1
|
Wang H, He L, Liu Z, Xu X, Zhang H, Mao P, Li M. Calycosin protects against chronic prostatitis in rats via inhibition of the p38MAPK/NF-κB pathway. Open Med (Wars) 2023; 18:20230770. [PMID: 37663231 PMCID: PMC10473462 DOI: 10.1515/med-2023-0770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Currently, the effect and molecular mechanism of calycosin, the main active ingredient of Qinshi Simiao San, which can alleviate chronic prostatitis (CP), on CP remain unclear. This study aimed to elucidate the potential mechanism of action of calycosin in CP in a rat CP model. The prostate tissue morphology was evaluated based on hematoxylin-eosin staining. Enzyme-linked immunosorbent assay was conducted to evaluate inflammatory cytokine and immune factor levels (secretory immunoglobulin A [SIgA]; immunoglobulin G [IgG]) in prostate tissues and serum. Additionally, representative biomarkers of oxidative stress, including malondialdehyde, superoxide dismutase, and catalase were detected using detection kits, and reactive oxygen species release was evaluated using immunofluorescence staining. Furthermore, the p38 mitogen-activated protein kinase (p38MAPK)/NF-kappaB (NF-κB) signaling pathway was analyzed by western blotting. The results showed that calycosin substantially ameliorated the pathological damage to prostate tissues of the CP rats. Moreover, calycosin significantly downregulated interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha, IgG, and SIgA levels. Furthermore, we found that calycosin considerably suppressed oxidative stress and inhibited the activation of the p38MAPK/NF-κB signaling pathway in rats with CP. In summary, our findings revealed that calycosin protects against CP in rats by inhibiting the p38MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Heng Wang
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Lei He
- Department of Acupuncture, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Zhaofei Liu
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Xiangjun Xu
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Haitao Zhang
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Pengfei Mao
- Department of Urology, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Lianyungang222000, China
| | - Ming Li
- Department of Pharmacy, Lianyungang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.160 Chaoyang Middle Road, Haizhou District, Lianyungang 222000, China
| |
Collapse
|
2
|
Chen G, Shi H, Ding H, Zhang X, Gu T, Zhu M, Tan W. Multi-scale analysis of nickel ion tolerance mechanism for thermophilic Sulfobacillus thermosulfidooxidans in bioleaching. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130245. [PMID: 36332278 DOI: 10.1016/j.jhazmat.2022.130245] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Bioleaching is intensively investigated for recovering valuable metals such as Li, Co, Ni and Cu. Nickel ion stress threatens the health of microorganisms when Ni2+ starts to accumulate in the leachate during the bioleaching of materials that are rich in Ni, such as spent lithium-ion batteries. The possible mechanisms underlying the response of S. thermosulfidooxidans to nickel ion stress were analyzed using a multi-scale approach. Under the condition of nickel ion stress, high concentrations of nickel ions were immobilized by extracellular polymeric substances, while concentrations of nickel ions inside the cells remained low. The intracellular adenosine triphosphate (ATP) concentration and H+-ATPase activity increased to maintain normal cell growth and metabolic activities. Scavenging abilities of S. thermosulfidooxidans for hydrogen peroxide and superoxide anion were enhanced to reduce oxidative damage induced by nickel ion stress. There were 734 differentially expressed genes identified by RNA-seq under nickel ion stress. Most of them were involved in oxidative phosphorylation, glutathione metabolism and genetic information processing, responsible for intracellular energy utilization, intracellular antioxidant capacity and DNA damage repair, respectively. The results of this study are of major significance for in-depth understanding of the mechanisms of acidophilic microorganisms' resistance to metal ions.
Collapse
Affiliation(s)
- Guanglin Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongjie Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huili Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Institute for Sustainable Energy and the Environment, Ohio University, Athens, OH, United States
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Selenium Deficiency-Induced Oxidative Stress Causes Myocardial Injury in Calves by Activating Inflammation, Apoptosis, and Necroptosis. Antioxidants (Basel) 2023; 12:antiox12020229. [PMID: 36829789 PMCID: PMC9951920 DOI: 10.3390/antiox12020229] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Selenium (Se) is essential for human and animal health, but there have been few studies on the mechanisms of injury in dairy cows with Se deficiency. This study aimed to evaluate the effects of Se deficiency on myocardial injury in weaned calves. The Se-D group had significantly lower myocardial Se concentrations than the Se-C group. Histological analysis indicated that Se deficiency induced a large area of necrosis in the myocardium, accompanied by inflammatory changes. Se deficiency significantly decreased the expression of 10 of the 21 selenoprotein genes and increased the expression of SEPHS2. Furthermore, we found that oxidative stress occurred in the Se-D group by detection of redox-related indicators. Additionally, TUNEL staining showed that Se deficiency causes severe apoptosis in the myocardium, which was characterized by activating the exogenous apoptotic pathway and the mitochondrial apoptotic pathway. Se deficiency also induced necroptosis in the myocardium by upregulating MLKL, RIPK1, and RIPK3. Moreover, Se-deficient calves have severe inflammation in the myocardium. Se deficiency significantly reduced anti-inflammatory factor levels while increasing pro-inflammatory factor levels. We also found that the NF-κB pathway and MAPK pathway were activated in Se-deficient conditions. Our findings suggest that Se deficiency causes myocardial injury in weaned calves by regulating oxidative stress, inflammation, apoptosis, and necroptosis.
Collapse
|
4
|
Huang H, Wang M, Guo Z, Wu D, Wang H, Jia Y, Liu H, Ding J, Peng J. Rutaecarpine alleviates acute pancreatitis in mice and AR42J cells by suppressing the MAPK and NF-κB signaling pathways via calcitonin gene-related peptide. Phytother Res 2021; 35:6472-6485. [PMID: 34661951 DOI: 10.1002/ptr.7301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/02/2021] [Accepted: 09/11/2021] [Indexed: 11/09/2022]
Abstract
Acute pancreatitis (AP) is an acute inflammatory condition of the pancreas. Previous studies have shown that rutaecarpine (RUT), an important alkaloid component of Evodia rutaecarpa, exhibits certain protective effects against AP in rats by upregulating calcitonin gene-related peptide (CGRP). However, the molecular mechanism of RUT in AP remains unknown. This study aimed to investigate the effects of RUT on cerulein-induced AP in vivo and in vitro, and to explore the underlying molecular mechanisms. In cerulein/LPS-treated wild-type mice, but not CGRP gene knock-out mice, RUT significantly ameliorated pancreatic inflammation by alleviating histopathological changes, reducing IL-6 and TNF-α levels, and increasing in IL-10 levels. Moreover, RUT improved AP by suppressing the MAPK and NF-κB signaling pathways. These effects were mostly mediated through CGRP. Cell-based studies revealed that RUT significantly improved cell viability while suppressing the apoptosis of AR42J cells with cerulein-induced AP, downregulating IL-6 and TNF-α, stimulating IL-10 release, and inhibiting MAPK, NF-κB, and STAT3 signaling activation, all in a CGRP-dependent manner. RUT ameliorated cerulein/LPS-induced AP inflammatory responses in mice and AR42J cells in a CGRP-dependent manner and thus may represent a potential therapeutic option for AP patients. Our study provides valuable insights for AP drug development.
Collapse
Affiliation(s)
- Haosu Huang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Meng Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Zimeng Guo
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Hanyue Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Jia
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Honghui Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Junjie Ding
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Hasegawa T, Mizugaki A, Inoue Y, Kato H, Murakami H. Cystine reduces tight junction permeability and intestinal inflammation induced by oxidative stress in Caco-2 cells. Amino Acids 2021; 53:1021-1032. [PMID: 33991253 PMCID: PMC8241805 DOI: 10.1007/s00726-021-03001-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Intestinal oxidative stress produces pro-inflammatory cytokines, which increase tight junction (TJ) permeability, leading to intestinal and systemic inflammation. Cystine (Cys2) is a substrate of glutathione (GSH) and inhibits inflammation, however, it is unclear whether Cys2 locally improves intestinal barrier dysfunction. Thus, we investigated the local effects of Cys2 on oxidative stress-induced TJ permeability and intestinal inflammatory responses. Caco-2 cells were cultured in a Cys2-supplemented medium for 24 h and then treated with H2O2 for 2 h. We assessed TJ permeability by measuring transepithelial electrical resistance and the paracellular flux of fluorescein isothiocyanate–dextran 4 kDa. We measured the concentration of Cys2 and GSH after Cys2 pretreatment. The mRNA expression of pro-inflammatory cytokines was assessed. In addition, the levels of TJ proteins were assessed by measuring the expression of TJ proteins in the whole cells and the ratio of TJ proteins in the detergent-insoluble fractions to soluble fractions (IS/S ratio). Cys2 treatment reduced H2O2-induced TJ permeability. Cys2 did not change the expression of TJ proteins in the whole cells, however, suppressed the IS/S ratio of claudin-4. Intercellular levels of Cys2 and GSH significantly increased in cells treated with Cys2. Cys2 treatment suppressed the mRNA expression of pro-inflammatory cytokines, and the mRNA levels were significantly correlated with TJ permeability. In conclusion, Cys2 treatment locally reduced oxidative stress-induced intestinal barrier dysfunction possively due to the mitigation of claudin-4 dislocalization. Furthermore, the effect of Cys2 on the improvement of intestinal barrier function is related to the local suppression of oxidative stress-induced pro-inflammatory responses.
Collapse
Affiliation(s)
- Tatsuya Hasegawa
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Ami Mizugaki
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Yoshiko Inoue
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| | - Hiroyuki Kato
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan.
| | - Hitoshi Murakami
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc, Kanagawa, 210-8681, Japan
| |
Collapse
|
6
|
Ghezzi P. Redox regulation of immunity and the role of small molecular weight thiols. Redox Biol 2021; 44:102001. [PMID: 33994345 PMCID: PMC8212150 DOI: 10.1016/j.redox.2021.102001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/31/2021] [Accepted: 05/02/2021] [Indexed: 01/07/2023] Open
Abstract
It is thought that excessive production of reactive oxygen species (ROS) can be a causal component in many diseases, some of which have an inflammatory component. This led to an oversimplification whereby ROS are seen as inflammatory and antioxidants anti-inflammatory. This paper aims at reviewing some of the literature on thiols in host defense. The review will first summarize the mechanisms by which we survive infections by pathogens. Then we will consider how the redox field evolved from the concept of oxidative stress to that of redox regulation and how it intersects the field of innate immunity. A third section will analyze how an oversimplified oxidative stress theory of disease led to a hypothesis on the role of ROS and glutathione (GSH) in immunity, respectively as pro- and anti-inflammatory mediators. Finally, we will discuss some recent research and how to think out of the box of that oversimplification and link the role of thiols in redox regulation to the mechanisms by which we survive an infection outlined in the first section.
Collapse
Affiliation(s)
- Pietro Ghezzi
- Brighton and Sussex Medical School, Brighton, Great Britain, BN1 9RY, UK.
| |
Collapse
|
7
|
El Morsy EM, Ahmed MA. Carvedilol attenuates l-arginine induced acute pancreatitis in rats through modulation of oxidative stress and inflammatory mediators. Chem Biol Interact 2020; 327:109181. [DOI: 10.1016/j.cbi.2020.109181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 05/29/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
|
8
|
Ma J, Chen X, Xin G, Li X. Chronic exposure to the ionic liquid [C 8mim]Br induces inflammation in silver carp spleen: Involvement of oxidative stress-mediated p38MAPK/NF-κB signalling and microRNAs. FISH & SHELLFISH IMMUNOLOGY 2019; 84:627-638. [PMID: 30343007 DOI: 10.1016/j.fsi.2018.09.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
The present study aimed to determine the chronic toxicity of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) on the silver carp to further reveal the toxicological mechanisms of ionic liquids. Chronic exposure of silver carp to [C8mim]Br at concentrations of 1.095 and 4.380 mg/L for 60 d was conducted under laboratory conditions. The results revealed that chronic exposure to [C8mim]Br inhibited the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and reduced glutathione (GSH) levels while markedly increasing malondialdehyde (MDA) and protein carbonyl (PC) levels in fish spleen, indicating that [C8mim]Br treatment induced oxidative stress. Additionally, long-term exposure to [C8mim]Br markedly upregulated the expressions of nuclear factor-κB (NF-κB), inducible nitric oxide synthase (iNOS), interleukin-1β (IL-1β), IL-6, tumour necrosis factor-α (TNF-α), and interferon-γ (IFN-γ); altered the levels of transforming growth factor-β (TGF-β); and increased the mRNA levels of p38MAPK, c-fos, c-jun, and c-myc, suggesting that long-term exposure to [C8mim]Br might promote the inflammatory response in fish spleen and that p38MAPK/NF-κB signalling may potentially be involved in this process. Moreover, [C8mim]Br-exposure altered lysozyme activity and complement 3 (C3) and immunoglobulin M (IgM) content, indicating that chronic [C8mim]Br exposure also has immunotoxic effects on silver carp. Furthermore, we also found that [C8mim]Br exposure reduced miR-125b levels, altered miR-143 levels, and upregulated miR-155 and miR-21 levels, suggesting that these miRNAs may be involved in the [C8mim]Br-induced inflammatory response in fish spleen. In summary, the present study indicates that chronic exposure to [C8mim]Br induces inflammation in fish spleen and that oxidative stress-mediated p38MAPK/NF-κB signalling and miRNAs may play a key role in this process.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xi Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Guangyuan Xin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
9
|
Calycosin alleviates cerulein-induced acute pancreatitis by inhibiting the inflammatory response and oxidative stress via the p38 MAPK and NF-κB signal pathways in mice. Biomed Pharmacother 2018; 105:599-605. [PMID: 29890468 DOI: 10.1016/j.biopha.2018.05.080] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/30/2023] Open
Abstract
Acute pancreatitis (AP) is a common acute abdominal disease accompanied by systemic inflammatory response syndrome, and could even be complicated by multiple-organ damage. This study aimed to examine whether calycosin, an isoflavone isolated from Radix astragali with antioxidant and anti-inflammatory activity, could protect against AP induced by cerulein. To this end, Balb/C mice were injected with cerulein (50 μg/kg) to establish the animal model of AP. Calycosin (25 and 50 mg/kg, p.o.) was administered 1 h prior to the first cerulein injection. After the last injection of cerulein, the mice were sacrificed and blood was obtained for cytokine analysis. The pancreas was removed for morphological examination, myeloperoxidase (MPO) and malondialdehyde (MDA) analyses, immunohistochemistry, and western blot analysis. Calycosin treatment reversed the increased serum levels of amylase and lipase, alleviated the pathological damage in the pancreas, and decreased the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in mice with AP. Additionally, calycosin significantly reduced cerulein-induced pancreatic edema, inhibited MPO activity and increased superoxide dismutase (SOD) activity, and inhibited the expression of NF-κB/p65 and phosphorylation of the inhibitor of NF-κB (IκBα) and p38 MAPK. These results suggested that calycosin protects against AP by exerting anti-inflammatory and anti-oxidative stress effects via the p38 MAPK and NF-κB signal pathways. Calycosin's benefits for AP patients need to be explored further.
Collapse
|
10
|
McElroy PB, Sri Hari A, Day BJ, Patel M. Post-translational Activation of Glutamate Cysteine Ligase with Dimercaprol: A NOVEL MECHANISM OF INHIBITING NEUROINFLAMMATION IN VITRO. J Biol Chem 2017; 292:5532-5545. [PMID: 28202547 DOI: 10.1074/jbc.m116.723700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 01/25/2017] [Indexed: 11/06/2022] Open
Abstract
Neuroinflammation and oxidative stress are hallmarks of various neurological diseases. However, whether and how the redox processes control neuroinflammation is incompletely understood. We hypothesized that increasing cellular glutathione (GSH) levels would inhibit neuroinflammation. A series of thiol compounds were identified to elevate cellular GSH levels by a novel approach (i.e. post-translational activation of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH biosynthesis). These small thiol-containing compounds were examined for their ability to increase intracellular GSH levels in a murine microglial cell line (BV2), of which dimercaprol (2,3-dimercapto-1-propanol (DMP)) was found to be the most effective compound. DMP increased GCL activity and decreased LPS-induced production of pro-inflammatory cytokines and inducible nitric-oxide synthase induction in BV2 cells in a concentration-dependent manner. The ability of DMP to elevate GSH levels and attenuate LPS-induced pro-inflammatory cytokine production was inhibited by buthionine sulfoximine, an inhibitor of GCL. DMP increased the expression of GCL holoenzyme without altering the expression of its subunits or Nrf2 target proteins (NQO1 and HO-1), suggesting a post-translational mechanism. DMP attenuated LPS-induced MAPK activation in BV2 cells, suggesting the MAPK pathway as the signaling mechanism underlying the effect of DMP. Finally, the ability of DMP to increase GSH via GCL activation was observed in mixed cerebrocortical cultures and N27 dopaminergic cells. Together, the data demonstrate a novel mechanism of GSH elevation by post-translational activation of GCL. Post-translational activation of GCL offers a novel targeted approach to control inflammation in chronic neuronal disorders associated with impaired adaptive responses.
Collapse
Affiliation(s)
- Pallavi B McElroy
- From the Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Ashwini Sri Hari
- From the Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Brian J Day
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Manisha Patel
- From the Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 and
| |
Collapse
|
11
|
Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem 2015; 116:696-703. [PMID: 25546605 DOI: 10.1002/jcb.25074] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 01/04/2023]
Abstract
Hypoxia-Inducible Factor-1 (HIF-1) has been largely studied for its role in cell survival in hypoxic conditions. The regulation of HIF-1 is a complex process and involves a number of molecules and pathways. Among these mechanisms a direct regulatory role of reactive oxygen species (ROS) on HIF-1 alpha subunit has received a great deal of attention and the existing body of literature includes many contradictory findings. Other intermediates such as nitric oxide (NO), specific microRNAs (miR), and transcriptional and post-translational modification have also been implicated as players in ROS mediated HIF-1a regulation. The focus of this review is to present the past conflicting evidence along with more recent findings in order to relate various aspects of this complex process. Aside from the direct role of ROS on HIF-1a regulation under hypoxia and normoxia, we analyzed the effect of different sources and concentrations of NO and the interplay between superoxide (SO) and NO in this process. We also present findings on transcriptional and translational regulation of HIF-1a via ROS and the interplay with microRNAs in this process. This review further provides insight on ERK and PI3K/AKT signaling as a common mechanism relating several pathways of ROS mediated HIF-1a regulation. Ultimately further research and discovery regarding HIF-1 regulation by oxidative stress is warranted for better understanding of disease development and potential therapeutics for pathologies such as cancer, inflammatory diseases, and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shahrzad Movafagh
- Department of Pharmacogenomics, Bernard J. Dunn School of Pharmacy, Shenandoah University, Ashburn, Virginia
| | | | | |
Collapse
|
12
|
Hsiao CP, Reddy SY, Chen MK, Saligan LN. Genomic Profile of Fatigued Men Receiving Localized Radiation Therapy. Biol Res Nurs 2015; 18:281-9. [PMID: 26620220 DOI: 10.1177/1099800415618786] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE The purpose of this study was to explore gene expression changes in fatigued men with nonmetastatic prostate cancer receiving localized external beam radiation therapy (EBRT). METHODS Fatigue was measured in 40 men with prostate cancer (20 receiving EBRT and 20 controls on active surveillance) using the Functional Assessment of Cancer Therapy-Fatigue (FACT-F). EBRT subjects were followed from baseline to midpoint and end point of EBRT, while controls were seen at one time point. EBRT subjects were categorized into high- and low-fatigue groups based on change in FACT-F scores from baseline to EBRT completion. Full genome microarray was performed from peripheral leukocyte RNA to determine gene expression changes related to fatigue phenotypes. Real-time polymerase chain reaction and enzyme-linked immunosorbent assay confirmed the most differentially expressed gene in the microarray experiment. RESULTS At baseline, mean FACT-F scores were not different between EBRT subjects (44.3 ± 7.16) and controls (46.7 ± 4.32, p = .24). Fatigue scores of EBRT subjects decreased at treatment midpoint (38.6 ± 9.17, p = .01) and completion (37.6 ± 9.9, p = .06), indicating worsening fatigue. Differential expression of 42 genes was observed between fatigue groups when EBRT time points were controlled. Membrane-spanning four domains, subfamily A, member (MS4A1) was the most differentially expressed gene and was associated with fatigue at treatment end point (r = -.46, p = .04). CONCLUSION Fatigue intensification was associated with MS4A1 downregulation, suggesting that fatigue during EBRT may be related to impairment in B-cell immune response. The 42 differentially expressed fatigue-related genes are associated with glutathione biosynthesis, γ-glutamyl cycle, and antigen presentation pathways.
Collapse
Affiliation(s)
- Chao-Pin Hsiao
- National Institute of Nursing Research, Division of Intramural Research, National Institutes of Health, Bethesda, MD, USA The Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Swarnalatha Y Reddy
- National Institute of Nursing Research, Division of Intramural Research, National Institutes of Health, Bethesda, MD, USA
| | - Mei-Kuang Chen
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Leorey N Saligan
- National Institute of Nursing Research, Division of Intramural Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Sgarbanti R, Amatore D, Celestino I, Marcocci ME, Fraternale A, Ciriolo MR, Magnani M, Saladino R, Garaci E, Palamara AT, Nencioni L. Intracellular redox state as target for anti-influenza therapy: are antioxidants always effective? Curr Top Med Chem 2015; 14:2529-41. [PMID: 25478883 PMCID: PMC4435240 DOI: 10.2174/1568026614666141203125211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/29/2014] [Accepted: 11/02/2014] [Indexed: 12/12/2022]
Abstract
Influenza virus infections represent a big issue for public health since effective treatments are still lacking. In particular, the emergence of strains resistant to drugs limits the effectiveness of anti-influenza agents. For this reason, many efforts have been dedicated to the identification of new therapeutic strategies aimed at targeting the virus-host cell interactions. Oxidative stress is a characteristic of some viral infections including influenza. Because antioxidants defend cells from damage caused by reactive oxygen species induced by different stimuli including pathogens, they represent interesting molecules to fight infectious diseases. However, most of the available studies have found that these would-be panaceas could actually exacerbate the diseases they claim to prevent, and have thus revealed "the dark side" of these molecules. This review article discusses the latest opportunities and drawbacks of the antioxidants used in anti-influenza therapy and new perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
14
|
The Glutathione System: A New Drug Target in Neuroimmune Disorders. Mol Neurobiol 2014; 50:1059-84. [DOI: 10.1007/s12035-014-8705-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/31/2014] [Indexed: 01/17/2023]
|
15
|
Hettler A, Werner S, Eick S, Laufer S, Weise F. A new in vitro model to study cellular responses after thermomechanical damage in monolayer cultures. PLoS One 2013; 8:e82635. [PMID: 24349324 PMCID: PMC3857248 DOI: 10.1371/journal.pone.0082635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 01/09/2023] Open
Abstract
Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery), only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC). The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the ‘wound’ within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself to study the response of other cells, thus broadening the range of thermal injuries that can be analysed.
Collapse
Affiliation(s)
- Alice Hettler
- Department Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Simon Werner
- Department Bio-Microelectromechanical Systems / Sensors, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | | | - Stefan Laufer
- Department Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Frank Weise
- Department Molecular Biology, Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- * E-mail:
| |
Collapse
|
16
|
Viñuales C, Gascón S, Barranquero C, Osada J, Rodríguez-Yoldi MJ. Interleukin-1beta reduces galactose transport in intestinal epithelial cells in a NF-kB and protein kinase C-dependent manner. Vet Immunol Immunopathol 2013; 155:171-81. [DOI: 10.1016/j.vetimm.2013.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 02/08/2023]
|
17
|
Miyachi T, Tsuchiya T, Oyama A, Tsuchiya T, Abe N, Sato A, Chiba Y, Kurihara S, Shibakusa T, Mikami T. Perioperative Oral Administration of Cystine and Theanine Enhances Recovery After Distal Gastrectomy. JPEN J Parenter Enteral Nutr 2012; 37:384-91. [DOI: 10.1177/0148607112458798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tomohiro Miyachi
- Department of Surgery, Sendai City Medical Center, Sendai, Japan
| | - Takashi Tsuchiya
- Department of Surgery, Sendai City Medical Center, Sendai, Japan
| | - Atsushi Oyama
- Department of Surgery, Sendai City Medical Center, Sendai, Japan
| | | | - Naomi Abe
- Department of Nutritional Management, Sendai City Medical Center, Sendai, Japan
| | - Atsuko Sato
- Department of Nutritional Management, Sendai City Medical Center, Sendai, Japan
| | - Yasumasa Chiba
- Research Institute for Health Fundamentals, Ajinomoto Co, Inc, Kanagawa, Japan
| | - Shigekazu Kurihara
- Research Institute for Health Fundamentals, Ajinomoto Co, Inc, Kanagawa, Japan
| | - Tetsuro Shibakusa
- Research Institute for Health Fundamentals, Ajinomoto Co, Inc, Kanagawa, Japan
| | - Takashi Mikami
- Research Institute for Health Fundamentals, Ajinomoto Co, Inc, Kanagawa, Japan
| |
Collapse
|
18
|
Nantz MP, Rowe CA, Muller CE, Creasy RA, Stanilka JM, Percival SS. Supplementation with aged garlic extract improves both NK and γδ-T cell function and reduces the severity of cold and flu symptoms: A randomized, double-blind, placebo-controlled nutrition intervention. Clin Nutr 2012; 31:337-44. [DOI: 10.1016/j.clnu.2011.11.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/30/2011] [Accepted: 11/24/2011] [Indexed: 12/14/2022]
|
19
|
Shibakusa T, Mikami T, Kurihara S, Chiba Y, Tsuchiya T, Miyachi T, Oyama A, Tanaka KAK, Koyama N. Enhancement of postoperative recovery by preoperative oral co-administration of the amino acids, cystine and theanine, in a mouse surgical model. Clin Nutr 2012; 31:555-61. [PMID: 22348870 DOI: 10.1016/j.clnu.2012.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/16/2011] [Accepted: 02/01/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Glutathione (GSH) is important in the control of immune responses, and its levels decline following trauma. We previously reported that the oral administration of cystine/theanine (CT) increased GSH synthesis and that CT intake inhibited intense exercise-induced inflammation. Based on these results, we hypothesised that CT inhibits surgically induced inflammation and promotes postoperative recovery. Our aim was to confirm this hypothesis using a mouse surgical model. METHODS CT or a vehicle (V) was administered orally to mice once a day for 5 days, until the day of surgery. On the day of surgery, a sham operation or an intestinal manipulation was performed 2 h after the oral administration of CT or V. Levels of IL-6 in the blood and GSH in the intestine were analysed 2 h after surgery. Behavioural analysis was also undertaken after surgery. RESULTS Treatment with CT inhibited the manipulation-induced increase in IL-6 in the blood and decrease in GSH in the intestine. There was a significant negative correlation between IL-6 in the blood and GSH in the intestine. In addition, behavioural analysis revealed that CT administration improved locomotor activity and food intake after surgery. CONCLUSION These results suggest that CT suppresses inflammatory responses by inhibiting the surgically induced decrease in GSH in the small intestine and promotes postoperative recovery.
Collapse
Affiliation(s)
- Tetsuro Shibakusa
- Institute for Innovation, Ajinomoto Co, Inc, 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-8681, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Inturi S, Tewari-Singh N, Gu M, Shrotriya S, Gomez J, Agarwal C, White CW, Agarwal R. Mechanisms of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced DNA damage in skin epidermal cells and fibroblasts. Free Radic Biol Med 2011; 51:2272-80. [PMID: 21920433 PMCID: PMC3662483 DOI: 10.1016/j.freeradbiomed.2011.08.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/18/2011] [Accepted: 08/19/2011] [Indexed: 12/21/2022]
Abstract
Employing mouse skin epidermal JB6 cells and dermal fibroblasts, here we examined the mechanisms of DNA damage by 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of sulfur mustard (SM). CEES exposure caused H2A.X and p53 phosphorylation as well as p53 accumulation in both cell types, starting at 1h, that was sustained for 24h, indicating a DNA-damaging effect of CEES, which was also confirmed and quantified by alkaline comet assay. CEES exposure also induced oxidative stress and oxidative DNA damage in both cell types, measured by an increase in mitochondrial and cellular reactive oxygen species and 8-hydroxydeoxyguanosine levels, respectively. In the studies distinguishing between oxidative and direct DNA damage, 1h pretreatment with glutathione (GSH) or the antioxidant Trolox showed a decrease in CEES-induced oxidative stress and oxidative DNA damage. However, only GSH pretreatment decreased CEES-induced total DNA damage measured by comet assay, H2A.X and p53 phosphorylation, and total p53 levels. This was possibly due to the formation of GSH-CEES conjugates detected by LC-MS analysis. Together, our results show that CEES causes both direct and oxidative DNA damage, suggesting that to rescue SM-caused skin injuries, pleiotropic agents (or cocktails) are needed that could target multiple pathways of mustard skin toxicities.
Collapse
Affiliation(s)
- Swetha Inturi
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Mallikarjuna Gu
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Sangeeta Shrotriya
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
| | - Carl W. White
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Denver Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045, USA
- Corresponding author. Fax: +1 303 724 7266. (R. Agarwal)
| |
Collapse
|
21
|
Gould NS, Min E, Day BJ. Macropinocytosis of extracellular glutathione ameliorates tumor necrosis factor α release in activated macrophages. PLoS One 2011; 6:e25704. [PMID: 21991336 PMCID: PMC3185039 DOI: 10.1371/journal.pone.0025704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/08/2011] [Indexed: 02/07/2023] Open
Abstract
A number of inflammatory lung diseases have abnormally low glutathione (GSH) levels in the airway fluids. Lung macrophages are common mediators of inflammation, make up the majority of cells that are found in the airway epithelial lining fluid (ELF), and are commonly elevated in many lung diseases. Several animal models with altered ELF GSH levels are associated with similar alterations in the intracellular GSH levels of bronchoalveolar lavage (BAL) cells. The possible mechanisms and outcomes for this association between ELF GSH levels and intracellular BAL cell GSH are unknown. To investigate these issues, macrophages were grown in media supplemented with 500 µM GSH. GSH supplementation resulted in a 2–3 fold increase in macrophage intracellular GSH levels. The increase in macrophage intracellular GSH levels was associated with a significant reduction in NF-κB nuclear translocation and tumor necrosis factor α (TNFα) release upon LPS stimulation. Furthermore, co-treatment of macrophages with GSH and inhibitors of GSH breakdown or synthesis did not block GSH accumulation. In contrast, treatment with cytochalasin D, an inhibitor of actin dependent endocytosis, and amiloride, an inhibitor of macropinocytosis blocked, at least in part, GSH uptake. Furthermore, using two cigarette smoke exposure paradigms that result in two different GSH levels in the ELF and thus in the BAL cells resulted in modulation of cytokine release when stimulated with LPS ex vivo. These data suggest that macrophages are able to utilize extracellular GSH which can then modulate inflammatory signaling in response to proinflammatory stimuli. This data also suggests the lung can modulate inflammatory responses triggered by proinflammatory stimuli by altering ELF GSH levels and may help explain the dysregulated inflammation associated with lung diseases that have low ELF GSH levels.
Collapse
Affiliation(s)
- Neal S. Gould
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Elysia Min
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
| | - Brian J. Day
- Department of Medicine, National Jewish Health, Denver, Colorado, United States of America
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, United States of America
- Department of Immunology, University of Colorado Denver, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
22
|
Catarzi S, Favilli F, Romagnoli C, Marcucci T, Picariello L, Tonelli F, Vincenzini MT, Iantomasi T. Oxidative state and IL-6 production in intestinal myofibroblasts of Crohn's disease patients. Inflamm Bowel Dis 2011; 17:1674-84. [PMID: 21744422 DOI: 10.1002/ibd.21552] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal subepithelial myofibroblasts (ISEMFs) produce inflammatory cytokines in response to certain stimuli. In the intestine of patients with Crohn's disease (CD), cytokine synthesis is modified and an increased number of myofibroblasts has been observed. The intracellular redox state influences cytokine production and oxidative stress is present in the intestinal mucosa of CD patients. METHODS This study was performed in ISEMFs isolated from the colon of patients with active CD and in a myofibroblast cell line derived from human colonic mucosa: 18Co cells. Cellular glutathione (GSH) levels were modulated by treatment with buthionine sulfoximine, an inhibitor of GSH synthesis, or N-acetylcysteine, a GSH precursor. GSH and oxidized glutathione (GSSG) levels were measured by high-performance liquid chromatography (HPLC) methods. Interleukin (IL)-6 production was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS ISEMFs of CD patients exhibited an increased oxidative state due to a decrease in the GSH/GSSG ratio, which is related to an increase in basal IL-6 production or is stimulated by tumor necrosis factor alpha (TNFα) or bacterial products. This relationship was also confirmed in 18Co cells. Phosphorylation and activation of ERK1/2 and p38 MAPK, which are signaling factors involved in the IL-6 synthesis, were also increased when there is oxidative stress in ISEMFs. CONCLUSIONS This study shows for the first time in ISEMFs of CD patients an increased production of IL-6 synthesis related to the decrease in the GSH/GSSH ratio, suggesting redox regulation with the involvement of specific kinase activation. The present data shed light on the pathogenesis of inflammatory chronic processes and relapses that occur in this pathology.
Collapse
Affiliation(s)
- Serena Catarzi
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Firenze, Italia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Khan NM, Poduval TB. Immunomodulatory and immunotoxic effects of bilirubin: molecular mechanisms. J Leukoc Biol 2011; 90:997-1015. [PMID: 21807743 DOI: 10.1189/jlb.0211070] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The immunomodulatory and immunotoxic effects of purified UCB have not been evaluated previously at clinically relevant UCB concentrations and UCB:BSA ratios. To delineate the molecular mechanism of UCB-induced immunomodulation, immune cells were exposed to clinically relevant concentrations of UCB. It inhibited LPS-induced B cell proliferation and cytokine production from splenic macrophages. UCB (≥25 μM) was toxic to unfractionated splenocytes, splenic T cells, B cells, macrophages, LPS-stimulated CD19(+) B cells, human PBMCs, and RBCs. Purified UCB also was found to be toxic to splenocytes and human PBMCs. UCB induced necrosis and apoptosis in splenocytes. UCB activated the extrinsic and intrinsic pathways of apoptosis, as reflected by the markers, such as CD95, caspase-8, Bax, MMP, cytoplasmic Ca(+2), caspase-3, and DNA fragmentation. UCB depleted GSH and activated p38MAPK. NAC, caspase inhibitors, and p38MAPK inhibitor attenuated the UCB-induced apoptosis. In vivo administration of ≥25 mg/kbw UCB induced atrophy of spleen, depletion of bone marrow cells, and leukopenia and decreased lymphocyte count and the T and B cell response to mitogens. UCB administration to mice led to induction of oxidative stress, activation of p38MAPK, and cell death in splenocytes. These parameters were attenuated by the injection of NAC and the p38MAPK inhibitor. Our results demonstrate for the first time that clinically relevant concentrations of UCB induce apoptosis and necrosis in immune cells by depleting cellular GSH. These findings should prove useful in understanding the immunosuppression associated with hyperbilirubinemia.
Collapse
Affiliation(s)
- Nazir M Khan
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | |
Collapse
|
24
|
A redox microenvironment is essential for MAPK-dependent secretion of pro-inflammatory cytokines: Modulation by glutathione (GSH/GSSG) biosynthesis and equilibrium in the alveolar epithelium. Cell Immunol 2011; 270:53-61. [DOI: 10.1016/j.cellimm.2011.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/22/2011] [Accepted: 04/08/2011] [Indexed: 01/21/2023]
|
25
|
Yu X, Tao W, Jiang F, Li C, Lin J, Liu C. Celastrol attenuates hypertension-induced inflammation and oxidative stress in vascular smooth muscle cells via induction of heme oxygenase-1. Am J Hypertens 2010; 23:895-903. [PMID: 20414191 DOI: 10.1038/ajh.2010.75] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the potential beneficial effects of celastrol, a compound with anti-inflammatory and antioxidant properties, on vascular smooth muscle cells (VSMCs) under hypertensive conditions. METHODS Hypertension was induced in rats by fructose feeding. Hypertensive rats were injected with celastrol, and systolic blood pressure (SBP) and diastolic BP (DBP) were monitored by the tail-cuff method. Insulin sensitivity in animals was measured by glucose tolerance test (GTT). Serum levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay. Real-time reverse transcription-PCR and western blot were applied to quantify mRNA and protein levels in tissues and primary cultured VSMCs. Generation of reactive oxygen species (ROS) was measured using lucigenin chemiluminescence for tissue homogenates and dichlorodihydrofluorescein diacetate staining for VSMC cells. RESULTS Celastrol decreased both SBP and DBP while improving insulin sensitivity in fructose-induced hypertensive rats. Celastrol also inhibited vascular and cardiac hypertrophy. Hypertension augmented circulating and mRNA levels of inflammatory cytokines, and celastrol treatment suppressed their induction. Celastrol also blocked activation of extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and Akt signaling both in vivo and in vitro. More importantly, celastrol increased heme oxygenase-1 (HO-1) expression and activity, whereas zinc protoporphyrin 9 (ZnPP9), a HO-1 inhibitor, partially abolished the beneficial effects of celastrol on hypertensive rats and VSMCs. Finally, ROS generation in tissue homogenates and in VSMCs was reduced by celastrol. CONCLUSIONS These findings suggest that celastrol attenuates hypertension-induced inflammation and oxidative stress in VSMCs via HO-1 induction, and this compound may therefore serve as a novel drug to treat hypertension.
Collapse
|
26
|
Wang K, Yuan CP, Wang W, Yang ZQ, Cui W, Mu LZ, Yue ZP, Yin XL, Hu ZM, Liu JX. Expression of interleukin 6 in brain and colon of rats with TNBS-induced colitis. World J Gastroenterol 2010; 16:2252-9. [PMID: 20458762 PMCID: PMC2868218 DOI: 10.3748/wjg.v16.i18.2252] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To characterise expression of interleukin 6 (IL-6), a potent proinflammatory cytokine, in the occurrence and development of inflammatory bowel disease (IBD) and investigate its effect on neuroimmunomodulation and immune homeostasis regulation.
METHODS: In this study, rats with colitis induced by trinitrobenzene sulfonic acid (TNBS) were sacrificed on days 3, 7, 14, 21 and 28 after induction. In the controls, the TNBS was just replaced by equivalent amount of phosphate buffered solution (PBS, 0.01 mol/L). IL-6 mRNA expression in brain and colon tissues in each phase was evaluated by real-time reverse transcription-polymerase chain reaction, and cellular localisation and protein level of IL-6 was determined by immunohistochemistry.
RESULTS: At day 7, mRNA expression of IL-6 was significantly higher in the colon and brain of IBD rats than that of the controls. The protein level was also significantly higher in colon, hypothalamus and cerebral cortex of IBD rats compared with the controls. So there are similar temporal trends in IL-6 mRNA expression and protein levels in all positions with a persistent increase to a peak at day 7, followed by a decline and gradual return to normal levels.
CONCLUSION: These results revealed that changes in IL-6 expression in brain and colon tissues occur in different phases of IBD. Therefore, we propose that the nerve centre regulates and controls the occurrence and development of IBD via IL-6.
Collapse
|
27
|
Haddad JJ. The role of inflammatory cytokines and NF-kappaB/MAPK signaling pathways in the evolution of familial Mediterranean fever: current clinical perspectives and potential therapeutic approaches. Cell Immunol 2009; 260:6-13. [PMID: 19733345 DOI: 10.1016/j.cellimm.2009.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/10/2009] [Accepted: 08/10/2009] [Indexed: 01/27/2023]
Abstract
Familial Mediterranean fever (FMF) is one of the social and health care problems for several populations that is known as a historically endemic disease of inflammatory nature. FMF, albeit a rare disorder, is characterized by recurrent fevers and painful inflammation of various body parts, especially the abdomen, lungs, and joints. FMF is typically characterized by inflammation of the abdominal lining (peritonitis), inflammation of the lining surrounding the lungs (pleurisy), painful, swollen joints (arthralgia and occasionally arthritis), and a characteristic ankle rash, a condition that is referred to as recurrent polyserositis, or familial paroxysmal polyserositis. Moreover, FMF is an inherited inflammatory disorder usually occurring in people of Mediterranean origin - including Sephardic Jews, Arabs, Armenians, and Turks; but it may ostensibly affect any other ethnic group, however, rarely. While there's no cure for this disorder, FMF is typically diagnosed during childhood, and signs and symptoms are treatable - or even preventable - by specialized medical attrition. The inflammatory signaling pathways associated with the evolution of FMF are currently being unraveled has that has therapeutic repercussions. In this review, I recap major concepts associated with the cellular and molecular immunology of FMF, especially shedding light on the likely roles of inflammatory cytokines, the transcription factor nuclear factor (NF)-kappaB, and the superfamily of mitogen-activated protein kinases (MAPKs). Furthermore, I summarize current advances for the clinical treatments available for FMF.
Collapse
Affiliation(s)
- John J Haddad
- Cellular and Molecular Signaling Research Group, Department of Clinical Laboratory Science, Faculty of Health Sciences, American University of Science and Technology, Aschrafieh, Beirut, Lebanon.
| |
Collapse
|
28
|
Martin HL, Teismann P. Glutathione--a review on its role and significance in Parkinson's disease. FASEB J 2009; 23:3263-72. [PMID: 19542204 DOI: 10.1096/fj.08-125443] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting over a million people in the United States alone, and is characterized by rigidity, bradykinesia, resting tremor, and postural instability. Its main neuropathological feature is the loss of dopaminergic neurons of the substantia nigra pars compacta. However, the pathogenesis of this loss is not understood fully. One of the earliest biochemical changes seen in PD is a reduction in the levels of total glutathione, a key cellular antioxidant. Traditionally, it has been thought that this decrease in GSH levels is the consequence of increased oxidative stress, a process heavily implicated in PD pathogenesis. However, emerging evidence suggests that GSH depletion may itself play an active role in PD pathogenesis. This review aims to explore the contribution of GSH depletion to PD pathogenesis.
Collapse
Affiliation(s)
- Heather L Martin
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | | |
Collapse
|
29
|
Lee WYW, Liu KWK, Yeung JHK. Reactive oxygen species-mediated kinase activation by dihydrotanshinone in tanshinones-induced apoptosis in HepG2 cells. Cancer Lett 2009; 285:46-57. [PMID: 19467570 DOI: 10.1016/j.canlet.2009.04.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 02/03/2023]
Abstract
The role of reactive oxygen species (ROS) and p38 mitogen-activated protein kinases (MAPK) in tanshinones-induced apoptosis was investigated in HepG2 cells in this study. The major tanshinones (cryptotanshinone, dihydrotanshinone, tanshinone I, tanshinone IIA), isolated from Salvia miltiorrhiza, inhibit cell growth and induce caspase-dependent apoptosis concentration-dependently, with dihydrotanshinone being the most potent. All four tanshinones were found to induce ROS generation, but only dihydrotanshinone can induce activation of p38 MAPK. The p38 MAPK activation by dihydrotanshinone was inhibited by N-acetyl cysteine pretreatment. It is thus concluded that ROS-mediated p38 MAPK activation plays a vital role in dihydrotanshinone-induced apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Wayne Y W Lee
- Department of Pharmacology, The Chinese University of Hong Kong, Shatin, New Territories, SAR, China
| | | | | |
Collapse
|
30
|
Kim SH, Sharma RP. Mercury Alters Endotoxin-Induced Inflammatory Cytokine Expression in Liver: Differential Roles of P38 and Extracellular Signal-Regulated Mitogen-Activated Protein Kinases. Immunopharmacol Immunotoxicol 2008; 27:123-35. [PMID: 15803865 DOI: 10.1081/iph-51757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mercury is a widespread metal in the environment and consequently large populations are currently exposed to low levels of mercury. Endotoxin, a component of the Gram-negative bacteria, promotes inflammatory responses. We recently reported that mercury modulates the production of nitric oxide and various inflammatory cytokines induced by endotoxin in a macrophage cell line (Nitric Oxide 2002, 7:67). The present study was designed to determine the impact of mercury on endotoxin-induced inflammatory cytokine expression and corresponding signal transduction in mouse liver. Male BALB/c mice were exposed continuously to 0, 0.3, 1.5, 7.5, or 37.5 ppm of mercury in drinking water for 14 days and at the end of the treatment period lipopolysaccharide (LPS, 0.5 mg/kg) was injected intraperitoneally 2 hr prior to euthanasia. The doses of mercury and LPS did not cause hepatotoxicity as indicated by unaltered circulating alanine aminotransferase and aspartate aminotransferase levels. Mercury decreased liver glutathione (GSH) and with LPS additively decreased GSH. Mercury activated p38 mitogen-activated protein kinase (MAPK) and additively increased LPS-induced p38 MAPK phosphorylation. In contrast, mercury alone had no effect on activation of extracellular signal-regulated kinase (ERK) but inhibited LPS-induced ERK activation. Mercury increased the expression of tumor necrosis factor alpha (TNFalpha) and further potentiated LPS-induced TNFalpha expression. Mercury did not affect LPS-induced interleukin (IL)-1beta expression but decreased LPS-induced IL-6 expression. Results indicated that low levels of mercury augment LPS-induced TNFalpha expression by altering GSH and p38 MAPK. Mercury modulates LPS-induced p38 and ERK activation and downstream TNFalpha and IL-6 expression in mouse liver.
Collapse
Affiliation(s)
- Sang Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | | |
Collapse
|
31
|
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl intermediate of the glycolytic pathway. Increased oxidative stress is associated with conditions of increased MG, such as diabetes mellitus. Increased oxidative stress is due to an increase in highly reactive by-products of metabolic pathways, the so-called reactive oxygen species, such as superoxide anion, hydroxyl radical, hydrogen peroxide, nitric oxide and peroxynitrite. These reactive species react with a variety of proteins, enzymes, lipids, DNA and other molecules and disrupt their normal function. Oxidative stress causes many pathological changes that lead to vascular complications of diabetes mellitus, hypertension, neurodegenerative diseases and aging. In this review we summarize the correlation of elevated MG and various reactive oxygen species, and the enzymes that produce them or take part in their disposal, such as antioxidant enzymes and cofactors. The findings reported in various studies reviewed have started filling in gaps in our knowledge that will ultimately provide us with a clear picture of how the whole process that causes cellular dysfunction is initiated.
Collapse
Affiliation(s)
- Kaushik M Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
32
|
Jackson RM, Garcia-Rojas R. Kinase activity, heat shock protein 27 phosphorylation, and lung epithelial cell glutathione. Exp Lung Res 2008; 34:245-62. [PMID: 18465403 DOI: 10.1080/01902140802022500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The 27-kDa heat shock protein (Hps27) is phosphorylated in a way that appears to regulate antioxidant defenses by mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2), a component of the p38(MAPK) pathway. To investigate the role of Hsp27 in cellular resistance to oxidant stress, lung cells (A549) were incubated with MAPK inhibitors to investigate the pathway's role in antioxidant defense. Cells were harvested for measurement of reduced gluthathione and glutathione disulfide (GSH and GSSH); or, exposed to 2,3-dimethoxy-1,4-napthoquinone (DMNQ). Inhibition of MAPK with SB203580 decreased total cellular glutathione (mean +/- SE): Vehicle, 150 +/- 20 mu M; SB203580, 57 +/- 10* (*P < .01). Inhibition of MAPK tripled [GSSG]/[GSH]: Vehicle, 0.29 +/- 0.09; SB203580, 1.06 +/- 0.43* (*P > .05; n = 6 per group). Hsp27 protein content did not change significantly after MAPK inhibition: Vehicle 2.20 +/- 0.24 ng/mg protein; SB203580, 2.03 +/- 0.34 (P > .05). Transfection of epithelial cells with wild-type (pcDNA-HA-Hsp27) or phosphomimic (pcDNA-HA-Hsp27-S3D) vector increased Hsp27 protein, which significantly protected cells from oxidant stress. Inhibition of the MAPK system, including p38(MAPK), results in cellular oxidant stress. Hsp27, which is phosphorylated by MK2 in the MAPK pathway, protects epithelial cells from oxidant stress.
Collapse
|
33
|
Luo J, Tsuji T, Yasuda H, Sun Y, Fujigaki Y, Hishida A. The molecular mechanisms of the attenuation of cisplatin-induced acute renal failure by N-acetylcysteine in rats. Nephrol Dial Transplant 2008; 23:2198-205. [DOI: 10.1093/ndt/gfn090] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Ji LL. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic Biol Med 2008; 44:142-52. [PMID: 18191750 DOI: 10.1016/j.freeradbiomed.2007.02.031] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/16/2007] [Accepted: 02/17/2007] [Indexed: 01/19/2023]
Abstract
Contraction-induced production of reactive oxygen species has been shown to cause oxidative stress to skeletal muscle. As an adaptive response, muscle antioxidant defense systems are upregulated in response to exercise. Nuclear factor kappaB and mitogen-activated protein kinase are two major oxidative-stress-sensitive signal transduction pathways that have been shown to activate the gene expression of a number of enzymes and proteins that play important roles in maintenance of intracellular oxidant-antioxidant homeostasis. This mini-review will discuss the main mechanisms and gene targets for these signaling pathways during exercise and the biological significance of the adaptation.
Collapse
Affiliation(s)
- Li Li Ji
- The Biodynamics Laboratory, University of Wisconsin-Madison, 2000 Observatory Drive, Madison, WI 53706, USA.
| |
Collapse
|
35
|
Hamilton D, Loignon M, Alaoui-Jamali MA, Batist G. Novel use of the fluorescent dye 5-(and-6)-chloromethyl SNARF-1 acetate for the measurement of intracellular glutathione in leukemic cells and primary lymphocytes. Cytometry A 2007; 71:709-15. [PMID: 17623874 DOI: 10.1002/cyto.a.20433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glutathione (GSH) plays an important role in protecting cells against injury, particularly during oxidative stress. Alterations in GSH metabolism are becoming the focus of attention in many diseases such as cancer, neurodegeneration, and AIDS. As such, a rapid assessment of GSH levels in a clinical setting is of increasing importance. We tested the efficacy of the thiol-labeling fluorescent dye CM-SNARF in its ability to measure variations in GSH concentration using a visible-light flow cytometer. GSH levels in I83, Jurkat, and primary lymphocytes were depleted with buthionine sulfoximine (BSO) or diamide, or increased with N-acetylcysteine (NAC). Following each treatment, cells were divided and either labeled with CM-SNARF followed by flow cytometry analysis, or assayed for GSH using a biochemical method. BSO treatment caused a maximal 87-90% decrease in GSH and 68-76% decrease in fluorescence units. Diamide depleted GSH 91-95%, corresponding to a fluorescence decrease of 85-88%. NAC treatment increased GSH levels 27% and fluorescence 12-19%. The overall correlation (R2) between mean GSH concentration and mean fluorescence was 0.80-0.88. CM-SNARF can be used to semi-quantitatively and rapidly determine intracellular variations in GSH concentration in the range of 10-150 nmoles GSH/mg protein.
Collapse
Affiliation(s)
- David Hamilton
- Department of Pharmacology and Therapeutics, The Montreal Center for Experimental Therapeutics in Cancer, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
36
|
Limón-Pacheco JH, Hernández NA, Fanjul-Moles ML, Gonsebatt ME. Glutathione depletion activates mitogen-activated protein kinase (MAPK) pathways that display organ-specific responses and brain protection in mice. Free Radic Biol Med 2007; 43:1335-47. [PMID: 17893047 DOI: 10.1016/j.freeradbiomed.2007.06.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 06/25/2007] [Accepted: 06/27/2007] [Indexed: 11/26/2022]
Abstract
Because mitogen-activated protein kinases (MAPK) are downstream effectors of antioxidant responses, changes in GSH levels in an organism might induce organ-specific responses. To test our hypothesis, mice were treated intraperitoneally with L-buthionine-S-R-sulfoximine (BSO) to inhibit GSH synthesis. A time-related GSH depletion in the liver and kidney correlated with p38(MAPK) phosphorylation and induction of thioredoxin 1 (Tx-1) transcription. This positive regulation was associated with nuclear translocation of NF-kappaB and ATF-2 and c-Jun phosphorylation in the liver, but only c-Jun phosphorylation in the kidney. Increased levels of GSH were observed in the brain together with extracellular regulated kinase 2 (ERK2) activation, Nrf2 nuclear accumulation, and increases in transcription of Nrf2, xCT, gamma-glutamylcysteine synthetase (gammaGCSr), and Tx-1. Pretreatment with MAPK inhibitors SB203580 and U0126, or addition of the exogenous thiol N-acetylcysteine, abrogated both p38(MAPK) and ERK2 activation as well as downstream effects on gene expression. No effect on gammaGCSr was observed. These results indicate that in mice, GSH depletion is associated with p38(MAPK) phosphorylation in the liver and kidney and with ERK2 activation in the brain, in what could be considered part of the brain's protective response to thiol depletion.
Collapse
Affiliation(s)
- Jorge H Limón-Pacheco
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, México
| | | | | | | |
Collapse
|
37
|
Sato H, Tanaka T, Kasai K, Kita T, Tanaka N. Role of p38 mitogen-activated protein kinase on cardiac dysfunction after hemorrhagic shock in rats. Shock 2007; 28:291-9. [PMID: 17545949 DOI: 10.1097/shk.0b013e3180326e3d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cardiac dysfunction is a well-known complication of hemorrhagic shock as a consequence of local inflammatory response. Several studies have indicated that p38 mitogen-activated protein kinase (MAPK) is a key mediator in organ dysfunction that is associated with the inflammatory state through the activation of proinflammatory cytokines such as TNF-alpha and IL-1beta. Whether the same applies to cardiac dysfunction after hemorrhagic shock has not been clearly determined. Therefore, in this study, the role of p38 MAPK on cardiac dysfunction after hemorrhagic shock was studied up to 5 h after a hemorrhage using FR167653, a specific inhibitor of p38 MAPK phosphorylation. The p38 MAPK phosphorylation, the cardiac mRNA expressions of TNF-alpha and IL-1beta, and intracardiac serum concentrations of each cytokine and creatine phosphokinase-MB isozyme increased after a hemorrhage. Activated neutrophil accumulation in the heart, histological inflammation-related injuries, and frequent ventricular arrhythmia were observed in the late phase after hemorrhagic shock. FR167653 inhibited these hemorrhagic changes except the induction of the primary hypotensive state. These results demonstrate that p38 MAPK phosphorylation in hemorrhagic shock plays an important role in the cardiac expression of the proinflammatory cytokines and in the development of cardiac dysfunction relative to the inflammatory responses.
Collapse
Affiliation(s)
- Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan.
| | | | | | | | | |
Collapse
|
38
|
Tessari P, Puricelli L, Iori E, Arrigoni G, Vedovato M, James P, Coracina A, Millioni R. Altered chaperone and protein turnover regulators expression in cultured skin fibroblasts from type 1 diabetes mellitus with nephropathy. J Proteome Res 2007; 6:976-86. [PMID: 17330940 DOI: 10.1021/pr060443n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In type-1 diabetes mellitus (T1DM) with diabetic nephropathy (DN), accumulation of abnormal proteins in the kidney and other tissues may derive from constitutive alterations of intracellular protein recognition, assembly, and turnover. We characterized the proteins involved in these functions in cultured skin fibroblasts from long-term T1DM patients with [DN+] or without [DN-] nephropathy but similar metabolic control, and from matched healthy subjects. 2-D gel electrophoresis and MS-MALDI analysis were employed. The [DN+] T1DM patients, compared with the two other groups, exhibited increased abundance of a high-molecular weight isoform of protein disulphide-isomerase A3 and a decrease of two low-molecular weight isoforms. They also had increased levels of heat shock protein (HSP) 60 kDa isoform #A4, of HSP71 kDa isoform #A30, and of HSP27 kDa isoform #6, whereas the HSP27 kDa isoforms #A90 and #A71 were decreased. Cathepsin beta-2 (#40), the cation-independent mannose 6-phosphate receptor binding protein 1 (CIMPR) (#A27), and annexin 2 (#A9) were also decreased in the [DN+] T1DM patients, whereas the RNA-binding protein regulatory subunity (#38) and the translationally-controlled tumor protein (TCTP) (#A45) were increased. These changes of chaperone-like proteins in fibroblasts may highlight those of the kidney and be patho-physiologically related to the development of nephropathy in T1DM.
Collapse
Affiliation(s)
- Paolo Tessari
- Department of Clinical and Experimental Medicine, Chair of Metabolism, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lee YR, Su CY, Chow NH, Lai WW, Lei HY, Chang CL, Chang TY, Chen SH, Lin YS, Yeh TM, Liu HS. Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Res 2007; 126:216-25. [PMID: 17416433 DOI: 10.1016/j.virusres.2007.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 03/06/2007] [Accepted: 03/08/2007] [Indexed: 11/17/2022]
Abstract
Dengue viruses (DENV) are herein demonstrated for the first time as being able to infect and replicate in human primary lung epithelium and various lung cancer cell lines. The detection of dengue virus particles and viral negative strand RNA synthesis in the cell, in conjunction with the release of viral progenies in culture supernatants, support the notion that lung cells are susceptible to dengue virus infection. The replication efficiency of DENV in lung cancer cells from high to low is: DEN-2 (dengue virus type-2), DEN-3, DEN-4 and DEN-1. Moreover, the susceptibility of the six lung cancer cell lines to DEN-2 infection is: SW1573>A549>H1435; H23; H520; Bes2B. DEN-2 infection significantly increased the expression levels of IL-6 and RANTES in four of the six lung cancer cell lines, which is consistent with the high expression levels of these molecules in DHF/DSS patients. IL-6 expression induced by DEN-2 infection was NF-kappaB dependent. In summary, our results indicate that lung epithelial cell is a possible target of dengue viruses and IL-6 and RANTES may play pivotal roles in lung related immuno-pathogenesis.
Collapse
Affiliation(s)
- Ying-Ray Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maya JD, Cassels BK, Iturriaga-Vásquez P, Ferreira J, Faúndez M, Galanti N, Ferreira A, Morello A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol A Mol Integr Physiol 2007; 146:601-20. [PMID: 16626984 DOI: 10.1016/j.cbpa.2006.03.004] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 03/09/2006] [Accepted: 03/09/2006] [Indexed: 01/07/2023]
Abstract
Current knowledge of the biochemistry of Trypanosoma cruzi has led to the development of new drugs and the understanding of their mode of action. Some trypanocidal drugs such as nifurtimox and benznidazole act through free radical generation during their metabolism. T. cruzi is very susceptible to the cell damage induced by these metabolites because enzymes scavenging free radicals are absent or have very low activities in the parasite. Another potential target is the biosynthetic pathway of glutathione and trypanothione, the low molecular weight thiol found exclusively in trypanosomatids. These thiols scavenge free radicals and participate in the conjugation and detoxication of numerous drugs. Inhibition of this key pathway could render the parasite much more susceptible to the toxic action of drugs such as nifurtimox and benznidazole without affecting the host significantly. Other drugs such as allopurinol and purine analogs inhibit purine transport in T. cruzi, which cannot synthesize purines de novo. Nitroimidazole derivatives such as itraconazole inhibit sterol metabolism. The parasite's respiratory chain is another potential therapeutic target because of its many differences with the host enzyme complexes. The pharmacological modulation of the host's immune response against T. cruzi infection as a possible chemotherapeutic target is discussed. A large set of chemicals of plant origin and a few animal metabolites active against T. cruzi are enumerated and their likely modes of action are briefly discussed.
Collapse
Affiliation(s)
- Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, P.O. Box 70000, Santiago 7, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Saad SY, Arafah MM, Najjar TA. Effects of mycophenolate mofetil on cisplatin-induced renal dysfunction in rats. Cancer Chemother Pharmacol 2006; 59:455-60. [PMID: 16855841 DOI: 10.1007/s00280-006-0284-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 06/13/2006] [Indexed: 12/29/2022]
Abstract
PURPOSE Inflammation and oxidative stress are important events among the plethora of mechanisms involved in cisplatin (CDDP)-induced nephrotoxicity. The aim of this study was to evaluate the effect of mycophenolate mofetil (MMF), an immunosuppressive, in the protection against CDDP-induced renal dysfunction. METHODS Rats were divided into four groups; untreated-control group, CDDP-treated group (7 mg/kg, single intraperitoneal dose), MMF-treated group (40 mg/kg/day orally for 5 successive days) and the fourth group was treated with both drugs and MMF treatment was started 1 day prior to CDDP administration. Nephrotoxicity was assessed 7 days after the CDDP treatment by measuring serum indices of nephrotoxicity, kidney weight as a percentage of total body weight, kidney's tissue peroxidative alterations and total nitrate/nitrite concentration (NOx) and the results were confirmed histopathologically. RESULTS Rats treated with CDDP showed marked nephrotoxicity as evidenced from the significant increase in serum creatinine and urea levels and decrease in serum calcium and albumin levels. Kidneys of CDDP-treated rats showed significant increases in kidney weight and malondialdehyde (MDA) production level and decreases in total NOx concentration, glutathione peroxidase (GPx) activity and reduced glutathione (GSH) content levels. Histopathological assessment of kidneys of CDDP-treated rats revealed extensive tubular necrosis with "sloughing off" of the renal tubular lining cells, intratubular hyaline casts and mononuclear cell infiltration. Treatment with MMF significantly protected the rats against CDDP-induced nephrotoxicity. The rise in serum creatinine and urea levels, kidney weight and kidney tissue MDA production, depletion of "endogenous antioxidant reserve" including GPx activity and reduced GSH content levels and the deleterious histopathological changes induced by CDDP treatment were significantly mitigated by MMF treatment. CONCLUSIONS MMF treatment dramatically ameliorates CDDP-induced renal dysfunction.
Collapse
Affiliation(s)
- Sherif Y Saad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | | | | |
Collapse
|
42
|
Haddad JJ. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol 2006; 77:252-82. [PMID: 16343729 DOI: 10.1016/j.pneurobio.2005.10.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Revised: 12/10/2004] [Accepted: 10/27/2005] [Indexed: 12/30/2022]
Abstract
Excitatory synaptic transmission in the central nervous system (CNS) is mediated by the release of glutamate from presynaptic terminals onto postsynaptic channels gated by N-methyl-D-aspartate (NMDA) and non-NMDA (AMPA and KA) receptors. Extracellular signals control diverse neuronal functions and are responsible for mediating activity-dependent changes in synaptic strength and neuronal survival. Influx of extracellular calcium ([Ca(2+)](e)) through the NMDA receptor (NMDAR) is required for neuronal activity to change the strength of many synapses. At the molecular level, the NMDAR interacts with signaling modules, which, like the mitogen-activated protein kinase (MAPK) superfamily, transduce excitatory signals across neurons. Recent burgeoning evidence points to the fact that MAPKs play a crucial role in regulating the neurochemistry of NMDARs, their physiologic and biochemical/biophysical properties, and their potential role in pathophysiology. It is the purpose of this review to discuss: (i) the MAPKs and their role in a plethora of cellular functions; (ii) the role of MAPKs in regulating the biochemistry and physiology of NMDA receptors; (iii) the kinetics of MAPK-NMDA interactions and their biologic and neurochemical properties; (iv) how cellular signaling pathways, related cofactors and intracellular conditions affect NMDA-MAPK interactions and (v) the role of NMDA-MAPK pathways in pathophysiology and the evolution of disease conditions. Given the versatility of the NMDA-MAPK interactions, the NMDA-MAPK axis will likely form a neurochemical target for therapeutic interventions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Lebanon.
| |
Collapse
|
43
|
Sato H, Tanaka T, Kasai K, Kita T, Tanaka N. Role of p38 mitogen-activated protein kinase on renal dysfunction after hemorrhagic shock in rats. Shock 2006; 24:488-94. [PMID: 16247337 DOI: 10.1097/01.shk.0000176594.64626.7f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Hemorrhagic shock has been reported to induce renal dysfunction as a consequence of different kinds of local inflammatory response. p38 mitogen-activated protein kinase (MAPK) is a key mediator in organ dysfunction relating to the inflammatory states, and acts as an important mediator in the intracellular signal pathway for proliferation, differentiation, and production of proinflammatory cytokines such as TNF-alpha and IL-1beta. The effect of p38 MAPK on the hemorrhagic damage has not been clearly estimated as yet. In this study, our aim was to evaluate the role of p38 MAPK on the renal damage during the first 5 h after a hemorrhage using a specific inhibitor of p38 MAPK activation, FR167653. p38 MAPK activation increased immediately after a hemorrhage and decreased with time. renal mRNA expression of TNF-alpha and IL-1beta increased, renal dysfunction continued to progress, and histological inflammatory injuries were confirmed after hemorrhagic shock. With the pretreatment of FR167653, all of these hemorrhagic changes were attenuated, although the induction of the primary hypotensive state was confirmed. This study demonstrated that renal p38 MAPK is activated in hemorrhagic shock, promotes the expression of proinflammatory cytokines in the kidney, and consequently develops renal dysfunction. We concluded that p38 MAPK activation is essential in causing renal damage and that the inhibition of p38 MAPK activation blocks the development of the renal dysfunction after hemorrhagic shock.
Collapse
Affiliation(s)
- Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| | | | | | | | | |
Collapse
|
44
|
Lee SH, Seo GS, Kim JY, Jin XY, Kim HD, Sohn DH. Heme oxygenase 1 mediates anti-inflammatory effects of 2',4',6'-tris(methoxymethoxy) chalcone. Eur J Pharmacol 2006; 532:178-86. [PMID: 16480975 DOI: 10.1016/j.ejphar.2006.01.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 01/03/2006] [Accepted: 01/10/2006] [Indexed: 11/19/2022]
Abstract
We report that the synthetic chalcone 2',4',6'-tris(methoxymethoxy) chalcone (TMMC) is an anti-inflammatory compound that reduces nitric oxide (NO) production by inhibiting of inducible NO synthase (iNOS) expression, and that TMMC decreases the degradation of the inhibitory factor kappaB, leading to inhibition of nuclear factor-kappaB translocation into the nucleus in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. We also demonstrate that TMMC by itself is a potent inducer of heme oxygenase 1 (HO-1). Inhibition of HO-1 activity or scavenging of carbon monoxide, a byproduct of heme degradation, significantly attenuated this anti-inflammatory action. Treating cells with the specific p42/44 MAPK inhibitor, PD98059, blocked the TMMC-mediated induction of HO-1 and the inhibition of LPS-stimulated expression of iNOS. TMMC also depleted intracellular GSH. Our data suggest that TMMC exerts an anti-inflammatory effect in macrophages through a mechanism that involves the induction of HO-1, which is mediated by activation of p42/44 MAPK and GSH depletion.
Collapse
Affiliation(s)
- Sung Hee Lee
- College of Pharmacy, Medicinal Resources Research Institute, Wonkwang University, Iksan, Jeonbuk 570-749, South Korea
| | | | | | | | | | | |
Collapse
|
45
|
Haddad JJ. Hypoxia and the regulation of mitogen-activated protein kinases: gene transcription and the assessment of potential pharmacologic therapeutic interventions. Int Immunopharmacol 2005; 4:1249-85. [PMID: 15313426 DOI: 10.1016/j.intimp.2004.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 06/09/2004] [Accepted: 06/15/2004] [Indexed: 12/20/2022]
Abstract
Oxygen is an environmental/developmental signal that regulates cellular energetics, growth, and differentiation processes. Despite its central role in nearly all higher life processes, the molecular mechanisms for sensing oxygen levels and the pathways involved in transducing this information are still being elucidated. Altering gene expression is the most fundamental and effective way for a cell to respond to extracellular signals and/or changes in its microenvironment. During development, the expression of specific sets of genes is regulated spatially (by position/morphogenetic gradients) and temporally, presumably via the sensing of molecular oxygen available within the microenvironment. Regulation of signaling responses is governed by transcription factors that bind to control regions (consensus sequences) of target genes and alter their expression in response to specific signals. Complex signal transduction during hypoxia (deficiency of oxygen in inspired gases or in arterial blood and/or in tissues) involves the coupling of ligand-receptor interactions to many intracellular events. These events basically include phosphorylations by tyrosine kinases and/or serine/threonine kinases, such as those of mitogen-activated protein kinases (MAPKs), a superfamily of kinases responsive to stress nonhomeostatic conditions. Protein phosphorylations imposed during hypoxia change enzyme activities and protein conformations, and the eventual outcome is rather complex, comprising of an alteration in cellular activity and changes in the programming of genes expressed within the responding cells. These molecular changes serve as signals that are crucial for cell survival under contingent conditions imposed during hypoxia. This review correlates current concepts of hypoxic sensing pathways with hypoxia-related phosphorylation mechanisms mediated by MAPKs via the genetic and pharmacologic regulation/manipulation of specific transcription factors and related cofactors.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
46
|
Haddad JJ, Harb HL. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 2004; 42:987-1014. [PMID: 15829290 DOI: 10.1016/j.molimm.2004.09.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/29/2004] [Indexed: 12/17/2022]
Abstract
Of the antioxidant/prooxidant mechanisms mediating the regulation of inflammatory mediators, particularly cytokines, oxidative stress-related pathways remain a cornerstone. It is conspicuous that there is a strong association between free radical accumulation (ROS/RNS; oxidative stress) and the evolution of inflammation and inflammatory-related responses. The scenario that upholds a consensus on the aforementioned is still evolving to unravel, from an immunologic perspective, the molecular mechanisms associated with ROS/RNS-dependent inflammation. Cytokines are keynote players when it comes to defining an intimate relationship among reduction-oxidation (redox) signals, oxidative stress and inflammation. How close we are to identifying the molecular basis of this intricate association should be weighed against the involvement of specific signaling molecules and, potentially, transcription factors. L-gamma-Glutamyl-L-cysteinyl-glycine, or glutathione (GSH), an antioxidant thiol, has shaped, and still is refining, the face of oxidative signaling in terms of regulating the milieu of inflammatory mediators, ostensibly via the modulation (expression/repression) of oxygen- and redox-responsive transcription factors, hence termed redox(y)-sensitive cofactors. When it comes to the arena of oxygen sensing, oxidative stress and inflammation, nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha) are key players that determine antioxidant/prooxidant responses with oxidative challenge. It is the theme therein to underlie current understanding of the molecular association hanging between oxidative stress and the evolution of inflammation, walked through an elaborate discussion on the role of transcription factors and cofactors. Would that classify glutathione and other redox signaling cofactors as potential anti-inflammatory molecules emphatically remains of particular interest, especially in the light of identifying upstream and downstream molecular pathways for conceiving therapeutic, alleviating strategy for oxidant-mediated, inflammatory-related disease conditions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
47
|
Haddad JJ. Mitogen-activated protein kinases and the evolution of Alzheimer's: a revolutionary neurogenetic axis for therapeutic intervention? Prog Neurobiol 2004; 73:359-77. [PMID: 15312913 DOI: 10.1016/j.pneurobio.2004.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2002] [Accepted: 06/16/2004] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is a neurogenetic condition that affects the processes via which the brain functions. Major observable hallmarks of AD are accumulated clusters of proteins in the brain. These clusters, termed neurofibrillary tangles (NFT), resemble pairs of threads wound around each other in a helix fashion accumulating within neurons. These tangles consist of a protein called Tau, which binds to tubulin, thus forming microtubules. Unlike NFTs, deposits of amyloid precursor protein (beta-APP) gather in the spaces between nerve cells. The nearby neurons often look swollen and deformed, and the clusters of protein are usually accompanied by reactive inflammatory cells, microglia, which are part of the brain's immune system responsible for degrading and removing damaged neurons or plaques. Since phosphorylation/dephosphorylation mechanisms are crucial in the regulation of Tau and beta-APP, a superfamily of mitogen-activated protein kinases (MAPKs) has recently emerged as key regulators of the formation of plagues, eventually leading to dementia and AD. The complex molecular interactions between MAPKs and proteins (plagues) associated with the evolution of AD form a cornerstone in the knowledge of a still burgeoning field of neurodegenerative diseases and ageing. This review overviews current understanding of the molecular pathways related to MAPKs and their role in the development of AD and, possibly, dementia. MAPKs, therefore, may constitute a neurogenetic, therapeutic target for the diagnosis and evolution of a preventative medical strategy for early detection, and likely treatment, of Alzheimer's.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
| |
Collapse
|
48
|
Imose M, Nagaki M, Kimura K, Takai S, Imao M, Naiki T, Osawa Y, Asano T, Hayashi H, Moriwaki H. Leflunomide protects from T-cell-mediated liver injury in mice through inhibition of nuclear factor kappaB. Hepatology 2004; 40:1160-9. [PMID: 15455409 DOI: 10.1002/hep.20438] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Leflunomide is a novel immunosuppressive and anti-inflammatory agent for the treatment of autoimmune disease. The aim of this study was to investigate whether leflunomide protects from liver injury induced by concanavalin A (Con A), a T-cell-dependent model of liver damage. BALB/c mice were injected with 25 mg/kg Con A in the presence or absence of 30 mg/kg leflunomide. Liver injury was assessed biochemically and histologically. Levels of circulating cytokines and expressions of cytokine messenger RNA (mRNA) in the liver and the spleen were determined. Treatment with leflunomide markedly reduced serum transaminase activities and the numbers of dead liver cells. Leflunomide significantly inhibited increases in plasma tumor necrosis factor alpha (TNF-alpha) and interleukin 2 concentrations, and also reduced TNF-alpha mRNA expression in the liver after administration of Con A. These findings were supported by the results in which leflunomide administration decreased the number of T lymphocytes infiltrating the liver as well as inhibiting their production of TNF-alpha. Activation of nuclear factor kappaB (NF-kappaB), which regulates TNF-alpha production, was inhibited in the liver of mice treated with leflunomide, resulting in a reduction of TNF-alpha production from lymphocytes infiltrating the liver. In conclusion, leflunomide is capable of regulating T-cell-mediated liver injury in vivo and that this event may depend on the decrease of TNF-alpha production in the liver through inhibition of NF-kappaB activation caused by leflunomide.
Collapse
Affiliation(s)
- Motoaki Imose
- First Department of Internal Medicine, Gifu University School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu D, Cederbaum A. Glutathione depletion in CYP2E1-expressing liver cells induces toxicity due to the activation of p38 mitogen-activated protein kinase and reduction of nuclear factor-kappaB DNA binding activity. Mol Pharmacol 2004; 66:749-60. [PMID: 15322268 DOI: 10.1124/mol.104.002048] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Depletion of glutathione (GSH) from CYP2E1-expressing cells by treatment with l-buthionine sulfoximine (BSO) causes decreased cell viability. The possible role of mitogen-activated protein kinases (MAPK) in this toxicity was evaluated. SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole], an inhibitor of p38 MAPK decreased the BSO-dependent toxicity in HepG2 E47 cells, which express CYP2E1 and in hepatocytes from pyrazole-treated rats. Inhibitors of extracellular signal-regulated kinase, phosphatidylinositol 3-kinase, and c-Jun amino-terminal kinase were not protective. SB203580 did not prevent the loss of GSH nor lower the increase in reactive oxygen production; hence, protection by SB203580 was downstream of the elevated oxidative stress. Treatment with BSO caused activation of p38 MAPK whereas activation of nuclear factor-kappaB (NF-kappaB) was decreased; these effects were prevented by SB203580. We speculated that the decrease in NF-kappaB activation prevented production of hepatoprotective factors. One such factor could be nitric oxide (NO); indeed a NO donor decreased the BSO plus CYP2E1-dependent toxicity, whereas inhibition of inducible NO synthase (iNOS) potentiated toxicity. BSO treatment down-regulated iNOS and lowered NO levels, reactions blocked by SB203580; however, protection by SB203580 was the same in the absence or presence of an iNOS inhibitor, indicating that recovery of iNOS and NO production was not the mechanism by which SB203580 afforded protection against the BSO plus CYP2E1-dependent toxicity. Presumably other protective factors besides nitric oxide may be produced from activated NF-kappaB when p38 MAPK is inhibited by SB203580. These results suggest that the activation of p38 MAPK by BSO treatment in CYP2E1-expressing liver cells cause a loss in NF-kappaB-dependent production of hepatoprotective factors. This loss, coupled to CYP2E1-generated oxidant stress, synergize to promote cell injury.
Collapse
Affiliation(s)
- Defeng Wu
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
50
|
Berruyer C, Martin FM, Castellano R, Macone A, Malergue F, Garrido-Urbani S, Millet V, Imbert J, Duprè S, Pitari G, Naquet P, Galland F. Vanin-1-/- mice exhibit a glutathione-mediated tissue resistance to oxidative stress. Mol Cell Biol 2004; 24:7214-24. [PMID: 15282320 PMCID: PMC479710 DOI: 10.1128/mcb.24.16.7214-7224.2004] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/09/2004] [Accepted: 05/06/2004] [Indexed: 11/20/2022] Open
Abstract
Vanin-1 is an epithelial ectoenzyme with pantetheinase activity and generating the amino-thiol cysteamine through the metabolism of pantothenic acid (vitamin B(5)). Here we show that Vanin-1(-/-) mice, which lack cysteamine in tissues, exhibit resistance to oxidative injury induced by whole-body gamma-irradiation or paraquat. This protection is correlated with reduced apoptosis and inflammation and is reversed by treating mutant animals with cystamine. The better tolerance of the Vanin-1(-/-) mice is associated with an enhanced gamma-glutamylcysteine synthetase activity in liver, probably due to the absence of cysteamine and leading to elevated stores of glutathione (GSH), the most potent cellular antioxidant. Consequently, Vanin-1(-/-) mice maintain a more reducing environment in tissue after exposure to irradiation. In normal mice, we found a stress-induced biphasic expression of Vanin-1 regulated via antioxidant response elements in its promoter region. This process should finely tune the redox environment and thus change an early inflammatory process into a late tissue repair process. We propose Vanin-1 as a key molecule to regulate the GSH-dependent response to oxidative injury in tissue at the epithelial level. Therefore, Vanin/pantetheinase inhibitors could be useful for treatment of damage due to irradiation and pro-oxidant inducers.
Collapse
Affiliation(s)
- C Berruyer
- Centre d'Immunologie de Marseille-Luminy CNRS-INSERM-Université de la Méditerranée, 13288 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|