1
|
Willard PA, Kornbluth J. The ubiquitin ligase NKLAM promotes apoptosis and suppression of cell growth. J Biol Chem 2025; 301:108527. [PMID: 40273985 DOI: 10.1016/j.jbc.2025.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Natural killer lytic-associated molecule (NKLAM), also known as RNF19b, is a member of the RING-in between-RING-RING (RBR) E3 ubiquitin ligase family and plays a pivotal role in immune regulation. We identified a critical cysteine residue at position 301 essential for NKLAM's ubiquitin ligase function. Site-directed mutagenesis of this residue to serine or alanine abrogated the ligase activity of NKLAM. Utilizing inducible expression systems in two different cell lines, HEK293 embryonic kidney cells and K562 myeloid leukemia cells, we demonstrated that wild-type (WT) NKLAM, but not the catalytically inactive NKLAM alanine mutant (C301A), inhibited cellular proliferation, as evidenced by reduced cell numbers and decreased metabolic activity. Moreover, NKLAM expression led to a significant decrease in the abundance and stability of the proto-oncogene c-Myc, a key regulator of proliferation. NKLAM facilitated the proteasomal degradation of c-Myc, with a reduction in c-Myc half-life from 27 min to 12 min and restoration of c-Myc levels upon proteasome inhibition. Notably, prolonged NKLAM expression induced apoptosis, measured by annexin-V staining and caspase activation. Strikingly, the serine mutant, C301S, while lacking ubiquitin ligase activity, induced apoptosis comparable to WT NKLAM, highlighting an alternative pathway for NKLAM-mediated inhibition of cellular homeostasis. Our findings indicate that NKLAM is a cytolytic protein with multifaceted roles in cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Paul A Willard
- Department of Pathology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Jacki Kornbluth
- Department of Pathology, Saint Louis University School of Medicine, St Louis, Missouri, USA; Research and Development Service, St Louis VA Medical Center, St Louis, Missouri, USA.
| |
Collapse
|
2
|
Ortjohann M, Leippe M. Characterization of NK-lysin A, a potent antimicrobial peptide from the zebrafish Danio rerio. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105266. [PMID: 39303911 DOI: 10.1016/j.dci.2024.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Antimicrobial peptides (AMPs) are important players of the innate immune system with a major role in the defense against invading pathogens. AMPs belonging to the family of saposin-like proteins (SAPLIPs) include the porcine NK-lysin and the human granulysin. In the zebrafish Danio rerio, transcript analyses of NK-lysin encoding genes have been reported, but biochemical characterizations at the protein level are missing so far. Here, we present the recombinant expression, purification, and characterization of one of these homologs, namely of NK-lysin A (DaNKlA). To remove the affinity tag from DaNKlA, we made use of a self-splicing intein. Recombinant DaNKlA depolarized liposomes over a broad pH range and showed a preference for negatively charged lipids. DaNKlA inhibited the growth of and killed different Gram-positive and Gram-negative bacteria, including the fish pathogenic bacterium Vibrio anguillarum, by membrane permeabilization but displayed substantially lower activity against yeast cells. Structural modelling and bioinformatic comparison of DaNKlA with characterized SAPLIPs suggest membrane destabilization accompanied by strong electrostatic interactions as the mode of action.
Collapse
Affiliation(s)
- Marius Ortjohann
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118, Kiel, Germany.
| |
Collapse
|
3
|
Zheng W, Ling S, Cao Y, Shao C, Sun X. Combined use of NK cells and radiotherapy in the treatment of solid tumors. Front Immunol 2024; 14:1306534. [PMID: 38264648 PMCID: PMC10803658 DOI: 10.3389/fimmu.2023.1306534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Natural killer (NK) cells are innate lymphocytes possessing potent tumor surveillance and elimination activity. Increasing attention is being focused on the role of NK cells in integral antitumor strategies (especially immunotherapy). Of note, therapeutic efficacy is considerable dependent on two parameters: the infiltration and cytotoxicity of NK cells in tumor microenvironment (TME), both of which are impaired by several obstacles (e.g., chemokines, hypoxia). Strategies to overcome such barriers are needed. Radiotherapy is a conventional modality employed to cure solid tumors. Recent studies suggest that radiotherapy not only damages tumor cells directly, but also enhances tumor recognition by immune cells through altering molecular expression of tumor or immune cells via the in situ or abscopal effect. Thus, radiotherapy may rebuild a NK cells-favored TME, and thus provide a cost-effective approach to improve the infiltration of NK cells into solid tumors, as well as elevate immune-activity. Moreover, the radioresistance of tumor always hampers the response to radiotherapy. Noteworthy, the puissant cytotoxic activity of NK cells not only kills tumor cells directly, but also increases the response of tumors to radiation via activating several radiosensitization pathways. Herein, we review the mechanisms by which NK cells and radiotherapy mutually promote their killing function against solid malignancies. We also discuss potential strategies harnessing such features in combined anticancer care.
Collapse
Affiliation(s)
- Wang Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sunkai Ling
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunlin Shao
- Institution of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
5
|
Yang Y, Song X, Cui N, Lei T, Huang Y, Shi Y, Hu Y, Zhou X, Zhao Z. Functional characterization of obscure puffer ToNK-lysin: A novel immunomodulator possessing anti-bacterial and anti-inflammatory properties. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109080. [PMID: 37748586 DOI: 10.1016/j.fsi.2023.109080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023]
Abstract
NK-lysins are one of the most abundant antimicrobial peptides produced by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs), and identified as a new class of intrinsically disordered proteins, playing critical roles in the cell-mediated cytotoxicity response, as well as immunomodulatory and antimicrobial activities upon a significant range of pathogens. In the present study, an NK-lysin was identified from Obscure puffer Takifugu obscurus (ToNK-lysin). The open reading frame of ToNK-lysin sequence spans 423 bp, encoding a peptide with 140 amino acids which shares a moderate residue identity (18%-60%) with NK-lysin of mammals and other teleost species. Phylogenetic analysis revealed that ToNK-lysin was most closely related to NK-lysins from the Pleuronectiformes (Bastard halibut Paralichthys olivaceus and Pacific halibut Hippoglossus stenolepis). Comprehensive computational analysis revealed that ToNK-lysin have substantial level of intrinsic disorder, which might be contribute to its multifunction. The transcripts of the ToNK-lysin were detected in multiple examined tissues and most abundant in gills. After bacterial and Poly I:C challenge, the transcriptional levels of ToNK-lysin were significantly up-regulated in the head kidney, liver and spleen at different time points. The recombinant ToNK-lysin showed significant antibacterial activity against Vibrio harveyi and Escherichia coli, and the ToNK-lysin treatment not only reduced the bacterial loads in liver and head kidney, but also alleviated the pathogen-mediated upregulation of immune-related genes. In addition, the co-incubation with rToNK-lysin protein remarkably degraded bacterial genomic DNA, suggesting the potential mechanism of ToNK-lysin against microbes. These results suggest that ToNK-lysin possess antibacterial and immunoregulatory function both in vivo and in vitro, which may allow it a potential applicability to the aquaculture industry.
Collapse
Affiliation(s)
- Yaxing Yang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Xiaorui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Nan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Tianying Lei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yadong Hu
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing, 210019, China
| | - Xinghu Zhou
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing, 210019, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210024, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
6
|
Yu D, Weng T, Yang G, Xia H, Gan Z, Wang Z, Li Y, Xia L, Kwok KW, Chen J, Lu Y. Functional characterization of a grouper nklysin with antibacterial and antiviral activity. FISH & SHELLFISH IMMUNOLOGY 2022; 131:862-871. [PMID: 36283596 DOI: 10.1016/j.fsi.2022.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Natural killer lysin (Nklysin) is a small molecule antimicrobial peptide produced by natural killer cells and T lymphocytes and widely expressed in vertebrates. Homologues of Nklysin have been found in several fish, but only several of biological activity was identified. In this study, we characterized a Nklysin from grouper (Epinephelus coioides), and explored its expression pattern and biological function in bacterial infection. We also investigated the role of Nklysin in viral replication and maturation. The nklysin gene of grouper encodes a 169 amino acid, sharing 92.90% identity to H. septemfasciatus NKlysin protein, containing a saposin B domain and six well-conserved cysteine residues that necessary for antimicrobial activity by forming three intrachain disulfide bonds. Analysis of qRT-PCR revealed that nklysin gene widely expressed in all tested tissues with the higher expressions in spleen. After bacterial challenge, the nklysin gene expression significantly varied in different tissues. In addition, a large-scale of the recombinant Nklysin protein was secreted in Pichia pastoris strain GS115. The MIC assay showed that the Nklysin protein directly inhibited growth of several pathogens, including Proteus mirabilis, Bacillus subtilis, Salmonella typhi, Escherichia coli, Shigella sonnei and Streptococcus agalactiae. Further analysis showed the Nklysin protein over-expression might prevent viral genes transcriptions and replication in FHM cells. Our findings suggested that the Nklysin of grouper might be a potential agent for antibacterial and antiviral infection in the future.
Collapse
Affiliation(s)
- Dapeng Yu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Tingting Weng
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Guanjian Yang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Hongli Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhiwen Wang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yuan Li
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Kevin Wh Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jianlin Chen
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
7
|
Blancá B, Hayes JA, Surmann K, Hugo V, Hentschker C, Lamberti Y, Völker U, Rodriguez ME. Bordetella pertussis outer membrane vesicles as virulence factor vehicles that influence bacterial interaction with macrophages. Pathog Dis 2022; 80:6655986. [PMID: 35927587 DOI: 10.1093/femspd/ftac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Gram-negative pathogenic bacteria constitutively shed outer membrane vesicles (OMVs) which play a significant role in the host-pathogen interaction, eventually determining the outcome of the infection. We previously found that Bordetella pertussis, the etiological agent of whooping cough, survives the innate interaction with human macrophages remaining alive inside these immune cells. Adenylate cyclase (CyaA), one of the main toxins of this pathogen, was found involved in the modulation of the macrophage defense response, eventually promoting bacterial survival within the cells. We here investigated whether B. pertussis OMVs, loaded with most of the bacterial toxins and CyaA among them, modulate the macrophage response to the bacterial infection. We observed that the pre-incubation of macrophages with OMVs led to a decreased macrophage defense response to the encounter with the bacteria, in a CyaA dependent way. Our results suggest that CyaA delivered by B. pertussis OMVs dampens macrophages protective function by decreasing phagocytosis and the bactericidal capability of these host cells. By increasing the chances of bacterial survival to the innate encounter with the macrophages, B. pertussis OMVs might play a relevant role in the course of infection, promoting bacterial persistence within the host and eventually, shaping the whole infection process.
Collapse
Affiliation(s)
- Bruno Blancá
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Valdez Hugo
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), School of Sciences, La Plata National University, La Plata, Argentina
| |
Collapse
|
8
|
de Oliveira ECL, da Costa KS, Taube PS, Lima AH, Junior CDSDS. Biological Membrane-Penetrating Peptides: Computational Prediction and Applications. Front Cell Infect Microbiol 2022; 12:838259. [PMID: 35402305 PMCID: PMC8992797 DOI: 10.3389/fcimb.2022.838259] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Peptides comprise a versatile class of biomolecules that present a unique chemical space with diverse physicochemical and structural properties. Some classes of peptides are able to naturally cross the biological membranes, such as cell membrane and blood-brain barrier (BBB). Cell-penetrating peptides (CPPs) and blood-brain barrier-penetrating peptides (B3PPs) have been explored by the biotechnological and pharmaceutical industries to develop new therapeutic molecules and carrier systems. The computational prediction of peptides’ penetration into biological membranes has been emerged as an interesting strategy due to their high throughput and low-cost screening of large chemical libraries. Structure- and sequence-based information of peptides, as well as atomistic biophysical models, have been explored in computer-assisted discovery strategies to classify and identify new structures with pharmacokinetic properties related to the translocation through biomembranes. Computational strategies to predict the permeability into biomembranes include cheminformatic filters, molecular dynamics simulations, artificial intelligence algorithms, and statistical models, and the choice of the most adequate method depends on the purposes of the computational investigation. Here, we exhibit and discuss some principles and applications of these computational methods widely used to predict the permeability of peptides into biomembranes, exhibiting some of their pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Ewerton Cristhian Lima de Oliveira
- Institute of Technology, Federal University of Pará, Belém, Brazil
- *Correspondence: Kauê Santana da Costa, ; Ewerton Cristhian Lima de Oliveira,
| | - Kauê Santana da Costa
- Laboratory of Computational Simulation, Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
- *Correspondence: Kauê Santana da Costa, ; Ewerton Cristhian Lima de Oliveira,
| | - Paulo Sérgio Taube
- Laboratory of Computational Simulation, Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | | |
Collapse
|
9
|
Lama R, Pereiro P, Costa MM, Encinar JA, Medina-Gali RM, Pérez L, Lamas J, Leiro J, Figueras A, Novoa B. Turbot (Scophthalmus maximus) Nk-lysin induces protection against the pathogenic parasite Philasterides dicentrarchi via membrane disruption. FISH & SHELLFISH IMMUNOLOGY 2018; 82:190-199. [PMID: 30086378 DOI: 10.1016/j.fsi.2018.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
P. dicentrarchi is one of the most threatening pathogens for turbot aquaculture. This protozoan ciliate is a causative agent of scuticociliatosis, which is a disease with important economic consequences for the sector. Neither vaccines nor therapeutic treatments are commercially available to combat this infection. Numerous antimicrobial peptides (AMPs) have demonstrated broad-spectrum activity against bacteria, viruses, fungi, parasites and even tumor cells; an example is Nk-lysin (Nkl), which is an AMP belonging to the saposin-like protein (SAPLIP) family with an ability to interact with biological membranes. Following the recent characterization of turbot Nkl, an expression plasmid encoding Nkl was constructed and an anti-Nkl polyclonal antibody was successfully tested. Using these tools, we demonstrated that although infection did not clearly affect nkl mRNA expression, it induced changes at the protein level. Turbot Nkl had the ability to inhibit proliferation of the P. dicentrarchi parasite both in vivo and in vitro. Moreover, a shortened peptide containing the active core of turbot Nkl (Nkl71-100) was synthesized and showed high antiparasitic activity with a direct effect on parasite viability that probably occurred via membrane disruption. Therefore, the nkl gene may be a good candidate for genetic breeding selection of fish, and either the encoded peptide or its shortened analog is a promising antiparasitic treatment in aquaculture.
Collapse
Affiliation(s)
- R Lama
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - P Pereiro
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - M M Costa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - J A Encinar
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, Spain
| | - R M Medina-Gali
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, Spain
| | - L Pérez
- Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández, Elche, Spain
| | - J Lamas
- Departamento de Biología Funcional e Instituto de Acuicultura, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - J Leiro
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - A Figueras
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - B Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.
| |
Collapse
|
10
|
Peptide based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed Pharmacother 2018; 103:574-581. [PMID: 29677544 DOI: 10.1016/j.biopha.2018.04.025] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/21/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Bioactive peptides are actively involved in different biological functions and importantly contribute to human health, and the use of peptides as therapeutics has a long successful history in disease management. A number of peptides have wide-ranging therapeutic effects, such as antioxidant, antimicrobial, and antithrombotic effects. Neurodegenerative diseases are typically caused by abnormal aggregations of proteins or peptides, and the depositions of these aggregates in or on neurons, disrupt signaling and eventually kill neurons. During recent years, research on short peptides has advanced tremendously. This review offers a brief introduction to peptide based therapeutics and their application in disease management and provides an overview of peptide vaccines, and toxicity related issues. In addition, the importance of peptides in the management of different neurodegenerative diseases and their therapeutic applications is discussed. The present review provides an understanding of peptides and their applications for the management of different diseases, but with focus on neurodegenerative diseases. The role of peptides as anti-cancer, antimicrobial and antidiabetic agents has also been discussed.
Collapse
|
11
|
Zhou QJ, Wang J, Liu M, Qiao Y, Hong WS, Su YQ, Han KH, Ke QZ, Zheng WQ. Identification, expression and antibacterial activities of an antimicrobial peptide NK-lysin from a marine fish Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 55:195-202. [PMID: 27238427 DOI: 10.1016/j.fsi.2016.05.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
As fundamental immunologic mechanism, the innate immunity system is more important than the specific immunity system in teleost fishes during pathogens infection. Antimicrobial peptides are integral parts of the innate immune system, and play significant roles against pathogens infection. NK-lysin, the compounds of the natural killer cells and cytotoxic T cells, are potent and effective antimicrobial peptides widely distributed in animals. In this study, we reported the sequence characteristics, expression profiles and antibacterial activities of a NK-lysin gene (Lc-NK-lysin) from a commercially important marine fish, the large yellow croaker (Larimichthys crocea). The open reading frame of Lc-NK-lysin cDNA sequence was 447 bp in length, coding 148 amino acids. The genomic DNA of Lc-NK-lysin has the common features of NK-lysin family, consisting of five exons and four introns, and in its deduced mature peptide, there are six well-conserved cysteine residues and a Saposin B domain. Lc-NK-lysin was expressed in all tested tissues (skin, muscle, gill, brain, head kidney, heart, liver, spleen, stomach and intestine) with different expression patterns. In pathogens infection the expression profiles of Lc-NK-lysin varied significantly in gill, head kidney, spleen and liver, indicating its role in immune response. Two peptides (Lc-NK-lysin-1 and Lc-NK-lysin-2) divided from the core region of the Lc-NK-lysin mature polypeptide were chemically synthesized and their antibacterial activities were examined; the potential function on the inhibition of bacteria propagation was revealed. Our results suggested that Lc-NK-lysin is a typical member of the NK-lysin family and as an immune-related gene it involves in the immune response when pathogens invasion.
Collapse
Affiliation(s)
- Qi-Jia Zhou
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Min Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Ying Qiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Wan-Shu Hong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Yong-Quan Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, Fujian, China.
| | - Kun-Huang Han
- State Key Laboratory of Breeding of Larimichthys crocea, Ningde 352103, Fujian, China
| | - Qiao-Zhen Ke
- State Key Laboratory of Breeding of Larimichthys crocea, Ningde 352103, Fujian, China
| | - Wei-Qiang Zheng
- State Key Laboratory of Breeding of Larimichthys crocea, Ningde 352103, Fujian, China
| |
Collapse
|
12
|
Valdez HA, Oviedo JM, Gorgojo JP, Lamberti Y, Rodriguez ME. Bordetella pertussis modulates human macrophage defense gene expression. Pathog Dis 2016; 74:ftw073. [PMID: 27465637 DOI: 10.1093/femspd/ftw073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 01/14/2023] Open
Abstract
Bordetella pertussis, the etiological agent of whooping cough, still causes outbreaks. We recently found evidence that B. pertussis can survive and even replicate inside human macrophages, indicating that this host cell might serve as a niche for persistence. In this work, we examined the interaction of B. pertussis with a human monocyte cell line (THP-1) that differentiates into macrophages in culture in order to investigate the host cell response to the infection and the mechanisms that promote that intracellular survival. To that end, we investigated the expression profile of a selected number of genes involved in cellular bactericidal activity and the inflammatory response during the early and late phases of infection. The bactericidal and inflammatory response of infected macrophages was progressively downregulated, while the number of THP-1 cells heavily loaded with live bacteria increased over time postinfection. Two of the main toxins of B. pertussis, pertussis toxin (Ptx) and adenylate cyclase (CyaA), were found to be involved in manipulating the host cell response. Therefore, failure to express either toxin proved detrimental to the development of intracellular infections by those bacteria. Taken together, these results support the relevance of host defense gene manipulation to the outcome of the interaction between B. pertussis and macrophages.
Collapse
Affiliation(s)
- Hugo Alberto Valdez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Juan Marcos Oviedo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
13
|
Chen J, Yang C, Tizioto PC, Huang H, Lee MOK, Payne HR, Lawhon SD, Schroeder F, Taylor JF, Womack JE. Expression of the Bovine NK-Lysin Gene Family and Activity against Respiratory Pathogens. PLoS One 2016; 11:e0158882. [PMID: 27409794 PMCID: PMC4943647 DOI: 10.1371/journal.pone.0158882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/23/2016] [Indexed: 12/22/2022] Open
Abstract
Unlike the genomes of many mammals that have a single NK-lysin gene, the cattle genome contains a family of four genes, one of which is expressed preferentially in the lung. In this study, we compared the expression of the four bovine NK-lysin genes in healthy animals to animals challenged with pathogens known to be associated with bovine respiratory disease (BRD) using transcriptome sequencing (RNA-seq). The expression of several NK-lysins, especially NK2C, was elevated in challenged relative to control animals. The effects of synthetic peptides corresponding to functional region helices 2 and 3 of each gene product were tested on both model membranes and bio-membranes. Circular dichroism spectroscopy indicated that these peptides adopted a more helical secondary structure upon binding to an anionic model membrane and liposome leakage assays suggested that these peptides disrupt membranes. Bacterial killing assays further confirmed the antimicrobial effects of these peptides on BRD-associated bacteria, including both Pasteurella multocida and Mannhemia haemolytica and an ultrastructural examination of NK-lysin-treated P. multocida cells by transmission electron microscopy revealed the lysis of target membranes. These studies demonstrate that the expanded bovine NK-lysin gene family is potentially important in host defense against pathogens involved in bovine respiratory disease.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Chingyuan Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Polyana C. Tizioto
- Embrapa Southeast Livestock, São Carlos, Brazil
- Division of Animal Sciences, University of Missouri, Columbia, United States of America
| | - Huan Huang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Mi O. K. Lee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Harold R. Payne
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
| | - Jeremy F. Taylor
- Division of Animal Sciences, University of Missouri, Columbia, United States of America
| | - James E. Womack
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, United States of America
- * E-mail:
| |
Collapse
|
14
|
Xu X, Qu T, Fan L, Chen X, Gao M, Zhang J, Guo T. Preparation of pH- and magnetism-responsive sodium alginate/Fe 3O 4@HNTs nanocomposite beads for controlled release of granulysin. RSC Adv 2016; 6:111747-111753. [DOI: 10.1039/c6ra22827e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
pH- and magnetism-responsive sodium alginate/Fe3O4@halloysite nanotube nanocomposite beads were prepared for the controlled release of granulysin.
Collapse
Affiliation(s)
- Xianghong Xu
- Department of Biotherapy Center
- Gansu Provincial Hospital
- Lanzhou
- China
| | - Tao Qu
- Department of Biotherapy Center
- Gansu Provincial Hospital
- Lanzhou
- China
| | - Ling Fan
- Key Laboratory of Clay Mineral Applied Research of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | - Xiaomei Chen
- Department of Biotherapy Center
- Gansu Provincial Hospital
- Lanzhou
- China
| | - Men Gao
- Department of Biotherapy Center
- Gansu Provincial Hospital
- Lanzhou
- China
| | - Junping Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- China
| | | |
Collapse
|
15
|
Allen M, Bailey C, Cahatol I, Dodge L, Yim J, Kassissa C, Luong J, Kasko S, Pandya S, Venketaraman V. Mechanisms of Control of Mycobacterium tuberculosis by NK Cells: Role of Glutathione. Front Immunol 2015; 6:508. [PMID: 26500648 PMCID: PMC4593255 DOI: 10.3389/fimmu.2015.00508] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/18/2015] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), continues to be one of the most prevalent infectious diseases in the world. There is an upward trend in occurrence due to emerging multidrug resistant strains and an increasingly larger proportion of immunocompromised patient populations as a result of the acquired immunodeficiency syndrome pandemic. The complex and often deadly combination of multidrug resistant M. tb (MDR-M. tb) along with human immunodeficiency virus (HIV) puts a significant number of people at high risk for pulmonary and extra-pulmonary TB without sufficient therapeutic options available. Natural killer (NK) cells and macrophages are major components of the body's innate immune system, contributing significantly to the body's ability to synergistically inhibit the growth of M. tb in immune compromised individuals lacking a sufficient T cell response. Direct mechanisms of control are largely through the secretory products perforin, granulysin, and granzymes, as well as multiple membrane-bound death receptors that facilitate target directed lysis. NK cells also have a role in indirectly stimulating an immune response through activation of macrophages and monocytes with multiple signaling pathways, including both reactive oxygen species and reactive nitrogen species. Glutathione (GSH) has been shown to play a part in inhibiting the growth of intracellular M. tb through bacteriostatic mechanisms. Enhancing cellular GSH through several cytokines and N-acetyl cysteine has been shown to increase these effects, at least in part, through their action on NK cells. Taken together, there is substantial evidence for a mechanistic correlation between NK cell activity and functionality in combating M. tb in HIV infection mediated through adequate GSH production and use.
Collapse
Affiliation(s)
- Michael Allen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Cedric Bailey
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Ian Cahatol
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Levi Dodge
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Jay Yim
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Christine Kassissa
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Jennifer Luong
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Sarah Kasko
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Shalin Pandya
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences , Pomona, CA , USA ; Department of Basic Medical Sciences, Western University of Health Sciences , Pomona, CA , USA
| |
Collapse
|
16
|
Abstract
Preeclampsia (PE) impacts 8 million mother-infant pairs worldwide each year. This human pregnancy-specific disease characterized by hypertension and proteinuria accounts for significant maternal and neonatal morbidity and mortality. The current theory of the pathogenesis of PE as reviewed by Drs. Christopher Redman and Ian Sargent is thought to occur as a 2-stage process with poor placentation in the first half of pregnancy resulting in the maternal response in the second half of pregnancy. Our studies have focused on understanding the placental contribution to this serious disease by examining the gene expression profile of the deciduas basalis or basal plate, the region of the placenta involved in the "poor placentation". In this review we present summaries of our microarray datasets both of normal placentation and those gene expression changes resulting in the context of PE. Additionally, we have taken this opportunity to combine the data sets to provide a more comprehensive view of this region of the placenta. As defects in the basal plate are, in part, at the root of the disease process, we believe that understanding the pathobiology that occurs in this region will increase our ability to alter the development and/or course of PE.
Collapse
|
17
|
Ishige T, Hara H, Hirano T, Kono T, Hanzawa K. Basic characterization of avian NK-lysin (NKL) from the Japanese quail, Coturnix japonica. Anim Sci J 2013; 85:90-5. [PMID: 24206178 DOI: 10.1111/asj.12138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/15/2013] [Indexed: 11/28/2022]
Abstract
We identified an antimicrobial cationic peptide that was expressed in the natural killer cells and cytotoxic T-lymphocytes of Japanese quail. The gene, designated CjNKL, was located downstream of AEBP1L and POLD2 in a region syntenic with the chicken genome. CjNKL comprised four exons, as does chicken GgNKL. The coding sequence in CjNKL was 411 bp long and exon 3 of CjNKL lacked 9 bp when compared to chicken GgNKL, but CjNKL and GgNKL were 81% identical at the nucleic acid level. The saposin like type-B domain of CjNKL contained the six essential cysteines, one proline, 15 cationic amino acids residues, and an antibacterial region that are characteristic of NKL proteins. The 5' flanking region of CjNKL contained positive regulatory elements, an activator protein-1 binding site and two nuclear factor (NF)-κB binding sites, and a negative regulatory element, CAAT/enhancer binding protein β (C/EBPβ) binding site. However, the number of NF-κB sites and C/EBPβ sites within CjNKL are fewer than the number within GgNKL. Additionally, we confirmed that CjNKL was transcribed in at least 18 tissues, including immune and digestive tissues. These data indicated that transcriptional activation of CjNKL differed slightly from those of GgNKL.
Collapse
Affiliation(s)
- Taichiro Ishige
- Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | | | | | | |
Collapse
|
18
|
Singh SV, Singh AV, Kumar A, Singh PK, Deb R, Verma AK, Kumar A, Tiwari R, Chakraborty S, Dhama K. Survival mechanisms of <i>Mycobacterium avium</i> subspecies <i>paratuberculosis</i> within host species and in the environment—A review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ns.2013.56088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Park GH, Kim KY, Cheong JY, Cho SW, Kwack K. Association of GNLY genetic polymorphisms with chronic liver disease in a Korean population. DNA Cell Biol 2012; 31:1492-8. [PMID: 22788687 DOI: 10.1089/dna.2012.1709] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Granulysin (GNLY) is found in cytotoxic granules of cytolytic T lymphocytes and natural killer (NK) cells, which are critical for hepatitis B virus (HBV) clearance. GNLY cytotoxicity plays an important role in the defense against viruses or intracellular bacteria. We hypothesized that genetic variation in the GNLY gene could affect the resistance of hosts against HBV infection. We compared the distribution frequencies of GNLY polymorphisms between an HBV-induced chronic liver disease (CLD) group and a spontaneous recovery (SR) control group to determine whether GNLY polymorphisms play a role in HBV clearance. A total of 117 patients in the SR group and 230 patients in the CLD group were enrolled. Samples derived from complex infections, including hepatitis C and human immunodeficiency virus, and those associated with insufficient clinical information (10 samples in SR and 24 samples in CLD) were excluded from the study. The final analysis included 107 SR and 206 CLD samples. DNA was extracted from peripheral blood, and GNLY genotypes were determined by the GoldenGate(®) method. The genotype distribution of the single-nucleotide polymorphisms (SNPs) rs2886767 (C>T), rs1561285 (G>C), and rs11127 (T>C) were significantly different between the SR and CLD groups in a recessive model (p<0.015). These three SNPs were in a complete linkage disequilibrium (LD) block. Diplotype distributions of haplotype (HT) 1 (C-G-T) and HT2 (T-C-C) were significantly different between the SR and CLD groups in a recessive model (p=0.025) and a dominant model (p=0.008). All p-values remained significant after multiple comparisons. GNLY polymorphism genotypes and diplotypes were associated with the chronicity of HBV. These data suggested that genetic variation of GNLY may be an important factor in HBV clearance through the CD8+ T or NK cell-mediated removal of HBV-infected cells from the host.
Collapse
Affiliation(s)
- Geun-Hee Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | | | | | | | | |
Collapse
|
20
|
Qiu Y, Hu AB, Wei H, Liao H, Li S, Chen CY, Zhong W, Huang D, Cai J, Jiang L, Zeng G, Chen ZW. An atomic-force basis for the bacteriolytic effects of granulysin. Colloids Surf B Biointerfaces 2012; 100:163-8. [PMID: 22766293 DOI: 10.1016/j.colsurfb.2012.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 12/12/2022]
Abstract
While granulysin has been suggested to play an important role in adaptive immune responses against bacterial infections by killing pathogens, and molecular force for protein-protein interaction or protein-bacteria interaction may designate the specific functions of a protein, the molecular-force basis underlying the bacteriolytic effects of granulysin at single-molecule level remains unknown. Here, we produced and purified bactericidal domain of macaque granulysin (GNL). Our bacterial lysis assays suggested that GNL could efficiently kill bacteria such as Listeria monocytogenes. Furthermore, we found that the interaction force between GNL and L. monocytogenes measured by an atomic force microscopy (AFM) was about 22.5 pN. Importantly, our AFM-based single molecular analysis suggested that granulysin might lyse the bacteria not only through electrostatic interactions but also by hydrogen bonding and van der Waals interaction. Thus, this work provides a previous unknown mechanism for bacteriolytic effects of granulysin.
Collapse
Affiliation(s)
- Yueqin Qiu
- Department of Chemistry, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Míguez MJ, Rosenberg R, Burbano X, Malow R. Cholesterol as a Mediator of Alcohol-Induced Risks for Respiratory Disease Hospitalizations among People Living With HIV. ACTA ACUST UNITED AC 2012; Suppl 1. [PMID: 23565339 DOI: 10.4172/2155-6113.s1-001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We analyzed the role of cholesterol as a potential mediator of alcohol-increased risk of respiratory infections that required hospitalization in People Living with HIV (PLWH). Using a longitudinal clinic-based design, 346 PLWH were consecutively admitted and followed at Jackson Memorial Medical Center(enrolled in the study). Following national guidelines, PLWH were stratified according to cholesterol levels: <150 mg/dl (Hypocholesterolemia= HypoCHL), 151-200, and >200 mg/dl Hypercholesterolemia =HyperCHL), and compared on the basis of clinical outcomes, lymphocyte phenotypes and behavioral risks. Analyses indicated that compared to HyperCHL participants, HypoCHL subjects were more likely to be hospitalized, particularly for lower respiratory tract infections (LRTI). Excessive admissions were associated with more deviant lymphocyte profiles, particularly limited NK cells. In logistic regression analyses, smoking (OR=1.5), HypoCHL (OR=7.7), and alcohol (OR=1.2) were predictors of LRTI. These findings warrant further investigation of the potential use of HypoCHL as a risk marker, and the cost-effectiveness of switching prevention gears towards HypoCHL, alcohol and tobacco in PLWH.
Collapse
Affiliation(s)
- María José Míguez
- Associate Professor, School of Integrated Sciences and Humanity, Florida International University, Miami, FL, USA
| | | | | | | |
Collapse
|
22
|
Bruhn O, Grötzinger J, Cascorbi I, Jung S. Antimicrobial peptides and proteins of the horse--insights into a well-armed organism. Vet Res 2011; 42:98. [PMID: 21888650 PMCID: PMC3179947 DOI: 10.1186/1297-9716-42-98] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 09/02/2011] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial peptides play a pivotal role as key effectors of the innate immune system in plants and animals and act as endogenous antibiotics. The molecules exhibit an antimicrobial activity against bacteria, viruses, and eukaryotic pathogens with different specificities and potencies depending on the structure and amino-acid composition of the peptides. Several antimicrobial peptides were comprehensively investigated in the last three decades and some molecules with remarkable antimicrobial properties have reached the third phase of clinical studies. Next to the peptides themselves, numerous organisms were examined and analyzed regarding their repertoire of antimicrobial peptides revealing a huge number of candidates with potencies and properties for future medical applications. One of these organisms is the horse, which possesses numerous peptides that are interesting candidates for therapeutical applications in veterinary medicine. Here we summarize investigations and knowledge on equine antimicrobial peptides, point to interesting candidates, and discuss prospects for therapeutical applications.
Collapse
Affiliation(s)
- Oliver Bruhn
- Institute for Experimental and Clinical Pharmacology, Hospitalstraße 4, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany.
| | | | | | | |
Collapse
|
23
|
Does the antimicrobial peptide, granulysin, play a role in decreasing the incidence of secondary bacterial infection in psoriasis? JOURNAL OF THE EGYPTIAN WOMEN’S DERMATOLOGIC SOCIETY 2011. [DOI: 10.1097/01.ewx.0000392823.59573.fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
King AE, Critchley HOD. Oestrogen and progesterone regulation of inflammatory processes in the human endometrium. J Steroid Biochem Mol Biol 2010; 120:116-26. [PMID: 20067835 DOI: 10.1016/j.jsbmb.2010.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/23/2009] [Accepted: 01/05/2010] [Indexed: 01/14/2023]
Abstract
The human endometrium is a unique tissue that has to undergo cycles of proliferation, differentiation, destruction and repair. This ensures that the endometrium is optimally prepared for potential embryo implantation but in the absence of an embryo, menstruation occurs to allow endometrial regeneration. These cycles of tissue remodelling occur under the sequential influence of the sex steroid hormones, oestrogen and progesterone. The physiological events of implantation and menstruation display features of inflammation, tightly regulated by oestrogen and progesterone. After menstruation cellular proliferation and blood vessel growth is modulated by oestrogen while after ovulation progesterone is the dominant hormone. In preparation for implantation, progesterone regulates decidualization of the endometrium, uterine natural killer cell numbers within the endometrium and chemokine and cytokine expression. Menstruation, in contrast, is preceded by progesterone withdrawal, which results in an influx of leukocytes into the endometrium and increased production of chemokines and matrix metalloproteinases allowing tissue degradation. The aim of this article is to review the current knowledge on the regulation of inflammatory events within the endometrium by oestrogen and progesterone, in relation to two pivotal events for human reproduction, implantation and menstruation.
Collapse
Affiliation(s)
- Anne E King
- University of Edinburgh, Centre for Reproductive Biology, The Queen's Medical Research Institute, United Kingdom
| | | |
Collapse
|
25
|
Nakamura S, Kobayashi M, Sugino T, Kajimoto O, Matoba R, Matsubara K. Effect of exercise on gene expression profile in unfractionated peripheral blood leukocytes. Biochem Biophys Res Commun 2009; 391:846-51. [PMID: 19945435 DOI: 10.1016/j.bbrc.2009.11.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/21/2009] [Indexed: 12/20/2022]
Abstract
A 4-h bout of exercise induces immunomodulatory effects. Peripheral blood was withdrawn before, and at 4, 8 and 24h after the start of exercise. RNA from the unfractionated white blood cells was analyzed using Agilent human 44K microarray. The expression profiles were sorted into seven clusters based on their unique time-dependent kinetics. In a separate experiment, cell-specific markers were collected and compared among the members in each cluster. Two clusters were assigned as representing neutrophils, one as NK cells, and another mostly as T cells. Three clusters seemed to be mixtures of several cell types. Extension of this approach to other systems is discussed.
Collapse
Affiliation(s)
- Seiji Nakamura
- DNA Chip Research Inc, Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Characterization and expression profile of complete functional domain of granulysin/NK-lysin homologue (buffalo-lysin) gene of water buffalo (Bubalus bubalis). Vet Immunol Immunopathol 2009; 128:413-7. [DOI: 10.1016/j.vetimm.2008.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/02/2008] [Accepted: 11/28/2008] [Indexed: 11/23/2022]
|
27
|
Capinos Scherer CF, Endsley JJ, de Aguiar JB, Jacobs WR, Larsen MH, Palmer MV, Nonnecke BJ, Ray Waters W, Mark Estes D. Evaluation of granulysin and perforin as candidate biomarkers for protection following vaccination with Mycobacterium bovis BCG or M. bovisDeltaRD1. Transbound Emerg Dis 2009; 56:228-39. [PMID: 19389081 DOI: 10.1111/j.1865-1682.2008.01058.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The development of improved vaccines against tuberculosis (TB) is directly linked to the investigation of new and better correlates of protection after vaccination against TB. Cloning and characterization of bovine homologues of the antimicrobial protein granulysin (Bo-lysin) and perforin by our group could be used as potential biomarkers for TB vaccination efficacy. In the present study, we examined the kinetics of granulysin, perforin, IFNgamma and Fas-L responses to Mycobacterium bovis purified protein derivative (PPD) stimulation by peripheral blood mononuclear cells from M. bovisDeltaRD1-, BCG- and non-vaccinated cattle. Gene expression profiles following PPD stimulation showed significant increases in transcripts for granulysin and IFNgamma in both CD4(+) and CD8(+) T cells in BCG-vaccinated as compared with non-vaccinated animals. Perforin and IFNgamma examined by flow cytometry, showed a difference of 1-2% more PPD-specific cells in BCG-vaccinated than non-vaccinated animals. In the vaccine trial, granulysin and perforin were significantly increased in both vaccine groups as compared with control after vaccination and challenge. IFNgamma expression was increased only after vaccination and secretion was higher in the control, non-protected group as compared with both vaccine groups demonstrating no correlation with protection upon vaccination. In summary, results shown here provide evidence that granulysin and perforin are prospective candidates as biomarkers of protection after vaccination against TB.
Collapse
|
28
|
Abstract
Emberben az antimikrobiális peptidek három fő csoportját a defensinek, a cathelicidinek és a histatinok képezik. Ezek biokémiai sajátságaikban és antimikrobiális hatásuk spektruma tekintetében igen különbözőek, de valamennyi hasznosan szolgálja a szervezet mikrobiális fertőzésekkel szembeni védelmét. Ezeket a peptideket jó ideig csupán új típusú antimikrobiális ágenseknek tekintették, újabb tanulmányok során azonban feltárták, hogy antimikrobiális aktivitásuk mellett sok más – ugyancsak a gazdavédelmet szolgáló – biológiai aktivitással rendelkeznek. A veleszületett immunitás fontos komponenseinek bizonyultak, továbbá azt is kimutatták róluk, hogy az éretlen dendritikus sejteken és lymphocytákon lévő különböző receptorokkal való kölcsönhatás révén tulajdonképpen ezek a peptidek indítják be az adaptív immunválasz-reakciókat is, amelyekben aztán további immunmodulátori szerepet játszanak. Az LL-37-tel kapcsolatban pedig egyenesen azt állítják, hogy annak immunmoduláló aktivitása erősebb az antimikrobiális aktivitásnál. A humán α-defensinekről pedig azt is kimutatták, hogy más fajban is megőrzik aktivitásukat, egerekben ugyanis immunadjuváns hatást fejtettek ki. Újabban egyre több közleményben arról számolnak be, hogy számos emberi betegséggel társultan e gazdavédő kis peptidek termelődésének károsodása és/vagy funkcióinak zavarai figyelhetők meg. E peptidek multifunkcionális szerepének felismerése pedig a gyógyszeripar irántuk való fokozott érdeklődését eredményezte.
Collapse
Affiliation(s)
- Károly Lapis
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar I. Patológia és Kísérleti Rákkutató Intézet Budapest Üllői út 26. 1085
| |
Collapse
|
29
|
Lapis K. [Physiologic and pathophysiologic significance of antimicrobial (host defensive) small peptides]. Orv Hetil 2008; 149:2419-24. [PMID: 19073453 DOI: 10.1556/oh.2008.28511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antimicrobial peptides are typically small cationic and amphiphilic molecules, which exhibit a wide spectrum of antimicrobial activity. These peptides are seen as an important and ancient mechanism of defence for most living organisms. Some of these peptides are produced constitutively whereas others are induced by exogenous microbial products or by proinflammatory cytokines. The antimicrobial peptides differ widely in their biochemical properties, but typically they act directly against microbes through a mechanism involving membrane disruption and pore formation leading to leakage of cell content and cell death. In human beings the defensins, cathelicidins and histatins are the principal antimicrobial peptides. They are found in neutrophils, in some other white blood cells and in the epithelium of every major organ system examined. Recent studies revealed that, beyond antimicrobial activity, the antimicrobial peptides are involved in a remarkably broad range of host defence related functions including neutralisation of some bacterial toxins and augmentation of both innate and adaptive immune mechanisms. Since several of them have proved to be effective against antibiotic resistant bacteria, these peptides are being widely used as blueprints for the design of new antimicrobial agents.
Collapse
Affiliation(s)
- Károly Lapis
- Semmelweis Egyetem, Altalános Orvostudományi Kar I. Patológiai és Kísérleti Rákkutató Intézet Budapest Ullôi út 26. 1085.
| |
Collapse
|
30
|
Namjoshi S, Caccetta R, Benson HAE. Skin peptides: biological activity and therapeutic opportunities. J Pharm Sci 2008; 97:2524-42. [PMID: 17914716 DOI: 10.1002/jps.21198] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The skin provides an effective barrier to the loss of body fluids and environmental assault. In addition to the physical barrier provided by the stratum corneum, the skin also contains a chemical barrier consisting of antimicrobial peptides (AMPs), which control microbial growth on the surface. These AMPs also have multiple roles as mediators of inflammation with effects on epithelial and inflammatory cells, influencing cell proliferation, wound healing, cytokine/chemokine production and chemotaxis. This review describes the range of peptides found in the skin, both constitutive and those induced in response to injury. The role these peptides play in normal skin function and in various skin conditions is described. A better understanding of their role in normal and skin disease may offer new strategies in skin disease, dermatology and as cosmeceuticals.
Collapse
Affiliation(s)
- Sarika Namjoshi
- School of Pharmacy, Curtin University of Technology, Perth, Western Australia, Australia
| | | | | |
Collapse
|
31
|
Harder J, Gläser R, Schröder JM. Human antimicrobial proteins effectors of innate immunity. ACTA ACUST UNITED AC 2008; 13:317-38. [PMID: 18182460 DOI: 10.1177/0968051907088275] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We live in a world populated by an enormous number of micro-organisms. This necessitates the existence of highly effective mechanisms to control microbial growth. Through many research efforts, a chemical defense system based on the production of antimicrobial proteins (AMPs) has been identified. AMPs are endogenous, small proteins exhibiting antimicrobial activity against a wide variety of micro-organisms. The wide distribution of these molecules in the plant and animal kingdom reflects their biological significance. Various human AMPs show a potent effect on pathogenic micro-organisms including antibiotic-resistant bacteria. Thus, there is great interest in understanding the role of AMPs within innate immunity and evaluating their use and/or specific induction to fend off infections. In this review, we provide an overview of the characteristics of human AMPs and discuss examples where AMPs may be involved in the pathogenesis of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Jürgen Harder
- Clinical Research Unit, Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | | | |
Collapse
|
32
|
Abstract
The first responsibility for protection against microbial infection rests on the normal function of the innate immune system. This system establishes an antimicrobial barrier, recognizes attempts to breach this barrier, and responds rapidly to danger, all based on an innate defense system. Here, we review this system as it applies to mammalian skin, highlighting how a physical, cellular, and chemical barrier is formed to resist infection. When challenged, the diverse cellular components of the skin recognize the nature of the challenge and respond with an appropriate antimicrobial program including the release of antimicrobial peptides and, when necessary, recruitment and coordination with adaptive immune responses. Recent insights into these processes have advanced the understanding of disease pathogenesis and provided new therapeutic options for a variety of skin diseases.
Collapse
|
33
|
Hirono I, Kondo H, Koyama T, Arma NR, Hwang JY, Nozaki R, Midorikawa N, Aoki T. Characterization of Japanese flounder (Paralichthys olivaceus) NK-lysin, an antimicrobial peptide. FISH & SHELLFISH IMMUNOLOGY 2007; 22:567-75. [PMID: 17046282 DOI: 10.1016/j.fsi.2006.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 07/14/2006] [Accepted: 08/03/2006] [Indexed: 05/12/2023]
Abstract
The NK-lysin cDNA of Japanese flounder, Paralichthys olivaceus, consists of 657bp, containing an open reading frame (ORF) of 444bp, which encodes 147 amino acid residues. The amino acid sequence of Japanese flounder NK-lysin has 21% identity to porcine NK-lysin and bovine NK-lysin, 23% to equine NK-lysin, and 46% to zebrafish NK-lysin-like protein. Multiple alignments of Japanese flounder NK-lysin and other known saposin-like proteins revealed that the six cysteine residues important for structural folding are completely conserved. The Japanese flounder NK-lysin gene is approximately 2kb and consists of five exons and four introns. Japanese flounder NK-lysin mRNA constitutive expression was mainly detected in gills, heart, head kidney, intestines, peripheral blood leukocytes (PBLs), spleen and trunk kidney, and was detected at low levels in liver, muscle and ovary. However, expression was not detected in brain, skin and stomach of apparently healthy Japanese flounder. Gene expression of Japanese flounder NK-lysin was not inducible by lipopolysaccharide (LPS) treatment. A synthesized NK-lysin peptide, consisting of 27 amino acid residues, showed antimicrobial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Photobacterium damselae subsp. piscicida.
Collapse
Affiliation(s)
- Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Huang LP, Lyu SC, Clayberger C, Krensky AM. Granulysin-mediated tumor rejection in transgenic mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:77-84. [PMID: 17182542 PMCID: PMC2664664 DOI: 10.4049/jimmunol.178.1.77] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Granulysin (GNLY) is a cytolytic molecule expressed by human CTL and NK cells with activity against a variety of tumors and microbes, including Mycobacterium tuberculosis. Although the molecular mechanism of GNLY-induced apoptosis of Jurkat T cells is well defined in vitro, no direct evidence for its in vivo effects has been demonstrated. Because there is no murine homologue of GNLY, we generated mice expressing GNLY using a bacterial artificial chromosome containing the human GNLY gene and its 5' and 3' flanking regions. GNLY is expressed in leukocytes from transgenic mice with similar kinetics as in PBMC from humans: GNLY is constitutively expressed in NK cells and, following stimulation through the TCR, appears in T lymphocytes 8-10 days after activation. Both forms of GNLY (9 and 15 kDa) are produced by activated T cells, whereas the 15-kDa form predominates in freshly isolated NK cells from transgenic animals. GNLY mRNA is highest in spleen, with detectable expression in thymus and lungs, and minimal expression in heart, kidney, liver, muscle, intestine, and brain. Allospecific cell lines generated from GNLY transgenic animals showed enhanced killing of target cells. In vivo effects of GNLY were evaluated using the syngeneic T lymphoma tumor C6VL. GNLY transgenic mice survived significantly longer than nontransgenic littermates in response to a lethal tumor challenge. These findings demonstrate for the first time an in vivo effect of GNLY and suggest that GNLY may prove a useful therapeutic modality for the treatment of cancer.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cell Line
- Chromosomes, Artificial, Bacterial
- Cytotoxicity, Immunologic/genetics
- Exocytosis
- Humans
- Killer Cells, Natural/immunology
- Lymphoma/immunology
- Mice
- Mice, Transgenic
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell/agonists
- T-Lymphocytes/immunology
- Tissue Distribution
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | - Alan M. Krensky
- Address correspondence and reprint requests to Dr. Alan M. Krensky, Department of Pediatrics, Stanford University School of Medicine, Center for Clinical Science Research 2105, 300 Pasteur Drive, Stanford, CA 94305-5164. E-mail address:
| |
Collapse
|
35
|
Winn VD, Haimov-Kochman R, Paquet AC, Yang YJ, Madhusudhan MS, Gormley M, Feng KTV, Bernlohr DA, McDonagh S, Pereira L, Sali A, Fisher SJ. Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term. Endocrinology 2007; 148:1059-79. [PMID: 17170095 DOI: 10.1210/en.2006-0683] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human placentation entails the remarkable integration of fetal and maternal cells into a single functional unit. In the basal plate region (the maternal-fetal interface) of the placenta, fetal cytotrophoblasts from the placenta invade the uterus and remodel the resident vasculature and avoid maternal immune rejection. Knowing the molecular bases for these unique cell-cell interactions is important for understanding how this specialized region functions during normal pregnancy with implications for tumor biology and transplantation immunology. Therefore, we undertook a global analysis of the gene expression profiles at the maternal-fetal interface. Basal plate biopsy specimens were obtained from 36 placentas (14-40 wk) at the conclusion of normal pregnancies. RNA was isolated, processed, and hybridized to HG-U133A&B Affymetrix GeneChips. Surprisingly, there was little change in gene expression during the 14- to 24-wk interval. In contrast, 418 genes were differentially expressed at term (37-40 wk) as compared with midgestation (14-24 wk). Subsequent analyses using quantitative PCR and immunolocalization approaches validated a portion of these results. Many of the differentially expressed genes are known in other contexts to be involved in differentiation, motility, transcription, immunity, angiogenesis, extracellular matrix dissolution, or lipid metabolism. One sixth were nonannotated or encoded hypothetical proteins. Modeling based on structural homology revealed potential functions for 31 of these proteins. These data provide a reference set for understanding the molecular components of the dialogue taking place between maternal and fetal cells in the basal plate as well as for future comparisons of alterations in this region that occur in obstetric complications.
Collapse
Affiliation(s)
- Virginia D Winn
- Reproductive Science, University of Colorado Health Sciences Center, 12800 East 19th Avenue, P.O. Box 6511, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Barman H, Walch M, Latinovic-Golic S, Dumrese C, Dolder M, Groscurth P, Ziegler U. Cholesterol in negatively charged lipid bilayers modulates the effect of the antimicrobial protein granulysin. J Membr Biol 2007; 212:29-39. [PMID: 17206515 DOI: 10.1007/s00232-006-0040-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/05/2006] [Indexed: 10/23/2022]
Abstract
The release of granulysin, a 9-kDa cationic protein, from lysosomal granules of cytotoxic T lymphocytes and natural killer cells plays an important role in host defense against microbial pathogens. Granulysin is endocytosed by the infected target cell via lipid rafts and kills subsequently intracellular bacteria. The mechanism by which granulysin binds to eukaryotic and prokaryotic cells but lyses only the latter is not well understood. We have studied the effect of granulysin on large unilamellar vesicles (LUVs) and supported bilayers with prokaryotic and eukaryotic lipid mixtures or model membranes with various lipid compositions and charges. Binding of granulysin to bilayers with negative charges, as typically found in bacteria and lipid rafts of eukaryotic cells, was shown by immunoblotting. Fluorescence release assays using LUV revealed an increase in permeability of prokaryotic, negatively charged and lipid raft-like bilayers devoid of cholesterol. Changes in permeability of these bilayers could be correlated to defects of various sizes penetrating supported bilayers as shown by atomic force microscopy. Based on these results, we conclude that granulysin causes defects in negatively charged cholesterol-free membranes, a membrane composition typically found in bacteria. In contrast, granulysin is able to bind to lipid rafts in eukaryotic cell membranes, where it is taken up by the endocytotic pathway, leaving the cell intact.
Collapse
Affiliation(s)
- Hanna Barman
- Division of Cell Biology, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Sabet S, Ochoa MT, Sieling PA, Rea TH, Modlin RL. Functional characterization of a T-cell receptor BV6+ T-cell clone derived from a leprosy lesion. Immunology 2006; 120:354-61. [PMID: 17140401 PMCID: PMC2265884 DOI: 10.1111/j.1365-2567.2006.02510.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human infection with Mycobacterium leprae, an intracellular bacterium, presents as a clinical and immunological spectrum; thus leprosy provides an opportunity to investigate mechanisms of T-cell responsiveness to a microbial pathogen. Analysis of the T-cell receptor (TCR) repertoire in leprosy lesions revealed that TCR BV6(+) T cells containing a conserved CDR3 motif are over-represented in lesions from patients with the localized form of the disease. Here, we derived a T-cell clone from a leprosy lesion that expressed TCR BV6 and the conserved CDR3 sequence L-S-G. This T-cell clone produced a T helper type 1 cytokine pattern, directly lysed M. leprae-pulsed antigen-presenting cells by the granule exocytosis pathway, and expressed the antimicrobial protein granulysin. BV6(+) T cells may therefore functionally contribute to the cell-mediated immune response against M. leprae.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Base Sequence
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Clone Cells/immunology
- Complementarity Determining Regions/immunology
- HLA-DR Antigens/immunology
- Histocompatibility Testing
- Humans
- Interferon-gamma/biosynthesis
- Leprosy/immunology
- Male
- Molecular Sequence Data
- Mycobacterium leprae/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Shereen Sabet
- Division of Dermatology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
38
|
Lettau M, Schmidt H, Kabelitz D, Janssen O. Secretory lysosomes and their cargo in T and NK cells. Immunol Lett 2006; 108:10-9. [PMID: 17097742 DOI: 10.1016/j.imlet.2006.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/22/2022]
Abstract
Secretory lysosomes are specialized organelles that combine catabolic functions of conventional lysosomes with an inducible secretory potential. They are present in various hematopoietic cell types commonly characterized by the need for rapid mobilization and secretion of effector proteins. As an example, the cytotoxic effector function of T cells and natural killer cells strictly depends on the activation-dependent mobilization of such vesicles to the cytotoxic immunological synapse. This review focuses on some molecules that have been identified as cargo of secretory lysosomes and which play a major role in effector function of CTL and NK cells. We also briefly point to the fact that the dysregulation of formation and transport of secretory vesicles is causative for severe immunodeficiencies and autoimmunity observed in patients and also in mice that have been used as representative model systems to analyze the pathophysiological relevance of secretory vesicles in vivo.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, Medical Center Schleswig-Holstein Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | | | |
Collapse
|
39
|
Floros J, Thomas NJ, Liu W, Papagaroufalis C, Xanthou M, Pereira S, Fan R, Guo X, Diangelo S, Pavlovic J. Family-based association tests suggest linkage between surfactant protein B (SP-B) (and flanking region) and respiratory distress syndrome (RDS): SP-B haplotypes and alleles from SP-B-linked loci are risk factors for RDS. Pediatr Res 2006; 59:616-21. [PMID: 16549540 DOI: 10.1203/01.pdr.0000203145.48585.2c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genetic variants of surfactant protein B (SP-B) have been associated with respiratory distress syndrome (RDS) in the prematurely born infant. We wished to determine linkage between RDS and SP-B single nucleotide polymorphisms (SNPs) [-18 (A/C), 1013 (A/C), 1580 (C/T), and 9306 (A/G)] or SP-B-linked microsatellite [(D2S388, D2S2232, (AAGG)n, and GATA41E01 (or D2S1331)] loci and identify susceptibility or protective alleles and haplotypes. We genotyped 132 families consisting of one or two parents and at least one child affected with RDS and performed biallelic and multiallelic family-based association test (FBAT) analysis, and extended transmission disequilibrium test (ETDT). ETDT analysis identified the microsatellite SP-B-linked loci (except D2S2232) to be linked to RDS. One allele from each of these three marker loci contributes to the risk of RDS. Multiallelic FBAT analysis detected a signal of linkage for the region of the four SNP loci. Three haplotypes within this region contribute to RDS risk. Although no other region showed significant linkage as judged by multiallelic FBAT, biallelic FBAT analysis revealed three potential susceptibility haplotypes formed by two to four loci within the SP-B and SP-B-linked microsatellite region. Each haplotype included GATA41E01, which was identified by ETDT analysis to be linked to RDS. We conclude that SP-B or SP-B-linked loci are linked to RDS and certain alleles or haplotypes are susceptibility or protective factors for the development of RDS in infants born prematurely.
Collapse
Affiliation(s)
- Joanna Floros
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang Q, Bao B, Wang Y, Peatman E, Liu Z. Characterization of a NK-lysin antimicrobial peptide gene from channel catfish. FISH & SHELLFISH IMMUNOLOGY 2006; 20:419-26. [PMID: 16005642 DOI: 10.1016/j.fsi.2005.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 05/11/2005] [Indexed: 05/03/2023]
Affiliation(s)
- Qun Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | |
Collapse
|
41
|
Zhang X, Matsuo K, Farmawati A, Higashi Y, Ogawa K, Nagata K, Nagatomi R. Exhaustive Exercise Induces Differential Changes in Serum Granulysin and Circulating Number of Natural Killer Cells. TOHOKU J EXP MED 2006; 210:117-24. [PMID: 17023765 DOI: 10.1620/tjem.210.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The circulating number of natural killer (NK) cells largely changes after an acute bout of physical exercise. Granulysin is a cytolytic granule protein with a broad range of antimicrobial and tumoricidal activities produced and released by human NK cells and cytolytic T lymphocytes. Since NK cells constitutively produce granulysin, most serum granulysin in healthy humans is derived from NK cells. Serum graulysin levels in the healthy humans may therefore reflect the size of whole-body NK cell population in the body. The aim of this study was to determine the effect of an acute bout of exhaustive exercise on serum granulysin in comparison with the circulating number of NK cells. Six healthy, young male volunteers participated in the study. Each subject underwent both exhaustive exercise and resting sessions in a random order with at least a seven-day interval. Subjects were asked to run to exhaustion on a treadmill with an incremental graded protocol. Blood samples were collected before, immediately after, and 1 hr, 3 hr, 6 hr, 12 hr and 24 hr after exercise. Serum granulysin levels were measured by enzyme-linked immunosorbent assay (ELISA). NK cells were determined by flow cytometry. Exhaustive exercise induced a 4.8-fold increase in peripheral blood NK cells, but no significant change in serum granulysin. Our results support the hypothesis that exhaustive exercise-induced changes in the circulating number of NK cells represent a redistribution of lymphocytes, rather than the change in the size of whole-body NK cell population.
Collapse
Affiliation(s)
- Xiumin Zhang
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Woolard MD, Hudig D, Tabor L, Ivey JA, Simecka JW. NK cells in gamma-interferon-deficient mice suppress lung innate immunity against Mycoplasma spp. Infect Immun 2005; 73:6742-51. [PMID: 16177352 PMCID: PMC1230952 DOI: 10.1128/iai.73.10.6742-6751.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to examine the 100-fold difference in mycoplasma levels in lungs of gamma interferon knockout (IFN-gamma(-/-)) mice compared to those seen with wild-type BALB/c mice at 3 days postinfection. NK cells secreted IFN-gamma; however, their cytotoxic granule extracts failed to kill mycoplasma. We found a conundrum: the clearance of organisms was as effective in NK-depleted IFN-gamma(-/-) animals as in wild-type mice (with both IFN-gamma and NK cells). NK(+) IFN-gamma(-/-) animals had high mycoplasma burdens, but, after NK-like cell depletion, mycoplasma numbers were controlled. Essentially, IFN-gamma was important in animals with NK-like cells and unimportant in animals without NK cells, suggesting that IFN-gamma counters deleterious effects of NK-like cells. Impairment of innate immunity in IFN-gamma(-/-) mice was not due to NK-like cell killing of macrophages. The increased levels of inflammatory cytokines and neutrophils in lung fluids of NK(+) IFN-gamma(-/-) mice were reduced after NK cell depletion. In summary, in the murine model that resembles chronic human disease, innate immunity to mycoplasma requires IFN-gamma when there are NK-like cells and the positive effects of IFN-gamma counteract negative effects of NK-like cells. When imbalanced, NK-like cells promote disease. Thus, it was not the lack of IFN-gamma but the presence of a previously unrecognized NK-like cell-suppressive activity that contributed to the higher mycoplasma numbers. It appears that pulmonary NK cells may contribute to the immunosuppressive environment of the lung, but when needed, these dampening effects can be counterbalanced by IFN-gamma. Furthermore, there may be instances where perturbation of this regulatory balance contributes to the susceptibility to and severity of disease.
Collapse
Affiliation(s)
- Matthew D Woolard
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, 76107, USA
| | | | | | | | | |
Collapse
|
43
|
Raychaudhuri SP, Jiang WY, Raychaudhuri SK, Krensky AM. Lesional T cells and dermal dendrocytes in psoriasis plaque express increased levels of granulysin. J Am Acad Dermatol 2005; 51:1006-8. [PMID: 15583601 DOI: 10.1016/j.jaad.2003.10.679] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Granulysin is a broad-spectrum potent antimicrobial peptide produced by the immunocytes. We determined granulysin levels in certain cutaneous inflammatory diseases and correlated expression of granulysin with the relative risks of secondary infections in these conditions. In immunohistochemistry stains a monoclonal antigranulysin antibody was used at 1:150 dilutions. Compared with atopic dermatitis and nummular eczema lesions where secondary infection with Staphylococcus aureus is very common, we found that a significantly increased number of granulysin-positive T cells (P < .01) were present in psoriatic plaques. Psoriasis plaques are heavily colonized with S aureus . It is a well-known observation that despite open cracks and fissures these plaques do not get infected. Increased levels of granulysin provide an explanation for relative immunity of psoriatic plaques against both gram-positive and gram-negative bacterial infections.
Collapse
Affiliation(s)
- Siba P Raychaudhuri
- Psoriasis Research Institute, Palo Alto and Stanford University School of Medicine, Palo Alto, California, USA.
| | | | | | | |
Collapse
|
44
|
Sordillo LM, Kendall JT, Corl CM, Cross TH. Molecular Characterization of a Saposin-Like Protein Family Member Isolated from Bovine Lymphocytes. J Dairy Sci 2005; 88:1378-90. [PMID: 15778306 DOI: 10.3168/jds.s0022-0302(05)72805-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human and porcine T lymphocytes and natural killer (NK) cells produce antibacterial proteins that belong to the saposin-like family of proteins (SAPLIP). The objective of this study was to determine if a bovine homolog of SAPLIP exists in lymphocytes that exhibit antibacterial activity. Following stimulation with IL-2, bactericidal activity against Staphylococcus aureus was detected to some extent in most major subpopulations of T lymphocytes including CD4+, CD8+, CD3+, and WC1+ gammadelta T lymphocytes. However, the majority of antibacterial activity was observed in the CD2+CD3- lymphocytes, which are similar phenotypically to NK cells. A partial sequence of a bovine SAPLIP was generated using low specificity primers designed from regions of homology between other SAPLIP including porcine NK-lysin and human granulysin. Enhanced expression of the bovine lysin gene was detected in mRNA isolated from IL-2-stimulated CD2+CD3- lymphocytes. The partial cDNA sequence was then used to make gene specific primers for a rapid amplification of cDNA ends (RACE) procedure that provided repeatable 5' and 3' cDNA ends. By examining overlapping regions from the RACE procedure, full-length sequence information was obtained for the bovine lysin homologue. Conceptual translation of the cDNA demonstrated conserved similarities to known SAPLIP members. Further characterization of the bovine lysin may facilitate its use in protecting dairy cattle against bacterial infections.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Base Sequence
- CD3 Complex/immunology
- CD4 Antigens/immunology
- CD8 Antigens/immunology
- Cattle/blood
- Cattle/genetics
- Cattle/immunology
- Cattle Diseases/immunology
- Cells, Cultured
- Flow Cytometry/veterinary
- Immunophenotyping/veterinary
- Killer Cells, Natural/immunology
- Molecular Sequence Data
- Mucoproteins/chemistry
- Mucoproteins/genetics
- Mucoproteins/metabolism
- Proteolipids/chemistry
- Proteolipids/genetics
- Proteolipids/metabolism
- RNA, Messenger/chemistry
- Reverse Transcriptase Polymerase Chain Reaction/veterinary
- Saposins/chemistry
- Saposins/genetics
- Saposins/immunology
- Sequence Alignment
- Sequence Homology, Nucleic Acid
- Staphylococcal Infections/immunology
- Staphylococcal Infections/veterinary
- Staphylococcus aureus/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- L M Sordillo
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA.
| | | | | | | |
Collapse
|
45
|
Endsley JJ, Furrer JL, Endsley MA, McIntosh MA, Maue AC, Waters WR, Lee DR, Estes DM. Characterization of Bovine Homologues of Granulysin and NK-lysin. THE JOURNAL OF IMMUNOLOGY 2004; 173:2607-14. [PMID: 15294977 DOI: 10.4049/jimmunol.173.4.2607] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Granulysin and NK-lysin are antimicrobial proteins found in the granules of human and swine cytotoxic lymphocytes. A murine counterpart to granulysin has not been identified to date, indicating the importance of additional models to fully characterize the role of granulysin-like molecules in the immune response to infectious disease. Two partial nucleotide sequences corresponding to the complete functional domain of granulysin and NK-lysin were amplified from bovine PBMC mRNA. Following stimulation with phorbol ester and calcium ionophore, expression of the bovine gene was detected in CD3(+) T cells, CD4(+) T cells, CD8(+) T cells, WC1(+) gammadelta T cells, and PBMC depleted of CD3(+) T cells, but was absent in CD21(+) cells and CD14(+) cells. Intracellular flow cytometry and immunoblotting confirmed the presence of protein corresponding to the bovine granulysin homologue in activated T lymphocytes and PBMC. Synthetic human, bovine, and swine peptides corresponding to the C terminus of helix 2 through helix 3 region of granulysin displayed potent antimicrobial activity against Escherichia coli, Salmonella enteritidis, Staphylococcus aureus, and Mycobacterium bovis bacillus Calmette-Guérin. Human and bovine peptides corresponding to helix 2 displayed antimycobacterial activity against M. bovis bacillus Calmette-Guérin. Expression of the bovine gene was detected in laser microscopy-dissected lymph node lesions from an M. bovis-infected animal. The identification of a biologically active bovine homologue to granulysin demonstrates the potential of the bovine model in characterizing the role of granulysin in the immune response to a variety of infectious agents.
Collapse
Affiliation(s)
- Janice J Endsley
- Department of Pediatrics and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
The Immunology and Pathogenesis of Tuberculosis. Tuberculosis (Edinb) 2004. [DOI: 10.1007/978-3-642-18937-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
King AE, Critchley HOD, Kelly RW. Innate immune defences in the human endometrium. Reprod Biol Endocrinol 2003; 1:116. [PMID: 14641912 PMCID: PMC305332 DOI: 10.1186/1477-7827-1-116] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 11/28/2003] [Indexed: 12/01/2022] Open
Abstract
The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP) motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1-4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted.
Collapse
Affiliation(s)
- Anne E King
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | - Hilary OD Critchley
- Department of Reproductive and Developmental Sciences, University of Edinburgh, Centre for Reproductive Biology, The Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| | - Rodney W Kelly
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Chancellor's Building, 49 Little France Crescent, Edinburgh, UK
| |
Collapse
|
48
|
Affiliation(s)
- Pere Santamaria
- Department of Microbiology and Infectious Diseases and Julia McFarlane Diabetes Research Centre, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary T2N 4N1, Canada.
| |
Collapse
|
49
|
Abstract
The increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus creating a strong need to develop new antimicrobial agents. These new antibiotics should possess novel mechanisms of action and different cellular targets compared with existing antimicrobials. Recent discoveries and isolations of so-called animal antibiotics, mostly small cationic peptides, which represent a potent branch of natural immunity, offered the possibility to acquire new and effective antibiotics of this provenance. To this date, more than 500 antibiotic peptides have been distinguished and defined. Their antimicrobial properties present new opportunities for their use as antibiotics or for construction of their more effective derivatives, but much research is still required to pave the way to their practical use. This is a survey of substances forming an armamentarium of natural immunity of mammals.
Collapse
Affiliation(s)
- P Síma
- Division of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia.
| | | | | |
Collapse
|
50
|
Abstract
Antimicrobial peptides (AMPs) are effector molecules of the innate immune system. A variety of AMPs have been isolated from species of all kingdoms and are classified based on their structure and amino acid motifs. AMPs have a broad antimicrobial spectrum and lyse microbial cells by interaction with biomembranes. Besides their direct antimicrobial function, they have multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cell proliferation, immune induction, wound healing, cytokine release, chemotaxis and protease-antiprotease balance. AMPs qualify as prototypes of innovative drugs that may be used as antimicrobials, anti-lipopolysaccharide drugs or modifiers of inflammation. Several strategies have been followed to identify lead candidates for drug development, to modify the peptides' structures, and to produce sufficient amounts for pre-clinical and clinical studies. This review summarises the current knowledge about the basic and applied biology of AMPs.
Collapse
Affiliation(s)
- Andreas R Koczulla
- Department of Internal Medicine, Division of Pulmonary Medicine, Hospital of the University of Marburg, Philipps-University Marburg, Marburg, Germany
| | | |
Collapse
|