1
|
Roosta S, Ghasemi F, Mokhayeri Y, Choobkar S, Nikbakht MR, Falahi E. Effects of Satureja Khuzestanica supplementation on glycemic indices and lipid profile in type 2 diabetes patients: a randomized controlled clinical-trial. BMC Complement Med Ther 2024; 24:201. [PMID: 38778308 PMCID: PMC11110332 DOI: 10.1186/s12906-024-04384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/30/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Several studies showed the hypoglycemic and hypolipidemic effects of Satureja Khuzestanica (SK) in animal models. This study aimed to determine the effect of SK supplementation on glycemic and lipid outcomes of patients with type 2 diabetes mellitus (T2DM). METHODS The study was designed as a double-blind, placebo-controlled, randomized clinical trial using block randomization. Seventy-eight T2DM patients were randomly assigned to intervention (n = 39) or placebo (n = 39) groups. They received SK or placebo in 500 mg capsules daily for 12 weeks. Anthropometric, blood pressure, liver enzymes, glycemic, and lipid outcomes were measured before and after the intervention. RESULTS At baseline, there were no significant differences in age, sex, or glycated hemoglobin (HbA1c) levels between the groups. SK supplementation led to a significant decrease in FBS (-12.6 ± 20.7 mg/dl in the intervention group versus 3.5 ± 31.9 mg/dl; p = 0.007), HbA1c (-0.28 ± 0.45 in the intervention group versus 0.11 ± 0.54% in the placebo group; p = < 0.001), insulin (-1.65 ± 6.18 in the intervention group versus 2.09 ± 5.90 mIU/L in the placebo group; p = 0.03), total cholesterol (-14.6 ± 21.1 mg/dl in the intervention group versus 8.2 ± 30.9 mg/dl in the placebo group; p < 0.001), LDL-cholesterol (-4.6 ± 15.2 mg/dl in the intervention group versus 5.8 ± 14.6 mg/dl in placebo group; p < 0.001) levels, and significant increase in HDL-cholesterol (3.9 ± 4.9 mg/dl in the intervention group versus 0.9 ± 5.2 mg/dl in placebo group; p = 0.005). CONCLUSION Based on the study results, SK supplementation may improve glycemic indices and lipid profile of patients with T2DM. Our findings may provide novel complementary treatments without adverse effects for diabetes complications. These results need to be further confirmed in clinical trials. REGISTRATION This trial has been registered in the Iranian Registry of Clinical Trials (IRCT ID: IRCT20190715044214N1, registration date: 21/02/2021).
Collapse
Affiliation(s)
- Sajjad Roosta
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Ghasemi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Yaser Mokhayeri
- Cardiovascular Research Center, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saeed Choobkar
- School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Reza Nikbakht
- Department of Physiology and Pharmacology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ebrahim Falahi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, P.O. Box: 6819789741, Khorramabad, Iran.
| |
Collapse
|
2
|
Yang H, Su M, Liu M, Sheng Y, Zhu L, Yang L, Mu R, Zou J, Liu X, Liu L. Hepatic retinaldehyde deficiency is involved in diabetes deterioration by enhancing PCK1- and G6PC-mediated gluconeogenesis. Acta Pharm Sin B 2023; 13:3728-3743. [PMID: 37719384 PMCID: PMC10501888 DOI: 10.1016/j.apsb.2023.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/14/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
Type 2 diabetes (T2D) is often accompanied with an induction of retinaldehyde dehydrogenase 1 (RALDH1 or ALDH1A1) expression and a consequent decrease in hepatic retinaldehyde (Rald) levels. However, the role of hepatic Rald deficiency in T2D progression remains unclear. In this study, we demonstrated that reversing T2D-mediated hepatic Rald deficiency by Rald or citral treatments, or liver-specific Raldh1 silencing substantially lowered fasting glycemia levels, inhibited hepatic glucogenesis, and downregulated phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6-phosphatase (G6PC) expression in diabetic db/db mice. Fasting glycemia and Pck1/G6pc mRNA expression levels were strongly negatively correlated with hepatic Rald levels, indicating the involvement of hepatic Rald depletion in T2D deterioration. A similar result that liver-specific Raldh1 silencing improved glucose metabolism was also observed in high-fat diet-fed mice. In primary human hepatocytes and oleic acid-treated HepG2 cells, Rald or Rald + RALDH1 silencing resulted in decreased glucose production and downregulated PCK1/G6PC mRNA and protein expression. Mechanistically, Rald downregulated direct repeat 1-mediated PCK1 and G6PC expression by antagonizing retinoid X receptor α, as confirmed by luciferase reporter assays and molecular docking. These results highlight the link between hepatic Rald deficiency, glucose dyshomeostasis, and the progression of T2D, whilst also suggesting RALDH1 as a potential therapeutic target for T2D.
Collapse
Affiliation(s)
- Hanyu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Mengxiang Su
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ming Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yun Sheng
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ruijing Mu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaodong Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Li Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Elnagar A, El-Dawy K, El-Belbasi HI, Rehan IF, Embark H, Al-Amgad Z, Shanab O, Mickdam E, Batiha GE, Alamery S, Fouad SS, Cavalu S, Youssef M. Ameliorative Effect of Oxytocin on FBN1 and PEPCK Gene Expression, and Behavioral Patterns in Rats' Obesity-Induced Diabetes. Front Public Health 2022; 10:777129. [PMID: 35462799 PMCID: PMC9021505 DOI: 10.3389/fpubh.2022.777129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Amelioration of hyperinsulinemia and insulin resistance associated with obesity is a cardinal target for therapeutics. Therefore, we investigated the relation of Fibrilln-1 (FBN1) mRNA expression and hepatic phosphoenolpyruvate caboxykinase (PEPCK) enzyme to the ameliorative impact of oxytocin on obesity-induced diabetes, suggesting glycogenolysis markers in diabetic models. Four groups of forty male Wistar rats were formed (n = 10): a control group fed basal diet and intraperitoneal injections of saline; an oxytocin-injected group; a diet-induced obese group fed a high-fat/high-sugar diet and injected with saline; a diet-induced obese group injected with oxytocin. Depending on blood glucose levels, obese groups were further sub-grouped into prediabetic, and diabetic rats, with 5 rats each, at the ninth and the 16th week of the feeding period, respectively. FBN1 expression and PEPCK activity were determined using the qPCR technique and some biochemical parameters (glycemic, lipid profile, kidney, and liver functions) were determined using kits. Obese groups showed an elevation of brain FBN1 expression, high serum lipid profile, high glucose level, and a deleterious impact on liver and kidney functions. Obese groups showed the stimulator effect of the PEPCK enzyme and time-dependent pathological changes in renal and hepatic tissues. The motor activities were negatively correlated with FBN1 gene expression in prediabetic and diabetic rats. In addition to our previous review of the crucial role of asprosin, here we showed that oxytocin could ameliorate obesity-induced diabetes and decrease FBN1 gene expression centrally to block appetite. Oxytocin caused decreases in PEPCK enzyme activity as well as glycogenolysis in the liver. Therefore, oxytocin has a potential effect on FBN1 expression and PEPCK enzyme activity in the obesity-induced diabetic-rat model.
Collapse
Affiliation(s)
- Asmaa Elnagar
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khalifa El-Dawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hussein I El-Belbasi
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ibrahim F Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menofia University, Shebin Alkom, Egypt
| | - Hamdy Embark
- Department of Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Zeinab Al-Amgad
- General Authority for Veterinary Services, Ph.D in Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Obeid Shanab
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Elsayed Mickdam
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Gaber E Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samer S Fouad
- Qena University Hospital, Ph.D in Veterinary Clinical Pathology, South Valley University, Qena, Egypt
| | - Simona Cavalu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Mohammed Youssef
- Department of Physiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
4
|
Geng X, Shen J, Li F, Yip J, Guan L, Rajah G, Peng C, DeGracia D, Ding Y. Phosphoenolpyruvate Carboxykinase (PCK) in the Brain Gluconeogenic Pathway Contributes to Oxidative and Lactic Injury After Stroke. Mol Neurobiol 2021; 58:2309-2321. [PMID: 33417227 DOI: 10.1007/s12035-020-02251-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
To demonstrate the role of the rate-limiting and ATP-dependent gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK) in oxidative and lactic stress and the effect of phenothiazine on PCK after stroke, a total of 168 adult male Sprague Dawley rats (3 months old, 280-300 g) underwent 2-h intraluminal middle cerebral artery occlusion (MCAO) and reperfusion for 6, 24, 48 h, or 7 days. Phenothiazine (chlorpromazine and promethazine (C+P)) (8 mg/kg) and 3-mercaptopicolinic acid (3-MPA, a PCK inhibitor, 100 μM) were administered at reperfusion onset. The effects of phosphoenolpyruvate, 3-MPA, or PCK knockdown were studied in neuronal cultures subjected to oxygen/glucose deprivation. Reactive oxygen species, lactate, phosphoenolpyruvate (PEP; a gluconeogenic product), mRNA, and protein of total PCK, PCK-1, and PCK-2 increased after MCAO and oxygen-glucose deprivation (OGD). Oxaloacetate (a gluconeogenic substrate) decreased, while PEP and glucose were increased, suggesting reactive gluconeogenesis. These changes were attenuated by phenothiazine, 3-MPA, or PCK shRNA. PCK-1 and -2 existed primarily in neurons, while the effects of ischemic stroke on the PCK expression were seen predominately in astrocytes. Thus, phenothiazine reduced infarction and oxidative/lactic stress by inhibiting PCKs, leading to functional recovery.
Collapse
Affiliation(s)
- Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, No. 82 Xinhua South Road, Tongzhou District, Beijing, 101149, China.
| | - Jiamei Shen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - James Yip
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Gary Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Neurosurgery, Munson Medical Center, Traverse City, MI, 49684, USA
| | - Changya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Donald DeGracia
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- John D. Dingell VA Medical Center, Detroit, MI, USA.
| |
Collapse
|
5
|
Yang L, Yang L, Wang X, Xing H, Zhao H, Xing Y, Zhou F, Wang C, Song G, Ma H. Exploring the Multi-Tissue Crosstalk Relevant to Insulin Resistance Through Network-Based Analysis. Front Endocrinol (Lausanne) 2021; 12:756785. [PMID: 35116003 PMCID: PMC8805208 DOI: 10.3389/fendo.2021.756785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Insulin resistance (IR) is a precursor event that occurs in multiple organs and underpins many metabolic disorders. However, due to the lack of effective means to systematically explore and interpret disease-related tissue crosstalk, the tissue communication mechanism in pathogenesis of IR has not been elucidated yet. To solve this issue, we profiled all proteins in white adipose tissue (WAT), liver, and skeletal muscle of a high fat diet induced IR mouse model via proteomics. A network-based approach was proposed to explore IR related tissue communications. The cross-tissue interface was constructed, in which the inter-tissue connections and also their up and downstream processes were particularly inspected. By functional quantification, liver was recognized as the only organ that can output abnormal carbohydrate metabolic signals, clearly highlighting its central role in regulation of glucose homeostasis. Especially, the CD36-PPAR axis in liver and WAT was identified and verified as a potential bridge that links cross-tissue signals with intracellular metabolism, thereby promoting the progression of IR through a PCK1-mediated lipotoxicity mechanism. The cross-tissue mechanism unraveled in this study not only provides novel insights into the pathogenesis of IR, but also is conducive to development of precision therapies against various IR associated diseases. With further improvement, our network-based cross-tissue analytic method would facilitate other disease-related tissue crosstalk study in the near future.
Collapse
Affiliation(s)
- Linlin Yang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Linquan Yang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Xing Wang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Hanying Xing
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Hang Zhao
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Yuling Xing
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Fei Zhou
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang, China
| | - Guangyao Song
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Huijuan Ma, ; Guangyao Song,
| | - Huijuan Ma
- Hebei Key Laboratory of Metabolic Diseases, Shijiazhuang, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Huijuan Ma, ; Guangyao Song,
| |
Collapse
|
6
|
Erpel F, Mateos R, Pérez-Jiménez J, Pérez-Correa JR. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res Int 2020; 137:109589. [PMID: 33233195 DOI: 10.1016/j.foodres.2020.109589] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
Phlorotannins are phenolic characteristic compounds of brown seaweeds that are only constituted by phloroglucinol (1,3,5-trihydroxybenzene). They are chain- and net-like structures of diverse molecular weights and have been widely identified in Ecklonia, Eisenia, and Ishige species. Since the time they were discovered in the '70 s, phlorotannins have been suggested as a main factor responsible for the antimicrobial activities attributed to algae extracts. Currently, cumulative in vitro and in vivo research evidence the diverse bioactivities of phlorotannin extracts -such as antidiabetic, anticancer, and antibacterial- pointing out their potential pharmacological and food applications. However, metabolomic studies and clinical trials are scarce, and thus many phlorotannins health-beneficial effects in humans are not yet confirmed. This article reviews recent studies assessing the antidiabetic and anticancer activities of phlorotannins. Particularly, their potential to prevent and control the progression of these non-communicable diseases is discussed, considering in vitro and animal studies, as well as clinical interventions. In contrast to other approaches, we only included investigations with isolated phlorotannins or phlorotannin-rich extracts. Thus, phlorotannin extraction, purification and characterization procedures are briefly addressed. Overall, although considerable research showing the antidiabetic and anticancer potential of phlorotannins is now available, further clinical trials are still necessary to conclusively demonstrate the efficacy of these compounds as adjuvants for diabetes and cancer prevention or treatment.
Collapse
Affiliation(s)
- Fernanda Erpel
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| | - Raquel Mateos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Calle José Antonio Novais, 10, Madrid 28040, Spain.
| | - José Ricardo Pérez-Correa
- Chemical and Bioprocess Engineering Department, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, P.O. Box 306, Santiago 7820436, Chile.
| |
Collapse
|
7
|
Abstract
During nearly 100 years of research on cancer cachexia (CC), science has been reciting the same mantra: it is a multifactorial syndrome. The aim of this paper is to show that the symptoms are many, but they have a single cause: anoxia. CC is a complex and devastating condition that affects a high proportion of advanced cancer patients. Unfortunately, it cannot be reversed by traditional nutritional support and it generally reduces survival time. It is characterized by significant weight loss, mainly from fat deposits and skeletal muscles. The occurrence of cachexia in cancer patients is usually a late phenomenon. The conundrum is why do similar patients with similar tumors, develop cachexia and others do not? Even if cachexia is mainly a metabolic dysfunction, there are other issues involved such as the activation of inflammatory responses and crosstalk between different cell types. The exact mechanism leading to a wasting syndrome is not known, however there are some factors that are surely involved, such as anorexia with lower calorie intake, increased glycolytic flux, gluconeogenesis, increased lipolysis and severe tumor hypoxia. Based on this incomplete knowledge we put together a scheme explaining the molecular mechanisms behind cancer cachexia, and surprisingly, there is one cause that explains all of its characteristics: anoxia. With this different view of CC we propose a treatment based on the physiopathology that leads from anoxia to the symptoms of CC. The fundamentals of this hypothesis are based on the idea that CC is the result of anoxia causing intracellular lactic acidosis. This is a dangerous situation for cell survival which can be solved by activating energy consuming gluconeogenesis. The process is conducted by the hypoxia inducible factor-1α. This hypothesis was built by putting together pieces of evidence produced by authors working on related topics.
Collapse
|
8
|
Park SJ, Lee D, Kim D, Lee M, In G, Han ST, Kim SW, Lee MH, Kim OK, Lee J. The non-saponin fraction of Korean Red Ginseng (KGC05P0) decreases glucose uptake and transport in vitro and modulates glucose production via down-regulation of the PI3K/AKT pathway in vivo. J Ginseng Res 2019; 44:362-372. [PMID: 32148419 PMCID: PMC7031776 DOI: 10.1016/j.jgr.2019.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/08/2019] [Accepted: 12/10/2019] [Indexed: 01/26/2023] Open
Abstract
Background The non-saponin fraction of Korean Red Ginseng has been reported to have many biological activities. However, the effect of this fraction on anti-diabetic activity has not been elucidated in detail. In this study, we investigated the effects of KGC05P0, a non-saponin fraction of Korean Red Ginseng, on anti-diabetic activity in vitro and in vivo. Methods We measured the inhibition of commercially obtained α-glucosidase and α-amylase activities in vitro and measured the glucose uptake and transport rate in Caco-2 cells. C57BL/6J mice and C57BLKS/Jdb/db (diabetic) mice were fed diets with or without KGC05P0 for eight weeks. To perform the experiments, the groups were divided as follows: normal control (C57BL/6J mice), db/db control (C57BLKS/Jdb/db mice), positive control (inulin 400 mg/kg b.w.), low (KGC05P0 100 mg/kg b.w.), medium (KGC05P0 200 mg/kg b.w.), and high (KGC05P0 400 mg/kg b.w.). Results KGC05P0 inhibited α-glucosidase and α-amylase activities in vitro, and decreased glucose uptake and transport rate in Caco-2 cells. In addition, KGC05P0 regulated fasting glucose level, glucose tolerance, insulin, HbA1c, carbonyl contents, and proinflammatory cytokines in blood from diabetic mice and significantly reduced urinary glucose excretion levels. Moreover, we found that KGC05P0 regulated glucose production by down-regulation of the PI3K/AKT pathway, which inhibited gluconeogenesis. Conclusion Our study thereby demonstrated that KGC05P0 exerted anti-diabetic effects through inhibition of glucose absorption and the PI3K/AKT pathway in in vitro and in vivo models of diabetes. Our results suggest that KGC05P0 could be developed as a complementary food to help prevent T2DM and its complications.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Dasom Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| | - Gyo In
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Sung-Tai Han
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Sung Won Kim
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Mi-Hyang Lee
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Gwangju, Republic of Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition and Research Institute for Human Ecology, Chonnam National University, Gwangju, Republic of Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Gwangju, Republic of Korea
| |
Collapse
|
9
|
Xu J, Ou K, Chen C, Li B, Guo J, Zuo Z, Wang C. Tributyltin exposure disturbs hepatic glucose metabolism in male mice. Toxicology 2019; 425:152242. [PMID: 31306684 DOI: 10.1016/j.tox.2019.152242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/15/2019] [Accepted: 07/09/2019] [Indexed: 01/07/2023]
Abstract
Some previous studies showed that organotin compounds induced diabetes in animal models. The underlying mechanisms should be further revealed. In this study, male KM mice were exposed to tributyltin (TBT) at 0.5, 5 and 50 μg/kg once every three days for 45 days. The TBT-treated mice exhibited an elevation of fasting blood glucose level and glucose intolerance. The fasting serum insulin levels were increased and reached a significant difference in the 50 μg/kg group; the glucagon levels were significantly decreased in all the treatments. Pancreatic β-cell mass was significantly decreased in all the treatments; α-cell mass showed a significant decrease in the 5 and 50 ug/kg groups. The transcription of pancreatic insulin gene (Ins2) showed an up-regulation and reached a significant difference in the 5 and 50 μg/kg groups, which would be responsible for the increased serum insulin levels. The transcription of glucagon gene (Gcg) in the pancreas was significantly down-regulated in the 5 and 50 ug/kg groups. The protein expression of hepatic glucagon receptor was down-regulated, while the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase was up-regulated accompanied by increased hepatic glycogen content. These results indicated that hepatic gluconeogenesis was enhanced during insulin resistance stage caused by TBT exposure, which would exert a potential risk inducing the development of diabetes mellitus.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chuqiao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Binshui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
10
|
Chai BK, Al-Shagga M, Pan Y, Then SM, Ting KN, Loh HS, Mohankumar SK. Cis-9, Trans-11 Conjugated Linoleic Acid Reduces Phosphoenolpyruvate Carboxykinase Expression and Hepatic Glucose Production in HepG2 Cells. Lipids 2019; 54:369-379. [PMID: 31124166 DOI: 10.1002/lipd.12154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/08/2022]
Abstract
Dysregulated hepatic gluconeogenesis is a hallmark of insulin resistance and type 2 diabetes mellitus (T2DM). Although existing drugs have been proven to improve gluconeogenesis, achieving this objective with functional food is of interest, especially using conjugated linoleic acid (CLA) found in dairy products. Both cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) isomers of CLA were tested in human (HepG2) and rat (H4IIE) hepatocytes for their potential effects on gluconeogenesis. The hepatocytes exposed for 24 h with 20 μM of c9,t11-CLA had attenuated the gluconeogenesis in both HepG2 and H4IIE by 62.5% and 80.1%, respectively. In contrast, t10,c12-CLA had no effect. Of note, in HepG2 cells, the exposure of c9,t11-CLA decreased the transcription of gluconeogenic enzymes, cytosolic phosphoenolpyruvate carboxykinase (PCK1) by 87.7%, and glucose-6-phosphatase catalytic subunit (G6PC) by 38.0%, while t10,c12-CLA increased the expression of G6PC, suggesting the isomer-specific effects of CLA on hepatic glucose production. In HepG2, the peroxisome proliferator-activated receptor (PPAR) agonist, rosiglitazone, reduced the glucose production by 72.9%. However, co-administration of c9,t11-CLA and rosiglitazone neither exacerbated nor attenuated the efficacy of rosiglitazone to inhibit glucose production; meanwhile, t10,c12-CLA abrogated the efficacy of rosiglitazone. Paradoxically, PPARγ antagonist GW 9662 also led to 70.2% reduction of glucose production and near undetectable PCK1 expression by abrogating CLA actions. Together, while the precise mechanisms by which CLA isomers modulate hepatic gluconeogenesis directly or via PPAR warrant further investigation, our findings establish that c9,t11-CLA suppresses gluconeogenesis by decreasing PEPCK on hepatocytes.
Collapse
Affiliation(s)
- Boon Kheng Chai
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Mustafa Al-Shagga
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Yan Pan
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Sue-Mian Then
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kang Nee Ting
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Hwei-San Loh
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Suresh K Mohankumar
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy (Ooty), JSS Academy of Higher Education & Research, Rocklands, Udhagamandalam, 643001, Tamil Nadu, India
| |
Collapse
|
11
|
Xu S, Wang G, Peng W, Xu Y, Zhang Y, Ge Y, Jing Y, Gong Z. Corosolic acid isolated from Eriobotrya japonica leaves reduces glucose level in human hepatocellular carcinoma cells, zebrafish and rats. Sci Rep 2019; 9:4388. [PMID: 30867526 PMCID: PMC6416347 DOI: 10.1038/s41598-019-40934-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/26/2019] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes (T2D) with high morbidity and mortality is characterized by abnormal glucose and lipid metabolism due in part to insulin resistance in liver, which lead to elevated hyperglycemia and hyperlipidemia. This study sough to explore the effects of corosolic acid (CA) in different T2D models and explored the underlying mechanism. Separated from Eriobotrya japonica leaves, CA purity was above 95% measured by a HPLC method. Compared with cAMP and DEX induced T2D HepG2 model, CA significantly stimulated glucose consumption and improved glycogen accumulation by inhibiting PEPCK mRNA expression. And in cAMP and DEX induced T2D zebrafish model, CA reduced glycogen degradation and increased glucose consumption by regulating some key enzymes in carbon metabolism including GLUT1, GLUT2, GLUT3, LDHA, LDHB, GP, G6Pase, GYS1, and PFKFB3. In addition, insulin receptor signals were also involved in CA-regulated hypoglycemic action. Furthermore, in STZ-induced T2D rat model, compared with diabetic control groups, CA remarkably downregulated the levels of serum lipid, blood glucose, ICAM-1, malonaldehyde and insulin resistance index, while upregulated SOD activity and impaired glucose tolerance. In a conclusion, CA can regulate glucose and lipid metabolic adaptation in T2D like HepG2, zebrafish and rat models partly through reducing inflammation and oxidative stress and suppressing PEPCK.
Collapse
Affiliation(s)
- Shuwen Xu
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.,Department of Scientific Research Management, Anhui Academy of Science and Technology, Hefei, 230088, People's Republic of China
| | - Gang Wang
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Wei Peng
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yandi Xu
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yu Zhang
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Ying Ge
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Zhunan Gong
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
12
|
Zhang Y, Feng F, Chen T, Li Z, Shen QW. Antidiabetic and antihyperlipidemic activities of Forsythia suspensa (Thunb.) Vahl (fruit) in streptozotocin-induced diabetes mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:256-263. [PMID: 27377336 DOI: 10.1016/j.jep.2016.07.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/03/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruit of Forsythia suspense (Thunb.) Vahl, a well-known Chinese Materia Medica, has been traditionally used in traditional Chinese medicine for the treatment of diabetes and some other diseases, but the rational for the usage of this plant is unclear. The aim of this study was to investigate the therapeutic effect and potential mechanism of the fruit of F. suspensa using streptozotocin (STZ)-induced diabetic mice. MATERIALS AND METHODS Crude methanol extract of F. suspense fruit was fractionated with different solvents and the ethyl acetate fraction (EAF) was selected for in vivo studies based on the in vitro α-amylase and HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl coenzyme A) inhibiting activities. For in vivo study, diabetes mellitus was induced in mice with STZ. Diabetic mice were orally administrated with 50, 100 and 200mg/kg body weight of EAF for 4 weeks. Mouse body weight, blood glucose, glucose tolerance, biochemical parameters and gene expression related to pancreas and liver function were analyzed after EAF administration. RESULTS After 4 weeks of EAF intervention, a significant decrease in blood glucose, triglyceride, creatinine total cholesterol, acid phosphatase, alkaline phosphatase, aspartate transaminase, alanine transaminase, and hepatic lipid (triglycerides and cholesterol) content as well as a significant increase in body weight, insulin secretion and glucose tolerance was observed in EAF treated diabetic mice. qRT-PCR analysis revealed that EAF antagonized STZ-induced alteration of the expression of rate-limiting enzymes (glucokinase and phosphorenolpyruvate carboxykinase) in liver and insulin secretion related genes insulin-1, insulin-2 and duodenal homeobox factor-1 in pancreas. CONCLUSION The ethyl acetate extract of Forsythia suspense (Thunb.) Vahl fruit has potency to develop an antihyperglycemic and antihyperlipidemic agent for the treatment of diabetes mellitus via modulation of oxidative stress, the hepatic glucose metabolism and pancreatic insulin secretion.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fu Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhongwen Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingwu W Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
13
|
Lee SH, Ko SC, Kang MC, Lee DH, Jeon YJ. Octaphlorethol A, a marine algae product, exhibits antidiabetic effects in type 2 diabetic mice by activating AMP-activated protein kinase and upregulating the expression of glucose transporter 4. Food Chem Toxicol 2016; 91:58-64. [PMID: 26939912 DOI: 10.1016/j.fct.2016.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/26/2016] [Accepted: 02/28/2016] [Indexed: 11/29/2022]
Abstract
Octaphlorethol A (OPA), a type of phlorotannin isolated from Ishige foliacea has been shown to have antidiabetic activities. However, the mechanism of action of OPA in type 2 diabetes has not been investigated extensively. Here, we investigated the antidiabetic effects and mechanism of OPA in C57BL/KsJ-db/db mice, a model of type 2 diabetes. Levels of postprandial blood glucose were significantly lower in OPAtreated db/db mice than in control db/db mice. In addition, the OPA supplements significantly improved fasting blood glucose level and impaired glucose tolerance compared to control db/db mice. OPA also significantly decreased the level of serum insulin, augmented the activation of AMP-activated protein kinase (AMPK), and increased the expression of glucose transporter 4 (GLUT4) protein in skeletal muscle. In addition, it significantly suppressed the increases in hepatic mRNA expression level of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), gluconeogenesis-related enzymes. Therefore, the mechanisms of OPA may involve suppression of gluconeogenesis by inhibiting PEPCK and G6Pase activity in the liver and affecting GLUT4-mediated glucose uptake in skeletal muscle through activation of AMPK. These findings provide a new insight into the antidiabetic clinical applications of OPA and demonstrate the potential of OPA as a new drug candidate for type 2 diabetes.
Collapse
Affiliation(s)
- Seung-Hong Lee
- Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University, Chungju, 27478, Republic of Korea
| | - Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513, Republic of Korea
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, 21565, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
14
|
Kim EA, Lee SH, Lee JH, Kang N, Oh JY, Seun-heui SH, Ahn G, Ko SC, Fernando SP, Kim SY, Park SJ, Kim YT, Jeon YJ. A marine algal polyphenol, dieckol, attenuates blood glucose levels by Akt pathway in alloxan induced hyperglycemia zebrafish model. RSC Adv 2016. [DOI: 10.1039/c6ra12724j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effect of the administering of DK (dieckol) isolated from Ecklonia cava on the blood glucose level in hyperglycemia zebrafish. Thus, hyperglycemia zebrafish could be efficiently used to evaluate a wide range of anti-diabetic activities.
Collapse
|
15
|
Cho SJ, Jung UJ, Kim HJ, Ryu R, Ryoo JY, Moon BS, Choi MS. Effects of the Combined Extracts of Grape Pomace and Omija Fruit on Hyperglycemia and Adiposity in Type 2 Diabetic Mice. Prev Nutr Food Sci 2015; 20:94-101. [PMID: 26175996 PMCID: PMC4500522 DOI: 10.3746/pnf.2015.20.2.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022] Open
Abstract
Grape products have been known to exert greater antioxidant and anti-obesity than anti-hyperglycemic effects in animals and humans. Omija is used as an ingredient in traditional medicine, and it is known to have an anti-hyperglycemic effect. We investigated whether the combined extracts of grape pomace and omija fruit (GE+OE) could reduce fat accumulation in adipose and hepatic tissues and provide beneficial effects against hyperglycemia and insulin resistance in type 2 diabetic mice. C57BL/KsJ-db/db mice were fed either a normal control diet or GE+OE (0.5% grape pomace extract and 0.05% omija fruit extract, w/w) for 7 weeks. GE+OE decreased plasma leptin and resistin levels while increasing adiponectin levels and reducing the total white adipose tissue weight. Furthermore, GE+OE lowered plasma free fatty acid (FFA), triglyceride, and total-cholesterol levels as well as hepatic FFA and cholesterol levels. Hepatic fatty acid synthase and glucose 6-phosphate dehydrogenase activities were decreased in the GE+OE group, whereas hepatic β-oxidation activity was increased. Furthermore, GE+OE supplementation not only reduced hyperglycemia and pancreatic β-cell failure but also lowered blood glycosylated hemoglobin and plasma insulin levels. The homeostasis model assessment of insulin resistance levels was also decreased and the decrease seems to be mediated by the lowered activities of hepatic glucose-6-phosphatase and phosphoenolpyruvate carboxykinases. The present data suggest that GE+OE may have the potential to reduce hyperglycemia, insulin resistance, and obesity in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Su-Jung Cho
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea ; Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea
| | - Hye-Jin Kim
- Food R&D, CJ Cheiljedang Corp., Seoul 152-051, Korea
| | - Ri Ryu
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea ; Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea
| | - Jae Young Ryoo
- School of Life Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea ; Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
16
|
Mounsey RB, Martin HL, Nelson MC, Evans RM, Teismann P. The effect of neuronal conditional knock-out of peroxisome proliferator-activated receptors in the MPTP mouse model of Parkinson's disease. Neuroscience 2015; 300:576-84. [PMID: 26028469 PMCID: PMC4512257 DOI: 10.1016/j.neuroscience.2015.05.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 01/01/2023]
Abstract
Activation of peroxisome proliferator-activated receptors (PPARs), namely PPARγ and PPARδ, has been shown to provide neuroprotection in a number of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease (PD). The observed neuroprotective effects in experimental models of PD have been linked to anti-oxidant and anti-inflammatory actions. This study aimed to analyze the full influence of these receptors in neuroprotection by generating a nerve cell-specific conditional knock-out of these receptors and subjecting these genetically modified mice to the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin to model dopaminergic degeneration. Mice null for both receptors show the lowest levels of tyrosine hydroxylase (TH)-positive cell bodies following MPTP administration. Presence of one or both these receptors show a trend toward protection against this degeneration, as higher dopaminergic cell immunoreactivity and striatal monoamine levels are evident. These data supplement recent studies that have elected to use agonists of the receptors to regulate immune responses. The results place further importance on the activation of PPARs and the neuroprotective roles these have in inflammatory processes linked to neurodegenerative processes.
Collapse
Affiliation(s)
- R B Mounsey
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - H L Martin
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; Institute of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - M C Nelson
- Gene Expression Laboratory, Salk Institute, La Jolla, CA, USA
| | - R M Evans
- Gene Expression Laboratory, Salk Institute, La Jolla, CA, USA
| | - P Teismann
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
17
|
Park JW, Kim SC, Kim WK, Hong JP, Kim KH, Yeo HY, Lee JY, Kim MS, Kim JH, Yang SY, Kim DY, Oh JH, Cho JY, Yoo BC. Expression of phosphoenolpyruvate carboxykinase linked to chemoradiation susceptibility of human colon cancer cells. BMC Cancer 2014; 14:160. [PMID: 24602180 PMCID: PMC4016284 DOI: 10.1186/1471-2407-14-160] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 02/28/2014] [Indexed: 01/13/2023] Open
Abstract
Background Resistance to 5-fluorouracil (5-FU) in patients with colorectal cancer prevents effective treatment and leads to unnecessary and burdensome chemotherapy. Therefore, prediction of 5-FU resistance is imperative. Methods To identify the proteins linked to 5-FU resistance, two-dimensional gel electrophoresis-based proteomics was performed using the human colon cancer cell line SNU-C4R with induced 5-FU resistance. Proteins showing altered expression in SNU-C4R were identified by matrix-associated laser desorption/ionization–time-of-flight analysis, and their roles in susceptibility to 5-FU or radiation were evaluated in various cell lines by transfection of specific siRNA or creation of overexpression constructs. Changes in cellular signaling and expression of mitochondrial apoptotic factors were investigated by Western Blot analysis. A mitochondrial membrane potential probe (JC-1 dye) and a flow cytometry system were employed to determine the mitochondrial membrane potential. Finally, protein levels were determined by Western Blot analysis in tissues from 122 patients with rectal cancer to clarify whether each identified protein is a useful predictor of a chemoradiation response. Results We identified mitochondrial phosphoenolpyruvate carboxykinase (mPEPCK) as a candidate predictor of 5-FU resistance. PEPCK was downregulated in SNU-C4R compared with its parent cell line SNU-C4. Overexpression of mPEPCK did not significantly alter the susceptibility to either 5-FU or radiation. Suppression of mPEPCK led to a decrease in both the cellular level of phosphoenolpyruvate and the susceptibility to 5-FU and radiation. Furthermore, the cellular levels of phosphoenolpyruvate (an end product of PEPCK and a substrate of pyruvate kinase), phosphorylated AKT, and phosphorylated 4EBP1 were decreased significantly secondary to the mPEPCK suppression in SNU-C4. However, mPEPCK siRNA transfection induced changes in neither the mitochondrial membrane potential nor the expression levels of mitochondrial apoptotic factors such as Bax, Bcl-2, and Bad. Downregulation of total PEPCK was observed in tissues from patients with rectal cancer who displayed poor responses to preoperative 5-FU-based radiation therapy. Conclusion Our overall results demonstrate that mPEPCK is a useful predictor of a response to chemoradiotherapy in patients with rectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi, Republic of Korea.
| |
Collapse
|
18
|
Cheong SH, Furuhashi K, Ito K, Nagaoka M, Yonezawa T, Miura Y, Yagasaki K. Antihyperglycemic effect of equol, a daidzein derivative, in cultured L6 myocytes andob/obmice. Mol Nutr Food Res 2013; 58:267-77. [DOI: 10.1002/mnfr.201300272] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/17/2013] [Accepted: 07/04/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Sun Hee Cheong
- Department of Applied Biological Chemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
- Department of Biotechnology; Konkuk University; Chungju Republic of Korea
| | - Keisuke Furuhashi
- Department of Applied Biological Chemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Katsuki Ito
- Department of Applied Biological Chemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Masato Nagaoka
- Department of Applied Biological Chemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Takayuki Yonezawa
- Graduate School of Medicine; The University of Tokyo; Bunkyo-Ku Tokyo Japan
| | - Yutaka Miura
- Department of Applied Biological Chemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
| | - Kazumi Yagasaki
- Department of Applied Biological Chemistry; Tokyo University of Agriculture and Technology; Fuchu Tokyo Japan
- Graduate School of Medicine; The University of Tokyo; Bunkyo-Ku Tokyo Japan
| |
Collapse
|
19
|
Lee SH, Jeon YJ. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013; 86:129-36. [PMID: 23466874 DOI: 10.1016/j.fitote.2013.02.013] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/20/2013] [Accepted: 02/24/2013] [Indexed: 11/26/2022]
Abstract
Marine algae are popular and abundant food ingredients mainly in Asian countries, and also well known for their health beneficial effects due to the presence of biologically active components. The marine algae have been studied for biologically active components and phlorotannins, marine polyphenols are among them. Among marine algae, brown algae have extensively studied for their potential anti-diabetic activities. Majority of the investigations on phlorotannins derived from brown algae have exhibited their various anti-diabetic mechanisms such as α-glucosidase and α-amylase inhibitory effect, glucose uptake effect in skeletal muscle, protein tyrosine phosphatase 1B (PTP 1B) enzyme inhibition, improvement of insulin sensitivity in type 2 diabetic db/db mice, and protective effect against diabetes complication. In this review, we have made an attempt to discuss the various anti-diabetic mechanisms associated with phlorotannins from brown algae that are confined to in vitro and in vivo.
Collapse
Affiliation(s)
- Seung-Hong Lee
- School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | | |
Collapse
|
20
|
Singh AB, Singh N, Akanksha, Jayendra, Maurya R, Srivastava AK. Coagulanolide modulates hepatic glucose metabolism in C57BL/KsJ-db/db mice. Hum Exp Toxicol 2013; 31:1056-65. [PMID: 23060434 DOI: 10.1177/0960327112438289] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increased hepatic glucose output is one of the major causes of fasting hyperglycemia in diabetic patients. In this study, we investigated the mechanism of action of coagulanolide on hepatic glucose, regulating enzymes in type 2 diabetic C57BL/KsJ-db/db (db/db) mice. Coagulanolide is an active component of Withania coagulans fruit. Oral administration of coagulanolide for 3 weeks decreases fasting blood glucose and plasma insulin significantly, and it improves glucose tolerance in the db/db mice group. The enzyme activity and protein expression of glucokinase and pyruvate kinase was significantly enhanced in coagulanolide-treated db/db group when compared with untreated one. On the other hand, activities and protein expression of fructose-1,6-bisphosphatase, glucose 6-phosphatase, phosphoenolpyruvate carboxykinase, and glycogen phosphorylase enzymes were significantly lowered in treated group. The treatment with coagulanolide also normalizes the concentrations of plasma cholesterol, triglyceride, free fatty acid, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol in the db/db mice. These findings suggested that the coagulanolide is useful in the control of fasting hyperglycemia in type 2 diabetes by regulating the production of hepatic glucose.
Collapse
Affiliation(s)
- A B Singh
- Biochemistry Division, Central Drug Research Institute, Lucknow, Uttar Pradesh, India.
| | | | | | | | | | | |
Collapse
|
21
|
Haskew-Layton RE, Payappilly JB, Xu H, Bennett SAL, Ratan RR. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) protects neurons from oxidative death via an Nrf2 astrocyte-specific mechanism independent of PPARγ. J Neurochem 2013. [DOI: 10.1111/jnc.12107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Renée E. Haskew-Layton
- The Burke Medical Research Institute; Department of Neurology and Neuroscience; Weill Medical College of Cornell University; White Plains New York USA
| | - Jimmy B. Payappilly
- The Burke Medical Research Institute; Department of Neurology and Neuroscience; Weill Medical College of Cornell University; White Plains New York USA
| | - Hongbin Xu
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology; University of Ottawa; Ottawa Canada
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology; University of Ottawa; Ottawa Canada
| | - Rajiv R. Ratan
- The Burke Medical Research Institute; Department of Neurology and Neuroscience; Weill Medical College of Cornell University; White Plains New York USA
| |
Collapse
|
22
|
Antidiabetic activities of oligosaccharides of Ophiopogonis japonicus in experimental type 2 diabetic rats. Int J Biol Macromol 2012; 51:749-55. [DOI: 10.1016/j.ijbiomac.2012.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/07/2012] [Accepted: 07/08/2012] [Indexed: 11/20/2022]
|
23
|
Jung UJ, Park YB, Kim SR, Choi MS. Supplementation of persimmon leaf ameliorates hyperglycemia, dyslipidemia and hepatic fat accumulation in type 2 diabetic mice. PLoS One 2012; 7:e49030. [PMID: 23145054 PMCID: PMC3493507 DOI: 10.1371/journal.pone.0049030] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/03/2012] [Indexed: 01/31/2023] Open
Abstract
Persimmon Leaf (PL), commonly consumed as herbal tea and traditional medicines, contains a variety of compounds that exert antioxidant, α-amylase and α-glucosidase inhibitory activity. However, little is known about the in vivo effects and underlying mechanisms of PL on hyperglycemia, hyperlipidemia and hepatic steatosis in type 2 diabetes. Powered PL (5%, w/w) was supplemented with a normal diet to C57BL/KsJ-db/db mice for 5 weeks. PL decreased blood glucose, HOMA-IR, plasma triglyceride and total cholesterol levels, as well as liver weight, hepatic lipid droplets, triglycerides and cholesterol contents, while increasing plasma HDL-cholesterol and adiponectin levels. The anti-hyperglycemic effect was linked to decreased activity of gluconeogenic enzymes as well as increased glycogen content, glucokinase activity and its mRNA level in the liver. PL also led to a decrease in lipogenic transcriptional factor PPARγ as well as gene expression and activity of enzymes involved in lipogenesis, with a simultaneous increase in fecal lipids, which are seemingly attributable to the improved hyperlipidemia and hepatic steatosis and decreased hepatic fatty acid oxidation. Furthermore, PL ameliorated plasma and hepatic oxidative stress. Supplementation with PL may be an effective dietary strategy to improve type 2 diabetes accompanied by dyslipidemia and hepatic steatosis by partly modulating the activity or gene expression of enzymes related to antioxidant, glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Un Ju Jung
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Bok Park
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
24
|
Martin HL, Mounsey RB, Mustafa S, Sathe K, Teismann P. Pharmacological manipulation of peroxisome proliferator-activated receptor γ (PPARγ) reveals a role for anti-oxidant protection in a model of Parkinson's disease. Exp Neurol 2012; 235:528-38. [PMID: 22417924 PMCID: PMC3350857 DOI: 10.1016/j.expneurol.2012.02.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/13/2012] [Accepted: 02/29/2012] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been shown to provide neuroprotection in a number of neurodegenerative diseases including Parkinson's disease and Alzheimer's disease. These protective effects are primarily considered to result from the anti-inflammatory actions of PPARγ, however, there is increasing evidence that anti-oxidant mechanisms may also contribute. This study explored the impact of the PPARγ agonist rosiglitazone and the PPARγ antagonist GW9662 in the MPP(+)/MPTP (1-methyl-4-phenylpyridinium/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease, focussing on oxidative stress mechanisms. Rosiglitazone attenuated reactive oxygen species formation induced by MPP(+) in SH-SY5Y cells concurrent with an upregulation of glutathione-S-transferase activity, but not superoxide dismutase activity. These responses were not attenuated by cotreatment with GW9662 suggesting that PPARγ activation is not required. The localisation of PPARγ in vivo to dopaminergic neurons of the substantia nigra pars compacta (SNpc) was established by immunohistochemistry and PPARγ levels were found to be upregulated 7 days after MPTP treatment. The importance of PPARγ in protecting against MPTP toxicity was confirmed by treating C57BL6 mice with GW9662. Treatment with GW9662 increased MPTP-induced neuronal loss in the SNpc whilst not affecting MPTP-induced reductions in striatal dopamine and 3,4-dihdroxyphenylacetic acid. GW9662 also caused neuronal loss in the SNpc of saline-treated mice. The evidence presented here supports the role of anti-oxidant mechanisms in the protective effects of PPARγ agonists in neurodegenerative diseases, but indicates that these effects may be independent of PPARγ activation. It also demonstrates the importance of PPARγ activity for neuronal survival within the SNpc.
Collapse
Key Words
- bso, buthionine-sulfoximine
- dcf, 2′7′-dichlorofluorescein
- dcf-da, 2′7′-dichlorofluorescein diacetate
- dopac, 3,4-dihydrophenylacetic acid
- gfap, glial fibrillary acid protein
- gst, glutathione-s-transferase
- iba1, ionized calcium-binding adaptor molecule 1
- ldh, lactate dehydrogenase
- mpp+, 1-methyl-4-phenylpyridinium
- mptp, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- mtt, 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide
- pd, parkinson's disease
- pparγ, peroxisome proliferator-activated receptor γ
- ros, reactive oxygen species
- snpc, substantia nigra pars compacta
- sod, superoxide dismutase
- th, tyrosine hydroxylase
- parkinson's disease
- peroxisome proliferator-activated receptor γ
- mptp
- mpp+
- neurodegeneration
Collapse
Affiliation(s)
- Heather L Martin
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | | | | | | |
Collapse
|
25
|
Lee SH, Min KH, Han JS, Lee DH, Park DB, Jung WK, Park PJ, Jeon BT, Kim SK, Jeon YJ. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ-db/db mice, a model of type 2 diabetes mellitus. Food Chem Toxicol 2012; 50:575-82. [PMID: 22227338 DOI: 10.1016/j.fct.2011.12.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 11/23/2022]
Abstract
Recently, there has been a growing interest in alternative therapies of marine algae for diabetes. Therefore, the anti-diabetic effects of brown alga, Ecklonia cava was investigated in type 2 diabetic animal. Male C57BL/KsJ-db/db (db/db) mice were divided into control, dieckol rich extract of E. cava (AG-dieckol), or rosiglitazone (RG) groups. The blood glucose, blood glycosylated hemoglobin levels, and plasma insulin levels were significantly lower in the AG-dieckol and RG groups than in the control db/db mice group, while glucose tolerance was significantly improved in the AG-dieckol group. AG-dieckol markedly lowered plasma and hepatic lipids concentration compared to the control db/db mice group. The antioxidant enzyme activities were significantly higher in the AG-dieckol group than in the control db/db mice group, yet its TBARS level was markedly lower compared to the RG group. With regard to hepatic glucose regulating enzyme activities, glucokinase activity was enhanced in the AG-dieckol group mice, while glucose-6-phosphatase and phosphoenolpyruvate carboxykinase activities in the AG-dieckol group mice were significantly lowered than those in the control db/db mice group. These results suggest that AG-dieckol exert an anti-diabetic effect in type 2 diabetic mice by improving the glucose and lipid metabolism and antioxidant enzymes.
Collapse
Affiliation(s)
- Seung-Hong Lee
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Suppression of phosphoenolpyruvate carboxykinase gene expression by secoisolariciresinol diglucoside (SDG), a new antidiabetic agent. Int J Angiol 2011. [DOI: 10.1007/bf01616377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
27
|
Li YG, Ji DF, Zhong S, Lv ZQ, Lin TB, Chen S, Hu GY. Hybrid of 1-deoxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan-induced diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2011; 134:961-970. [PMID: 21333726 DOI: 10.1016/j.jep.2011.02.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 11/29/2010] [Accepted: 02/11/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 1-Deoxynojirimycin (DNJ) discovered from mulberry trees has been reported to be a potent inhibitor of intestinal α-glycosidases (sucrase, maltase, glucoamylase), and many polysaccharides were useful in protecting against alloxan-induced pancreatic islets damage through their scavenging ability. This study was aimed to evaluate the therapeutic effect and potential mechanism(s) of the hybrid of DNJ and polysaccharide (HDP) from mulberry leaves on alloxan-induced diabetic mice. MATERIALS AND METHODS Daily oral treatment with HDP (150 mg/kg body weight) to diabetic mice for 12 weeks, body weight and blood glucose were determined every week, oral glucose tolerance test was performed after 4 and 8 weeks, biochemical values were measured using assay kits and gene expressions were investigated by RT-PCR. RESULTS A significant decline in blood glucose, glycosylated hemoglobin, triglyceride, aspartate transaminase and alanine transaminase levels and an evident increase in body weight, plasma insulin level and high density lipoprotein were observed in HDP treated diabetic mice. The polysaccharide (P1) showed a significant scavenging hydroxyl radicals and superoxide anion radical effects in vitro, which indicated that P1 could protect alloxan-induced pancreatic islets from damage by scavenging the free radicals and repaired the destroyed pancreatic β-cells. Pharmacokinetics assay showed that DNJ could be absorbed from the gastrointestinal mucosa and diffused rapidly into the liver, resulted in postprandial blood glucose decrease and alleviated the toxicity caused by sustained supra-physiological glucose to pancreatic β-cells. RT-PCR results indicated that HDP could modulate the hepatic glucose metabolism and gluconeogenesis by up/down-regulating the expression of rate-limiting enzymes (glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) in liver and up-regulating the pancreatic and duodenal homeobox factor-1 (PDX-1), insulin-1 and insulin-2 expressions in pancreas. CONCLUSION These findings suggested that HDP has complimentary potency to develop an antihyperglycemic agent for treatment of diabetes mellitus.
Collapse
Affiliation(s)
- You-Gui Li
- Sericultural Research Institute, Zhejiang Academy of Agricultural Science, No. 198 Shiqiao Road, Hangzhou 310021, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Anti-diabetic effects of lemon balm (Melissa officinalis) essential oil on glucose- and lipid-regulating enzymes in type 2 diabetic mice. Br J Nutr 2010; 104:180-8. [DOI: 10.1017/s0007114510001765] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The antioxidant activity of lemon balm (Melissa officinalis) essential oil (LBEO) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and its hypoglycaemic effect in db/db mice were investigated. LBEO scavenged 97 % of DPPH radicals at a 270-fold dilution. Mice administered LBEO (0·015 mg/d) for 6 weeks showed significantly reduced blood glucose (65 %; P < 0·05) and TAG concentrations, improved glucose tolerance, as assessed by an oral glucose tolerance test, and significantly higher serum insulin levels, compared with the control group. The hypoglycaemic mechanism of LBEO was further explored via gene and protein expression analyses using RT-PCR and Western blotting, respectively. Among all glucose metabolism-related genes studied, hepatic glucokinase and GLUT4, as well as adipocyte GLUT4, PPAR-γ, PPAR-α and SREBP-1c expression, were significantly up-regulated, whereas glucose-6-phosphatase and phosphoenolpyruvate carboxykinase expression was down-regulated in the livers of the LBEO group. The results further suggest that LBEO administered at low concentrations is an efficient hypoglycaemic agent, probably due to enhanced glucose uptake and metabolism in the liver and adipose tissue and the inhibition of gluconeogenesis in the liver.
Collapse
|
29
|
Davies G, Ross A, Arnason T, Juurlink B, Harkness T. Troglitazone inhibits histone deacetylase activity in breast cancer cells. Cancer Lett 2010; 288:236-50. [DOI: 10.1016/j.canlet.2009.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
30
|
Davies GF, Juurlink BHJ, Harkness TAA. Troglitazone reverses the multiple drug resistance phenotype in cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2009; 3:79-88. [PMID: 19920924 PMCID: PMC2769242 DOI: 10.2147/dddt.s3314] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX) resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1) and histone H3 expression. The thiazolidinedione troglitazone (TRG) downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR) phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX). The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp) drug efflux pump multiple drug resistance protein 1 (MDR-1), and the breast cancer resistance protein (BCRP). TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ) inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers.
Collapse
Affiliation(s)
- Gerald F Davies
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | | | | |
Collapse
|
31
|
Kaimal R, Song X, Yan B, King R, Deng R. Differential modulation of farnesoid X receptor signaling pathway by the thiazolidinediones. J Pharmacol Exp Ther 2009; 330:125-34. [PMID: 19369578 PMCID: PMC2700164 DOI: 10.1124/jpet.109.151233] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 04/13/2009] [Indexed: 01/24/2023] Open
Abstract
Thiazolidinediones (TZD), including troglitazone, rosiglitazone, and pioglitazone, are agonists of peroxisome proliferator-activated receptor (PPAR)-gamma and belong to a class of insulin-sensitizing drugs for type 2 diabetes mellitus. However, member-specific, PPARgamma-independent activities and toxicity have been reported, especially for troglitazone. Currently, the underlying mechanisms are not fully understood. In this study, we demonstrated that troglitazone but not rosiglitazone or pioglitazone modulated expression of farnesoid X receptor (FXR) target genes bile salt export pump (BSEP) and small heterodimer partner (SHP) in Huh-7 cells. More specifically, troglitazone acted as a partial agonist of FXR to weakly increase BSEP and SHP expression but functioned as a potent antagonist to significantly suppress bile acid-induced expression. Consistent with the finding, troglitazone partially induced but markedly antagonized bile acid-mediated BSEP promoter transactivation. However, such modulating effects were not detected with rosiglitazone or pioglitazone. Using the crystal structure of ligand-bound FXR ligand binding domain (LBD), molecular docking predicted that troglitazone, but not rosiglitazone or pioglitazone, could form a stable complex with FXR LBD. The specific alpha-tocopherol side chain of troglitazone significantly contributed to the formation of such a stable complex through extensive interactions with FXR LBD. The docking model was further validated by functional analyses of a series of docking-guided FXR mutants. In summary, the data demonstrated that troglitazone, but not rosiglitazone or pioglitazone, was an FXR modulator and potently antagonized bile acid-induced expression of FXR target genes. Such differential modulation of FXR signaling pathway by TZDs may represent one of the mechanisms for member-specific, PPARgamma-independent activities and toxicity.
Collapse
Affiliation(s)
- Rajani Kaimal
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 41 Lower College Rd., Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
32
|
Lasram MM, Annabi AB, El Elj N, Selmi S, Kamoun A, El-Fazaa S, Gharbi N. Metabolic disorders of acute exposure to malathion in adult Wistar rats. JOURNAL OF HAZARDOUS MATERIALS 2009; 163:1052-1055. [PMID: 18814961 DOI: 10.1016/j.jhazmat.2008.07.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 07/11/2008] [Accepted: 07/15/2008] [Indexed: 05/26/2023]
Abstract
Malathion is a widely organphosphorus insecticide used in agriculture, which shows strong insecticidal effects. However, the use of this insecticide leads to disruption in metabolic pathways. The aim of this study is to evaluate the acute effects of malathion on metabolic parameters in Wistar rats. Malathion was administered orally to rats at a dose of 400mg/kg body weight dissolved in corn oil. Glucidic and lipidic status were analyzed in plasma, cholinesterase activities were also determined. Malathion induces a transitory hyperglycaemia which correlated with depletion on glycogen content. Plasma triglycerides and LDL level increased significantly in malathion treated-rats. HDL rate was unchanged and cholesterol plasma content decrease transitory but rapidly reached a normal level. Results of this study indicate, clearly, that malathion in acute exposure leads to a disruption of lipid metabolism with an enhancement in LDL and triglyceride contents and may play an important role in the development of atherosclerosis and cardiovascular disease. Disruption in plasma lipid profile may leads to a kind of insulin resistance which results in hyperglycaemia.
Collapse
Affiliation(s)
- Mohamed M Lasram
- Laboratoire de physiologie des aggressions, Département de physiologie animale, Faculté des sciences de Tunis, Université el Manar I, Tunis 1060, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Peroxisome proliferator-activated receptors in diabetic nephropathy. PPAR Res 2009; 2008:879523. [PMID: 19277201 PMCID: PMC2652581 DOI: 10.1155/2008/879523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Accepted: 12/08/2008] [Indexed: 02/08/2023] Open
Abstract
Diabetic nephropathy is a leading cause of end-stage renal disease, which is increasing in incidence worldwide, despite intensive treatment approaches such as glycemic and blood pressure control in patients with diabetes mellitus. New therapeutic strategies are needed to prevent the onset of diabetic nephropathy. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostases. These agents might prevent the progression of diabetic nephropathy, since PPAR agonists improve dyslipidemia and insulin resistance. Furthermore, data from murine models suggest that PPAR agonists also have independent renoprotective effects by suppressing inflammation, oxidative stress, lipotoxicity, and activation of the renin-angiotensin system. This review summarizes data from clinical and experimental studies regarding the relationship between PPARs and diabetic nephropathy. The therapeutic potential of PPAR agonists in the treatment of diabetic nephropathy is also discussed.
Collapse
|
34
|
Derlacz RA, Hyc K, Usarek M, Jagielski AK, Drozak J, Jarzyna R. PPAR-gamma-independent inhibitory effect of rosiglitazone on glucose synthesis in primary cultured rabbit kidney-cortex tubules. Biochem Cell Biol 2008; 86:396-404. [PMID: 18923541 DOI: 10.1139/o08-105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Therapeutic effect of rosiglitazone has been reported to result from an improvement of insulin sensitivity and inhibition of glucose synthesis. As the latter process occurs in both liver and kidney cortex the aim of this study was to elucidate the rosiglitazone action on glucose formation in both tissues. Primary cultured cells of both liver and kidney cortex grown in defined medium were use throughout. To identify the mechanism responsible for drug-induced changes, intracellular gluconeogenic intermediates and enzyme activities were determined. In contrast to hepatocytes, the administration of a 10 micromol/L concentration of rosiglitazone to renal tubules resulted in about a 70% decrease in the rate of gluconeogenesis, accompanied by an approximately 75% decrease in alanine utilization and a 35% increase in lactate synthesis. The effect of rosiglitazone was not abolished by GW9662, the PPAR-gamma irreversible antagonist, indicating that this action is not dependent on PPAR-gamma activation. In view of rosiglitazone-induced changes in gluconeogenic intermediates and a diminished incorporation of 14CO2 into pyruvate, it is likely that the drug causes a decline in flux through pyruvate carboxylase and (or) phosphoenolpyruvate carboxykinase. It is likely that the hypoglycemic action of rosiglitazone is PPAR-gamma independent and results mainly from its inhibitory effects on renal gluconeogenesis.
Collapse
Affiliation(s)
- Rafal A Derlacz
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland.
| | | | | | | | | | | |
Collapse
|
35
|
Suh HN, Huong HT, Song CH, Lee JH, Han HJ. Linoleic acid stimulates gluconeogenesis via Ca2+/PLC, cPLA2, and PPAR pathways through GPR40 in primary cultured chicken hepatocytes. Am J Physiol Cell Physiol 2008; 295:C1518-27. [DOI: 10.1152/ajpcell.00368.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acids serve vital functions as sources of energy, building materials for cellular structures, and modulators of physiological responses. Therefore, this study examined the effect of linoleic acid on glucose production and its related signal pathways in primary cultured chicken hepatocytes. Linoleic acid (double-unsaturated, long chain) increased glucose production in a dose (≥10−4 M)- and time (≥8 h)-dependent manner. Both oleic acid (monounsaturated, long chain) and palmitic acid (saturated, long chain) also increased glucose production, whereas caproic acid (saturated, short chain) failed to increase glucose production. Linoleic acid increased G protein-coupled receptor 40 (GPR40; also known as free fatty acid receptor-1) protein expression and glucose production that was blocked by GPR40-specific small interfering RNA. Linoleic acid increased intracellular calcium concentration, which was blocked by EGTA (extracellular calcium chelator)/BAPTA-AM (intracellular calcium chelator), U-73122 (phospholipase C inhibitor), nifedipine, or methoxyverapamil (L-type calcium channel blockers). Linoleic acid increased cytosolic phospholipase A2 (cPLA2) phosphorylation and the release of [3H]-labeled arachidonic acid. Moreover, linoleic acid increased the level of cyclooxygenase-2 (COX-2) protein expression, which stimulated the synthesis of prostaglandin E2 (PGE2). The increase in PGE2 production subsequently stimulated peroxisome proliferator-activated receptor (PPAR) expression, and MK-886 (PPAR-α antagonist) and GW-9662 (PPAR-δ antagonist) inhibited glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. In addition, linoleic acid-induced glucose production was blocked by inhibition of extracellular and intracellular calcium, cPLA2, COX-2, or PPAR pathways. In conclusion, linoleic acid promoted glucose production via Ca2+/PLC, cPLA2/COX-2, and PPAR pathways through GPR40 in primary cultured chicken hepatocytes.
Collapse
|
36
|
Leisewitz AV, Urrutia CR, Martinez GR, Loyola G, Bronfman M. A PPARs cross-talk concertedly commits C6 glioma cells to oligodendrocytes and induces enzymes involved in myelin synthesis. J Cell Physiol 2008; 217:367-76. [DOI: 10.1002/jcp.21509] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Basu R, Basu A, Chandramouli V, Norby B, Dicke B, Shah P, Cohen O, Landau BR, Rizza RA. Effects of pioglitazone and metformin on NEFA-induced insulin resistance in type 2 diabetes. Diabetologia 2008; 51:2031-40. [PMID: 18769904 PMCID: PMC2701394 DOI: 10.1007/s00125-008-1138-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 07/23/2008] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS We sought to determine whether pioglitazone and metformin alter NEFA-induced insulin resistance in type 2 diabetes and, if so, the mechanism whereby this is effected. METHODS Euglycaemic-hyperinsulinaemic clamps (glucose approximately 5.3 mmol/l, insulin approximately 200 pmol/l) were performed in the presence of Intralipid-heparin (IL/H) or glycerol before and after 4 months of treatment with pioglitazone (n = 11) or metformin (n = 9) in diabetic participants. Hormone secretion was inhibited with somatostatin in all participants. RESULTS Pioglitazone increased insulin-stimulated glucose disappearance (p < 0.01) and increased insulin-induced suppression of glucose production (p < 0.01), gluconeogenesis (p < 0.05) and glycogenolysis (p < 0.05) during IL/H. However, glucose disappearance remained lower (p < 0.05) whereas glucose production (p < 0.01), gluconeogenesis (p < 0.05) and glycogenolysis (p < 0.05) were higher on the IL/H study day than on the glycerol study day, indicating persistence of NEFA-induced insulin resistance. Metformin increased (p < 0.001) glucose disappearance during IL/H to rates present during glycerol treatment, indicating protection against NEFA-induced insulin resistance in extrahepatic tissues. However, glucose production and gluconeogenesis (but not glycogenolysis) were higher (p < 0.01) during IL/H than during glycerol treatment with metformin, indicating persistence of NEFA-induced hepatic insulin resistance. CONCLUSIONS/INTERPRETATION We conclude that pioglitazone improves both the hepatic and the extrahepatic action of insulin but does not prevent NEFA-induced insulin resistance. In contrast, whereas metformin prevents NEFA-induced extrahepatic insulin resistance, it does not protect against NEFA-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- R. Basu
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic College of Medicine, 200 1st Street SW, Room 5-194 Joseph, Rochester, MN 55905, USA
| | - A. Basu
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic College of Medicine, 200 1st Street SW, Room 5-194 Joseph, Rochester, MN 55905, USA
| | - V. Chandramouli
- Division of Clinical and Molecular Endocrinology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - B. Norby
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic College of Medicine, 200 1st Street SW, Room 5-194 Joseph, Rochester, MN 55905, USA
| | - B. Dicke
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic College of Medicine, 200 1st Street SW, Room 5-194 Joseph, Rochester, MN 55905, USA
| | - P. Shah
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - O. Cohen
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - B. R. Landau
- Division of Clinical and Molecular Endocrinology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - R. A. Rizza
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic College of Medicine, 200 1st Street SW, Room 5-194 Joseph, Rochester, MN 55905, USA
| |
Collapse
|
38
|
Cadoudal T, Fouque F, Benelli C, Forest C. [Glyceroneogenesis and PEPCK-C: pharmacological targets in type 2 diabetes]. Med Sci (Paris) 2008; 24:407-13. [PMID: 18405640 DOI: 10.1051/medsci/2008244407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Obesity is a major risk factor for insulin resistance and type 2 diabetes. The link between hypertrophied adipose tissue and this pathology is thought to be non-esterified fatty acids (NEFA) arising from adipocyte lipolysis. Sustained increase in plasma NEFA induces insulin resistance. In adipocytes, a significant part of lipolytic NEFA is re-esterified to triacylglycerol. Re-esterification requires glycerol-3-phosphate which, during fasting, is synthesized from lactate, pyruvate or certain amino acids in a metabolic pathway named glyceroneogenesis. The key enzyme in this pathway is the cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C). In this review, we postulate that thiazolidinediones exert their hypolipidemic and antidiabetic effects in adipose tissue at least in part through a rapid and selective induction of PEPCK-C gene transcription leading to increased PEPCK-C and glyceroneogenesis. Subsequent fatty acid re-esterification participates in the reduction in blood NEFA and insulin resistance.
Collapse
Affiliation(s)
- Thomas Cadoudal
- Inserm UMR-S 747 ; Université Paris Descartes, Centre universitaire des Saints-Pères, 45, rue des Saints-Pères, 75006 Paris, France
| | | | | | | |
Collapse
|
39
|
Cadoudal T, Glorian M, Massias A, Fouque F, Forest C, Benelli C. Retinoids upregulate phosphoenolpyruvate carboxykinase and glyceroneogenesis in human and rodent adipocytes. J Nutr 2008; 138:1004-9. [PMID: 18492826 DOI: 10.1093/jn/138.6.1004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glyceroneogenesis is an important metabolic pathway for fatty acid reesterification in adipose tissue, thereby reducing fatty acid release. Glyceroneogenesis and cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), which is the key enzyme in this pathway, are both regulated by a series of hormones and nutrients, among which all-trans retinoic acid (all-trans RA) is a transcriptional inducer of the PEPCK-C gene (Pck1). All-trans RA binds to the retinoic acid receptor (RAR) and activates it, whereas its stereoisomer 9-cis retinoic acid (9-cis RA) is a ligand for the 9-cis RA receptor (RXR). Three RXR-binding elements [retinoic acid response element (RARE)1/PCK1, RARE2, and RARE3/PCK2] were previously located in the promoter of Pck1. Using 3T3-F442A adipocytes, we demonstrated that Pck1 expression was 10-fold more sensitive to 9-cis RA (EC(50): 10 nmol/L) than to all-trans RA. We then analyzed the respective involvement of RARE1/PCK1, RARE2, and RARE3/PCK2 in the response of Pck1 to 9-cis RA and all-trans RA in adipocytes. The response to 9-cis RA mainly involved the RARE1/PCK1 element, whereas RARE2 was mainly responsive to all-trans RA. In contrast, the full response to both RA isomers involved these 2 elements and included RARE3/PCK2 as well. Furthermore, 9-cis RA, but not all-trans RA, selectively induced PCK1 in ex-vivo-treated human adipose tissue explants, with a concomitant induction of glyceroneogenesis monitored by [1-(14)C]-pyruvate incorporation into neutral lipids. The concomitant 9-cis RA-induced reduction in fatty acid output indicates an important role for this RA stereoisomer in lipid homeostasis through stimulation of PEPCK-C and glyceroneogenesis in adipose tissue.
Collapse
Affiliation(s)
- Thomas Cadoudal
- Institut National de la Recherche Médicale UMR-S 747, Université Paris Descartes, F-75006 Paris, France
| | | | | | | | | | | |
Collapse
|
40
|
Hernandez-Trujillo Y, Rodriguez-Esparragon F, Macias-Reyes A, Caballero-Hidalgo A, Rodriguez-Perez JC. Rosiglitazone but not losartan prevents Nrf-2 dependent CD36 gene expression up-regulation in an in vivo atherosclerosis model. Cardiovasc Diabetol 2008; 7:3. [PMID: 18302760 PMCID: PMC2266907 DOI: 10.1186/1475-2840-7-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 02/26/2008] [Indexed: 12/17/2022] Open
Abstract
Background Thiazolidinediones exert anti-inflammatory and anti-oxidative roles and attenuate atherosclerosis by mechanisms partially independent of their metabolizing actions. High doses of angiotensin type 1 receptor (AT1R) blocker losartan (LST) seem to promote fat cell formation by preserving PPARγ activity. Methods C57BL/6J diet-induced atherosclerotic susceptible mice randomly received a normal or a high-fat high-cholesterol (HFHC) diet and were treated with rosiglitazone (RG), LST or a vehicle for 12 weeks. Results HFHC was associated with increased PPARγ gene expression without an over regulation of PPARγ responsive genes, whereas RG and LST treatments were found to maintain PPARγ activity without resulting in increased PPARγ gene expression. A better anti-inflammatory and antioxidant profile in mice treated with RG regarding LST was observed in spite of a similar PPARγ preserved activity. Chromatin immunoprecipitation (ChIP) assays revealed that animals under HFHC diet treated with RG showed a significant nuclear factor erythroid 2-like 2 (Nrf2)-dependent down-regulation of the expression of the CD36 gene. Conclusion The PPARγ agonist RG exerts antioxidant properties that significantly reduced Nrf-2-dependent CD-36 up-regulation in mice under HFHC diet. Because LST treatment was also associated with a preserved PPARγ activity, our data suggests that these RG antioxidant effects are partially independent of its PPARγ metabolizing properties.
Collapse
Affiliation(s)
- Y Hernandez-Trujillo
- Research Unit, Hospital Universitario de Gran Canaria Dr, Negrín, Las Palmas de Gran Canaria, Spain.
| | | | | | | | | |
Collapse
|
41
|
Govorko D, Logendra S, Wang Y, Esposito D, Komarnytsky S, Ribnicky D, Poulev A, Wang Z, Cefalu WT, Raskin I. Polyphenolic compounds from Artemisia dracunculus L. inhibit PEPCK gene expression and gluconeogenesis in an H4IIE hepatoma cell line. Am J Physiol Endocrinol Metab 2007; 293:E1503-10. [PMID: 17848630 DOI: 10.1152/ajpendo.00420.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An ethanolic extract of Russian tarragon, Artemisia dracunculus L., with antihyperglycemic activity in animal models was reported to decrease phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression in STZ-induced diabetic rats. A quantitative polymerase chain reaction (qPCR) assay was developed for the bioactivity-guided purification of the compounds within the extract that decrease PEPCK expression. The assay was based on the inhibition of dexamethasone-stimulated PEPCK upregulation in an H4IIE hepatoma cell line. Two polyphenolic compounds that inhibited PEPCK mRNA levels were isolated and identified as 6-demethoxycapillarisin and 2',4'-dihydroxy-4-methoxydihydrochalcone with IC(50) values of 43 and 61 muM, respectively. The phosphoinositide-3 kinase (PI3K) inhibitor LY-294002 showed that 6-demethoxycapillarisin exerts its effect through the activation of the PI3K pathway, similarly to insulin. The effect of 2',4'-dihydroxy-4-methoxydihydrochalcone is not regulated by PI3K and dependent on activation of AMPK pathway. These results indicate that the isolated compounds may be responsible for much of the glucose-lowering activity of the Artemisia dracunculus extract.
Collapse
Affiliation(s)
- Dmitry Govorko
- Rutgers University, Biotech Center, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaput J, Perlina A, Hatipoglu B, Bartholomew A, Nikolsky Y. Nutrigenomics: concepts and applications to pharmacogenomics and clinical medicine. Pharmacogenomics 2007; 8:369-90. [PMID: 17391074 DOI: 10.2217/14622416.8.4.369] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The maintenance of health and the prevention and treatment of chronic diseases are influenced by naturally occurring chemicals in foods. In addition to supplying the substrates for producing energy, a large number of dietary chemicals are bioactive--that is, they alter the regulation of biological processes and, either directly or indirectly, the expression of genetic information. Nutrients and bioactives may produce different physiological phenotypes among individuals because of genetic variability and not only alter health, but also disease initiation, progression and severity. The study and application of gene-nutrient interactions is called nutritional genomics or nutrigenomics. Nutrigenomic concepts, research strategies and clinical implementation are similar to and overlap those of pharmacogenomics, and both are fundamental to the treatment of disease and maintenance of optimal health.
Collapse
Affiliation(s)
- Jim Kaput
- Department of Surgery, University of Illinois Chicago, 909 South Wolcott Street MC 958, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
43
|
Fuenzalida K, Quintanilla R, Ramos P, Piderit D, Fuentealba RA, Martinez G, Inestrosa NC, Bronfman M. Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J Biol Chem 2007; 282:37006-15. [PMID: 17965419 DOI: 10.1074/jbc.m700447200] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) has been proposed as a therapeutic target for neurodegenerative diseases because of its anti-inflammatory action in glial cells. However, PPARgamma agonists preventbeta-amyloid (Abeta)-induced neurodegeneration in hippocampal neurons, and PPARgamma is activated by the nerve growth factor (NGF) survival pathway, suggesting a neuroprotective anti-inflammatory independent action. Here we show that the PPARgamma agonist rosiglitazone (RGZ) protects hippocampal and dorsal root ganglion neurons against Abeta-induced mitochondrial damage and NGF deprivation-induced apoptosis, respectively, and promotes PC12 cell survival. In neurons and in PC12 cells RGZ protective effects are associated with increased expression of the Bcl-2 anti-apoptotic protein. NGF-differentiated PC12 neuronal cells constitutively overexpressing PPARgamma are resistant to Abeta-induced apoptosis and morphological changes and show functionally intact mitochondria and no increase in reactive oxygen species when challenged with up to 50 microM H2O2. Conversely, cells expressing a dominant negative mutant of PPARgamma show increased Abeta-induced apoptosis and disruption of neuronal-like morphology and are highly sensitive to oxidative stress-induced impairment of mitochondrial function. Cells overexpressing PPARgamma present a 4- to 5-fold increase in Bcl-2 protein content, whereas in dominant negative PPARgamma-expressing cells, Bcl-2 is barely detected. Bcl-2 knockdown by small interfering RNA in cells overexpressing PPARgamma results in increased sensitivity to Abeta and oxidative stress, further suggesting that Bcl-2 up-regulation mediates PPARgamma protective effects. PPARgamma prosurvival action is independent of the signal-regulated MAPK or the Akt prosurvival pathways. Altogether, these data suggest that PPARgamma supports survival in neurons in part through a mechanism involving increased expression of Bcl-2.
Collapse
Affiliation(s)
- Karen Fuenzalida
- Centro de Regulación Celular y Patologia Joaquín V. Luco and Millennium Institute for Fundamental and Applied Biology, Department of Cellular and Molecular Biology, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, Avogaro A. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 2007; 27:2627-33. [PMID: 17916771 DOI: 10.1161/atvbaha.107.155762] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Hyperglycemia is the main determinant of long-term diabetic complications, mainly through induction of oxidative stress. NAD(P)H oxidase is a major source of glucose-induced oxidative stress. In this study, we tested the hypothesis that rosiglitazone (RSG) is able to quench oxidative stress initiated by high glucose through prevention of NAD(P)H oxidase activation. METHODS AND RESULTS Intracellular ROS were measured using the fluoroprobe TEMPO-9-AC in HUVECs exposed to control (5 mmol/L) and moderately high (10 mmol/L) glucose concentrations. NAD(P)H oxidase and AMPK activities were determined by Western blot. We found that 10 mmol/L glucose increased significantly ROS production in comparison with 5 mmol/L glucose, and that this effect was completely abolished by RSG. Interestingly, inhibition of AMPK, but not PPARgamma, prevented this effect of RSG. AMPK phosphorylation by RSG was necessary for its ability to hamper NAD(P)H oxidase activation, which was indispensable for glucose-induced oxidative stress. Downstream of AMPK activation, RSG exerts antioxidative effects by inhibiting PKC. CONCLUSIONS This study demonstrates that RSG activates AMPK which, in turn, prevents hyperactivity of NAD(P)H oxidase induced by high glucose, possibly through PKC inhibition. Therefore, RSG protects endothelial cells against glucose-induced oxidative stress with an AMPK-dependent and a PPARgamma-independent mechanism.
Collapse
Affiliation(s)
- Giulio Ceolotto
- Department of Clinical and Experimental Medicine, University of Padova, Via Giustiniani 2 35128 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Voutsadakis IA. Peroxisome proliferator-activated receptor γ (PPARγ) and colorectal carcinogenesis. J Cancer Res Clin Oncol 2007; 133:917-28. [PMID: 17659359 DOI: 10.1007/s00432-007-0277-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2006] [Accepted: 06/28/2007] [Indexed: 01/09/2023]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) a member of the nuclear transcription factor superfamily is playing a role in colon carcinogenesis. Although not all in vivo models agree, PPARgamma seems to have suppressive effects in this process favoring apoptosis and inhibiting the cell cycle by inducing expression of apoptosis and senescence proteins. With the recent discovery that anti-diabetic class of drugs thiazolidinediones act through activation of PPARgamma, interest in this transcription factor has increased as it can now be pharmacologically activated in order to obtain tumor suppression. In addition, thiazolidinediones and other PPARgamma agonists possess PPARgamma-independent anti-tumor effects. Although PPARgamma agonists may not by themselves be capable to induce clinical tumor regression, their combination with chemotherapy drugs or other targeted therapies is worth pursuing in the treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, University Hospital of Larissa, Larissa 41110, Greece.
| |
Collapse
|
46
|
|
47
|
Zhang F, Sjöholm A, Zhang Q. Pioglitazone acutely influences glucose-sensitive insulin secretion in normal and diabetic human islets. Biochem Biophys Res Commun 2006; 351:750-5. [PMID: 17084385 DOI: 10.1016/j.bbrc.2006.10.103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 10/21/2006] [Indexed: 10/24/2022]
Abstract
We have studied acute effects of the PPARgamma agonist pioglitazone in vitro on human islets from both non-diabetic and type 2 diabetic subjects. In 5 mM glucose, pioglitazone caused a transient increase in insulin secretion in non-diabetic, but not diabetic, islets. Continuous presence of the drug suppressed insulin release in both non-diabetic and diabetic islets. In islets from non-diabetic subjects, both high glucose and tolbutamide-stimulated insulin secretion was inhibited by pioglitazone. When islets were continuously perifused with 5 mM glucose, short-term pretreatment with pioglitazone caused approximately 2-fold increase in insulin secretion after drug withdrawal. Pioglitazone pretreatment of diabetic islets restored their glucose sensitivity. Examination of cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in non-diabetic islets revealed slight Ca(2+) transient by pioglitazone at 3 mM glucose with no significant changes at high glucose. Our data suggest that short-term pretreatment with pioglitazone primes both healthy and diabetic human islets for enhanced glucose-sensitive insulin secretion.
Collapse
Affiliation(s)
- Fan Zhang
- Karolinska Institutet, Department of Internal Medicine, Stockholm South Hospital, SE-11883 Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Park SH, Lee SG, Kang SK, Chung SH. Acanthopanax senticosus reverses fatty liver disease and hyperglycemia in ob/ob mice. Arch Pharm Res 2006; 29:768-76. [PMID: 17024851 DOI: 10.1007/bf02974078] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is common in obesity. However, weight reduction alone does not prevent the progression of NAFLD to end-stage disease associated with the development of cirrhosis and liver disease. In a previous experiment, 50% ethanol extract of Acanthopanax senticosus stem bark (ASSB) was found to reduce body weight and insulin resistance in high fat diet-induced hyperglycemic and hyperlipidemic ICR mice. To evaluate the anti-steatosis action of ASSB, insulin-resistant ob/ob mice with fatty livers were treated with ASSB ethanol extract for an 8 week-period. ASSB ethanol extract reversed the hepatomegaly, as evident in reduction of % liver weight/body weight ratio. ASSB ethanol extract also specifically lowered circulating glucose and lipids, and enhanced insulin action in the liver. These changes culminated in inhibition of triglyceride synthesis in non-adipose tissues including liver and skeletal muscle. Gene expression studies confirmed reductions in glucose 6-phosphatase and lipogenic enzymes in the liver. These results demonstrate that ASSB ethanol extract is an effective treatment for insulin resistance and hepatic steatosis in ob/ob mice by decreasing hepatic lipid synthesis.
Collapse
Affiliation(s)
- Sang Hyun Park
- College of Pharmacy, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | |
Collapse
|
49
|
Ito Y, Oumi S, Nagasawa T, Nishizawa N. Oxidative stress induces phosphoenolpyruvate carboxykinase expression in H4IIE cells. Biosci Biotechnol Biochem 2006; 70:2191-8. [PMID: 16960379 DOI: 10.1271/bbb.60135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress is closely associated with diabetes and is a major cause of insulin resistance. Impairment of hepatic insulin action is thought to be responsible for perturbations in hepatic glucose metabolism. In this study, we found that oxidative stress is involved in the dysregulation of gene expression of phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, by a mechanism independent of insulin. Elevation of oxidative stress by injection of ferric nitrilotriacetate in rats increased the expression of hepatic PEPCK mRNA. To examine the direct action of oxidative stress on PEPCK expression, we treated H4IIE hepatoma cells with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. BSO increased intracellular oxidative stress and the expression of PEPCK mRNA. Inhibition of p38 mitogen-activated protein kinase (p38 MAP kinase), which mediates responses to oxidative stress, suppressed the induction of PEPCK mRNA by BSO. These results suggest that oxidative stress dysregulates hepatic PEPCK expression by an insulin-independent mechanism.
Collapse
Affiliation(s)
- Yoshiaki Ito
- Food and Health Science, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | | | | | | |
Collapse
|
50
|
Goya K, Sumitani S, Otsuki M, Xu X, Yamamoto H, Kurebayashi S, Saito H, Kouhara H, Kasayama S. The thiazolidinedione drug troglitazone up-regulates nitric oxide synthase expression in vascular endothelial cells. J Diabetes Complications 2006; 20:336-42. [PMID: 16949522 DOI: 10.1016/j.jdiacomp.2005.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/27/2005] [Accepted: 08/01/2005] [Indexed: 11/30/2022]
Abstract
Endothelial dysfunction is a phenomenon often observed in diabetic patients, which is a cause for vascular complications of diabetes mellitus. Endothelium-derived nitric oxide (NO) is responsible for vasodilatation, and NO-dependent vasodilatation is diminished in diabetic patients. In the present study, we evaluated the effects of thiazolidinediones (TZDs), antidiabetic drugs known to improve insulin resistance and to have vasodilating properties, on endothelial NO synthase (eNOS) expression in cultured vascular endothelial cells. Human umbilical vein endothelial cells were treated with the TZDs troglitazone and pioglitazone, or the peroxisome proliferator-activated receptor (PPAR) gamma activator 15-deoxy-Delta(12,14)-prostaglandin J(2) (15-dPGJ2). The expression of eNOS protein and its mRNA was determined by Western and Northern blot analyses, respectively. The effect of alpha-tocopherol that possesses structural similarity to troglitazone was also examined. Troglitazone up-regulated eNOS protein and its mRNA levels, whereas pioglitazone and 15-dPGJ2 failed to increase their levels. By contrast, alpha-tocopherol also increased in eNOS protein and mRNA. These results suggest that troglitazone up-regulates eNOS expression probably through its 6-hydroxychromanes structure but not activating PPARgamma.
Collapse
Affiliation(s)
- Kayoko Goya
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|