kyu Hwang
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sun Y, Wang Y, Zhang J, Tao J, Wang C, Jing N, Wu C, Deng K, Qiao S. ADAM23 Plays Multiple Roles in Neuronal Differentiation of P19 Embryonal Carcinoma cells. Neurochem Res 2007; 32:1217-23. [PMID: 17333391 DOI: 10.1007/s11064-007-9293-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
ADAM23, belonging to ADAM (A Disintegrin And Metalloprotease) protein family, is mainly expressed in brain. P19 cells could differentiate into neuroectodermal cell lineage after cell aggregates have been induced by retinoic acid (RA). In this report, we show that the post-transcriptional and post-translational processes of ADAM23 are regulated during the differentiation of P19 cells. In P19-derived neurons, ADAM23 is polarized distributed in the proximal part. To explore the possible roles of ADAM23 during P19 cell neuronal differentiation, ADAM23-RNAi P19 cell lines were established. These transfected cells could differentiate into neurofilament-expression neurons in the absence of RA, whereas wild-type P19 cell can not. These results suggest ADAM23 may play roles in both early and later stage of neuronal differentiation.
Collapse
Affiliation(s)
- Yaping Sun
- State key Laboratory of Genetics Engineering, Institute of Genetics, School of Life Science, Fudan University, 220 Han Dan Road, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Soprano DR, Teets BW, Soprano KJ. Role of retinoic acid in the differentiation of embryonal carcinoma and embryonic stem cells. VITAMINS AND HORMONES 2007; 75:69-95. [PMID: 17368312 DOI: 10.1016/s0083-6729(06)75003-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Retinoic acid (RA), the most potent natural form of vitamin A, plays an important role in many diverse biological processes such as embryogenesis and cellular differentiation. This chapter is a review of the mechanism of action of RA and the role of specific RA-regulated genes during the cellular differentiation of embryonal carcinoma (EC) and embryonic stem (ES) cells. RA acts by binding to its nuclear receptors and inducing transcription of specific target genes. The most studied mouse EC cell lines include F9 cells, which can be induced by RA to differentiate into primitive, parietal, and visceral endodermal cells; and P19 cells, which can differentiate to endodermal and neuronal cells upon RA treatment. ES cells can be induced to differentiate into a number of different cell types; many of which require RA treatment. Over the years, many RA-regulated genes have been discovered in EC and ES cells using a diverse set of techniques. Current research focuses on the elucidation how these genes affect differentiation in EC and ES cells using a variety of molecular biology approaches. However, the exact molecule events that lead from a pluripotent stem cell to a fully differentiated cell following RA treatment are yet to be determined.
Collapse
Affiliation(s)
- Dianne Robert Soprano
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
43
|
Sun Y, Li H, Liu Y, Shin S, Mattson MP, Rao MS, Zhan M. Cross-species transcriptional profiles establish a functional portrait of embryonic stem cells. Genomics 2006; 89:22-35. [PMID: 17055697 PMCID: PMC2658876 DOI: 10.1016/j.ygeno.2006.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/14/2006] [Accepted: 09/25/2006] [Indexed: 12/21/2022]
Abstract
An understanding of the regulatory mechanisms responsible for pluripotency in embryonic stem cells (ESCs) is critical for realizing their potential in medicine and science. Significant similarities exist among ESCs harvested from different species, yet major differences have also been observed. Here, by cross-species analysis of a large set of functional categories and all transcription factors and growth factors, we reveal conserved and divergent functional landscapes underlining fundamental and species-specific mechanisms that regulate ESC development. Global transcriptional trends derived from all expressed genes, instead of differentially expressed genes alone, were examined, allowing for a higher discriminating power in the functional portrait. We demonstrate that cross-species correlation of transcriptional changes that occur upon ESC differentiation is a powerful predictor of ESC-important biological pathways and functional cores within a pathway. Hundreds of functional modules, as defined by Gene Ontology, were associated with conserved expression patterns but bear no overt relationship to ESC development, suggestive of new mechanisms critical to ESC pluripotency. Yet other functional modules were not conserved; instead, they were significantly up-regulated in ESCs of either species, suggestive of species-specific regulation. The comparisons of ESCs across species and between human ESCs and embryonal carcinoma stem cells suggest that while pluripotency as an essential function in multicellular organisms is conserved throughout evolution, mechanisms primed for differentiation are less conserved and contribute substantially to the differences among stem cells derived from different tissues or species. Our findings establish a basis for defining the "stemness" properties of ESCs from the perspective of functional conservation and variation. The data and analyses resulting from this study provide a framework for new hypotheses and research directions and a public resource for functional genomics of ESCs.
Collapse
Affiliation(s)
- Yu Sun
- Bioinformatics Unit, Research Resources Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Huai Li
- Bioinformatics Unit, Research Resources Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Ying Liu
- The CRL, Invitrogen Corp, 1620 Faraday Ave, Carlsbad, CA 92008, USA
| | - Soojung Shin
- The CRL, Invitrogen Corp, 1620 Faraday Ave, Carlsbad, CA 92008, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Mahendra S. Rao
- The CRL, Invitrogen Corp, 1620 Faraday Ave, Carlsbad, CA 92008, USA
- Neurosciences Program, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
- * To whom correspondence should be addressed: National Institute on Aging, NIH, 333 Cassall Drive, Baltimore, MD 21224, Tel: (410)-558- 8373 FAX: (410)-558- 8674, E-mail: ;
| | - Ming Zhan
- Bioinformatics Unit, Research Resources Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
- * To whom correspondence should be addressed: National Institute on Aging, NIH, 333 Cassall Drive, Baltimore, MD 21224, Tel: (410)-558- 8373 FAX: (410)-558- 8674, E-mail: ;
| |
Collapse
|
44
|
Avery S, Inniss K, Moore H. The Regulation of Self-Renewal in Human Embryonic Stem Cells. Stem Cells Dev 2006; 15:729-40. [PMID: 17105408 DOI: 10.1089/scd.2006.15.729] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human embryonic stem (hES) cells have the ability to self-renew while maintaining their pluripotency. The ability of stem cells to self-renew expansively is essential in both development and maintenance of adult tissues. ES cell lines were first generated from mouse blastocysts, these lines provided much needed information regarding ES cell propagation, growth factor dependence, and marker expression. However, the application potential of murine models is restricted in value because many differences between mouse and human ES cells have since been identified. The process of hES cells self-renewal appears to be regulated by many different pathways; however, the molecular mechanisms enabling this process are not fully characterized. Further defining these mechanisms will enable growth of hES cells under defined conditions and aid controlled differentiation of cells into specified lineages, in turn providing cells suitable for therapeutic applications. This review provides a summary of the mechanisms known to control self-renewal and pluripotency in hES cells.
Collapse
Affiliation(s)
- Stuart Avery
- Department of Biomedical Sciences, Centre for Stem Cell Biology, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | | | | |
Collapse
|
45
|
Wang C, Xia C, Bian W, Liu L, Lin W, Chen YG, Ang SL, Jing N. Cell aggregation-induced FGF8 elevation is essential for P19 cell neural differentiation. Mol Biol Cell 2006; 17:3075-84. [PMID: 16641368 PMCID: PMC1483041 DOI: 10.1091/mbc.e05-11-1087] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
FGF8, a member of the fibroblast growth factor (FGF) family, has been shown to play important roles in different developing systems. Mouse embryonic carcinoma P19 cells could be induced by retinoic acid (RA) to differentiate into neuroectodermal cell lineages, and this process is cell aggregation dependent. In this report, we show that FGF8 expression is transiently up-regulated upon P19 cell aggregation, and the aggregation-dependent FGF8 elevation is pluripotent stem cell related. Overexpressing FGF8 promotes RA-induced monolayer P19 cell neural differentiation. Inhibition of FGF8 expression by RNA interference or blocking FGF signaling by the FGF receptor inhibitor, SU5402, attenuates neural differentiation of the P19 cell. Blocking the bone morphogenetic protein (BMP) pathway by overexpressing Smad6 in P19 cells, we also show that FGF signaling plays a BMP inhibition-independent role in P19 cell neural differentiation.
Collapse
Affiliation(s)
- Chen Wang
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Caihong Xia
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Bian
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Liu
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Lin
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| | - Ye-Guang Chen
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Siew-Lan Ang
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; and
| | - Naihe Jing
- *Key Laboratory of Stem Cell Biology and Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences and Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
46
|
Yu JM, Kim JH, Song GS, Jung JS. Increase in proliferation and differentiation of neural progenitor cells isolated from postnatal and adult mice brain by Wnt-3a and Wnt-5a. Mol Cell Biochem 2006; 288:17-28. [PMID: 16583142 DOI: 10.1007/s11010-005-9113-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 12/23/2005] [Indexed: 12/01/2022]
Abstract
Wnt signaling is implicated in the control of cell growth and differentiation during CNS development. These findings are based on studies of mouse and chick models. However, the action of Wnt signaling, at the cellular level, is poorly understood. In this study, we investigated the roles of Wnt-3a and Wnt-5a on differentiation and proliferation of postnatal neural progenitor cells (NPCs) in mice.NPCs were isolated from the subventricular zone (SVZ) of PN-1 and adult ICR mice. Plasmids containing active Wnt-3a or Wnt-5a were transfected to NPCs; their effects on the formation of neurospheres and differentiation into neuronal cells were then determined. Transfection of Wnt-3a and Wnt-5a plasmids promoted regeneration of neurospheres and differentiation into Map2-positive cells, and decreased differentiation into GFAP-positive cells. The conditioned media obtained from Wnt-3a or Wnt-5a transfected NPCs showed similar effects on differentiation of NPCs with cDNA transfection, although the magnitude of stimulatory effect was less than that by plasmid transfection. Wnt-3a and Wnt-5a transfection did not affect Brdu incorporation of neuronal or glial progenitors in differentiation media. Wnt-3a and Wnt-5a plasmid transfection and the treatment of Wnt-3a and Wnt-5a conditioned media increased beta-catenin levels in NPCs. Wnt-3a had a greater effect on beta-catenin levels than Wnt-5a. The PKC inhibitor completely blocked the Wnt-5a effect on neuronal differentiation in NPCs. These findings suggest that Wnt-3a and Wnt-5a each have distinct effects on the proliferation and differentiation of NPCs in postnatal mice.
Collapse
Affiliation(s)
- Ji Min Yu
- Department of Physiology, College of Medicine, Pusan National University, 1 Ga, Ami-Dong, Suh-Gu, Pusan, 602-739, Korea
| | | | | | | |
Collapse
|
47
|
Urano Y, Iiduka M, Sugiyama A, Akiyama H, Uzawa K, Matsumoto G, Kawasaki Y, Tashiro F. Involvement of the mouse Prp19 gene in neuronal/astroglial cell fate decisions. J Biol Chem 2005; 281:7498-514. [PMID: 16352598 DOI: 10.1074/jbc.m510881200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms involved in neuronal/astroglial cell fate decisions during the development of the mammalian central nervous system are poorly understood. Here, we report that PRP19beta, a splice variant of mouse PRP19alpha corresponding to the yeast PRP19 protein, can function as a neuron-astroglial switch during the retinoic acid-primed neural differentiation of P19 cells. The beta-variant possesses an additional 19 amino acid residues in-frame in the N-terminal region of the alpha-variant. The forced expression of the alpha-variant RNA caused the down-regulation of oct-3/4 and nanog mRNA expression during the 12-48 h of the late-early stages of neural differentiation and was sufficient to convert P19 cells into neurons (but not glial cells) when the cells were cultured in aggregated form without retinoic acid. In contrast, the forced expression of the beta-variant RNA suppressed neuronal differentiation and conversely stimulated astroglial cell differentiation in retinoic acid-primed P19 cells. Based on yeast two-hybrid screening, cyclophilin A was identified as a specific binding partner of the beta-variant. Luciferase reporter assay mediated by the oct-3/4 promoter revealed that cyclophilin A could act as a transcriptional activator and that its activity was suppressed by the beta-variant, suggesting that cyclophilin A takes part in the induction of oct-3/4 gene expression, which might lead to neuroectodermal otx2 expression within 12 h of the immediate-early stages of retinoic acid-primed neural differentiation. These results show that the alpha-variant gene plays a pivotal role in neural differentiation and that the beta-variant participates in neuronal/astroglial cell fate decisions.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Carrier Proteins/physiology
- Cell Differentiation
- Cell Line
- Cell Lineage
- Cells, Cultured
- Chromatin Immunoprecipitation
- Chromatography, Gel
- Cloning, Molecular
- Cyclophilin A/chemistry
- DNA Primers/chemistry
- DNA Repair Enzymes
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Down-Regulation
- Genetic Vectors
- Green Fluorescent Proteins/metabolism
- Immunoprecipitation
- Luciferases/metabolism
- Mice
- Mice, Inbred ICR
- Models, Biological
- Molecular Sequence Data
- Neuroglia/metabolism
- Neurons/metabolism
- Nuclear Proteins
- Oligonucleotides/chemistry
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- RNA/chemistry
- RNA/metabolism
- RNA Splicing Factors
- RNA, Messenger/metabolism
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Spliceosomes/metabolism
- Time Factors
- Tissue Distribution
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Yumiko Urano
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Yamazaki, Noda-shi, Chiba 270-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chong ZZ, Li F, Maiese K. Employing new cellular therapeutic targets for Alzheimer's disease: a change for the better? Curr Neurovasc Res 2005; 2:55-72. [PMID: 16181100 PMCID: PMC2254177 DOI: 10.2174/1567202052773508] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease is a progressive disorder that results in the loss of cognitive function and memory. Although traditionally defined by the presence of extracellular plaques of amyloid-beta peptide aggregates and intracellular neurofibrillary tangles in the brain, more recent work has begun to focus on elucidating the complexities of Alzheimer's disease that involve the generation of reactive oxygen species and oxidative stress. Apoptotic processes that are incurred as a function of oxidative stress affect neuronal, vascular, and monocyte derived cell populations. In particular, it is the early apoptotic induction of cellular membrane asymmetry loss that drives inflammatory microglial activation and subsequent neuronal and vascular injury. In this article, we discuss the role of novel cellular pathways that are invoked during oxidative stress and may potentially mediate apoptotic injury in Alzheimer's disease. Ultimately, targeting new avenues for the development of therapeutic strategies linked to mechanisms that involve inflammatory microglial activation, cellular metabolism, cell-cycle regulation, G-protein regulated receptors, and cytokine modulation may provide fruitful gains for both the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Faqi Li
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
- Departments of Neurology and Anatomy & Cell Biology, Center for Molecular Medicine and Genetics and Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
- Address correspondence to this author at the Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA; Tel: 313−966−0833; Fax: 313−966−0486; E-mail:
| |
Collapse
|
49
|
Sawada A, Nishizaki Y, Sato H, Yada Y, Nakayama R, Yamamoto S, Nishioka N, Kondoh H, Sasaki H. Tead proteins activate the Foxa2 enhancer in the node in cooperation with a second factor. Development 2005; 132:4719-29. [PMID: 16207754 DOI: 10.1242/dev.02059] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cell population and the activity of the organizer change during the course of development. We addressed the mechanism of mouse node development via an analysis of the node/notochord enhancer (NE) of Foxa2. We first identified the core element (CE) of the enhancer, which in multimeric form drives gene expression in the node. The CE was activated in Wnt/β-catenin-treated P19 cells with a time lag, and this activation was dependent on two separate sequence motifs within the CE. These same motifs were also required for enhancer activity in transgenic embryos. We identified the Tead family of transcription factors as binding proteins for the 3′motif. Teads and their co-factor YAP65 activated the CE in P19 cells, and binding of Tead to CE was essential for enhancer activity. Inhibition of Tead activity by repressor-modified Tead compromised NE enhancer activation and notochord development in transgenic mouse embryos. Furthermore, manipulation of Tead activity in zebrafish embryos led to altered expression of foxa2 in the embryonic shield. These results suggest that Tead activates the Foxa2 enhancer core element in the mouse node in cooperation with a second factor that binds to the 5′ element, and that a similar mechanism also operates in the zebrafish shield.
Collapse
Affiliation(s)
- Atsushi Sawada
- Laboratory for Embryonic Induction, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kasai M, Satoh K, Akiyama T. Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs. Genes Cells 2005; 10:777-83. [PMID: 16098141 DOI: 10.1111/j.1365-2443.2005.00876.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the mammalian central nervous system, neurogenesis precedes gliogenesis; neurons are primarily generated at the neural stage, whereas most glial cells are generated perinatally and postnatally. However, the signals that regulate this sequence of events remain unclear. Here we show that Wnt signaling induces neuronal and astroglial differentiation but suppresses oligodendroglial differentiation. We observed that precursor cells infected with a retrovirus encoding beta-catenin differentiated into neurons, while astrocytes developed from uninfected precursor cells surrounding infected cells. As neurogenesis proceeded, expression of the bone morphogenetic proteins (BMPs), BMP2, 4 and 7, progressively increased in the cells infected with the retrovirus encoding beta-catenin. Furthermore, treatment of cells with Noggin, a BMP antagonist, completely inhibited astroglial differentiation but partially restored oligodendroglial differentiation. These results suggest that Wnt signaling indirectly regulates gliogenesis by inducing BMPs in neuronal cells. Thus, cooperation between Wnt and BMP signaling may play a key role in determining the sequence of neurogenesis and gliogenesis.
Collapse
Affiliation(s)
- Mana Kasai
- Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
| | | | | |
Collapse
|