1
|
Abstract
Brain ischemia pathophysiology involves a complex cascade of events such as inflammation and oxidative stress that lead to neuronal loss and cognitive deficits. Caffeic acid (CA) is a natural phenolic compound with antioxidant and anti-inflammatory properties. To evaluate the neuroprotective efficacy of this compound in mice subjected to a permanent middle cerebral artery occlusion, animals were pretreated and post-treated with CA, 2, 20, and 60 mg/kg/day, intraperitoneally, at 24, 48, 72, 96, or 120 h after ischemia. Animals were evaluated at 24 h after the permanent middle cerebral artery occlusion for brain infarction and neurological deficit score. At 72 h after the occlusion, animals were evaluated for locomotor activity, working memory, and short-term aversive memory; long-term aversive memory was evaluated 24 h after the evaluation of short-term aversive memory. Finally, at 120 h after the event, spatial memory and the expression levels of synaptophysin (SYP), SNAP-25, and caspase 3 were evaluated. The treatment with CA reduced the infarcted area and improved neurological deficit scores. There was no difference in locomotor activity between groups. The working, spatial, and long-term aversive memory deficits improved with CA. Furthermore, western blotting data showed that the expression of SYP, which correlates with synaptic formation and function, decreased after ischemic insult, and CA inhibited the reduction of SYP expression. Ischemia also increased, and CA treatment decreased, caspase 3 expression. These results suggest that CA exerts neuroprotective and antidementia effects, at least in part, by preventing the loss of neural cells and synapses in ischemic brain injury.
Collapse
|
2
|
Protective Actions of Ghrelin on Global Cerebral Ischemia-Induced Memory Deficits. NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Virarkar M, Alappat L, Bradford PG, Awad AB. L-Arginine and Nitric Oxide in CNS Function and Neurodegenerative Diseases. Crit Rev Food Sci Nutr 2013; 53:1157-67. [DOI: 10.1080/10408398.2011.573885] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Abstract
OBJECTIVE To review novel techniques of noninvasive brain stimulation (NBS), which may have value in assessment and treatment of traumatic brain injury (TBI). METHODS Review of the following techniques: transcranial magnetic stimulation, transcranial direct current stimulation, low-level laser therapy, and transcranial Doppler sonography. Furthermore, we provide a brief overview of TMS studies to date. MAIN FINDINGS We describe the rationale for the use of these techniques in TBI, discuss their possible mechanisms of action, and raise a number of considerations relevant to translation of these methods to clinical use. Depending on the stimulation parameters, NBS may enable suppression of the acute glutamatergic hyperexcitability following TBI and/or counter the excessive GABAergic effects in the subacute stage. In the chronic stage, brain stimulation coupled to rehabilitation may enhance behavioral recovery, learning of new skills, and cortical plasticity. Correlative animal models and comprehensive safety trials seem critical to establish the use of these modalities in TBI. CONCLUSIONS Different forms of NBS techniques harbor the promise of diagnostic and therapeutic utility, particularly to guide processes of cortical reorganization and enable functional restoration in TBI. Future lines of safety research and well-designed clinical trials in TBI are warranted to determine the capability of NBS to promote recovery and minimize disability.
Collapse
|
5
|
Tang LL, Zheng JS. Effects of tetrahydrobiopterin on cerebral infarction after transient focal ischemia in rats. Neurol Res 2011; 33:1064-7. [PMID: 20487600 DOI: 10.1179/016164110x12700393823651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The present study investigated the effects of tetrahydrobiopterin (BH4) on cerebral infarction after transient focal ischemia in rats. METHODS Focal ischemia (1·5 hours) was created in male Sprague-Dawley rats (250-280 g) by middle cerebral artery occlusion. Some rats were treated with 20 mg/kg tetrahydrobiopterin by intraperitoneal injection 30 minutes before reperfusion. At 2, 6, and 12 hours of reperfusion, the brains were harvested for the nitric oxide synthase (NOS) activity and nitric oxide (NO) level assays. At 12 hours of reperfusion, the brains were harvested for infarct size measurement. RESULTS NOS activity and NO level were all augmented after reperfusion. BH4 treatment significantly further increased NOS activity and NO level. Cerebral infarct size was significantly bigger in BH4 treatment group compared to that in no treatment group. CONCLUSIONS The data indicate that BH4 enhances cerebral infarction after transient focal ischemia in rats, through NOS and NO pathway.
Collapse
Affiliation(s)
- Ling-Ling Tang
- First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | | |
Collapse
|
6
|
Takemori K, Inoue T, Ito H. Possible role of nitric oxide generated by leukocytes in the pathogenesis of hypertensive cerebral edema in stroke-prone spontaneously hypertensive rats. Brain Res 2011; 1417:137-45. [DOI: 10.1016/j.brainres.2011.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/10/2011] [Accepted: 08/16/2011] [Indexed: 01/13/2023]
|
7
|
Lu Q, Xia N, Xu H, Guo L, Wenzel P, Daiber A, Münzel T, Förstermann U, Li H. Betulinic acid protects against cerebral ischemia-reperfusion injury in mice by reducing oxidative and nitrosative stress. Nitric Oxide 2011; 24:132-8. [PMID: 21292018 DOI: 10.1016/j.niox.2011.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 11/24/2010] [Accepted: 01/25/2011] [Indexed: 12/25/2022]
Abstract
Increased production of reactive oxygen and nitrogen species following cerebral ischemia-reperfusion is a major cause for neuronal injury. In hypercholesterolemic apolipoprotein E knockout (ApoE-KO) mice, 2h of middle cerebral artery (MCA) occlusion followed by 22h of reperfusion led to an enhanced expression of NADPH oxidase subunits (NOX2, NOX4 and p22phox) and isoforms of nitric oxide synthase (neuronal nNOS and inducible iNOS) in the ischemic hemisphere compared with the non-ischemic contralateral hemisphere. This was associated with elevated levels of 3-nitrotyrosine, an indicator of peroxynitrite-mediated oxidative protein modification. Pre-treatment with betulinic acid (50mg/kg/day for 7days via gavage) prior MCA occlusion prevented the ischemia reperfusion-induced upregulation of NOX2, nNOS and iNOS. In parallel, betulinic acid reduced the levels of 3-nitrotyrosine. In addition, treatment with betulinic acid enhanced the expression of endothelial eNOS in the non-ischemic hemispheres. Finally, betulinic acid reduced infarct volume and ameliorated the neurological deficit in this mouse stroke model. In conclusion, betulinic acid protects against cerebral ischemia-reperfusion injury in mice. This is likely to result from a reduction of oxidative stress (by downregulation of NOX2) and nitrosative stress (by reduction of nNOS and iNOS), and an enhancement of blood flow (by upregulation of eNOS).
Collapse
Affiliation(s)
- Qing Lu
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Baliga SS, Merrill GF, Shinohara ML, Denhardt DT. Osteopontin expression during early cerebral ischemia-reperfusion in rats: enhanced expression in the right cortex is suppressed by acetaminophen. PLoS One 2011; 6:e14568. [PMID: 21283687 PMCID: PMC3024983 DOI: 10.1371/journal.pone.0014568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN) is a pleiotropic protein implicated in various inflammatory responses including ischemia-reperfusion (I-R) injury. Two distinct forms of the protein have been identified: an extensively studied secreted form (sOPN) and a less-well-known intracellular form (iOPN). Studies have shown that increased OPN expression parallels the time course of macrophage infiltration into injured tissue, a late event in the development of cerebral infarcts. sOPN has been suggested to promote remodeling of the extracellular matrix in the brain; the function of iOPN may be to facilitate certain signal transduction processes. Here, we studied OPN expression in adult male Sprague-Dawley rats subjected to global forebrain I-R injury. We found iOPN in the cytoplasm of both cortices and the hippocampus, but unexpectedly only the right cortex exhibited a marked increase in the iOPN level after 45 min of reperfusion. Acetaminophen, a drug recently shown to decrease apoptotic incidence, caspase-9 activation, and mitochondrial dysfunction during global I-R, significantly inhibited the increase in iOPN protein in the right cortex, suggesting a role for iOPN in the response to I-R injury in the right cortex.
Collapse
Affiliation(s)
- Sunanda S. Baliga
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Gary F. Merrill
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Mari L. Shinohara
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David T. Denhardt
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sun M, Zhao Y, Gu Y, Xu C. Neuroprotective actions of aminoguanidine involve reduced the activation of calpain and caspase-3 in a rat model of stroke. Neurochem Int 2010; 56:634-41. [DOI: 10.1016/j.neuint.2010.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
|
10
|
Blast-induced neurotrauma: surrogate use, loading mechanisms, and cellular responses. ACTA ACUST UNITED AC 2009; 67:1113-22. [PMID: 19901677 DOI: 10.1097/ta.0b013e3181bb8e84] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND With the onset of improved protective equipment against fragmentation, blast-induced neurotrauma has emerged as the "signature wound" of the current conflicts in the Middle East. Current research has focused on this phenomenon; however, the exact mechanism of injury and ways to mitigate the ensuing pathophysiology remain largely unknown. The data presented and literature reviewed formed the fundamentals of a successful grant from the U.S. Office of Naval Research to Wayne State University. METHODS This work is a culmination of specialized blast physics and energy-tissue coupling knowledge, recent pilot data using a 12-m shock tube and an instrumented Hybrid III crash test dummy, modeling results from Conventional Weapons effects software, and an exhaustive Medline and government database literature review. RESULTS The work supports our hypothesis of the mechanism of injury (described in detail) but sheds light on current hypotheses and how we investigate them. We expose two areas of novel mitigation development. First, there is a need to determine a physiologic and mechanism-based injury tolerance level through a combination of animal testing and biofidelic surrogate development. Once the injury mechanism is defined experimentally and an accurate physiologic threshold for brain injury is established, innovative technologies to protect personnel at risk can be appropriately assessed. Second, activated pathophysiological pathways are thought to be responsible for secondary neurodegeneration. Advanced pharmacological designs will inhibit the key cell signaling pathways. Simultaneously, evaluation of pharmacological candidates will confirm or deny current hypotheses of primary mechanisms of secondary neurodegeneration. CONCLUSIONS A physiologic- or biofidelic-based blast-induced tolerance curve may redefine current acceleration-based curves that are only valid to assess tertiary blast injury. Identification of additional pharmaceutical candidates will both confirm or deny current hypotheses on neural pathways of continued injury and help to develop novel prophylactic treatments.
Collapse
|
11
|
Sun M, Zhao Y, Gu Y, Xu C. Inhibition of nNOS reduces ischemic cell death through down-regulating calpain and caspase-3 after experimental stroke. Neurochem Int 2009; 54:339-46. [DOI: 10.1016/j.neuint.2008.12.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 12/19/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
|
12
|
Pettigrew LC, Kindy MS, Scheff S, Springer JE, Kryscio RJ, Li Y, Grass DS. Focal cerebral ischemia in the TNFalpha-transgenic rat. J Neuroinflammation 2008; 5:47. [PMID: 18947406 PMCID: PMC2583993 DOI: 10.1186/1742-2094-5-47] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 10/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine if chronic elevation of the inflammatory cytokine, tumor necrosis factor-alpha (TNFalpha), will affect infarct volume or cortical perfusion after focal cerebral ischemia. METHODS Transgenic (TNFalpha-Tg) rats overexpressing the murine TNFalpha gene in brain were prepared by injection of mouse DNA into rat oocytes. Brain levels of TNFalpha mRNA and protein were measured and compared between TNFalpha-Tg and non-transgenic (non-Tg) littermates. Mean infarct volume was calculated 24 hours or 7 days after one hour of reversible middle cerebral artery occlusion (MCAO). Cortical perfusion was monitored by laser-Doppler flowmetry (LDF) during MCAO. Cortical vascular density was quantified by stereology. Post-ischemic cell death was assessed by immunohistochemistry and regional measurement of caspase-3 activity or DNA fragmentation. Unpaired t tests or analysis of variance with post hoc tests were used for comparison of group means. RESULTS In TNFalpha-Tg rat brain, the aggregate mouse and rat TNFalpha mRNA level was fourfold higher than in non-Tg littermates and the corresponding TNFalpha protein level was increased fivefold (p CONCLUSION Chronic elevation of TNFalpha protein in brain increases susceptibility to ischemic injury but has no effect on vascular density. TNFalpha-Tg animals are more susceptible to apoptotic cell death after MCAO than are non-Tg animals. We conclude that the TNFalpha-Tg rat is a valuable new tool for the study of cytokine-mediated ischemic brain injury.
Collapse
Affiliation(s)
- L Creed Pettigrew
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
- Veterans Administration (VA) Medical Center, Lexington, Kentucky, USA
| | - Mark S Kindy
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| | - Stephen Scheff
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Joe E Springer
- Department of Physical Medicine & Rehabilitation, University of Kentucky, Lexington, Kentucky, USA
| | - Richard J Kryscio
- Department of Statistics and School of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Yizhao Li
- Jinan Great Wall Hospital, Jinan, Shandong, PR China
| | | |
Collapse
|
13
|
Corsani L, Bizzoco E, Pedata F, Gianfriddo M, Faussone-Pellegrini MS, Vannucchi MG. Inducible nitric oxide synthase appears and is co-expressed with the neuronal isoform in interneurons of the rat hippocampus after transient ischemia induced by middle cerebral artery occlusion. Exp Neurol 2008; 211:433-40. [DOI: 10.1016/j.expneurol.2008.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 02/05/2008] [Accepted: 02/16/2008] [Indexed: 11/25/2022]
|
14
|
Dohare P, Varma S, Ray M. Curcuma oil modulates the nitric oxide system response to cerebral ischemia/reperfusion injury. Nitric Oxide 2008; 19:1-11. [PMID: 18485279 DOI: 10.1016/j.niox.2008.04.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 04/01/2008] [Accepted: 04/12/2008] [Indexed: 10/22/2022]
Abstract
The antioxidant activity of C.oil in cerebral stroke has been reported earlier. We have attempted here to clarify the mechanisms underlying the neuroprotection against experimental cerebral ischemia by Curcuma oil (C.oil), isolated from the rhizomes of Curcuma longa. C.oil (250 mg/kg i.p.) was given 30 min before focal ischemia in rats caused by occlusion of the middle cerebral artery (1h of occlusion, 24h of reflow). Ischemia, leads to elevation in [Ca(2+)] this sets into motion a cascades of ischemic injury which was attenuated by C.oil. C.oil reduced post-ischemic brain neutrophil infiltration in the ischemic area, controlled tissue NOx levels and the neuronal levels of nitric oxide, peroxynitrite and reactive oxygen species when measured after 24h of reflow. Double immunofluorescence staining analysis and Western immunoblot analysis with C.oil treatment showed that the expression of nitric oxide synthase (NOS) isoforms were decreased significantly compared to the untreated ischemia group. Ischemia is associated with increased in TUNEL (TdT-mediated dUTP nick-end labeling) positive cells in brain sections indicating DNA fragmentation. The C.oil treated group showed a significant decrease in numbers of apoptotic cells compared to the untreated ischemia group, as seen in the flowcytometric analysis of the neurons. Results of immunohistochemistry and Western immunoblot indicate that C.oil suppressed the elevated protein level of Bax, and aided mitochondrial translocation and activation of Bcl-2 by altered mitochondrial membrane potential. It also inhibits the cytosolic release of apoptogenic molecules like cytochrome c, inhibits the activation of caspase-3 and the expression of p53 ultimately inhibiting apoptosis. Our observations suggest that high levels of NO generated by NOS isoforms are partially responsible for exacerbating the neuronal damage induced by MCAo by intraluminal filament.
Collapse
Affiliation(s)
- Preeti Dohare
- Division of Pharmacology, Central Drug Research Institute, P.O. Box No. 173, Chattar Manzil Palace, Lucknow, UP 226001, India
| | | | | |
Collapse
|
15
|
Cortical spreading depression induces the expression of iNOS, HIF-1α, and LDH-A. Neuroscience 2008; 153:182-8. [DOI: 10.1016/j.neuroscience.2008.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2007] [Revised: 01/26/2008] [Accepted: 01/29/2008] [Indexed: 11/21/2022]
|
16
|
Peng PH, Ko ML, Chen CF. Epigallocatechin-3-gallate reduces retinal ischemia/reperfusion injury by attenuating neuronal nitric oxide synthase expression and activity. Exp Eye Res 2008; 86:637-46. [PMID: 18289530 DOI: 10.1016/j.exer.2008.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 12/20/2007] [Accepted: 01/06/2008] [Indexed: 01/17/2023]
Abstract
Retinal ischemia/reperfusion (IR) injury causes profound tissue damage, especially retinal ganglion cell death. The aims of the study were twofold: (1) to investigate the benefits of epigallocatechin-3-gallate (EGCG), the major catechin found in tea, after IR challenge, and (2) to elucidate the mechanism of EGCG inhibition of nitric oxide synthase (NOS) expression. Wistar female rats were divided into four groups: normal control, EGCG with sham operation, retinal IR, and EGCG with IR groups. EGCG (50mg/kg) was administered by intraperitoneal injection 30 min before the experiment. IR injury to a rat's retina was induced by raising intraocular pressure to 150 mmHg for 60 min. With EGCG pretreatment, retinal ganglion cell death from IR was reduced by approximately 10% 3 days afterward. EGCG significantly downregulated IR-induced glial fibrillary acidic protein expression. EGCG treatment also reduced TUNEL-positive cells after IR in the inner retina as well as IR-induced lipid peroxidation. Histological analyses showed fewer neuronal NOS and nicotinamide adenine dinucleotide phosphate diaphorase-positive cells in the retina after IR with EGCG administration. Therefore, EGCG is effective in protecting retinal ganglion cells from IR challenge by ameliorating retinal nitrosactive stress and by regulating cell death through apoptotic pathways.
Collapse
Affiliation(s)
- Pai-Huei Peng
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | |
Collapse
|
17
|
Lu A, Clark JF, Broderick JP, Pyne-Geithman GJ, Wagner KR, Ran R, Khatri P, Tomsick T, Sharp FR. Reperfusion activates metalloproteinases that contribute to neurovascular injury. Exp Neurol 2007; 210:549-59. [PMID: 18187134 DOI: 10.1016/j.expneurol.2007.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/31/2007] [Accepted: 12/04/2007] [Indexed: 12/17/2022]
Abstract
In this study, we examine the effects of reperfusion on the activation of matrix metalloproteinase (MMP) and assess the relationship between MMP activation during reperfusion and neurovascular injury. Ischemia was produced using suture-induced middle cerebral artery occlusion in rats. The MMP activation was examined with in situ and gel zymography. Injury to cerebral endothelial cells and basal lamina was assessed using endothelial barrier antigen (EBA) and collagen IV immunohistochemistry. Injury to neurons and glial cells was assessed using Cresyl violet staining. These were examined at 3 h after reperfusion (8 h after initiation of ischemia) and compared with permanent ischemia at the same time points to assess the effects of reperfusion. A broad-spectrum MMP inhibitor, AHA (p-aminobenzoyl-Gly-Pro-D-Leu-D-Ala-hydroxamate, 50 mg/kg intravenously) was administered 30 min before reperfusion to assess the roles of MMPs in activating gelatinolytic enzymes and in reperfusion-induced injury. We found that reperfusion accelerated and potentiated MMP-9 and MMP-2 activation and injury to EBA and collagen IV immunopositive microvasculature and to neurons and glial cells in ischemic cortex and striatum relative to permanent ischemia. Administering AHA 30 min before reperfusion decreased MMP-9 activation and neurovascular injury in ischemic cerebral cortex.
Collapse
Affiliation(s)
- Aigang Lu
- Department of Neurology, University of Cincinnati, Cincinnati, OH 45267-0532,
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang P, Liu Y, Li J, Kang Q, Tian Y, Chen X, Zhao J, Shi Q, Song T. Decreased neuronal nitric oxide synthase expression and cell migration in the peri-infarction after focal cerebral ischemia in rats. Neuropathology 2007; 27:347-54. [PMID: 17899688 DOI: 10.1111/j.1440-1789.2007.00791.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) regulates neurogenesis in the normal developing brain, but the role of nNOS in neurogenesis of the adult ischemic brain remains unclear. The aim of this study was to investigate the temporal and spatial relationship between cell migration from the ependymal/subventricular zone (SVZ) to periinfarction and nNOS expression in the rat. Ependymal/subventricular zone cells were prelabeled with fluorescence dye DiI. Focal cerebral ischemia was induced by occlusion of the left middle cerebral artery. At 1, 3, 7, 14 and 21 days after ischemia, the rats were killed in order to determine the number of migrating cells, the colocalization of DiI and nNOS as well as nNOS quantity in specific regions. Compared to non-ischemic control and 1 day post-ischemia, the number of DiI-labeled cells in the selected regions increased at 3 days and peaked 14 days following ischemia. During 3-7 days post-ischemia, none of the migrating cells expressed nNOS and decreased nNOS expression was observed in the regions where migrating cells passed through. These results suggest the possible association between ependymal/SVZ cell migration and decreased nNOS expression within the areas including the migrating routes towards the peri-infarction.
Collapse
Affiliation(s)
- Pengbo Zhang
- Institute of Neurobiology, Environment and Genes Related to Diseases, Key Laboratory of Education Ministry, Xi'an Jiaotong University School of Medicine, Shanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cerebral ischaemia results in the activation of three isoforms of NOS (nitric oxide synthase) that contribute to the development of and recovery from stroke pathology. This review discusses, in particular, the role of the transcriptionally activated NOS-2 (inducible NOS) isoform and summarizes the outcomes of experimental stroke studies with regard to the therapeutic utility of nitric oxide donors and NOS inhibitors.
Collapse
|
20
|
Vannucchi MG, Bizzoco E, Corsani L, Gianfriddo M, Pedata F, Faussone-Pellegrini MS. Relationships between neurons expressing neuronal nitric oxide synthase, degree of microglia activation and animal survival. A study in the rat cortex after transient ischemia. Brain Res 2007; 1132:218-27. [PMID: 17182010 DOI: 10.1016/j.brainres.2006.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/28/2022]
Abstract
The focal ischemia obtained in an animal model of middle cerebral artery occlusion (MCAo) causes the "core" of damage in the striatum and the "penumbra" of damage in the fronto-parietal cortex. The latter is mainly functionally affected and shows changes in nNOS and iNOS expression during the acute phase of ischemia. With the aim to study possible relationships between these changes and the affection entity during the animal recovery, we investigated from 24 up to 144 h after reperfusion the expression and content of these two NOS isoforms in the neurons and microglia and the degree of microglia reactivity in the fronto-parietal cortices of rats undertaken to transient MCAo. Evaluation of motor-sensory performances and survival allowed dividing the animals into two groups. Immunohistochemistry, western blot and quantitative analysis demonstrated, both in the ischemic and contralateral cortex of the rats with longer survival, wellness and significantly increased number of the nNOS-IR neurons at 24 h and moderately activated microglia up to 144 h. In the rats not recovering, injured and significantly decreased nNOS-IR neurons, intensely activated microglia and appearance of iNOS-IR were seen at all time points. In conclusion, since the recovery occurs when nNOS-IR neurons are greatly increased, we presume nNOS protect the tissue likely controlling the passage from the state of reactive to that of activated microglia. Moreover, the morphological signs of wellness and the two-fold increase in number of the nNOS-IR neurons appear to be characteristic of the "penumbra" area and could explain why this region is mainly functionally affected.
Collapse
Affiliation(s)
- Maria Giuliana Vannucchi
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Serrano J, Encinas JM, Fernández AP, Rodrigo J, Martínez A. Effects of acute hypobaric hypoxia on the nitric oxide system of the rat cerebral cortex: Protective role of nitric oxide inhibitors. Neuroscience 2006; 142:799-808. [PMID: 16952423 DOI: 10.1016/j.neuroscience.2006.07.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2006] [Revised: 07/25/2006] [Accepted: 07/30/2006] [Indexed: 12/21/2022]
Abstract
Exposure to hypobaric hypoxia produces neuropsychological disorders. The brain nitrergic system was investigated following hypobaric hypoxia in the presence or absence of nitric oxide synthase (NOS) inhibitors. Adult rats were exposed to a simulated altitude of 8325 m (27,000 ft) for 7 h and killed after 0, 1, 3, 5, and 10 days of recovery. In addition to normobaric controls, three experimental groups were studied: i) subjected to hypobaric hypoxia without inhibitors; ii) subjected to hypobaric hypoxia and treated with 7-nitroindazole; iii) subjected to hypobaric hypoxia and treated with N(omega)-nitro-l-arginine methyl ester (l-NAME). Cerebral cortex was assayed by immunohistochemistry, Western blotting, and enzymatic assays. In animals subjected to hypobaric hypoxia without inhibitors, there was an increase in neuronal nitric oxide synthase (nNOS) immunoreactivity and Ca(2+)-dependent NOS activity from 0 to 1 days of reoxygenation. In these animals, inducible nitric oxide synthase (iNOS) expression and Ca(2+)-independent activity were undetectable, but nitrotyrosine immunoreactivity was found in some neurons. Administration of either inhibitor prevented the increase in nNOS immunoreactivity and enzymatic activity provoked by hypobaric hypoxia. Concomitantly, nitrotyrosine immunoreactivity decreased progressively. In conclusion, activation of the nitrergic system constitutes a cortical response to hypobaric hypoxia and the administration of NOS inhibitors could provide new therapeutic avenues to prevent and/or treat the symptoms produced by hypobaric hypoxia.
Collapse
Affiliation(s)
- J Serrano
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, CSIC, Avd. Doctor Arce, 37, 28002 Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Yuan HB, Huang Y, Zheng S, Zuo Z. Hypothermic preconditioning reduces Purkinje cell death possibly by preventing the over-expression of inducible nitric oxide synthase in rat cerebellar slices after an in vitro simulated ischemia. Neuroscience 2006; 142:381-9. [PMID: 16890370 DOI: 10.1016/j.neuroscience.2006.06.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/07/2006] [Accepted: 06/23/2006] [Indexed: 11/24/2022]
Abstract
We showed that hypothermic preconditioning (HPC) increased survival of Purkinje neurons in rat cerebellar slices after oxygen-glucose deprivation (OGD). HPC also reduced the OGD-increased expression of high mobility group I (Y) proteins, a transcription factor that can enhance inducible nitric oxide synthase (iNOS) expression. iNOS is a putatively damaging protein that contributes to ischemic brain injury. Heat shock proteins (HSPs) can be induced by various stimuli to protect cells. We hypothesize that HPC induces neuroprotection by reducing the expression of putatively damaging proteins such as iNOS and/or by increasing the expression of putatively protective proteins such as HSPs. Cerebellar slices were prepared from adult male Sprague-Dawley rats and incubated in circulating artificial cerebrospinal fluid. OGD was for 20 min at 37 degrees C and was followed by a 5-h recovery at 37 degrees C before slices were used for morphological, immunohistochemical and Western analyses. HPC was performed by incubating slices at 33 degrees C for 20 min at 1 h before the OGD. HPC and aminoguanidine, an iNOS inhibitor, prevented OGD-induced Purkinje cell death/injury. OGD increased the expression of iNOS and nitrosylated proteins. These increases were abolished by aminoguanidine and HPC. Interestingly, the expression of HSP70 was increased by OGD but not by HPC. Our results suggest that an increased iNOS expression contributes to the pathophysiology of OGD-induced Purkinje neuronal death in our model. Our results also suggest the involvement of inhibiting the expression of the putatively damaging iNOS proteins in the HPC-induced neuroprotection. HSP70 may not contribute to the HPC-induced neuroprotection.
Collapse
Affiliation(s)
- H-B Yuan
- Department of Anesthesiology, University of Virginia Health System, One Hospital Drive, PO Box 800710, Charlottesville, VA 22908-0710, USA
| | | | | | | |
Collapse
|
23
|
Schimchowitsch S, Cassel JC. Polyamine and aminoguanidine treatments to promote structural and functional recovery in the adult mammalian brain after injury: a brief literature review and preliminary data about their combined administration. ACTA ACUST UNITED AC 2006; 99:221-31. [PMID: 16646157 DOI: 10.1016/j.jphysparis.2005.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The regeneration potential of the adult mammalian central nervous system (CNS) is very modest, due to, among other factors, the presence of either a glial scar, or myelin-associated regeneration inhibitors such as Nogo-A, MAG and OMgp, which all interact with the same receptor (NgR). After a brief review of the key proteins (Rho and PKC) implicated in NgR-mediated signalling cascades, we will tackle the implications of cAMP and Arginase I in overcoming myelin growth-inhibitory influence, and then will focus on the effects of polyamines and aminoguanidine to propose (and to briefly support this proposal by our own preliminary data) that their association might be a potent way to enable functionally-relevant regeneration in the adult mammalian CNS.
Collapse
Affiliation(s)
- Sarah Schimchowitsch
- Laboratoire de Neurosciences Comportementales et Cognitives, UMR 7521 CNRS--Université Louis Pasteur, IFR 37 Neurosciences, Strasbourg, France
| | | |
Collapse
|
24
|
Ekerbicer N, Inan S, Tarakci F, Cilaker S, Ozbek M. Histophysiological effects of fluid resuscitation on heart, lung and brain tissues in rats with hypovolemia. Acta Histochem 2006; 108:373-83. [PMID: 16762404 DOI: 10.1016/j.acthis.2006.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/26/2006] [Accepted: 03/02/2006] [Indexed: 11/19/2022]
Abstract
The efficacy of using colloids and crystalloids in the treatment of hypovolemia still remains controversial. An important aspect in treating hypovolemia is to re-establish normal tissue hemodynamics after fluid resuscitation. Production of nitric oxide (NO) or growth factors such as transforming growth factor beta (TGF-beta) has been identified as a key mechanism in physiological and pathological processes in the different systems. This study was designed to investigate the histophysiological effects of resuscitation with different plasma substitutes on the heart, lung and brain tissues following acute blood loss in male Sprague-Dawley rats weighing 250-280g (n=30). After anesthesia with sodium pentobarbital, the left femoral vein and artery were cannulated for the administration of volume expanders and for direct measurement of arterial pressure and heart rate. Twenty rats were bled (5ml/10min) and infused (5ml/10min) with one of four randomly selected solutions, (a) human albumin, (b) gelatin (Gelofusine), (c) dextran-70 (Macrodex); or (d) physiological saline (0.9% isotonic saline). Five control rats were bled without infusion. Tissue samples were taken and fixed in 10% formalin solution, then processed for embedding in paraffin wax. Sections were cut and stained with hematoxylin and eosin. Indirect immunohistochemical labelling was performed to reveal binding of primary antibodies against endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and TGF-beta. Mild immunoreactivity of eNOS was observed in endothelial cells of vessels in brain, heart and lung tissues. Increased immunoreactivities of eNOS, iNOS and TGF-beta were observed in the non-fluid resuscitated group in these organs; mild, moderate, moderate and strong immunoreactivities were seen in the albumin, gelatin, physiological saline and dextran-70 treated groups, respectively. Immunoreactivities of iNOS and TGF-beta in the non-fluid resuscitated group were increased significantly, in comparison to the other groups, apart from the dextran-70 treated group. The results of this study show that gelatin solution and physiological saline may be of use after acute blood loss, and dextran-70 is not the preferred resuscitation fluid in the early stages of acute blood loss. It was concluded that albumin solution is the preferred fluid for resuscitation.
Collapse
Affiliation(s)
- Nuran Ekerbicer
- Department of Physiology, Faculty of Medicine, Celel Bayar University, Dekanlik Binasi, Uncubozkoy-Manisa, Turkey.
| | | | | | | | | |
Collapse
|
25
|
Vannucchi MG, Corsani L, Gianfriddo M, Pedata F, Faussone-Pellegrini MS. Expression of neuronal and inducible nitric oxide synthase in neuronal and glial cells after transient occlusion of the middle cerebral artery. Neuroscience 2005; 136:1015-26. [PMID: 16216429 DOI: 10.1016/j.neuroscience.2005.08.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 07/27/2005] [Accepted: 08/15/2005] [Indexed: 10/25/2022]
Abstract
We presently investigated the time-course of neuronal nitric oxide synthase and inducible nitric oxide synthase expression and content in the rat striatum up to 6 days after ischemia induced by transient middle cerebral artery occlusion, a condition that potentially allows functional recovery, with the aim to identify the cell types expressing these two enzymes and to correlate neuronal nitric oxide synthase and inducible nitric oxide synthase changes in order to verify whether and how these changes are related to tissue damage, motor-sensory performances and survival. Before and after surgery, the animals underwent neurological evaluation. The results demonstrated that the rats with a score > or = 12 at the neurological evaluation 24 h after ischemia showed a significant increase in neuronal nitric oxide synthase-immunoreactive neurones and absence of inducible nitric oxide synthase-immunoreactive cells and survived up to the sixth day; conversely, the rats with a score < 12 at the neurological evaluation 24 h after ischemia showed a progressive significant decrease in neuronal nitric oxide synthase-immunoreactive neurones and appearance of inducible nitric oxide synthase-immunoreactive cells and none of the rats survived up to the sixth day. Microglia cells were activated in both groups but only in the latter did these cells express inducible nitric oxide synthase. Measurement of the infarct area demonstrated that it occupied a similar territory in both groups of rats but in those with a score < 12 the edema was more extended. In conclusion, we demonstrated that a neurotoxic insult such as ischemia can induce neuronal nitric oxide synthase expression in the neurones and that when neuronal nitric oxide synthase-immunoreactive neurones increase in number, microglia activation is less extended, inducible nitric oxide synthase-immunoreactive cells are absent, tissue damage reduced and the rats survive longer. Conversely, when there is a significant decrease of neuronal nitric oxide synthase-immunoreactive neurones, microglia cells are intensely activated, inducible nitric oxide synthase-immunoreactive cells appear and the animal survival is shortened.
Collapse
Affiliation(s)
- M G Vannucchi
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | | | | | | | | |
Collapse
|
26
|
Abstract
One of the responses to cerebral ischemia is an increase in the production of nitric oxide, catalyzed by enzymes expressed in both resident and infiltrating cells. The nitric oxide that is generated does contribute to the ensuing pathology, but it can also be beneficial. The effects of nitric oxide depend on the cell site of production, the amount generated, and the chemical nature of the products of further oxidation. Understanding how nitric oxide production from microglia and astrocytes contributes to ischemic pathology is important for the development and application of future therapeutics based on inhibiting or amplifying its production in the injured brain.
Collapse
Affiliation(s)
- Claire L Gibson
- Institute of Cell Signaling, Medical School, University of Nottingham, Nottingham, United Kingdom
| | - Teresa C Coughlan
- Institute of Cell Signaling, Medical School, University of Nottingham, Nottingham, United Kingdom
| | - Sean P Murphy
- Institute of Cell Signaling, Medical School, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
27
|
Sjakste N, Sjakste J, Boucher JL, Baumane L, Sjakste T, Dzintare M, Meirena D, Sharipova J, Kalvinsh I. Putative role of nitric oxide synthase isoforms in the changes of nitric oxide concentration in rat brain cortex and cerebellum following sevoflurane and isoflurane anaesthesia. Eur J Pharmacol 2005; 513:193-205. [PMID: 15862801 DOI: 10.1016/j.ejphar.2005.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
We have previously observed an increase in nitric oxide (NO) content in rat brain cortex following halothane, sevoflurane or isoflurane anaesthesia. This study was undertaken in order to determine whether isoform-specific nitric oxide synthase (NOS) inhibitors and inducers could modify these increases in NO contents. Rats were subjected to isoflurane and sevoflurane anaesthesia with concomitant administration of neuronal nitric oxide synthase (nNOS) inhibitor 7-Nitro-indazole (7-NI), inducible nitric oxide synthase (iNOS) inhibitor 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT) or lipopolysaccharide. NO concentration in different organs was measured by electron paramagnetic resonance (EPR) spectroscopy. 7-NI significantly decreased NO concentration in cerebellum but not in brain cortex, whereas AMT decreased NO in all the organs studied. Anaesthesia significantly increased NO concentration in brain cortex and decreased that in cerebellum. AMT abolished the NO increase in brain cortex. Anaesthesia enhanced the drastic increase in NO concentration in brain cortex after intraventricular lipopolysaccharide administration. Isoflurane was found to inhibit recombinant nNOS and iNOS activities at high concentrations (EC50=20 mM). Our data suggest a putative role for iNOS in the increase in NO levels produced by isoflurane and sevoflurane, whereas nNOS activity is probably inhibited during anaesthesia.
Collapse
Affiliation(s)
- Nikolajs Sjakste
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Harvey BK, Hoffer BJ, Wang Y. Stroke and TGF-beta proteins: glial cell line-derived neurotrophic factor and bone morphogenetic protein. Pharmacol Ther 2004; 105:113-25. [PMID: 15670622 DOI: 10.1016/j.pharmthera.2004.09.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
Recent studies have indicated that proteins in the transforming growth factor-beta superfamily alter damage induced by various neuronal injuries. Of these proteins, glial cell line-derived neurotrophic factor (GDNF) and bone morphogenetic protein-7 (BMP-7) have unique protective and regenerative effects in stroke animals. Delivery of GDNF or BMP-7 to brain tissue reduced cerebral infarction and improved motor functions in stroke animals. Pretreatment with these factors reduced caspase-3 activity and DNA fragmentation in the ischemic brain region, suggesting that antiapoptotic effects are involved. Beside the protective effects, BMP-7 given after stroke improves locomotor function. These regenerative effects of BMP-7 may involve the enhancement of dendritic growth and remodeling. In this review, we illustrate the neuroprotective and neuroregenerative properties of GDNF and BMP-7 and emphasize their therapeutic potential for stroke.
Collapse
Affiliation(s)
- Brandon K Harvey
- Neural Protection and Regeneration Section, Molecular Neuropsychiatry Branch, National Institute on Drug Abuse, NIH, Baltimore, MD 21124, USA
| | | | | |
Collapse
|
29
|
Gowda C, Toomayan GA, Qi WN, Chen LE, Cai Y, Allen DM, Seaber AV, Urbaniak JR. The effects of N(omega)-propyl-L-arginine on reperfusion injury of skeletal muscle. Nitric Oxide 2004; 11:17-24. [PMID: 15350553 DOI: 10.1016/j.niox.2004.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/25/2004] [Indexed: 11/22/2022]
Abstract
N(omega)-Propyl-L-arginine (NPA) is reported to be a highly selective inhibitor of neuronal nitric oxide synthase (nNOS). This in vivo study observed its role in ischemia/reperfusion (I/R) injury in rat skeletal muscle. Our results showed that NPA infusion significantly increased vessel diameters and blood flow in reperfused cremaster muscle, and slightly increased contractile function in reperfused extensor digitorum longus (EDL) muscle. In addition, NPA treatment slightly increased I/R-mediated downregulation of nNOS and eNOS mRNA and protein levels. Although NPA showed a beneficial role in I/R injury, our in vivo data do not support NPA as a selective nNOS inhibitor. Also, our data do not provide any insight into the mechanism of NPA. Thus, the in vivo mechanism of action of NPA needs to be further identified, and the role of nNOS in skeletal muscle I/R still remains to be determined.
Collapse
Affiliation(s)
- Charan Gowda
- The Orthopaedic Research Laboratories, Department of Surger, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sehba FA, Chereshnev I, Maayani S, Friedrich V, Bederson JB. Nitric Oxide Synthase in Acute Alteration of Nitric Oxide Levels after Subarachnoid Hemorrhage. Neurosurgery 2004; 55:671-7; discussion 677-8. [PMID: 15335435 DOI: 10.1227/01.neu.0000134557.82423.b2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 04/04/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Subarachnoid hemorrhage (SAH) is associated with acute decreases and subsequent recovery of cerebral nitric oxide (NO) levels, but the mechanisms of these alterations are not known. In this study, we measured NO synthase (NOS) protein and kinetics to determine its involvement in the alterations of cerebral NO levels after SAH. METHODS The endovascular rat model of SAH was used. The number of NOS-1 (neuronal) and NOS-2 (inducible)-positive cells (0-96 h) was determined by counting immunoreactive cells in 8-microm cryostat sections. The tissue content of active NOS and its kinetic parameters were studied with an enzymatic l-citrulline assay. RESULTS The number of NOS-1-positive cells increased between 1 and 3 hours after SAH, decreased to and below control values at 6 and 72 hours after SAH, and increased to control values 96 hours after SAH. The number of NOS-2-positive cells increased 1 hour after SAH, decreased to control values at 24 hours, and increased above control values 96 hours after SAH. The Michaelis-Menten kinetic parameters (V(max), K(m), slope) of NOS remained unchanged at 10 and 90 minutes after SAH. CONCLUSION NOS-1 and -2 proteins undergo a triphasic alteration after SAH, whereas the amount of active NOS and its kinetic parameters remain unchanged during the first 90 minutes after SAH. Depletion of NOS is not involved in the acute alterations of cerebral NO levels after SAH.
Collapse
Affiliation(s)
- Fatima A Sehba
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
31
|
Blanco AM, Pascual M, Valles SL, Guerri C. Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-κB. Neuroreport 2004; 15:681-5. [PMID: 15094475 DOI: 10.1097/00001756-200403220-00021] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The CNS is particularly susceptible to the effects of alcohol and toxicity. Astrocytes are immunoactive cells, and the activation of these cells is associated with several neurodegenerative disorders. By using cultured cortical astrocytes, we show that a short ethanol treatment (100 mM) is able to up-regulate both cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, and that these effects are regulated via nuclear factor kappa B (NF-kappa B) as revealed by the inhibition of NF-kappa B activation with pyrrolidine dithiocarbamate (PDTC) or BAY 11-7082. These results suggest that ethanol is able to induce inflammatory mediators in astrocytes through the NF-kappa B activation.
Collapse
Affiliation(s)
- Ana M Blanco
- Instituto de Investigaciones Citológicas, Amadeo de Saboya 4, 46010-Valencia, Spain
| | | | | | | |
Collapse
|
32
|
Encinas JM, Fernández AP, Salas E, Castro-Blanco S, Muñoz P, Rodrigo J, Serrano J. Nitric oxide synthase and NADPH-diaphorase after acute hypobaric hypoxia in the rat caudate putamen. Exp Neurol 2004; 186:33-45. [PMID: 14980808 DOI: 10.1016/j.expneurol.2003.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 09/25/2003] [Accepted: 09/26/2003] [Indexed: 10/26/2022]
Abstract
Changes in the production system of nitric oxide (NO), a multifunctional biological messenger known to participate in blood-flow regulation, neuromodulation, and neuroprotection or neurotoxicity, were investigated in the caudate putamen of adult rats submitted to hypobaric hypoxia. Employing immunohistochemistry, Western blotting, enzymatic assay, and NADPH-diaphorase staining, we demonstrate that neuronal nitric oxide synthase (nNOS) expression and constitutive nitric oxide synthase (cNOS) activity were transiently activated by 7 h of exposure to a simulated altitude of 8325 m (27,000 ft). In addition, endothelial nitric oxide synthase (eNOS) immunoreactivity and blood vessel NADPH-diaphorase staining peaked immediately after the hypoxic stimulus, whereas inducible nitric oxide synthase (iNOS) expression and activity remained unaltered. Nitrotyrosine formation, a marker of protein nitration, was evaluated by immunohistochemistry and Western blotting, and was found to increase parallel to nitric oxide synthesis. We conclude that the nitric oxide system undergoes significant transient alterations in the caudate putamen of adult rats submitted to acute hypobaric hypoxia.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Departamento de Neuroanatomía y Biología Celular, Instituto de Neurobiología Ramón y Cajal, CSIC, E-28002 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Moochhala SM, Md S, Lu J, Teng CH, Greengrass C. Neuroprotective Role of Aminoguanidine in Behavioral Changes after Blast Injury. ACTA ACUST UNITED AC 2004; 56:393-403. [PMID: 14960985 DOI: 10.1097/01.ta.0000066181.50879.7a] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The present study investigated the neuroprotective role of aminoguanidine, a known inducible nitric oxide synthase inhibitor, in both behavioral and morphologic changes in rats subjected to nonpenetrative blast injury. METHODS Male Sprague-Dawley rats were randomly divided into groups to receive either normal saline or aminoguanidine (AG) before or after exposure to two blast dosages of either 2.8 or 20 kPa. The neurobehavioral alterations were determined by subjecting the animals to rotametric, grip-strength, passive avoidance, total and ambulatory locomotor activities, and acoustic startle response tests. RESULTS Exposure to blast at 20 kPa resulted in a significant performance decrement on rotametric and grip-strength tests in rats treated with normal saline. In contrast, animals receiving AG either prophylactically before or after the blast seemed unaffected by the same blast. This finding also correlates well with histologic examination that showed a reduction in degenerating cortical neurons in AG-treated rats compared with those receiving saline injection. CONCLUSION It is thus suggested that AG could play a neuroprotective role in rats subjected to blast exposure.
Collapse
Affiliation(s)
- Shabbir M Moochhala
- Defence Medical Research Institute, Defence Science and Technology Agency, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
34
|
Mauler F, Hinz V, Augstein KH, Fassbender M, Horváth E. Neuroprotective and brain edema-reducing efficacy of the novel cannabinoid receptor agonist BAY 38-7271. Brain Res 2003; 989:99-111. [PMID: 14519516 DOI: 10.1016/s0006-8993(03)03376-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BAY 38-7271 is a new high-affinity cannabinoid receptor agonist with strong neuroprotective efficacy in a rat model of traumatic brain injury (acute subdural hematoma, SDH). In the present study we investigated CB1 receptor signal transduction by [35S]GTPgammaS binding in situ and in vitro to assess changes in receptor functionality after SDH. Further, we continued to investigate the neuroprotective properties of BAY 38-7271 in the rat SDH and transient middle cerebral artery occlusion (tMCA-O) model as well as the efficacy with respect to SDH-induced brain edema. [35S]GTPgammaS binding revealed minor attenuation of CB1 receptor functionality on brain membranes from injured hemispheres when compared to non-injured hemispheres or controls. In the rat SDH model, BAY 38-7271 displayed strong neuroprotective efficacy when administered immediately after SDH either as a 1 h (65% infarct volume reduction at 0.1 microg/kg) or short-duration (15 min) infusion (53% at 10 microg/kg). When administered as a 4 h infusion with a 5 h delay after injury, significant neuroprotection was observed (49% at 1.0 microg/kg/h). This was also observed when BAY 38-7271 was administered as a 5 h delayed 15 min short-duration infusion (64% at 3 microg/kg). In addition, the neuroprotective potential of BAY 38-7271 was demonstrated in the rat tMCA-O model, displaying pronounced neuroprotective efficacy in the cerebral cortex (91% at 1 ng/kg/h) and striatum (53% at 10 ng/kg/h). BAY 38-7271 also reduced intracranial pressure (28% at 250 ng/kg/h) and brain water content (20% at 250 ng/kg/h) when determined 24 h post-SDH. Based on these data it is concluded that the neuroprotective efficacy of BAY 38-7271 is mediated by multiple mechanisms triggered by cannabinoid receptors.
Collapse
Affiliation(s)
- Frank Mauler
- Bayer Health Care, PH-R-EU CNS, Aprather Weg 18a, 42096 Wuppertal, Germany.
| | | | | | | | | |
Collapse
|
35
|
Beray-Berthat V, Palmier B, Plotkine M, Margaill I. Neutrophils do not contribute to infarction, oxidative stress, and NO synthase activity in severe brain ischemia. Exp Neurol 2003; 182:446-54. [PMID: 12895455 DOI: 10.1016/s0014-4886(03)00106-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) were reported to contribute to ischemia-reperfusion-induced brain damage. The present work examined whether PMN infiltration is deleterious in a severe model of transient focal cerebral ischemia and in which part PMNs contribute to oxidative stress and nitric oxide (NO) production. A 20-min occlusion of the left middle cerebral artery and both common carotid arteries was performed in rats. Infarction was maximal 24 h after reperfusion, while accumulation of PMNs in infarcted tissue was not significant before 48 h. Moreover, neutropenia induced by vinblastine (0.5 mg/kg iv) significantly decreased by 60-80% PMN infiltration 48 h after reperfusion but did not reduce the infarct volume. Thus PMNs do not contribute to cerebral injury in our model. Furthermore, decreased PMN infiltration modified neither oxidative stress evaluated by glutathione concentrations nor NO synthase activities 48 h after reperfusion. In conclusion, our results suggest that PMNs are not involved in severe cerebral ischemia and that anti-PMN strategies may be inefficient in some pathological conditions.
Collapse
Affiliation(s)
- Virginie Beray-Berthat
- Laboratoire de Pharmacologie, UPRES EA2510, Université René Descartes, F-75006, Paris, France
| | | | | | | |
Collapse
|
36
|
Brown GC, Bal-Price A. Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 2003; 27:325-55. [PMID: 12845153 DOI: 10.1385/mn:27:3:325] [Citation(s) in RCA: 339] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 12/27/2002] [Indexed: 11/11/2022]
Abstract
In inflammatory, infectious, ischemic, and neurodegenerative pathologies of the central nervous system (CNS) glia become "activated" by inflammatory mediators, and express new proteins such as the inducible isoform of nitric oxide synthase (iNOS). Although these activated glia have benefi- cial roles, in vitro they potently kill cocultured neurons, and there is increasing evidence that they contribute to pathology in vivo. Nitric oxide (NO) from iNOS appears to be a key mediator of such glial-induced neuronal death. The high sensitivity of neurons to NO is partly due to NO causing inhibition of respiration, rapid glutamate release from both astrocytes and neurons, and subsequent excitotoxic death of the neurons. NO is a potent inhibitor of mitochondrial respiration, due to reversible binding of NO to cytochrome oxidase in competition with oxygen, resulting in inhibition of energy production and sensitization to hypoxia. Activated astrocytes or microglia cause a potent inhibition of respiration in cocultured neurons due to glial NO inhibiting cytochrome oxidase within the neurons, resulting in ATP depletion and glutamate release. In some conditions, glutamate- induced neuronal death can itself be mediated by N-methyl-D-aspartate (NMDA)-receptor activation of the neuronal isoform of NO synthase (nNOS) causing mitochondrial damage. In addition NO can be converted to a number of reactive derivatives such as peroxynitrite, NO2, N2O3, and S-nitrosothiols that can kill cells in part by inhibiting mitochondrial respiration or activation of mitochondrial permeability transition, triggering neuronal apoptosis or necrosis.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | | |
Collapse
|
37
|
Hou ST, MacManus JP. Molecular mechanisms of cerebral ischemia-induced neuronal death. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:93-148. [PMID: 12455747 DOI: 10.1016/s0074-7696(02)21011-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mode of neuronal death caused by cerebral ischemia and reperfusion appears on the continuum between the poles of catastrophic necrosis and apoptosis: ischemic neurons exhibit many biochemical hallmarks of apoptosis but remain cytologically necrotic. The position on this continuum may be modulated by the severity of the ischemic insult. The ischemia-induced neuronal death is an active process (energy dependent) and is the result of activation of cascades of detrimental biochemical events that include perturbion of calcium homeostasis leading to increased excitotoxicity, malfunction of endoplasmic reticulum and mitochondria, elevation of oxidative stress causing DNA damage, alteration in proapoptotic gene expression, and activation of the effector cysteine proteases (caspases) and endonucleases leading to the final degradation of the genome. In spite of strong evidence showing that brain infarction can be reduced by inhibiting any one of the above biochemical events, such as targeting excitotoxicity, up-regulation of an antiapoptotic gene, or inhibition of a down-stream effector caspase, it is becoming clear that targeting a single gene or factor is not sufficient for stroke therapeutics. An effective neuroprotective therapy is likely to be a cocktail aimed at all of the above detrimental events evoked by cerebral ischemia and the success of such therapeutic intervention relies upon the complete elucidation of pathways and mechanisms of the cerebral ischemia-induced active neuronal death.
Collapse
Affiliation(s)
- Sheng T Hou
- Experimental Stroke Group, Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, KIA 0R6, Canada
| | | |
Collapse
|
38
|
Boland A, Gérardy J, Mossay D, Seutin V. Pre- and post-treatment with pirlindole and dehydropirlindole protects cultured brain cells against nitric oxide-induced death. Eur J Pharmacol 2003; 466:21-30. [PMID: 12679138 DOI: 10.1016/s0014-2999(03)01539-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that pirlindole and dehydropirlindole, two monoamine oxidase type-A inhibitors, protect cultured brain cells against iron-induced toxicity through a mechanism unrelated to monoamine oxidase type-A inhibition. The current study was performed to test whether the protective effect of pirlindole and dehydropirlindole could be extended to a nitric oxide (NO)-induced insult. A comparison with other monoamine oxidase inhibitors (brofaromine, moclobemide and deprenyl) and with trolox was made. In a first series of experiments, rat hippocampal or cortical cultured cells were exposed to a drug for 3 h, then 5 microM sodium nitroprusside, a NO donor, was added and the incubation was continued for 16 h. Cell survival assessment showed that pirlindole, dehydropirlindole and trolox significantly protected cultures against NO-induced toxicity in a concentration-dependent manner with respective EC(50)'s of 7, 3 and 17 microM. Similarly, pirlindole, dehydropirlindole or trolox, at a concentration of 50 microM, significantly decreased both intracellular peroxide production and lipoperoxidation. Other drugs were ineffective. In a post-hoc treatment protocol (3- or 6-h pre-incubation in the presence of sodium nitroprusside, then addition of one of the above mentioned compounds), only pirlindole and dehydropirlindole significantly improved cell survival in a concentration-dependent manner with respective EC(50)'s of 9 and 4 microM. The maximal protection in terms of cell survival was 90% and 78% after 3 and 6 h, respectively. They also reduced the production of both lipoperoxides and endoperoxides. Our results show that pirlindole and dehydropirlindole protect neurons against NO-induced toxicity at pharmacologically relevant concentrations. Moreover, their protective effect is still apparent when they are applied after the start of the insult. Therefore, our preclinical study suggests a new strategy that may be efficient to reduce NO-induced damage in the central nervous system.
Collapse
Affiliation(s)
- André Boland
- Center for Cellular and Molecular Neurobiology, Laboratory of Pharmacology, Institute of Pathology B23, University of Liège, B-4000 Sart-Tilman- 1, Liège, Belgium
| | | | | | | |
Collapse
|
39
|
Pettigrew LC, Holtz ML, Minger SL, Craddock SD. Glutamate receptor antagonists modulate heat shock protein response in focal brain ischemia. Neurol Res 2003; 25:201-7. [PMID: 12635523 DOI: 10.1179/016164103101201201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Neurons and glia reacting to ischemic injury exhibit delayed expression of heat shock proteins (HSPs). We tested the hypothesis that glutamate receptor antagonists alter neuronal and glial activation during focal cerebral ischemia, as shown by spatio-temporal changes in HSP immunoreactivity. Rats underwent focal ischemia by permanent occlusion of the middle cerebral artery. All animals were pre-treated with NBQX (30 mg kg-1), a competitive antagonist of the AMPA/kainate receptor, or CGS-19755 (10 mg kg-1), a competitive NMDA receptor antagonist, and euthanatized after 6 or 24 h of ischemia to demonstrate regional immunoreactivity of HSP-72 or 32 in brain. Neurons immunolabeled for HSP-72 appeared in the penumbral region adjacent to the infarct at 24 h and increased in number and distribution after pretreatment with NBQX or CGS-19755. Immunolabeling for HSP-32 revealed that pre-treatment with CGS-19755 caused ramified glia to infiltrate the ischemic cortex at 6 h, a pattern that was not seen in ischemic controls until 24 h. Blockade of the NMDA or AMPA/kainate receptor modulates cellular stress responses in both neurons and glia within the developing infarct. We conclude that early, rather than delayed, expression of HSP-32 is a sensitive indicator of glial activation induced specifically by CGS-19755.
Collapse
Affiliation(s)
- L Creed Pettigrew
- Department of Neurology, University of Kentucky College of Medicine, Department of Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
40
|
Expression of inducible nitric oxide synthase after focal cerebral ischemia stimulates neurogenesis in the adult rodent dentate gyrus. J Neurosci 2003. [PMID: 12514219 DOI: 10.1523/jneurosci.23-01-00223.2003] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The generation of new neurons in the adult mammalian hippocampus is thought to play a role in repairing the brain after injury. Here, we show that 7 d after focal cerebral ischemia, newly divided cells in the dentate gyrus of adult rats increased to approximately sevenfold, compared with sham controls. In the same area, this enhanced dentate neurogenesis was associated with activation of inducible nitric oxide synthase (iNOS). Inhibition of iNOS by aminoguanidine prevented ischemia-induced neurogenesis in the dentate gyrus. In null mutant mice lacking the iNOS gene, increased neurogenesis was not observed after focal cerebral ischemia. This study demonstrates that expression of iNOS is necessary for ischemia-stimulated cell birth in the dentate gyrus and indicates that activation of iNOS may provide a possible strategy for functional recovery from cerebral ischemic insult.
Collapse
|
41
|
Leung MCP, Lo SCL, Siu FKW, So KF. Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulates the expression of transforming growth factor-beta 1. Lasers Surg Med 2003; 31:283-8. [PMID: 12355575 DOI: 10.1002/lsm.10096] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Nitric oxide (NO) has been shown to be neurotoxic while transforming growth factor-beta 1 (TGF-beta1) is neuroprotective in the stroke model. The present study investigates the effects of low energy laser on nitric oxide synthase (NOS) and TGF-beta1 activities after cerebral ischemia and reperfusion injury. STUDY DESIGN/MATERIALS AND METHODS Cerebral ischemia was induced for 1 hour in male adult Sprague-Dawley (S.D.) rats with unilateral occlusion of middle cerebral artery (MCAO). Low energy laser irradiation was then applied to the cerebrum at different durations (1, 5, or 10 minutes). The activity of NOS and the expression of TGF-beta1 were evaluated in groups with different durations of laser irradiation. RESULTS After ischemia, the activity of NOS was gradually increased from day 3, became significantly higher from day 4 to 6 (P < 0.001), but returned to the normal level after day 7. The activity and expression of the three isoforms of NOS were significantly suppressed (P < 0.001) to different extents after laser irradiation. In addition, laser irradiation was shown to trigger the expression of TGF-beta1 (P < 0.001). CONCLUSIONS Low energy laser could suppress the activity of NOS and up-regulate the expression of TGF-beta1 after stroke in rats.
Collapse
Affiliation(s)
- Mason C P Leung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, The University of Hong Kong, Hong Kong. rsmcpleung.edu.hk
| | | | | | | |
Collapse
|
42
|
Ding-Zhou L, Marchand-Verrecchia C, Croci N, Plotkine M, Margaill I. L-NAME reduces infarction, neurological deficit and blood-brain barrier disruption following cerebral ischemia in mice. Eur J Pharmacol 2002; 457:137-46. [PMID: 12464359 DOI: 10.1016/s0014-2999(02)02686-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The role of nitric oxide (NO) in the development of post-ischemic cerebral infarction has been extensively examined, but fewer studies have investigated its role in other outcomes. In the present study, we first determined the temporal evolution of infarct volume, NO production, neurological deficit and blood-brain barrier disruption in a model of transient focal cerebral ischemia in mice. We then examined the effect of the nonselective NO-synthase inhibitor N(omega)-nitro-L-arginine-methylester (L-NAME). L-NAME given at 3 mg/kg 3 h after ischemia reduced by 20% the infarct volume and abolished the increase in brain NO production evaluated by its metabolites (nitrites/nitrates) 48 h after ischemia. L-NAME with this protocol also reduced the neurological deficit evaluated by the grip test and decreased by 65% the extravasation of Evans blue, an index of blood-brain barrier breakdown. These protective activities of L-NAME suggest that NO has multiple deleterious effects in cerebral ischemia.
Collapse
Affiliation(s)
- Li Ding-Zhou
- Laboratoire de Pharmacologie, Université René Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | |
Collapse
|
43
|
Shin CY, Lee NI, Je HD, Kim JS, Sung JH, Kim DS, Lee DW, Bae KL, Sohn UD. Cardiovascular responses and nitric oxide production in cerebral ischemic rats. Arch Pharm Res 2002; 25:697-703. [PMID: 12433208 DOI: 10.1007/bf02976947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated that the role of nitric oxide (NO) on ischemic rats in brain and heart. Ischemia was induced by both common carotid arteries (CCA) occlusion for 24h following reperfusion. Then tissue samples were removed and measured NOx. In brain, NOx was increased by about 40% vs. normal and it was significantly inhibited by aminoguanidine, selective iNOS inhibitor. This result showed that NOx concentration was increased by iNOS. We investigated the role of Ca2+ during ischemia. Nimodipine, L-type calcium channel blocker, didn't inhibit the increases of NOx concentration during ischemia. It suggested that increased NOx was due to calcium-independent NOS. MK-801, which N-methyl-D-aspartate (NMDA) receptor antagonist, didn't significantly prevent the increases of NOx. In heart, ischemia caused NOx decrease and it is inconsistent with NOx increase in brain. Aminoguanidine and nimodipine didnt affect on NOx decrease. But MK-801 more lowered NOx concentration than those of ischemia control group. It seemed that Ca2+ influx in heart partially occurred via NMDA receptor and inhibited by NMDA receptor antagonist. The mean arterial pressure (MAP) in ischemic rats after 24h of CCA occlusion was decreased when compared to normal value, whereas the heart rates (HR) was not different between two groups. Aminoguanidine or MK801 had no effect on MAP or HR, but nimodipine reduced MAP. There was no difference the effects of aminoguanidine, nimodipine, or MK-801, on MAP and HR between normal rats and ischemic rats. In summary, ischemic model caused an increase of NOx concentration, suggesting that this may be produced via iNOS, which is calcium independent in brain. However in heart, ischemia decreased NOx concentration and NMDA receptor was partially involved. The basal MAP was decreased in ischemic rats but HR was not different from normal control, suggesting that increased NOx in brain of ischemic rat may result in the hypotension.
Collapse
Affiliation(s)
- Chang Yell Shin
- Department of Pharmacology, College of Pharmacy, Chung Ang University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kim YH, Koh JY. The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 2002; 177:407-18. [PMID: 12429187 DOI: 10.1006/exnr.2002.7990] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, we examined the role and the mechanism of poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) activation in zinc-induced cell death in cortical culture. After brief exposure to 400 microM zinc, cortical cells exhibited DNA fragmentation, increased poly(ADP-ribosyl)ation, and decreased levels of nicotinamide adenine dinucleotide (NAD) and ATP and subsequently underwent cell death. Inhibitors of PARP/PARG attenuated both zinc-induced NAD/ATP depletion and cell death, thereby implicating the PARP/PARG cascade in these processes. The zinc-inducible enzymes NADPH oxidase and neuronal nitric oxide synthase (nNOS) contributed to PARP activation as their inhibitors attenuated zinc-induced poly(ADP-ribosyl)ation. Levels of nitric oxide and nitrites increased following zinc exposure, consistent with NOS activation. In addition, Western blots and RT-PCR analysis revealed that protein and mRNA levels of nNOS specifically increased following zinc exposure in a manner similar to that of NADPH oxidase. The present study demonstrates that induction of NADPH oxidase and nNOS actively contributes to PARP/PARG-mediated NAD/ATP depletion and cell death induced by zinc in cortical culture.
Collapse
Affiliation(s)
- Yang-Hee Kim
- National Creative Research Initiative Center for the Study of CNS Zinc, Department of Neurology, University of Ulsan College of Medicine, Seoul, 138-736, Korea
| | | |
Collapse
|
45
|
Suzuki M, Tabuchi M, Ikeda M, Tomita T. Concurrent formation of peroxynitrite with the expression of inducible nitric oxide synthase in the brain during middle cerebral artery occlusion and reperfusion in rats. Brain Res 2002; 951:113-20. [PMID: 12231464 DOI: 10.1016/s0006-8993(02)03145-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxynitrite is assumed to play a crucial role in brain damage associated with the overproduction of nitric oxide (NO). The purpose of this study is to examine time-dependent changes of nitrite and nitrate (NOx) concentration in the circulation, and peroxynitrite formation as well as the expression of inducible nitric oxide synthase (iNOS) in the penumbra of rat brains during transient middle cerebral artery occlusion (MCAO) of Wistar rat for 2 h and reperfusion for 4-70 h. NOx concentration in the circulation was continuously monitored at the right jugular vein by microdialysis. The expression of iNOS was detected at 22-70 h after reperfusion in vascular walls and the cortex. Nitrotyrosine, a marker of peroxynitrite, appeared 4 h after reperfusion in the cortex, increasing substantially at 22-46 h in vascular walls. NOx level in dialysate increased immediately after MCAO. After a gradual decrease, the level increased again 4 h after reperfusion, reaching a maximum at 46 h. Brain myeloperoxidase activity, a marker of neutrophil infiltration, was not detected 4 h after reperfusion, but greatly increased at 22 h and then decreased. These results suggest that a marked increase of NOx level in the circulation might reflect the expression of iNOS, while neuronal NOS may contribute to peroxynitrite formation in the cortex observed at an earlier phase of reperfusion. This study indicates that monitoring NOx level in the circulation serves to assess the progress of stroke, and to determine appropriate therapeutic measures.
Collapse
Affiliation(s)
- Motohisa Suzuki
- Graduate School of Health Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422-8526, Japan
| | | | | | | |
Collapse
|
46
|
Zhu DY, Deng Q, Yao HH, Wang DC, Deng Y, Liu GQ. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice. Life Sci 2002; 71:1985-96. [PMID: 12175893 DOI: 10.1016/s0024-3205(02)01970-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present observations examined the hypothesis that the iNOS expression in the ischemic penumbra after a transient focal ischemic insult is involved in the recruitment of penumbra into infarction. The middle cerebral artery in mice was occluded for 2 h by an intraluminal filament and then recirculated. The measurement of iNOS activity, iNOS protein formation and NO concentration in the ischemic core and penumbra, and the determination of infarct volume were performed at 6, 12, 24 and 48 h after reperfusion. iNOS protein and iNOS enzymatic activity appeared at 6 h, peaked at 24 h, and declined at 48 h in the penumbra after reperfusion. iNOS protein was not detectable in contralateral area and in sham-operated brains. The time course of iNOS protein, enzymatic activity and NO concentration in the penumbra but not in the core matched the process of infarct maturation. Treatment with iNOS inhibitor aminoguanidine (100 mg.kg(-1), i.p.) at 6 and 12 h after reperfusion inhibited iNOS activity by 88.0 +/- 10.4% and reduced NO concentration by 48.5 +/- 8.3% in the penumbra, and lessened infarct size by 48.8 +/- 7.2%. The iNOS activity and NO level in the core were not affected by the administration of aminoguanidine. These results suggest that iNOS expression in the ischemic penumbra is involved in the recruitment of penumbra into infarction and thereby contributing to the enlargement of infarct.
Collapse
Affiliation(s)
- Dong-Ya Zhu
- Pharmacology Department, New Drug Research Center, China Pharmaceutical University, Tong Jia Xiang 24#, Nanjing 210009, China.
| | | | | | | | | | | |
Collapse
|
47
|
Hwang JJ, Choi SY, Koh JY. The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. J Neurochem 2002; 82:894-902. [PMID: 12358795 DOI: 10.1046/j.1471-4159.2002.01040.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Certain neurotrophins promote or induce oxidative neuronal death in cortical cultures. However, the effector mechanisms mediating this phenomenon have not been delineated. In this study, we investigated the possibility that NADPH oxidase and nitric oxide synthase (NOS) function as such effectors. Western blot analysis showed that treatment with brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-4/5 increased the levels of NADPH oxidase subunits. Moreover, neurotrophin treatment resulted in membrane translocation of p67phox, a characteristic feature of NADPH oxidase activation. Administration of the specific NADPH oxidase inhibitor, 4-(2-aminoethyl)benzenesulfonylfluoride (AEBSF), attenuated increases in oxygen free radicals thereby suggesting that NADPH oxidase contributes to the oxidative stress induced by neurotrophins. Furthermore, neuronal death induced by BDNF or NT-4/5 was significantly attenuated by AEBSF. Treatment with BDNF has previously been shown to induce neuronal NOS (nNOS). Our data indicated that inhibitors of nNOS attenuated neuronal death induced by BDNF or NT-4/5, consistent with an active role of nNOS in the mediation of neurotrophin neurotoxicity. As in other models of oxidative cell death, BDNF-induced neuronal death was accompanied by poly(ADP ribose) polymerase (PARP) activation. AEBSF or N-nitro-l-arginine (NNA) reduced BDNF-mediated PARP activation. PARP and poly(ADP ribose) glycohydrolase (PARG) are actively involved in mediating neurotrophin neurotoxicity since inhibitors of PARP and PARG significantly reduced levels of cell death. These results suggest that NADPH oxidase and nNOS contribute to increased oxidative stress, subsequent activation of PARP/PARG, and neuronal death induced by prolonged neurotrophin exposure.
Collapse
Affiliation(s)
- Jung-Jin Hwang
- National Creative Research Initiative Center for the Study of CNS Zinc, University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
48
|
Gonzalez-Barrios JA, Escalante B, Valdés J, León-Chávez BA, Martinez-Fong D. Nitric oxide and nitric oxide synthases in the fetal cerebral cortex of rats following transient uteroplacental ischemia. Brain Res 2002; 945:114-22. [PMID: 12113958 DOI: 10.1016/s0006-8993(02)02746-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of transient uteroplacental ischemia on nitric oxide (NO) levels, enzymatic activity, and expression of NO synthase (NOS) isoforms was studied in fetal rat brains. Fetuses were subjected to ischemia by clamping the uterine arteries for 5 min on gestational day 17 (GD17). At different times after ischemia, fetuses were delivered by Cesarean section under anesthesia to obtain the brains. Transient uteroplacental ischemia produced a time dependent increase in nitrite levels in the brain, reaching a maximum value (300 +/- 25% of baseline) 24 h after uterine artery occlusion and remaining elevated as long as 48 h. Significantly increased nitrite levels were found in the cerebral cortex but not in the mesencephalon and cerebellum. The ischemia-induced increment in nitrite levels was totally blocked by either L-NAME (10 mg/kg) or AMT (0.65 mg/kg) administered i.p. 1 h before uterine artery occlusion. Both Ca(2+)-dependent and Ca(2+)-independent NOS activities in the cerebral cortex remained significantly increased with respect to controls after 24 h following the ischemia. Reverse transcriptase-polymerase chain reaction showed augmented levels of mRNAs for both nNOS and iNOS when compared with controls at 8 h after ischemia. At 36 h, nNOS mRNA returned to basal levels whereas eNOS mRNA levels increased and iNOS mRNA remained elevated. Our results show that the three NOS isoforms participate in increasing NO levels after transient ischemia and suggest a biphasic and differential regulation of the expression of constitutive NOS isoforms in the rat cerebral cortex.
Collapse
Affiliation(s)
- Juan Antonio Gonzalez-Barrios
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN., Apartado postal 14-740, 07000, México DF, Mexico
| | | | | | | | | |
Collapse
|
49
|
Wang Y, Chang CF, Morales M, Chiang YH, Hoffer J. Protective effects of glial cell line-derived neurotrophic factor in ischemic brain injury. Ann N Y Acad Sci 2002; 962:423-37. [PMID: 12076993 DOI: 10.1111/j.1749-6632.2002.tb04086.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a member of the transforming growth factor-beta (TGF-beta) superfamily, has been shown to have trophic activity on dopaminergic neurons. Recent studies indicate that GDNF can protect the cerebral hemispheres from damage induced by middle cerebral arterial ligation. We found that such neuroprotective effects are mediated through specific GDNF receptor alpha-1 (GFRalpha1). Animals with a deficiency in GFRalpha-1 have less GDNF-induced neuroprotection. Ischemia also enhances nitric oxide synthase (NOS) activity, which can be attenuated by GDNF. These.data suggest that GDNF can protect against ischemic injury through a GFRalpha-1/NOS mechanism. We also found that the receptor for GDNF, GFRalpha1, and its signaling moiety c-Ret were upregulated, starting immediately after ischemia. This upregulation suggests that activation of an endogenous neuroprotective mechanism occurs so that responsiveness of GDNF can be enhanced at very early stages during ischemia.
Collapse
Affiliation(s)
- Y Wang
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|