1
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
2
|
Strong CE, Kabbaj M. Neural Mechanisms Underlying the Rewarding and Therapeutic Effects of Ketamine as a Treatment for Alcohol Use Disorder. Front Behav Neurosci 2020; 14:593860. [PMID: 33362485 PMCID: PMC7759199 DOI: 10.3389/fnbeh.2020.593860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder (AUD) is the most prevalent substance use disorder and causes a significant global burden. Relapse rates remain incredibly high after decades of attempting to develop novel treatment options that have failed to produce increased rates of sobriety. Ketamine has emerged as a potential treatment for AUD following its success as a therapeutic agent for depression, demonstrated by several preclinical studies showing that acute administration reduced alcohol intake in rodents. As such, ketamine's therapeutic effects for AUD are now being investigated in clinical trials with the hope of it being efficacious in prolonging sobriety from alcohol in humans (ClinicalTrials.gov, Identifier: NCT01558063). Importantly, ketamine's antidepressant effects only last for about 1-week and because AUD is a lifelong disorder, repeated treatment regimens would be necessary to maintain sobriety. This raises questions regarding its safety for AUD treatment since ketamine itself has the potential for addiction. Therefore, this review aims to summarize the neuroadaptations related to alcohol's addictive properties as well as ketamine's therapeutic and addictive properties. To do this, the focus will be on reward-related brain regions such as the nucleus accumbens (NAc), dorsal striatum, prefrontal cortex (PFC), hippocampus, and ventral tegmental area (VTA) to understand how acute vs. chronic exposure will alter reward signaling over time. Additionally, evidence from these studies will be summarized in both male and female subjects. Accordingly, this review aims to address the safety of repeated ketamine infusions for the treatment of AUD. Although more work about the safety of ketamine to treat AUD is warranted, we hope this review sheds light on some answers about the safety of repeated ketamine infusions.
Collapse
Affiliation(s)
- Caroline E Strong
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
| | - Mohamed Kabbaj
- Program in Neuroscience, Department of Biomedical Sciences, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
3
|
Rashid MA, Kim HY. N-Docosahexaenoylethanolamine ameliorates ethanol-induced impairment of neural stem cell neurogenic differentiation. Neuropharmacology 2015; 102:174-85. [PMID: 26586023 DOI: 10.1016/j.neuropharm.2015.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/08/2015] [Accepted: 11/06/2015] [Indexed: 11/16/2022]
Abstract
Previous studies demonstrated that prenatal exposure to ethanol interferes with embryonic and fetal development, and causes abnormal neurodevelopment. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid highly enriched in the brain, was shown to be essential for proper brain development and function. Recently, we found that N-docosahexenoyethanolamine (synaptamide), an endogenous metabolite of DHA, is a potent PKA-dependent neurogenic factor for neural stem cell (NSC) differentiation. In this study, we demonstrate that ethanol at pharmacologically relevant concentrations downregulates cAMP signaling in NSC and impairs neurogenic differentiation. In contrast, synaptamide reverses ethanol-impaired NSC neurogenic differentiation through counter-acting on the cAMP production system. NSC exposure to ethanol (25-50 mM) for 4 days dose-dependently decreased the number of Tuj-1 positive neurons and PKA/CREB phosphorylation with a concomitant reduction of cellular cAMP. Ethanol-induced cAMP reduction was accompanied by the inhibition of G-protein activation and expression of adenylyl cyclase (AC) 7 and AC8, as well as PDE4 upregulation. In contrast to ethanol, synaptamide increased cAMP production, GTPγS binding, and expression of AC7 and AC8 isoforms in a cAMP-dependent manner, offsetting the ethanol-induced impairment in neurogenic differentiation. These results indicate that synaptamide can reduce ethanol-induced impairment of neuronal differentiation by counter-affecting shared targets in G-protein coupled receptor (GPCR)/cAMP signaling. The synaptamide-mediated mechanism observed in this study may offer a possible avenue for ameliorating the adverse impact of fetal alcohol exposure on neurodevelopment.
Collapse
Affiliation(s)
- Mohammad Abdur Rashid
- Laboratory of Molecular Signaling, DICBR, NIAAA, NIH, 5625 Fishers Lane, Bethesda, MD 20892-9410, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, DICBR, NIAAA, NIH, 5625 Fishers Lane, Bethesda, MD 20892-9410, USA.
| |
Collapse
|
4
|
Singh AK, Gupta S, Jiang Y, Younus M, Ramzan M. In vitro Neurogenesis from Neural Progenitor Cells Isolated from the Hippocampus Region of the Brain of Adult Rats Exposed to Ethanol during Early Development through Their Alcohol-Drinking Mothers. Alcohol Alcohol 2009; 44:185-98. [DOI: 10.1093/alcalc/agn109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
5
|
Marczak ED, Jinsmaa Y, Li T, Bryant SD, Tsuda Y, Okada Y, Lazarus LH. [N-allyl-Dmt1]-endomorphins are micro-opioid receptor antagonists lacking inverse agonist properties. J Pharmacol Exp Ther 2007; 323:374-80. [PMID: 17626793 DOI: 10.1124/jpet.107.125807] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
[N-allyl-Dmt1]-endomorphin-1 and -2 ([N-allyl-Dmt1]-EM-1 and -2) are new selective micro-opioid receptor antagonists obtained by N-alkylation with an allyl group on the amino terminus of 2',6'-dimethyl-L-tyrosine (Dmt) derivatives. To further characterize properties of these compounds, their intrinsic activities were assessed by functional guanosine 5'-O-(3-[35S]thiotriphosphate) binding assays and forskolin-stimulated cyclic AMP accumulation in cell membranes obtained from vehicle, morphine, and ethanol-treated SK-N-SH cells and brain membranes isolated from naive and morphine-dependent mice; their mode of action was compared with naloxone or naltrexone, which both are standard nonspecific opioid-receptor antagonists. [N-allyl-Dmt1]-EM-1 and -2 were neutral antagonists under all of the experimental conditions examined, in contrast to naloxone and naltrexone, which behave as neutral antagonists only in membranes from vehicle-treated cells and mice but act as inverse agonists in membranes from morphine- and ethanol-treated cells as well as morphine-treated mice. Both endomorphin analogs inhibited the naloxone- and naltrexone-elicited withdrawal syndromes from acute morphine dependence in mice. This suggests their potential therapeutic application in the treatment of drug addiction and alcohol abuse without the adverse effects observed with inverse agonist alkaloid-derived compounds that produce severe withdrawal symptoms.
Collapse
Affiliation(s)
- Ewa D Marczak
- Medicinal Chemistry Group, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, P.O. Box 12233, MD C304, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Vinod KY, Hungund BL. Endocannabinoid lipids and mediated system: implications for alcoholism and neuropsychiatric disorders. Life Sci 2006; 77:1569-83. [PMID: 16005471 DOI: 10.1016/j.lfs.2005.05.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Several natural lipids have emerged as candidate modulators of central nervous system (CNS) functions. Fatty acid amides and their coupled signaling pathways are known to regulate several physiological and behavioral processes. Recent studies from our laboratory and others also have implicated endogenous marijuana-like brain constituents, endocannabinoids (ECs), and cannabinoid-1 (CB1) receptors in the neural circuitry that mediate drug addiction and neuropsychiatric disorders. Neuroadaptation to chronic ethanol (EtOH) has been shown to involve changes in the EC system. These changes include alterations in the synthesis of EC, their precursors, as well as density and coupling efficacy of CB1 receptors. The evidence for the participation of the EC system in the pathophysiology of various neuropsychiatric disorders is just beginning to evolve. It is of great interest to explore the components of EC system in different areas of the CNS for further understanding of its role in health and disease. This article presents a comprehensive overview of the currently available literature pertaining to the role of the EC system in alcoholism, schizophrenia, depression and/or suicide.
Collapse
Affiliation(s)
- K Yaragudri Vinod
- Division of Analytical Psychopharmacology, New York State Psychiatric Institute, New York, USA.
| | | |
Collapse
|
7
|
Barrios V, Puebla-Jiménez L, del Carmen Boyano-Adánez M, Sanz M, Soriano-Guillén L, Arilla-Ferreiro E. Differential effects of ethanol ingestion on somatostatin content, somatostatin receptors and adenylyl cyclase activity in the frontoparietal cortex of virgin and parturient rats. Life Sci 2005; 77:1094-105. [PMID: 15978264 DOI: 10.1016/j.lfs.2005.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 01/10/2005] [Indexed: 11/30/2022]
Abstract
Chronic ethanol ingestion decreases the number of somatostatin (SRIF) receptors in the rat frontoparietal cortex and female sex hormones modulate the effects of ethanol in the brain. Therefore, we investigated the differential effects of ethanol consumption on the SRIFergic system in the frontoparietal cortex of virgin and parturient rats given ethanol in their drinking water before and during gestation. In parturient rats, ethanol consumption decreased the density of SRIF receptors (25%, p<0.01 vs control parturient group) whereas the SRIF-like immunoreactivity (SRIF-LI) content was increased (140%, p<0.01). In virgin rats, ethanol ingestion decreased the density of SRIF receptors (42%, p<0.01) more than in alcoholic parturient rats. SRIF-LI levels were unaffected. The inhibitory effect of SRIF on basal and forskolin-stimulated adenylyl cyclase was significantly lower in alcoholic virgin rats as compared to alcoholic parturient rats. No differences in the levels of the G inhibitory (Gi) alpha1 and Gialpha2 proteins were observed among the experimental groups. These results suggest that gestation may confer partial resistance to the ethanol-induced effect on the SRIFergic system.
Collapse
Affiliation(s)
- Vicente Barrios
- Research Laboratory, Universidad Autónoma, Hospital Infantil Universitario Niño Jesús, Avda. Menéndez Pelayo, 65; 28009 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Basavarajappa BS, Hungund BL. ROLE OF THE ENDOCANNABINOID SYSTEM IN THE DEVELOPMENT OF TOLERANCE TO ALCOHOL. Alcohol Alcohol 2004; 40:15-24. [PMID: 15550443 DOI: 10.1093/alcalc/agh111] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present review evaluates the evidence that the endocannabinoid system plays in the development of tolerance to alcohol. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB(1) receptor), which was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. Until now, four fatty acid derivatives identified to be arachidonylethanolamide (AEA), 2-arachidonylglycerol (2-AG), 2-arachidonylglycerol ether (noladin ether) and virodhamine have been isolated from both nervous and peripheral tissues. Both AEA and 2-AG have been shown to mimic the pharmacological and behavioural effects of Delta(9)-THC. The role of the endocannabinoid system in the development of tolerance to alcohol was not known until recently. Recent studies from our laboratory have implicated for the first time a role for the endocannabinoid system in development of tolerance to alcohol. Chronic alcohol treatment has been shown to down-regulate CB(1) receptors and its signal transduction. The observed downregulation of CB(1) receptor function results from the persistent stimulation of the receptors by AEA and 2-AG, the synthesis of which has been shown to be increased by chronic alcohol treatment. The enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid alcohol intake, have significantly reduced CB(1) receptor function in the brain, consistent with other studies in which the CB(1) receptor antagonist SR 141716A has been shown to block voluntary alcohol intake in rodents. Similarly, activation of the CB(1) receptor system promoted alcohol craving, suggesting a role for the CB(1) receptor gene in excessive alcohol drinking behaviour and development of alcoholism. Ongoing investigations may lead to a better understanding of the mechanisms underlying the development of tolerance to alcohol and to develop therapeutic strategies to treat alcoholism.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
9
|
Abstract
Neuronal responses to alcohol involve several hormone- and neurotransmitter-activated signal transduction pathways. Recent studies suggest that the adenosine A2 receptor (A2) mediates important actions of alcohol. Ethanol inhibits adenosine reuptake, increases extracellular adenosine, and promotes activation of A2. This leads to enhanced cAMP/protein kinase A (PKA) signaling ranging from increases in cAMP to stimulation of cAMP-dependent cAMP response element (CRE)-mediated gene expression. Medium spiny neurons in the striatum/nucleus accumbens (NAc) express A2 and dopamine D2 receptor (D2) on the same cells. Studies in model neuronal cell lines and primary neurons in culture expressing A2 and D2 provide evidence for synergy between ethanol/A2 and D2. Subthreshold concentrations of ethanol or a D2 agonist, without effect separately, synergistically activate cAMP/PKA signaling. Thus, neurons expressing A2 and D2 on the same cells, like in the NAc, are characterized by hypersensitivity to ethanol with a simultaneous activation of dopaminergic signaling. Synergy requires adenosine and appears to be mediated by the release of free betagamma dimers from G(i/o) via D2 activation. The release of free betagamma has pathophysiological significance in the drinking animal because specific blockade of betagamma signaling in the NAc strikingly reduces voluntary alcohol consumption. These findings suggest that signaling pathways, which regulate synergy between A2 and D2, might contain molecular targets for the prevention and treatment of alcoholism and alcohol abuse.
Collapse
Affiliation(s)
- William S Mailliard
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, 5858 Horton Street, Suite 200, , Emeryville, CA 94608, USA
| | | |
Collapse
|
10
|
Abstract
Neurobiological actions of ethanol have been linked to perturbations in cyclic AMP (cAMP)-dependent signaling processes. Chronic ethanol exposure leads to desensitization of cAMP production in response to physiological ligands (heterologous desensitization). Ethanol-induced alterations in neuronal expression of G proteins G(s) and G(i) have been invoked as a cause of heterologous desensitization. However, effects of ethanol on G protein expression vary considerably among different experimental protocols, various brain regions and diverse neuronal cell types. Dynamic palmitoylation of G protein alpha subunits is critical for membrane localization and protein-protein interactions, and represents a regulatory feature of G protein function. We studied the effect of ethanol on G alpha(s) palmitoylation. In NG108-15 rat neuroblastoma x glioma hybrid cells, acute exposure to pharmacologically relevant concentrations of ethanol (25-100 mm) inhibited basal and prostaglandin E1-stimulated incorporation of palmitate into G alpha(s). Exposure of NG108-15 cells to ethanol for 72 h induced a shift in G alpha(s) to its non-palmitoylated state, coincident with an inhibition of prostaglandin E1-induced cAMP production. Both parameters were restored following 24 h of ethanol withdrawal. Chronic ethanol exposure also induced the depalmitoylation of G alpha(s) in human embryonic kidney (HEK)293 cells that overexpress wild-type G alpha(s) and caused heterologous desensitization of adenylyl cyclase. By contrast, HEK293 cells that express a non-palmitoylated mutant of G alpha(s) were insensitive to heterologous desensitization after chronic ethanol exposure. In summary, the findings identify a novel effect of ethanol on post-translational lipid modification of G alpha(s), and represent a mechanism by which ethanol might affect adenylyl cyclase activity.
Collapse
Affiliation(s)
- Hazem Hallak
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-5541, USA.
| | | |
Collapse
|
11
|
Abstract
This article provides a detailed assessment of the toxicological and pharmacological literature concerning alcohol-induced biphasic dose-response relationships. The assessment reveals that alcohol-induced hormetic-like dose-response relationships are commonly observed, highly generalizeable according to model and endpoint and quantitative feature of the dose response. These findings have important implications affecting study design, animal model, and endpoint selection as well as clinical applications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, Morrill Science Center, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
12
|
Debelak-Kragtorp KA, Armant DR, Smith SM. Ethanol-induced cephalic apoptosis requires phospholipase C-dependent intracellular calcium signaling. Alcohol Clin Exp Res 2003; 27:515-23. [PMID: 12658119 DOI: 10.1097/01.alc.0000056615.34253.a8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although the ability of ethanol to elicit neural crest cell apoptosis is well documented, the initial target of ethanol in these cells, and the biochemical pathway leading to their apoptosis, have yet to be determined. Recent work in preimplantation mouse embryos demonstrates that ethanol induces a phospholipase-C (PLC)-dependent calcium transient that mediates ethanol's effects. We tested whether a similar effect on calcium and PLC is involved in ethanol-induced neural crest apoptosis. METHODS Chicken embryos were collected and loaded with Fluo-3-AM to assess the effects of ethanol on intracellular calcium levels. Pharmacological agents were used to determine the sources and mechanism of intracellular calcium increases. In separate experiments, embryos were treated in ovo with pharmacological modulators of calcium signaling prior to ethanol exposure, and resulting levels of cell death were assessed by using the vital dye acridine orange. RESULTS Ethanol exposure caused a localized increase in intracellular calcium levels in embryonic neural folds within 15 sec of ethanol exposure. Ethanol-induced apoptosis was specifically blocked by chelation of intracellular calcium before ethanol exposure. Pretreatment with the PLC inhibitor U73122 blocked ethanol-induced apoptosis as well as the intracellular calcium transient. Depletion of extracellular calcium resulted in a partial block of ethanol-induced apoptosis. CONCLUSIONS Ethanol exposure alters calcium signaling within the neurulation-stage chicken embryo in a PLC-dependent manner. Increases in intracellular calcium and PLC activity are necessary for ethanol's induction of apoptosis within cephalic populations. These effects likely represent an early and crucial event in the pathway leading to ethanol-induced cell death.
Collapse
|
13
|
Mühlbauer E, Rommelspacher H. Ethanol differently affects stress protein and HERG K+ channel expression in SH-SY5Y cells. Eur J Pharmacol 2003; 459:121-9. [PMID: 12524137 DOI: 10.1016/s0014-2999(02)02855-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ethanol is known to be neurotoxic. Protective mechanisms, however, are activated upon ethanol induction of the glucose-regulated stress proteins (GRPs), GRP78 and GRP94. These endoplasmic reticulum-residing chaperones are known to be involved in channel subunit assembly. The GRP and human-ether-à-gogo-related gene (HERG) K(+)-channel expression were monitored in short- and long-term ethanol incubation experiments using the human neuroblastoma cell line SH-SY5Y. mRNA of the stress proteins and protein levels of the GRPs and HERG were determined using Northern and Western blot methods. Short-term ethanol incubation caused a transient increase of GRP transcripts. Protein levels of GRP94 decreased in chronic experiments, whereas GRP78 did not change. HERG followed the same kinetics as GRP94 with a constant down-regulation. The coordinate down-regulation of GRP94 and HERG implies the specific involvement of the endoplasmic reticulum chaperone GRP94 and HERG, but not GRP78, in a process of cell adaptation.
Collapse
Affiliation(s)
- Eckhard Mühlbauer
- Institute of Anatomy and Cell Biology, Martin-Luther-University of Halle-Wittenberg/Saxon Academy of Sciences, Leipzig, Grosse Steinstrasse 52, 06097, Halle, Germany.
| | | |
Collapse
|
14
|
Rebecchi MJ, Pentyala SN. Anaesthetic actions on other targets: protein kinase C and guanine nucleotide-binding proteins. Br J Anaesth 2002; 89:62-78. [PMID: 12173242 DOI: 10.1093/bja/aef160] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- M J Rebecchi
- Departments of Anesthesiology and Physiology & Biophysics, School of Medicine, State University of New York, Stony Brook, NY 11794-8480, USA
| | | |
Collapse
|
15
|
Ethanol-Induced Translocation of Protein Kinase A Occurs in Two Phases: Control by Different Molecular Mechanisms. Alcohol Clin Exp Res 2002. [DOI: 10.1097/00000374-200203000-00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Dohrman DP, Chen HM, Gordon AS, Diamond I. Ethanol-Induced Translocation of Protein Kinase A Occurs in Two Phases: Control by Different Molecular Mechanisms. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02553.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Basavarajappa BS, Hungund BL. Neuromodulatory role of the endocannabinoid signaling system in alcoholism: an overview. Prostaglandins Leukot Essent Fatty Acids 2002; 66:287-99. [PMID: 12052043 DOI: 10.1054/plef.2001.0352] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The current review evaluates the evidence that some of the pharmacological and behavioral effects of ethanol (EtOH), including EtOH-preferring behavior, may be mediated through the endocannabinoid signaling system. The recent advances in the understanding of the neurobiological basis of alcoholism suggest that the pharmacological and behavioral effects of EtOH are mediated through its action on neuronal signal transduction pathways and ligand-gated ion channels, receptor systems, and receptors that are coupled to G-proteins. The identification of a G-protein-coupled receptor, namely, the cannabinoid receptor (CB1 receptor) that was activated by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the major psychoactive component of marijuana, led to the discovery of endogenous cannabinoid agonists. To date, two fatty acid derivatives identified to be arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) have been isolated from both nervous and peripheral tissues. Both these compounds have been shown to mimic the pharmacological and behavioral effects of Delta(9)-THC. The involvement of the endocannabinoid signaling system in the development of tolerance to the drugs of abuse including EtOH has not been known until recently. Recent studies from our laboratory have demonstrated for the first time the down-regulation of CB1 receptor function and its signal transduction by chronic EtOH. The observed down-regulation of CB1 receptor binding and its signal transduction results from the persistent stimulation of the receptors by the endogenous CB1 receptor agonists, AEA and 2-AG, the synthesis of which has been found to be increased by chronic EtOH treatment. This enhanced formation of endocannabinoids may subsequently influence the release of neurotransmitters. It was found that the DBA/2 mice, known to avoid EtOH intake, have significantly reduced brain-CB1-receptor function consistent with other studies, where the CB1 receptor antagonist SR141716A has been shown to block voluntary EtOH intake in rodents. Similarly, activation of the CB1 receptor system promoted alcohol craving, suggesting a role for the CB1 receptor gene in excessive EtOH drinking behavior and development of alcoholism. Ongoing investigations may lead to the development of potential therapeutic strategies for the treatment of alcoholism.
Collapse
Affiliation(s)
- B S Basavarajappa
- Division of Analytical Psychopharmacology, New York State Psychiatric Institute, New York, NY, USA.
| | | |
Collapse
|
18
|
Zhang BH, Ho V, Farrell GC. Specific involvement of G(alphai2) with epidermal growth factor receptor signaling in rat hepatocytes, and the inhibitory effect of chronic ethanol. Biochem Pharmacol 2001; 61:1021-7. [PMID: 11286993 DOI: 10.1016/s0006-2952(01)00554-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown that chronic alcohol consumption inhibits liver regeneration by impairing epidermal growth factor receptor (EGFR)-operated phospholipase C-(gamma1) (PLC-(gamma1)) activation and the resultant rise in intracellular [Ca(2+)](i). In hepatocytes, activation of PLC-(gamma1) by EGFR requires involvement of a pertussis toxin-sensitive inhibitory guanine nucleotide-binding regulatory protein (G(alphai)) as an intermediate. In the present study, we first identified the G(alphai) protein isoform associated with the activated EGFR, and then examined whether the toxic effect of alcohol on EGFR signaling and liver cell proliferation was exerted on this association. In cultured hepatocytes from control rats, EGF rapidly induced association between EGFR and G(alphai2) but not other G(alphai) isoforms. In hepatocytes from rats fed alcohol for 16 weeks, EGF failed to stimulate this association of G(alphai2) with the EGFR. The impairment of EGFR-G(alphai2) complex formation caused by alcohol was associated with a decreased level of G(alphai2) in the plasma membrane fraction (approximately 50% control). Pertussis toxin, an inhibitor of G(alphai) function, produced an analogous disruption of the association between G(alphai2) and the EGFR, as well as inhibiting EGF-induced DNA synthesis. It is concluded that, in hepatocytes, G(alphai2) is specific among G(alphai) isoforms in coupling activation of the EGFR to other signaling pathways that control cell proliferation. Impaired coupling of G(alphai2) of EGFR could contribute to the mechanism by which chronic alcohol exposure inhibits liver regeneration.
Collapse
Affiliation(s)
- B H Zhang
- Storr Liver Unit, Department of Medicine and Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 214, Westmead, Australia
| | | | | |
Collapse
|
19
|
Hanazaki M, Jones KA, Perkins WJ, Warner DO. The Effects of Ethanol on Ca2+ Sensitivity in Airway Smooth Muscle. Anesth Analg 2001. [DOI: 10.1213/00000539-200103000-00040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Hanazaki M, Jones KA, Perkins WJ, Warner DO. The effects of ethanol on CA(2+) sensitivity in airway smooth muscle. Anesth Analg 2001; 92:767-74. [PMID: 11226116 DOI: 10.1097/00000539-200103000-00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Halothane and other volatile anesthetics relax air-way smooth muscle (ASM) in part by decreasing the amount of force produced for a given intracellular Ca(2+) concentration (the Ca(2+) sensitivity) during muscarinic receptor stimulation. To determine whether this is a unique property of the volatile anesthetics, we tested the hypothesis that ethanol, another compound with anesthetic properties, also inhibits calcium sensitization induced by muscarinic stimulation of ASM. A beta-escin permeabilized canine tracheal smooth muscle preparation was used. Ethanol was applied to permeabilized muscles stimulated with calcium in either the absence or presence of acetylcholine. In intact ASM, ethanol produced incomplete relaxation (approximately 40%) at concentrations up to 300 mM. Ethanol significantly increased Ca(2+) sensitivity both in the presence and the absence of muscarinic receptor stimulation. Although ethanol did not affect regulatory myosin light chain (rMLC) phosphorylation during stimulation with Ca(2+) alone, it decreased rMLC phosphorylation by Ca(2+) during muscarinic receptor stimulation. Ethanol, like volatile anesthetics, inhibits increases in rMLC phosphorylation produced by muscarinic receptor stimulation at constant [Ca(2+)](i). However, despite this inhibition, the net effect of ethanol is to increase Ca(2+) sensitivity (defined as the force maintained for a given [Ca(2+)](i)) by a mechanism that is independent of changes in rMLC phosphorylation. IMPLICATIONS In permeabilized airway smooth muscle, ethanol, like volatile anesthetics, inhibits increases in regulatory protein phosphorylation caused by stimulation of the muscle when intracellular calcium concentration is constant. However, unlike volatile anesthetics, ethanol causes a net increase in force through a process not dependent on protein phosphorylation, an action favoring bronchoconstriction.
Collapse
Affiliation(s)
- M Hanazaki
- Department of Anesthesiology, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
21
|
|
22
|
Wilkemeyer MF, Pajerski M, Charness ME. Alcohol Inhibition of Cell Adhesion in BMP-Treated NG108-15 Cells. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04065.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Constantinescu A, Diamond I, Gordon AS. Ethanol-induced translocation of cAMP-dependent protein kinase to the nucleus. Mechanism and functional consequences. J Biol Chem 1999; 274:26985-91. [PMID: 10480911 DOI: 10.1074/jbc.274.38.26985] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ethanol induces translocation of the catalytic subunit (Calpha) of cAMP-dependent protein kinase (PKA) from the Golgi area to the nucleus in NG108-15 cells. Ethanol also induces translocation of the RIIbeta regulatory subunit of PKA to the nucleus; RI and Cbeta are not translocated. Nuclear PKA activity in ethanol-treated cells is no longer regulated by cAMP. Gel filtration and immunoprecipitation analysis confirm that ethanol blocks the reassociation of Calpha with RII but does not induce dissociation of these subunits. Ethanol also reduces inhibition of Calpha by the PKA inhibitor PKI. Pre-incubation of Calpha with ethanol decreases phosphorylation of Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) and casein but has no effect on the phosphorylation of highly charged molecules such as histone H1 or protamine. cAMP-response element-binding protein (CREB) phosphorylation by Calpha is also increased in ethanol-treated cells. This increase in CREB phosphorylation is inhibited by the PKA antagonist (R(p))-cAMPS and by an adenosine receptor antagonist. These results suggest that ethanol affects a cascade of events allowing for sustained nuclear localization of Calpha and prolonged CREB phosphorylation. These events may account for ethanol-induced changes in cAMP-dependent gene expression.
Collapse
Affiliation(s)
- A Constantinescu
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California, San Francisco, California 94110-3518, USA
| | | | | |
Collapse
|
24
|
Basavarajappa BS, Hungund BL. Down-regulation of cannabinoid receptor agonist-stimulated [35S]GTP gamma S binding in synaptic plasma membrane from chronic ethanol exposed mouse. Brain Res 1999; 815:89-97. [PMID: 9974126 DOI: 10.1016/s0006-8993(98)01072-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In our previous study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane (SPM) (Basavarajappa et al., Brain Res. 793 (1998) 212-218). In the present study, we investigated the effect of chronic EtOH (4-day inhalation) on the CB1 agonist stimulated guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTP gamma S) binding in SPM from mouse. Our results indicate that the net CP55,940 stimulated [35S]GTP gamma S binding was increased with increasing concentrations of CP55,940 and GDP. This net CP55,940 (1.5 microM) stimulated [35S]GTP gamma S binding was reduced significantly (-25%) in SPM from chronic EtOH group (175 +/- 5.25%, control; 150 +/- 8.14%, EtOH; P < 0.05). This effect occurs without any significant changes on basal [35S]GTP gamma S binding (152.1 +/- 10.7 for control, 147.4 +/- 5.0 fmol/mg protein for chronic EtOH group, P > 0.05). Non-linear regression analysis of net CP55,940 stimulated [35S]GTP gamma S binding in SPM showed that the Bmax of cannabinoid stimulated binding was significantly reduced in chronic EtOH exposed mouse (Bmax = 7.58 +/- 0.22 for control; 6.42 +/- 0.20 pmol/mg protein for EtOH group; P < 0.05) without any significant changes in the G-protein affinity (Kd = 2.68 +/- 0.24 for control; 3.42 +/- 0.31 nM for EtOH group; P > 0.05). The pharmacological specificity of CP55,940 stimulated [35S]GTP gamma S binding in SPM was examined with CB1 receptor antagonist, SR141716A and these studies indicated that CP55,940 stimulated [35S]GTP gamma S binding was blocked by SR141716A with a decrease (P < 0.05) in the IC50 values in the SPM from chronic EtOH group. These results suggest that the observed down-regulation of CB1 receptors by chronic EtOH has a profound effect on desensitization of cannabinoid-activated signal transduction and possible involvement of CB1 receptors in EtOH tolerance and dependence.
Collapse
Affiliation(s)
- B S Basavarajappa
- Division of Analytical Psychopharmacology, New York State Psychiatric Institute at NKI, Orangeburg 10962, USA
| | | |
Collapse
|
25
|
De A, Boyadjieva NI, Sarkar DK. Effects of Ethanol on alpha-Adrenergic and beta-Adrenergic Agonist-Stimulated beta-Endorphin Release and cAMP Production in Hypothalamic Cells in Primary Cultures. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04022.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Gurguis GN, Turkka J, Karanian J, Linnoila M. The combined effects of chronic ethanol/desipramine treatment on beta-adrenoceptor density and coupling efficiency in rat brain. Eur J Pharmacol 1998; 363:241-51. [PMID: 9881595 DOI: 10.1016/s0014-2999(98)00810-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both ethanol and desipramine influence beta-adrenoceptor regulation. We reported previously that ethanol partially counteracted desipramine's effects on beta-adrenoceptor. Previous studies utilized beta-adrenoceptor radioligands that also bind to 5-HT1B receptors, thus, changes in 5-HT1B receptors could have confounded the results. The effects of chronic ethanol, desipramine and ethanol/desipramine treatment on beta-adrenoceptor coupling efficiency to Gs protein in rat brain were examined using 125I-iodocyanopindolol after blocking binding to 5-HT1B receptors. In the frontal cortex, ethanol uncoupled beta-adrenoceptor from GS. Desipramine decreased beta-adrenoceptor density, particularly in the high-conformational state, with no effect on coupling. In combined treatment, desipramine prevented ethanol-induced uncoupling. In the hippocampus, desipramine enhanced beta-adrenoceptor coupling, but ethanol had no effect. In combination with desipramine, ethanol enhanced desipramine-induced decrease in beta-adrenoceptor density in the high-conformational state, but uncoupled beta-adrenoceptors, an effect not observed with ethanol alone. These results suggest a complex interplay between ethanol and antidepressants in modulating beta-adrenoceptor function.
Collapse
Affiliation(s)
- G N Gurguis
- Department of Veterans Affairs Medical Center, Dallas, TX 75216, USA.
| | | | | | | |
Collapse
|
27
|
Wenrich D, Lichtenberg-Kraag B, Rommelspacher H. G-protein pattern and adenylyl cyclase activity in the brain of rats after long-term ethanol. Alcohol 1998; 16:285-93. [PMID: 9818980 DOI: 10.1016/s0741-8329(98)00015-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous studies have described changes in levels of GTP binding proteins (G-proteins) following exposure of rodents to ethanol that did not correlate with the altered activation of the transmembrane signaling pathway. Possible reasons for these inconsistencies were taken into account in the present study by measuring the levels of four different G-protein subunits (G(alpha s), G(alpha i1/2), G(alpha o), Gbetagamma) in six brain regions. Rats were exposed to ethanol for 4 weeks (forced intake of ethanol liquid diet) and 40 weeks (free-choice ethanol). G-protein levels and activation of adenylyl cyclase (AC) were measured on day 1, day 8, and day 28 after withdrawal. When there were changes in the G-protein levels at all, increases were observed mostly in brain regions from rats with the 40-week exposure and decreases in regions from rats with the 4-week exposure that consumed a higher amount of ethanol per day. In some regions the changes had not normalized by day 28 in the 40-week ethanol group whereas in the 4-week ethanol group changes were observed only at day 1 and day 8. Activation of AC was disturbed in the 4-week ethanol group. Reduced activation was detected in membranes of the cerebral cortex, whereas increased activation was observed in the cerebellum, hypothalamus, pons, and striatum. Addition of ethanol (100 mM) to the tissue homogenate facilitated the stimulating action of Gpp(NH)p only in the hippocampus, cerebellum, and striatum. This in vitro action of ethanol was not affected by the long-term ethanol exposure. Activation of AC in the 40-week ethanol group was reduced in the cerebral cortex, pons, and striatum and increased in the cerebellum and hypothalamus if changes occurred at all. The findings support the contention that changes of the transmembrane signaling pathway in ethanol-exposed rats depend on the brain region and on the mode of application. Furthermore, a clear dissociation was observed between changes of the activation of the adenylyl cyclase and the changes in the levels of G-proteins.
Collapse
Affiliation(s)
- D Wenrich
- Department of Clinical Neurobiology, Free University of Berlin, Germany
| | | | | |
Collapse
|
28
|
Duttaroy A, Gregorio G, Shah S, Shen J, Philippe J, Monderson T, Yoburn BC. Acute ethanol exposure decreases the analgesic potency of morphine in mice. Life Sci 1998; 62:PL35-41. [PMID: 9488119 DOI: 10.1016/s0024-3205(97)01067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic (7 days), forced ethanol drinking can decrease the analgesic potency of opioid agonists in mice. In the present study, the effect of short-term ethanol treatment was examined using forced ethanol access and ethanol injection protocols. Mice were given forced access to 1, 3 or 7% (v/v) ethanol for 24 hr and then tested for s.c. morphine analgesia using the tailflick assay. Controls had access to water. Another group of mice was injected i.p. with 2.5 g/kg ethanol or water 4 times over a 21 hr period and tested 3 hr after the final injection for morphine analgesia. Other mice were injected once i.p. with 1, 2 or 3 g/kg ethanol or water and tested 24 hr later using the tailflick. In the forced access study, ethanol dose-dependently decreased morphine's analgesic potency with the highest dose (7%) producing a 1.6-fold shift in the ED50. This decrease in morphine potency was similar to that found in a related study using 7% ethanol for 7 days (1.8-fold shift). Repeated ethanol injections significantly reduced the analgesic potency of morphine (1.9-fold shift), whereas, a single injection of 1, 2 or 3 g/kg ethanol did not alter the potency of morphine. Control studies indicated that neither 24 hr water nor food deprivation affected morphine potency. Overall, these data show that sustained exposure to ethanol over a 24 hr period will dose-dependently decrease morphine's analgesic potency.
Collapse
Affiliation(s)
- A Duttaroy
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Tabakoff B, Hoffman PL. Adenylyl cyclases and alcohol. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1998; 32:173-93. [PMID: 9421591 DOI: 10.1016/s1040-7952(98)80011-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- B Tabakoff
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
30
|
Shen J, Chan KW, Chen BT, Philippe J, Sehba F, Duttaroy A, Carroll J, Yoburn BC. The effect of in vivo ethanol consumption on cyclic AMP and delta-opioid receptors in mouse striatum. Brain Res 1997; 770:65-71. [PMID: 9372204 DOI: 10.1016/s0006-8993(97)00747-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study the effect of in vivo ethanol consumption on cyclic AMP (cAMP) and [D-Ala2,D-Leu5]enkephalin (DADLE) inhibition of forskolin-stimulated cAMP production was examined in mouse striatum. Effects of ethanol on striatal delta-opioid receptor (DOR) density and mRNA were also examined. Mice had unlimited access to 7% (v/v) ethanol alone or water for 1 or 7 days and were then sacrificed and striatum removed for analysis. There was no difference in basal cAMP formation between water and ethanol-treated mouse striatum following 7 day treatment, and a small, but statistically significant increase in basal cAMP in the ethanol group following 1 day treatment. Both 1 day and 7 day ethanol treatment did not significantly alter the percentage increase in cAMP following treatment with 10 microM forskolin. There was a significant effect of ethanol treatment on the maximum inhibitory effect of DADLE on forskolin-stimulated cAMP formation following both 1 and 7 day ethanol treatment. The DADLE IC50 was unaffected by ethanol treatment. Saturation binding studies ([3H]Deltorphin II) indicated no effect of ethanol on Bmax or Kd in striatum. Similarly, no difference between water and ethanol-treated was observed for DOR mRNA in striatum. These data indicate that ethanol consumption can alter opioid regulation of cAMP formation. However, this effect is not related to changes in any delta-opioid receptor parameters that were examined.
Collapse
Affiliation(s)
- J Shen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chang ZL, Puhl HL, May LG, Williams CL, Aronstam RS. Influence of acute and chronic ethanol treatment on muscarinic responses and receptor expression in Chinese hamster ovary cells. Biochem Pharmacol 1997; 54:833-9. [PMID: 9353138 DOI: 10.1016/s0006-2952(97)00250-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The influence of ethanol on the muscarinic receptor-mediated release of inositol phosphate from Chinese hamster ovary (CHO) cells stably transfected with one of the five subtypes of muscarinic acetylcholine receptor was determined. In CHO cells expressing M3 muscarinic receptors (CHO-M3), carbamylcholine increased muscarinic receptor-induced release of inositol phosphate by 150-350% following a 15-min incubation with an EC50 of approximately 30 microM. Maximal responses were obtained with 1 mM carbamylcholine, while responses to 10 mM carbamylcholine were somewhat less than maximal. Preincubation with atropine for 10 min inhibited the response with an IC50 of approximately 30 nM. CHO cells transfected with M1, M3, and M5 receptors displayed a similar pattern of activity; CHO cells transfected with M2 and M4, as well as untransfected cells, were unresponsive to carbamylcholine. Ethanol acutely inhibited the response of CHO-M3 cells to carbamylcholine by 15% at 18 mM and by 47% at 180 mM (the highest concentration examined). CHO-M3 cells were incubated with 50 mM ethanol for 48 hr. This treatment did not affect the number of cells or their protein content (113 pg/cell). The expression of M3 muscarinic receptors (determined using [3H]N-methylscopolamine) increased from 1.34 +/- 0.23 to 1.75 +/- 0.16 pmol/mg protein (P < 0.05). In contrast, carbamylcholine-stimulated release of inositol phosphate was depressed by 40-70% in four experiments. Concentration-response analyses indicated a non-competitive inhibitory mechanism. This dissociation of muscarinic receptor expression and muscarinic signaling suggests a compensatory increase in receptor expression in response to chronic inhibition of muscarinic signaling by ethanol.
Collapse
Affiliation(s)
- Z L Chang
- Guthrie Research Institute, Sayre, PA 18840, USA
| | | | | | | | | |
Collapse
|
32
|
Boyadjieva NI, Sarkar DK. The Role of cAMP in Ethanol-Regulated beta-Endorphin Release from Hypothalamic Neurons. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb03829.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Abstract
The habitual consumption of even moderate quantities of alcohol (1 to 2 drinks/day) is clearly linked with reduced bone mass (osteopenia). Biochemical and histological evaluation of patients with alcoholic bone disease reveal a marked impairment in bone formation in the face of relatively normal bone resorption. Experiments using well-defined osteoblastic model systems indicate that the observed reductions in bone formation result from a direct, antiproliferative effect of ethanol on the osteoblast itself. As bone remodeling and mineralization are dependent on osteoblasts, it follows that the deleterious effect of alcohol on these cells would result in slowed bone formation, aberrant remodeling of skeletal tissue and, ultimately, osteopenia and fractures. The skeletal consequences of alcohol intake during adolescence, when the rapid skeletal growth ultimately responsible for achieving peak bone mass is occurring, may be especially harmful. The specific subcellular mechanisms whereby ethanol inhibits cell proliferation are, as yet, unknown. During the last few years, attention has shifted from nonspecific membrane perturbation effects to actions on certain signaling proteins. Specifically, there is increasing evidence that ethanol may exert significant effects on transmembrane signal transduction processes that constitute major branches of cellular control mechanisms. At present, abstinence is the only effective therapy for alcohol-induced bone disease. An improved understanding of the pathogenesis of alcohol-induced bone disease may eventually result in alternative therapeutic avenues for those who are unable to abstain.
Collapse
Affiliation(s)
- R F Klein
- Bone and Mineral Research Unit, Veterans Affairs Medical Center, Portland, OR 97207, USA
| |
Collapse
|
34
|
Dohrman DP, Diamond I, Gordon AS. Ethanol causes translocation of cAMP-dependent protein kinase catalytic subunit to the nucleus. Proc Natl Acad Sci U S A 1996; 93:10217-21. [PMID: 8816779 PMCID: PMC38364 DOI: 10.1073/pnas.93.19.10217] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Short- and long-term ethanol exposures have been shown to alter cellular levels of cAMP, but little is known about the effects of ethanol on cAMP-dependent protein kinase (PKA). When cAMP levels increase, the catalytic subunit of PKA (C alpha) is released from the regulatory subunit, phosphorylates nearby proteins, and then translocates to the nucleus, where it regulates gene expression. Altered localization of C alpha would have profound effects on multiple cellular functions. Therefore, we investigated whether ethanol alters intracellular localization of C alpha. NG108-15 cells were incubated in the presence or absence of ethanol for as long as 48 h, and localization of PKA subunits was determined by immunocytochemistry. We found that ethanol exposure produced a significant translocation of C alpha from the Golgi area to the nucleus. C alpha remained in the nucleus as long as ethanol was present. There was no effect of ethanol on localization of the type I regulatory subunit of PKA. Ethanol also caused a 43% decrease in the amount of type I regulatory subunit but had no effect on the amount of C alpha as determined by Western blot. These data suggest that ethanol-induced translocation of C alpha to the nucleus may account, in part, for diverse changes in cellular function and gene expression produced by alcohol.
Collapse
Affiliation(s)
- D P Dohrman
- Department of Neurology, Ernest Gallo Clinic and Research Center, University of California, San Francisco General Hospital 94110, USA
| | | | | |
Collapse
|
35
|
Parsian A, Todd RD, Cloninger CR, Hoffman PL, Ovchinnikova L, Ikeda H, Tabakoff B. Platelet adenylyl cyclase activity in alcoholics and subtypes of alcoholics. WHO/ISBRA Study Clinical Centers. Alcohol Clin Exp Res 1996; 20:745-51. [PMID: 8800394 DOI: 10.1111/j.1530-0277.1996.tb01681.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adenylyl cyclase (AC) activity was measured in membrane preparations of platelets from control and alcoholic subjects. The sample consisted of 51 alcoholics who were categorized as type I or type II using the criteria of Gilligan et al. (Genet. Epidemiol. 4:395-414, 1987) and 54 normal controls. Alcoholic males exhibited significantly lower values than controls in basal and fluoride-stimulated platelet AC activity. When male alcoholics were segregated into type I and type II categories, the platelet AC activity did not differ between subtypes, and both subtypes had AC activity that was below control values. Western blot analysis of the quantity of Gs alpha and Gi alpha proteins in a subset of male controls and alcoholic subjects demonstrated no significant relationship between quantity of G proteins and AC activity. The results confirm lower platelet AC activity in male alcoholics, compared with controls. Given the lack of quantitative relations between Gs alpha and Gi alpha proteins and AC activity, the results support the contention that individual differences in platelet AC activity in the alcoholic subjects may reflect quantitative or qualitative differences in the AC catalytic units.
Collapse
Affiliation(s)
- A Parsian
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Iles KE, Nagy LE. Chronic ethanol feeding increases the quantity of Gαs-protein in rat liver plasma membranes. Hepatology 1995. [DOI: 10.1002/hep.1840210439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
37
|
Tabakoff B, Whelan JP, Ovchinnikova L, Nhamburo P, Yoshimura M, Hoffman PL. Quantitative changes in G proteins do not mediate ethanol-induced downregulation of adenylyl cyclase in mouse cerebral cortex. Alcohol Clin Exp Res 1995; 19:187-94. [PMID: 7771650 DOI: 10.1111/j.1530-0277.1995.tb01491.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Our prior work, and the work of others, demonstrated that chronic administration of ethanol to cells in culture or to mice resulted in decreased responsiveness of adenylyl cyclase (EC4.6.1.1) to a number of stimulatory agents. In this study, we substantiated the ethanol-induced changes in cerebral cortical adenylyl cyclase activity in alcohol-tolerant and alcohol-dependent mice, and we examined whether chronic ethanol treatment of mice altered the quantity of heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) in cerebral cortex and other mouse brain areas. Amounts of various G protein subunits--including the alpha subunits of GS (GS alpha), Gi alpha 1-3, G(o) alpha, and beta subunits--were examined by Western blot analysis. There was no change in quantity of these G protein subunits in cerebral cortex, hippocampus, or cerebellum of ethanol-fed mice, compared with controls. In striatum of ethanol-fed mice, small increases in Gi alpha 1 and G(o) alpha were observed, but these changes could not explain the ethanol-induced desensitization of adenylyl cyclase in brain areas such as the cerebral cortex. Forskolin activation of cerebral cortical adenylyl cyclase activity showed two components of activation, with high and low "affinity" for forskolin. Ethanol treatment caused a decrease in the efficacy of forskolin for both components, whereas the EC50 of forskolin for each component did not change. Adenylyl cyclase activity measured in the presence of manganese was also diminished in cortical membranes of ethanol-treated mice.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B Tabakoff
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
38
|
West JR, Chen WJ, Pantazis NJ. Fetal alcohol syndrome: the vulnerability of the developing brain and possible mechanisms of damage. Metab Brain Dis 1994; 9:291-322. [PMID: 7898398 DOI: 10.1007/bf02098878] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fetal alcohol exposure has multiple deleterious effects on brain development, and represents a leading known cause of mental retardation. This review of the effects of alcohol exposure on the developing brain evaluates results from human, animal and in vitro studies, but focuses on key research issues, including possible mechanisms of damage. Factors that affect the risk and severity of fetal alcohol damage also are considered.
Collapse
Affiliation(s)
- J R West
- Department of Human Anatomy and Medical Neurobiology, Texas A&M University Health Science Center, College Station 77843-1114
| | | | | |
Collapse
|
39
|
Abstract
Alcohol dependence is considered to be divisible into two types (although the divisions between these are indistinct). These are psychological dependence, in which the rewarding effects of alcohol play a primary role, and chemical dependence, in which adaptive changes in the brain initiate punishing effects on withdrawal of alcohol, and suppression of these becomes the primary motive for using the drug. The neurochemical basis for the rewarding effects of alcohol may be the potentiation of GABA at GABAA receptors (causing relaxation) and release of dopamine from mesolimbic neurones (causing euphoria). The adaptive changes which cause the alcohol withdrawal syndrome are not known for certain, but alterations in GABAA receptors, NMDA receptors and voltage-operated calcium channels all have a claim. However, it is distinctly doubtful whether these all contribute to the negatively reinforcing effects of alcohol that are important in chemical dependence, although they may be important in other pathological effects of alcohol abuse. Current research badly needs better communication between basic scientists and clinicians to establish research goals and to improve current models.
Collapse
Affiliation(s)
- J Littleton
- Division of Biomedical Science, Kings College, London, UK
| | | |
Collapse
|
40
|
|
41
|
Karl PI, Divald A, Fisher SE. Ethanol enhancement of ligand-stimulated cAMP production by cultured human placental trophoblasts. Biochem Pharmacol 1994; 48:1493-500. [PMID: 7945450 DOI: 10.1016/0006-2952(94)90575-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chronic ethanol (EtOH) use during pregnancy can be associated with fetal injury including the fetal alcohol syndrome (FAS). A contributing factor in this fetal injury may be the effect of EtOH on the placenta. In this study, we have examined the effect of in vitro EtOH treatment on adenosine 3':5'-cyclic monophosphate (cAMP) production by cultured trophoblasts, in response to various ligands. Epinephrine (10(-6) M) rapidly stimulated cAMP with a peak between 2.5 and 5 min, which gradually returned to basal levels over 3-4 hr. EtOH treatment for > 16 hr resulted in an up-regulation of epinephrine-stimulated cAMP production. Inhibition of phosphodiesterase with Rolipram enhanced the effect of EtOH on cAMP production, suggesting that the effect of EtOH treatment was not due to phosphodiesterase inhibition. In cultured trophoblasts, EtOH treatment increased both epinephrine and 16,16'-dimethylprostaglandin E2 (dm-PGE2)-dependent cAMP production at varying ligand concentrations, suggesting an increased capacity to respond. When trophoblasts were treated with forskolin, a stimulator of adenylyl cyclase, cAMP production was enhanced in EtOH-treated cells. This suggests that EtOH treatment enhances adenylyl cyclase activity in these intact, cultured cells. Unlike trophoblasts from term human placenta, JAR choriocarcinoma cells did not respond to epinephrine, adenosine, or dm-PGE2. The choriocarcinoma cells appeared to have lost the ability to respond to these ligands. Although the JAR cell adenylyl cyclase was stimulated by forskolin, EtOH treatment did not alter forskolin-stimulated cAMP production. In summary, EtOH-induced up-regulation of cAMP production appears to be cell specific, being present in normal human trophoblasts but not in undifferentiated choriocarcinoma cells.
Collapse
Affiliation(s)
- P I Karl
- Department of Pediatrics, North Shore University Hospital, Cornell University Medical College, Manhasset, NY 11030
| | | | | |
Collapse
|
42
|
Cyclic AMP and ethanol interact to control apoptosis and differentiation in hypothalamic beta-endorphin neurons. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47075-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
43
|
Druse MJ, Tajuddin NF, Eshed M, Gillespie R. Maternal ethanol consumption: effects on G proteins and second messengers in brain regions of offspring. Alcohol Clin Exp Res 1994; 18:47-52. [PMID: 8198226 DOI: 10.1111/j.1530-0277.1994.tb00879.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous work in this and other laboratories has demonstrated that in utero ethanol exposure adversely affects the development of the serotonergic, dopaminergic, cholinergic, and other neurotransmitter systems. In several of these systems, receptor number is significantly altered. To determine whether the altered number of two G protein-linked receptors is reflected in changes in cell function, we examined dopamine-stimulated adenylate cyclase in the striatum and cortex and carbachol-stimulated phosphoinositide (PI) hydrolysis in the cortex. Serotonin-stimulated cortical PI hydrolysis was assessed for comparison. We also studied G proteins that link adenylate cyclase and other second messenger systems to their receptors. The G proteins that were analyzed include the alpha-subunits for Gs, G0, Gi1, Gi2, and Gi3. G proteins were analyzed in the cortex and cortical regions, as well as in the brain stem. The results of these experiments demonstrated that dopamine-stimulated adenylate cyclase activity was comparable in the striatum of 5- and 19-day offspring of control and ethanol-fed rats and in the motor cortex of 19-day offspring. We also found that carbachol- and serotonin-stimulated hydrolysis of cortical phosphoinositides was unchanged in ethanol-exposed offspring on gestational day 19, and on postnatal days 5 and 19. G protein content was examined by Western blot analysis, using antibodies directed against the alpha-subunits of Gs, G0, and the Gi1/Gi2 and Gi3/G0 combinations. These investigations indicated that, with two minor exceptions (approximately 10% change in the proteins detected by antibodies against the alpha-subunits of the Gi1/Gi2 and Gi3/G0 combinations), there were no significant differences in the content of any of the G proteins analyzed.
Collapse
Affiliation(s)
- M J Druse
- Department of Molecular and Cellular Biochemistry, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois
| | | | | | | |
Collapse
|
44
|
Babu PP, Kumari LR, Vemuri MC. Ethanol induced alterations in plasma membrane protein phosphorylation of neurons and astrocytes. Mol Cell Biochem 1994; 130:41-8. [PMID: 8190119 DOI: 10.1007/bf01084266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endogenous protein phosphorylation patterns in plasma membranes of bulk isolated neurons and astroglia from control and chronic ethanol treated rats have been investigated. Chronic ethanol treatment resulted in increased phosphorylation of specific proteins with molecular weights 116, 63 and 60 kDa in both neurons and astrocytes. These proteins were further resolved by 2-DE and the analysis suggested an increased phosphorylation of congruent to 10-15 proteins, of which 116 kDa protein is phosphorylated to a higher extent by ethanol. Further, decreased phosphorylation was noticed in D-95 and D-63 proteins in neurons and D-78 and D-54 proteins in astrocytes. Alkali stability experiments for identifying the phosphoamino acid involved in phosphorylation of 116, 63 and 60 kDa proteins suggested that tyrosine and threonine are not involved and probably serine is the likely site for phosphorylation during chronic ethanol treatment. The phosphorylation of specific membrane proteins during chronic ethanol treatment might contribute to ethanol evoked cellular dysfunction.
Collapse
Affiliation(s)
- P P Babu
- School of Life Sciences, University of Hyderabad, India
| | | | | |
Collapse
|
45
|
Alling C, Gustavsson L, Larsson C, Lundqvist C, Rodriguez D, Simonsson P. Adaptation of signal transduction in brain. EXS 1994; 71:19-28. [PMID: 8032150 DOI: 10.1007/978-3-0348-7330-7_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell culture models were used to study the effects of long-term ethanol exposure on neuronal cells. Effects on phospholipase C and phospholipase D mediated signal transduction were investigated by assaying receptor-binding, G protein function, activities of lipases, formation of second messengers and c-fos mRNA. The signal transduction cascades displayed abnormal activities from 2 to 7 days of exposure which differed from the acute effects. Phosphatidylethanol formed by phospholipase D is an abnormal lipid that may harmfully affect nerve cell function.
Collapse
Affiliation(s)
- C Alling
- Dept. of Psychiatry and Neurochemistry, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Pellegrino SM, Woods JM, Druse MJ. Effects of chronic ethanol consumption on G proteins in brain areas associated with the nigrostriatal and mesolimbic dopamine systems. Alcohol Clin Exp Res 1993; 17:1247-53. [PMID: 8116839 DOI: 10.1111/j.1530-0277.1993.tb05237.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study examined the effects of chronic ethanol consumption on the content of G proteins in brain areas associated with the nigrostriatal and mesolimbic dopamine systems of male Fischer 344 rats, aged 3, 5, or 13 months at the time of killing. In addition, G protein mRNA was assessed in 3-month-old rats. G proteins were examined in ethanol-fed rats because a number of studies have implicated these proteins with both the acute and chronic effects of ethanol. Brain areas associated with the nigrostriatal and mesolimbic dopamine systems were examined because of the evidence that these systems are sensitive to ethanol. The brain areas examined include the substantia nigra (SN), striatum (ST), globus pallidus (GP), frontal cortex (FCX), nucleus accumbens (NA), ventral tegmental area (VTA), and ventral pallidum (VP). These experiments demonstrated that the 3-month-old rats that consumed a 6.6% (v/v) ethanol-containing liquid diet for 4 weeks had a significant (approximately 30-40%) increase in the mRNA content of Gi3 alpha in the FCX, VTA, and VP, and a significant (approximately 20%) decrease of that for G0 alpha in the SN. Nonetheless, the content of the G0 alpha protein subunit was not altered. In addition, there were no significant differences in the content of the proteins detected by antibodies to Gs alpha, G0 alpha, Gi1 alpha/Gi2 alpha, and G0 alpha/Gi3 alpha in the FCX, NA, and ST of similarly treated older rats (5 and 13 months). The content of mRNA for the other G proteins examined in the seven brain areas of 3-month-old rats was unaffected by chronic ethanol exposure.
Collapse
Affiliation(s)
- S M Pellegrino
- Department of Molecular and Cellular Biochemistry, Loyola University of Chicago, Stritch School of Medicine, Maywood, IL 60153
| | | | | |
Collapse
|
47
|
Miles MF, Barhite S, Sganga M, Elliott M. Phosducin-like protein: an ethanol-responsive potential modulator of guanine nucleotide-binding protein function. Proc Natl Acad Sci U S A 1993; 90:10831-5. [PMID: 8248177 PMCID: PMC47872 DOI: 10.1073/pnas.90.22.10831] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Acute and chronic exposure to ethanol produces specific changes in several signal transduction cascades. Such alterations in signaling are thought to be a crucial aspect of the central nervous system's adaptive response, which occurs with chronic exposure to ethanol. We have recently identified and isolated several genes whose expression is specifically induced by ethanol in neural cell cultures. The product of one of these genes has extensive sequence homology to phosducin, a phosphoprotein expressed in retina and pineal gland that modulates trimeric guanine nucleotide-binding protein (G protein) function by binding to G-protein beta gamma subunits. We identified from a rat brain cDNA library an isolate encoding the phosducin-like protein (PhLP), which has 41% identity and 65% amino acid homology to phosducin. PhLP cDNA is expressed in all tissues screened by RNA blot-hybridization analysis and shows marked evolutionary conservation on Southern hybridization. We have identified four forms of PhLP cDNA varying only in their 5' ends, probably due to alternative splicing. This 5'-end variation generates two predicted forms of PhLP protein that differ by 79 aa at the NH2 terminus. Treatment of NG108-15 cells for 24 hr with concentrations of ethanol seen in actively drinking alcoholics (25-100 mM) causes up to a 3-fold increase in PhLP mRNA levels. Induction of PhLP by ethanol could account for at least some of the widespread alterations in signal transduction and G-protein function that are known to occur with chronic exposure to ethanol.
Collapse
Affiliation(s)
- M F Miles
- Department of Neurology, University of California, San Francisco General Hospital, CA 94110
| | | | | | | |
Collapse
|
48
|
Ethanol differentially increases alpha 2-adrenergic and muscarinic acetylcholine receptor gene expression in NG108-15 cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49482-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Kim WK, Hawthorn MH, Rabin RA. Chronic ethanol exposure potentiates muscarinic receptor and alpha 2-adrenoceptor-mediated inhibition of cAMP accumulation in PC 12 cells. Eur J Pharmacol 1993; 247:89-92. [PMID: 8258365 DOI: 10.1016/0922-4106(93)90141-u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of ethanol on receptor-mediated inhibition of cAMP production were investigated in PC 12 cells. The in vitro addition of ethanol enhanced N-ethylcarboxyadenosine (NECA)-stimulated cAMP production without altering the inhibitory action of carbachol or epinephrine. A 4 day exposure of PC 12 cells to ethanol decreased the stimulation of cAMP production by NECA, but increased the inhibition of NECA-stimulated cAMP production by carbachol and epinephrine.
Collapse
Affiliation(s)
- W K Kim
- Department of Pharmacology and Therapeutics, State University of New York at Buffalo 14214-3000
| | | | | |
Collapse
|
50
|
Abstract
Recent work has shown that chronic ethanol treatment inhibits receptor-stimulated phosphoinositide hydrolysis in NG108-15 cells and that ethanol exerts this effect primarily at the level of the guanine-nucleotide binding protein (G protein). Here we investigated the effects of ethanol exposure on the expression of Gq alpha/11 alpha, two highly homologous G protein alpha-subunits that have been implicated as regulators of phosphoinositidase C. Addition of ethanol (10-200 mM) to the culture medium for 48 h caused a concentration-dependent decrease in the immunologically detectable levels of Gq alpha/11 alpha. A small (approximately 15%) reduction in Gq alpha/11 alpha was observed after only 6 h of exposure to 200 mM ethanol, but membrane levels were reduced by 31% at 48 h. The ethanol-induced loss of Gq alpha/11 alpha was apparently independent of factors present in the foetal calf serum component of the culture medium. These results suggests that the decrease in receptor-mediated phosphoinositide hydrolysis following chronic ethanol treatment of NG108-15 cells may be mediated in part by a reduction in the membrane levels of Gq alpha/11 alpha.
Collapse
Affiliation(s)
- R J Williams
- Department of Pharmacology, School of Medical Sciences, University of Bristol, England, UK
| | | |
Collapse
|