1
|
Lindstrom A, Volkoff H. Endocrine regulation of feeding in non-transgenic and transgenic fluorescent orange tiger barb (Puntigrus tetrazona). Gen Comp Endocrinol 2025; 367:114730. [PMID: 40228648 DOI: 10.1016/j.ygcen.2025.114730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/16/2025]
Abstract
Tiger barbs are popular tropical aquarium fish but despite their economic importance, nothing is known about their feeding physiology, in particular their endocrine regulation of feeding. The tiger barb has also been used to make genetically modified fluorescent fish but the influence of this genetic modification on their physiology is poorly understood. In this study, we submitted both non-transgenic (NT) and transgenic fluorescent orange (T) fish to 2 weeks of fasting or different temperatures (20, 25 and 30 °C) and assessed food intake and the expression of appetite regulators in brain, intestine and liver. Fasting had no effect on appetite regulators in the intestine, and decreased liver leptin expression in NT fish only. Fasting caused an overall increase and decrease in brain orexigenic and anorexigenic factors, respectively. The nature of peptides affected by this response differed between strains (MCH, ghrelin, POMCb in both NT and T, orexin in NT only, CRF and CCK in T only). In both T and NT fish, increasing temperatures increased food intake. Temperature affected the expression of most of the peptides examined, but the effects differed between the two fish strains. A shift from 25 to 20 °C increased hepatic leptin in NT and T, and intestine ghrelin in NT and had no effect on brain expression. A shift from 25 to 30 °C did not affect intestine or liver expressions, increased orexin, MCH and CRF brain expression in NT and T, and increased POMCb and CCKa expressions in T. Our study presents new information on the endocrine regulation of feeding in tiger barb, and provides insights on how transgenesis might affect feeding physiology of fish.
Collapse
Affiliation(s)
- Annika Lindstrom
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9 Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9 Canada.
| |
Collapse
|
2
|
Li H, Liang H, Gao X, Zeng X, Zheng S, Wang L, Yuan F, Xu S, Yin Z, Hu G. Cholecystokinin (CCK) Is a Mediator Between Nutritional Intake and Gonadal Development in Teleosts. Cells 2025; 14:78. [PMID: 39851506 PMCID: PMC11763773 DOI: 10.3390/cells14020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Nutritional intake is closely linked to gonadal development, although the mechanisms by which food intake affects gonadal development are not fully understood. Cholecystokinin (CCK) is a satiety neuropeptide derived from the hypothalamus, and the present study observed that hypothalamic CCK expression is significantly influenced by food intake, which is mediated through blood glucose levels. Interestingly, CCK and its receptors were observed to exhibit a high expression in the hypothalamus-pituitary-gonad (HPG) axis of grass carp (Ctenopharyngodon idellus), suggesting that CCK is potentially involved in regulating fish reproduction through the HPG axis. Further investigations revealed that CCK could significantly stimulate the expression of gonadotropin-releasing hormone-3 (GnRH3) in the hypothalamus. In addition, single-cell RNA sequencing showed that cckrb was highly enriched in pituitary follicle-stimulating hormone (FSH) cells. Further study confirmed that CCK can significantly induce FSH synthesis and secretion in primary cultured pituitary cells. Additionally, with primary cultured ovary cells as a model, the in vitro experiment demonstrated that CCK directly induces the expression of lhr, fshr, and cyp19a1a mRNA. This indicates that hypothalamic CCK may act as a nutrient sensor involved in regulating gonadal development in teleosts.
Collapse
Affiliation(s)
- Hangyu Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Hongwei Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
- Key Lab of Freshwater Biodiversity Conservation Ministry of Agriculture, Yangtze River Fisheries Research Institute, The Chinese Academy of Fisheries Sciences, Wuhan 430223, China
| | - Xiaowen Gao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Xiangtong Zeng
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Shuo Zheng
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Linlin Wang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Faming Yuan
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Shaohua Xu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| | - Zhan Yin
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guangfu Hu
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China (X.Z.)
| |
Collapse
|
3
|
Soengas JL, Comesaña S, Blanco AM, Conde-Sieira M. Feed Intake Regulation in Fish: Implications for Aquaculture. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2025; 33:8-60. [DOI: 10.1080/23308249.2024.2374259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- José L. Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Ayelén M. Blanco
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
4
|
Cai X, Meng Z, Xu Y, Jiang Y, Cui A. Leptins regulate the migration, proliferation, apoptosis, and synthesis of sexual steroid in tongue sole (Cynoglossus semilaevis) ovarian cells. Int J Biol Macromol 2024; 278:134855. [PMID: 39168222 DOI: 10.1016/j.ijbiomac.2024.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Leptin is an important hormone in mammals, which plays a key role in regulating reproduction and energy metabolism. However, there are few studies on the function of leptin in reproductive regulation in fish, especially on tongue sole (Cynoglossus semilaevis). Thus, in this study, we firstly exploited the basic function of tongue sole leptins, the migration and growth rate of ovarian cells were reduced after knocking down lepA and lepB in ovarian cells, while increasing the apoptosis rate. Then both rlepA and rlepB were proved to be combined with lepR to further exert functions by dual luciferase assay. Transcriptome sequencing showed that differentially expressed genes (DEGs) were mainly enriched in KEGG pathways related to membrane receptors, fatty acid synthesis, growth, etc. when lepA and lepB were knocked down or additionally added in vitro. Additionally, the estradiol (E2) hormone was increased significantly after knocking down lepB. Finally, based on DEGs and the signaling pathways they participated in, we proposed a hypothesis about the signaling pathways in which leptin may be involved in ovarian cells. Taken together, these results provide new insights into the role of leptin in the regulation of physiological functions such as ovarian growth and development.
Collapse
Affiliation(s)
- Xin Cai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhaojun Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yongjiang Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Yan Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Aijun Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
Kuhn J, Lindstrom A, Volkoff H. Effects of fasting and environmental factors on appetite regulators in pond loach Misgurnus anguillicaudatus. Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111651. [PMID: 38703991 DOI: 10.1016/j.cbpa.2024.111651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The pond loach (Misgurnus anguillicaudatus) is an important aquaculture freshwater species, used as an ornamental fish, food source for humans and angling bait. Pond loaches are resistant to fasting and extreme environmental conditions, including temperature and low oxygen levels. Little is known about how these factors affect the feeding physiology and the endocrine regulation of feeding of loaches. In this study, we examined the effects of fasting, as well as increased temperature and decreased oxygen levels on food intake and transcript levels of appetite regulators. Fasted fish had lower blood glucose levels, and lower expression levels of intestine CCK and PYY, and brain CART1, but had higher levels of brain orexin and ghrelin than fed fish. Fish held at 30 °C had higher food intake, glucose levels, and mRNA levels of intestine CCK and PYY, and brain CART2, but lower brain orexin levels than fish at 20 °C. Fish held at low oxygen levels had a lower food intake, higher intestine CCKa and ghrelin, and brain orexin, CART2 and ghrelin mRNA expression levels than fish held at high O2 levels. Our results suggest that fasting and high temperatures increase the expression of orexigenic and anorexigenic factors respectively, whereas the increase in expression of both orexigenic and anorexigenic factors in low O2 environments might not be related to their role in feeding, but possibly to protection from tissue damage. The results of our study might shed new light on how pond loaches are able to cope with extreme environmental conditions such as low food availability, extreme temperatures and hypoxia.
Collapse
Affiliation(s)
- Jannik Kuhn
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Hochschule Mannheim University, Mannheim 68163, Germany
| | - Annika Lindstrom
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
6
|
Liang H, Mi H, Yu H, Huang D, Ren M, Zhang L, Teng T. Role of Cholecystokinin ( cck) in Feeding Regulation of Largemouth Bass ( Micropterus salmoides): Peptide Activation and Antagonist Inhibition. BIOLOGY 2024; 13:635. [PMID: 39194573 DOI: 10.3390/biology13080635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
This study investigated the role of cholecystokinin (cck) in the feeding regulation of largemouth bass (Micropterus salmoides) via peptide activation and antagonist inhibition. The results show that the cck gene was expressed in various tissues, with the highest expression level occurring in the brain. Feeding, continuous feeding, and refeeding after fasting could significantly improve the mRNA levels of cck in the brain. Moreover, the activation of cck via injecting an exogenous CCK peptide could inhibit feed intake by regulating the mRNA levels of anorexigenic and feed-promoting factors in the brain and intestine. Furthermore, the CCK peptide reduced feed intake; however, the presence of an antagonist (Ly225910-CCK1R and devazepide-CCK2R) could reverse this effect through regulating the mRNA levels of anorexigenic and feed-promoting factors in the brain and intestine. Treatment with devazepide + CCK (CCK2R) reversed feed intake more effectively than Ly225910 + CCK (CCK1R) treatment. In summary, cck could regulate the feed intake of largemouth bass through regulating feeding-related genes in the brain and intestine. In addition, cck required binding with the receptor to inhibit feed intake more effectively in largemouth bass, and the binding effect of CCK1R was better than that of CCK2R.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haifeng Mi
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Heng Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Dongyu Huang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Lu Zhang
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| | - Tao Teng
- Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China
| |
Collapse
|
7
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Cai X, Li Y, Cui A, Jiang Y, Wang B, Meng Z, Xu Y. Characterization of adaptive expression regulation of yellowtail kingfish (Seriola lalandi) leptin, receptor, and receptor overlapping transcript genes in response to fasting and re-feeding strategies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1513-1526. [PMID: 38722479 DOI: 10.1007/s10695-024-01353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/02/2024] [Indexed: 07/30/2024]
Abstract
Leptins and other related genes have been proven to play vital roles in food intake, weight control, and other life activities. While the function of leptins in yellowtail kingfish (Seriola lalandi) has not yet been explored, in the present study, we investigated the structure and preliminary function of four leptin-related genes in S. lalandi. In detail, the sequence of two leptin genes (lepa and lepb), one leptin receptor gene (lepr), and one leptin receptor overlapping transcript (leprot) gene were obtained by homology cloning and RACE methods, in which lepa and lepb have similar structure. Moreover, homologous sequence alignment and evolutionary analysis of all four genes were clustered with Seriola dumerili. The tissue distribution of these four genes in thirteen tissues of yellowtail kingfish was detected by RT-qPCR. Both lepa and leprot were highly expressed in the brain and ovary, while lepb was highly expressed in the pituitary, gill, muscle, and ovary; lepr was highly expressed in the gill, kidney, and ovary. Additionally, these four genes also played roles in embryo development and early growth and development of larvae and juveniles of yellowtail kingfish. Finally, the function of leptin and leptin-related genes was investigated during fasting and re-feeding adaption of yellowtail kingfish. The results showed that these four genes have different regulation functions in five tissues; for example, the mRNA levels of lepa, lepr, and leprot in the brain decreased during fasting and immediately increased after re-feeding, while the mRNA level of lepb did not show significant fluctuation during starvation but significantly lowered after re-feeding. However, lepa and lepb mRNA levels were significantly elevated during fasting and returned to control levels after re-feeding, and there were no significant changes in the expression of lepr and leprot in the liver during fasting and after re-feeding. Moreover, the body mass of fish in the experimental group was measured, and compensatory growth was found after the resumption of feeding. These results suggested that leptin and receptor genes play different functions in different tissues to regulate the physiological state of fish in food deficiency and gain processes.
Collapse
Affiliation(s)
- Xin Cai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ying Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Aijun Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yan Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Bin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhaojun Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Yongjiang Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Joint Laboratory for Deep Blue Fishery Engineering, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
| |
Collapse
|
9
|
Dissinger A, Rimoldi S, Terova G, Kwasek K. Chronic social isolation affects feeding behavior of juvenile zebrafish (Danio rerio). PLoS One 2024; 19:e0307967. [PMID: 39058733 PMCID: PMC11280532 DOI: 10.1371/journal.pone.0307967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Many organisms exhibit social behaviors and are part of some scheme of social structure. Zebrafish are highly social, shoaling fish and therefore, social isolation may have notable impacts on their physiology and behavior. The objective of this study was to evaluate the effects of social isolation on feed intake, monoaminergic system related gene expression, and intestinal health of juvenile zebrafish fed a high-inclusion soybean meal based diet. At 20 days post-fertilization zebrafish were randomly assigned to chronic isolation (1 fish per 1.5 L tank) or social housing (6 fish per 9 L tank) with 18 tanks per treatment group (n = 18). Dividers were placed between all tanks to prevent visual cues between fish. Zebrafish were fed a commercial fishmeal based diet until 35 days post-fertilization and then fed the experimental high-inclusion soybean meal based diet until 50 days post-fertilization. At the end of the experiment (51 days post-fertilization), the mean total length, weight, and weight gain were not significantly different between treatment groups. Feed intake and feed conversion ratio were significantly higher in chronic isolation fish than in social housing fish. Expression of monoaminergic and appetite-related genes were not significantly different between groups. The chronic isolation group showed higher expression of the inflammatory gene il-1b, however, average intestinal villi width was significantly smaller and average length-to-width ratio was significantly higher in chronic isolation fish, suggesting morphological signs of inflammation were not present at the time of sampling. These results indicate that chronic isolation positively affects feed intake of juvenile zebrafish and suggest that isolation may be useful in promoting feed intake of less-palatable diets such as those based on soybean meal.
Collapse
Affiliation(s)
- Aubrey Dissinger
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Karolina Kwasek
- Department of Zoology, Southern Illinois University – Carbondale, Carbondale, Illinois, United States of America
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
10
|
Sun Y, Du X, Yang Y, Wang A, Gu Z, Liu C. Dietary Taurine Intake Affects the Growth Performance, Lipid Composition, and Antioxidant Defense of Juvenile Ivory Shell ( Babylonia areolata). Animals (Basel) 2023; 13:2592. [PMID: 37627383 PMCID: PMC10451277 DOI: 10.3390/ani13162592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, an eight-week feeding trial was performed to investigate the effects of different taurine supplementation levels (0.0% as control, 1.0%, 1.5%, 2.0%, 2.5%, and 3.0%) on the growth performance, lipid composition, and antioxidant ability in juvenile ivory shells Babylonia areolata. The results showed that taurine supplementation significantly improved the specific growth rates (SGRs) and survival rates of ivory shell (except the survival rate in the 3.0% taurine diet group) (p < 0.05). The SGRs showed an increasing and then decreasing tendency with increasing dietary taurine supplementation, and the highest value was observed in the 2.0% taurine diet (2.60%/d). The taurine content in the muscle of ivory shells fed taurine-supplemented diets significantly increased when compared to the control group (p < 0.05). The profiles of C22:2n6 in the muscle of ivory shells fed taurine-supplemented diets were significantly higher than in the control group (p < 0.05), and the highest values were observed in the 2.0% taurine supplementation group. The high-density lipoprotein cholesterol (HDL-C) content in the hepatopancreas showed an increasing and then decreasing tendency with increasing dietary taurine supplementation, while the low-density lipoprotein cholesterol (LDL-C) concentration showed a decreasing tendency. Furthermore, the activities of pepsin and lipase in both the intestine and hepatopancreas significantly increased at moderate taurine supplementation levels compared to the control group (p < 0.05). Accordingly, obvious increases in the histological parameters in the intestine of ivory shells fed taurine-supplemented diets were also found. As for the antioxidant ability, the activities of the total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) showed an increasing and then decreasing tendency with increasing dietary taurine supplementation, and the highest values were observed in the 1.0% and 1.0-2.0% taurine supplementation groups, respectively; the malondialdehyde (MDA) contents significantly decreased with increasing dietary taurine supplementation (p < 0.05). The taurine intake affected the expression of four appetite-related genes in the hepatopancreas, in which orexin and NPY showed an increasing and then decreasing tendency, while leptin and cholecyatoklnin decreased with increasing dietary taurine supplementation. In conclusion, moderate taurine supplementation in an artificial diet (about 1.5-2.0%) could improve the growth performance and antioxidant ability and change the lipid composition of juvenile ivory shells.
Collapse
Affiliation(s)
- Yunchao Sun
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Xiangyu Du
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Yi Yang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Aimin Wang
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Zhifeng Gu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| | - Chunsheng Liu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China; (Y.S.); (X.D.); (Y.Y.); (Z.G.)
- College of Marine Biology and Fisheries, Hainan University, Haikou 570228, China;
| |
Collapse
|
11
|
Short CA, Hahn DA. Fat enough for the winter? Does nutritional status affect diapause? JOURNAL OF INSECT PHYSIOLOGY 2023; 145:104488. [PMID: 36717056 DOI: 10.1016/j.jinsphys.2023.104488] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Many insects enter a dormant state termed diapause in anticipation of seasonal inhospitable conditions. Insects drastically reduce their feeding during diapause. Their reduced nutrient intake is paired with substantial nutrient costs: maintaining basal metabolism during diapause, repairing tissues damaged by adverse conditions, and resuming development after diapause. Many investigators have asked "Does nutrition affect diapause?" In this review, we survey the studies that have attempted to address this question. We propose the term nutritional status, a holistic view of nutrition that explicitly includes the perception, intake, and storage of the great breadth of nutrients. We examine the studies that have sought to test if nutrition affects diapause, trying to identify specific facets of nutritional status that affect diapause phenotypes. Curiously, low quality host plants during the diapause induction phase generally induce diapause, but food deprivation during the same phase generally averts diapause. Using the geometric framework of nutrition to identify specific dietary components that affect diapause may reconcile these contrasting findings. This framework can establish nutritionally permissive space, distinguishing nutrient changes that affect diapause from changes that induce other dormancies. Refeeding is another important experimental technique that distinguishes between diapause and quiescence, a non-diapause dormancy. We also find insufficient evidence for the hypothesis that nutrient stores regulate diapause length and suggest manipulations to investigate the role of nutrient stores in diapause termination. Finally, we propose mechanisms that could interface nutritional status with the diapause program, focusing on combined action of the nutritional axis between the gut, fat body, and brain.
Collapse
Affiliation(s)
- Clancy A Short
- Department of Entomology and Nematology, The University of Florida, Gainesville, FL, United States.
| | - Daniel A Hahn
- Department of Entomology and Nematology, The University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Butler MJ, Volkoff H. The role of visfatin/ NAMPT in the regulation of feeding in goldfish (Carassius auratus). Peptides 2023; 160:170919. [PMID: 36503895 DOI: 10.1016/j.peptides.2022.170919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The protein NAMPT (nicotinamide phosphoribosyltransferase, encoded by the NAPMT gene) is present in two forms. The intracellular form of NAMPT (iNAMPT) is the rate-limiting enzyme in a major nicotinamide adenine dinucleotide (NAD) biosynthetic pathway and regulates cellular metabolism. NAMPT is also secreted by cells in the extracellular milieu, and referred to as extracellular NAMPT (eNAMPT or visfatin). In mammals, visfatin has been linked to various metabolic disorders. However, the role of visfatin in regulating energy homeostasis in fish is not known. In this study, we assessed the effects of nutritional status on NAMPT mRNA expression and the effects of visfatin peripheral injections on food intake and the expression of appetite regulators in goldfish. Our results show that NAMPT is widely expressed in peripheral tissues and brain. Fasting induced increases in NAMPT expression in liver but had no effect on either brain or intestine NAMPT expression levels. Intraperitoneal injections of visfatin (400 ng/g) induced an increase in food intake and in expression levels of hepatic leptin and sirtuin1. Visfatin injections decreased intestine CCK and PYY, and telencephalon (but not hypothalamic) orexin and NPY expression levels. Visfatin did not affect plasma glucose levels, intestine ghrelin or brain CART, POMC and AgRP expressions. These data suggest that visfatin/NAMPT might be involved in the regulation of feeding and energy homeostasis in goldfish.
Collapse
Affiliation(s)
- Maggie J Butler
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B3X9, Canada.
| |
Collapse
|
13
|
Martinez-Silva MA, Dupont-Prinet A, Houle C, Vagner M, Garant D, Bernatchez L, Audet C. Growth regulation in brook charr Salvelinus fontinalis. Gen Comp Endocrinol 2023; 331:114160. [PMID: 36356646 DOI: 10.1016/j.ygcen.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/12/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Fish growth can be modulated through genetic selection. However, it is not known whether growth regulatory mechanisms modulated by genetic selection can provide information about phenotypic growth variations among families or populations. Following a five-generation breeding program that selected for the absence of early sexual maturity and increased growth in brook charr we aimed to understand how the genetic selection process modifies the growth regulatory pathway of brook charr at the molecular level. To achieve this, we studied the regulation of growth traits at three different levels: 1) between lines-one under selection, the other not, 2) among-families expressing differences in average growth phenotypes, which we termed family performance, and 3) among individuals within families that expressed extreme growth phenotypes, which we termed slow- and fast-growing. At age 1+, individuals from four of the highest performing and four of the lowest performing families in terms of growth were sampled in both the control and selected lines. The gene expression levels of three reference and ten target genes were analyzed by real-time PCR. Results showed that better growth performance (in terms of weight and length at age) in the selected line was associated with an upregulation in the expression of genes involved in the growth hormone (GH)/insulin growth factor-1 (IGF-1) axis, including the igf-1 receptor in pituitary; the gh-1 receptor and igf-1 in liver; and ghr and igf-1r in white muscle. When looking at gene expression within families, family performance and individual phenotypes were associated with upregulations of the leptin receptor and neuropeptid Y-genes related to appetite regulation-in the slower-growing phenotypes. However, other genes related to appetite (ghrelin, somatostatin) or involved in muscle growth (myosin heavy chain, myogenin) were not differentially expressed. This study highlights how transcriptomics may improve our understanding of the roles of different key endocrine steps that regulate physiological performance. Large variations in growth still exist in the selected line, indicating that the full genetic selection potential has not been reached.
Collapse
Affiliation(s)
| | - Aurélie Dupont-Prinet
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Carolyne Houle
- Département de Biologie, Université du Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Marie Vagner
- Laboratoire des Sciences de l'Environnement Marin, UMR 6539 (CNRS/Univ Brest/IRD/Ifremer), Plouzané 29280, France
| | - Dany Garant
- Département de Biologie, Université du Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université du Laval, Québec, QC G1V 0A6, Canada
| | - Céline Audet
- Institut des Sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
14
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
15
|
Appetite regulating genes in zebrafish gut; a gene expression study. PLoS One 2022; 17:e0255201. [PMID: 35853004 PMCID: PMC9295983 DOI: 10.1371/journal.pone.0255201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
The underlying molecular pathophysiology of feeding disorders, particularly in peripheral organs, is still largely unknown. A range of molecular factors encoded by appetite-regulating genes are already described to control feeding behaviour in the brain. However, the important role of the gastrointestinal tract in the regulation of appetite and feeding in connection to the brain has gained more attention in the recent years. An example of such inter-organ connection can be the signals mediated by leptin, a key regulator of body weight, food intake and metabolism, with conserved anorexigenic effects in vertebrates. Leptin signals functions through its receptor (lepr) in multiple organs, including the brain and the gastrointestinal tract. So far, the regulatory connections between leptin signal and other appetite-regulating genes remain unclear, particularly in the gastrointestinal system. In this study, we used a zebrafish mutant with impaired function of leptin receptor to explore gut expression patterns of appetite-regulating genes, under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). We provide evidence that most appetite-regulating genes are expressed in the zebrafish gut. On one hand, we did not observed significant differences in the expression of orexigenic genes (except for hcrt) after changes in the feeding condition. On the other hand, we found 8 anorexigenic genes in wild-types (cart2, cart3, dbi, oxt, nmu, nucb2a, pacap and pomc), as well as 4 genes in lepr mutants (cart3, kiss1, kiss1r and nucb2a), to be differentially expressed in the zebrafish gut after changes in feeding conditions. Most of these genes also showed significant differences in their expression between wild-type and lepr mutant. Finally, we observed that impaired leptin signalling influences potential regulatory connections between anorexigenic genes in zebrafish gut. Altogether, these transcriptional changes propose a potential role of leptin signal in the regulation of feeding through changes in expression of certain anorexigenic genes in the gastrointestinal tract of zebrafish.
Collapse
|
16
|
Neuropeptide Y in Spotted Scat (Scatophagus Argus), Characterization and Functional Analysis towards Feed Intake Regulation. FISHES 2022. [DOI: 10.3390/fishes7030111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y (Npy) is an intricate neuropeptide regulating numerous physiological processes. It is a highly conserved peptide known to improve feed intake in many vertebrates, including fishes. To enlighten the mechanism of Npy in spotted scat feed intake control, we cloned and identified the Npy cDNA sequence. We further examined its expression in some tissues and explored its expression effects at different time frames (hours and days). Here, we discovered that spotted scat Npy comprised a 300 bp open reading frame (ORF) and a 99 amino acid sequence. Npy was identified to be expressed in all tissues examined. Using in situ hybridization examination, we proved that npy has a wide expression in the brain of the spotted scat. Furthermore, the expression of npy in the hypothalamus significantly increased one hour after feeding (p < 0.05). Further, it was revealed that npy expression significantly increased in fish that were fasted for up to 5 days and significantly increased after refeeding from the 8th to the 10th day. This suggests that Npy is an orexigenic peptide, and hence, it increases food intake and growth in the spotted scat. Additionally, results from in vitro and in vivo experiments revealed that Npy locally interacts with other appetite-regulating peptides in the spotted scat hypothalamus. This research aimed to set a fundamental study in developing the feed intake regulation, improving growth and reproduction, which is significant to the aquaculture industry of the spotted scat.
Collapse
|
17
|
Basto-Silva C, Couto A, Rodrigues J, Oliva-Teles A, Navarro I, Kaiya H, Capilla E, Guerreiro I. Feeding frequency and dietary protein/carbohydrate ratio affect feed intake and appetite regulation-related genes expression in gilthead seabream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111168. [PMID: 35182764 DOI: 10.1016/j.cbpa.2022.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
Abstract
To evaluate the effects of feeding frequency (FF) and dietary protein/carbohydrate (P/CH) ratios on appetite regulation of gilthead seabream, two practical diets were formulated to include high protein and low carbohydrate (P50/CH10 diet) or low protein and high carbohydrate (P40/CH20 diet) content and each diet was fed to triplicate groups of fish until visual satiation each meal at a FF of 1, 2, or 3 meals per day. Feed intake and feed conversion ratio were higher in fish fed 2 or 3 meals than 1 meal per day and in fish fed the P40/CH20 than the P50/CH10 diet. The specific growth rate was only affected by FF, being higher in fish fed 2 or 3 meals per day than 1 meal per day. Expression of the cocaine-amphetamine-related transcript, corticotropin-releasing hormone, ghrelin receptor-a (ghsr-a), leptin, and neuropeptide y in the brain, cholecystokinin (cck) in the intestine, and leptin and ghrelin in the stomach was not affected by FF or dietary P/CH ratio. This is the first time that ghrelin cells were immune-located in the stomach of gilthead seabream. Fish fed 3 meals per day presented lower cck expression in the brain than those fed twice per day and higher hepatic ghsr-b expression than those fed once per day. Fish fed P40/CH20 diet presented higher hepatic leptin expression than those fed P50/CH10 diet. In conclusion, present results indicate that feeding a P40/CH20 diet at 3 meals a day seems to decrease the satiation feeling of gilthead seabream compared to fish fed higher P/CH ratio diets or fed 1 or 2 meals a day.
Collapse
Affiliation(s)
- Catarina Basto-Silva
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.
| | - Ana Couto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Juliana Rodrigues
- FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Aires Oliva-Teles
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Sinmachi, Suita, 564-8565 Osaka, Japan
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Inês Guerreiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
18
|
Gong N, Lundin J, Morgenroth D, Sheridan MA, Sandblom E, Björnsson BT. Roles of leptin in initiation of acquired growth hormone resistance and control of metabolism in rainbow trout. Am J Physiol Regul Integr Comp Physiol 2022; 322:R434-R444. [PMID: 35293250 PMCID: PMC9018004 DOI: 10.1152/ajpregu.00254.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Catabolic conditions often induce concomitant changes in plasma leptin (Lep), growth hormone (GH) and insulin growth factor I (IGF-I) levels in teleost fish, but it is unclear whether these parts of the endocrine system are responding independently or functionally linked. In this study, fasted rainbow trout was used to study the effects of Lep on the GH-IGF-I system and metabolism. Fish were implanted intraperitoneally with recombinant rainbow trout Lep pellets and remained unfed. After 4 days, plasma GH levels were elevated in the Lep-treated fish in a dose-dependent manner; the expression of hepatic igf1 and plasma IGF-I levels were suppressed accordingly. In vitro Lep treatment reversed ovine GH (oGH)-stimulated expression of igf1 and igf2 in hepatocytes isolated from fasted fish, similar to the inhibitory effects of the MEK1/2 inhibitor U0126 treatment. However, Lep treatment alone had no effect on the expression of igfs or oGH-stimulated ghr2a expression in the hepatocytes. These results demonstrate an additive effect of Lep on suppression of IGF-I under catabolic conditions, indicating that Lep is likely involved in initiation of acquired GH resistance. Although the Lep-implant treatment had no effect on standard metabolic rate, it significantly suppressed gene expression of hepatic hydroxyacyl-CoA dehydrogenase, phosphoenolpyruvate carboxykinase and glucose 6-phosphatase, which are key enzymes in lipid utilization and gluconeogenesis, in different patterns. Overall, this study indicates that the Lep increase in fasting salmonids is an important regulatory component for physiological adaptation during periods of food deprivation, involved in suppressing growth and hepatic metabolism to spare energy expenditure.
Collapse
Affiliation(s)
- Ningping Gong
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Jakob Lundin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mark A Sheridan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Björn Thrandur Björnsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Hu Z, Ai N, Chen W, Wong QWL, Ge W. Leptin and Its Signaling Are Not Involved in Zebrafish Puberty Onset. Biol Reprod 2022; 106:928-942. [DOI: 10.1093/biolre/ioac005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Leptin is a peptide hormone secreted from the adipose tissues and its signaling plays a central role in metabolic regulation of growth, especially on fat mass. In addition, leptin is also involved in regulating reproduction in mammals. In teleosts, there are two leptin ligands (lepa and lepb) and one cognate leptin receptor (lepr); however, their functions are still elusive. In this study, we created null-function mutants for lepa, lepb and lepr in zebrafish using CRISPR/Cas9 method and analyzed their phenotypes with emphasis on puberty onset, one major function widely reported for leptin in mammals. We demonstrated that the loss of leptin ligands or their receptor resulted in no obesity from prepubertal stage to adulthood. We then focused on leptin involvement in controlling puberty onset. We first confirmed the somatic threshold for puberty onset in females and proposed a criterion and somatic threshold for male puberty onset. We examined gonadal development and sex maturation in different genotypic combinations including single mutants (lepa−/−, lepb−/− and lepr−/−), double mutants (lepa−/−;lepb−/−) and triple mutants (lepa−/−;lepb−/−;lepr−/−). Our results showed that once the fish reached the thresholds, the siblings of all genotypes displayed comparable gonadal development in both sexes without obvious signs of changed puberty onset. In conclusion, this comprehensive genetic study on the lep-lepr system demonstrated that in contrast to its counterpart in mammals, leptin system plays little role in controlling growth and reproduction especially puberty onset in zebrafish.
Collapse
|
20
|
Chen Y, Wu X, Lai J, Liu Y, Song M, Li F, Gong Q. Molecular characterization and tissue distribution of cholecystokinin and its receptor in Yangtze sturgeon (Acipenser dabryanus) and their response to different feeding conditions. Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111129. [PMID: 34942371 DOI: 10.1016/j.cbpa.2021.111129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Yangtze sturgeon (Acipenser dabryanus) is a species endemic to Yangtze River drainage in China and is listed as a critically endangered species on the IUCN Red List. In the present study, cholecystokinin (CCK), one of the most important neuroregulatory digestive genes, and its receptor (CCKr) were identified from the full-length transcriptome analysis of A. dabryanus. The deduced amino acid sequences of CCK and CCKr from A. dabryanus showed structural features common to those in other vertebrates. Gene expression profile analysis showed that CCK and CCKr were universally expressed in different tissues, and both had the highest expression in the brain. Starvation and refeeding significantly regulated the expression levels of CCK and CCKr in the brain, suggesting that CCK and CCKr were involved in feed intake regulation in A. dabryanus as in mammals. In addition, the expression levels of CCK and CCKr under different feeding frequencies were studied. Compared with the control group (fed two times a day), the expression levels of CCK and CCKr in the intestine and brain did not change significantly in the other groups after 8 weeks of rearing, indicating that the feeding frequency might not influence the appetite of A. dabryanus. The present work provides a basis for further investigation into the regulation of feeding in A. dabryanus.
Collapse
Affiliation(s)
- Yeyu Chen
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Xiaoyun Wu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Jiansheng Lai
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Ya Liu
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Mingjiang Song
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Feiyang Li
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China
| | - Quan Gong
- The Fishery Institute of the Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
| |
Collapse
|
21
|
Del Vecchio G, Murashita K, Verri T, Gomes AS, Rønnestad I. Leptin receptor-deficient (knockout) zebrafish: Effects on nutrient acquisition. Gen Comp Endocrinol 2021; 310:113832. [PMID: 34089707 DOI: 10.1016/j.ygcen.2021.113832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/22/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
In mammals, knockout of LEPR results in a hyperphagic, morbid obese, and diabetic phenotype, which supports that leptin plays an important role in the control of appetite and energy metabolism, and that its receptor, LEPR, mediates these effects. To date, little is known about the role(s) of lepr in teleost physiology. We investigated a zebrafish (Danio rerio) homozygous lepr knockout (lepr-/-) line generated by CRISPR/Cas9 in comparison to its wt counterpart with respect to nutrient acquisition, energy allocation, and metabolism. The metabolic characterization included oxygen consumption rate and morphometric parameters (yolk sac area, standard length, wet weight, and condition factor) as proxies for use and allocation of energy in developing (embryos, larvae, and juveniles) zebrafish and showed no particular differences between the two lines, in agreement with previous studies. One exception was found in oxygen consumption at 72 hpf, when zebrafish switch from embryonic to early larval stages and food-seeking behavior could be observed. In this case, the metabolic rate was significantly lower in lepr-/- than in wt. Both phenotypes showed similar responses, with respect to metabolic rate, to acute alterations (22 and 34 °C) in water temperature (measured in terms of Q10 and activation energy) compared to the standard (28 °C) rearing conditions. To assess lepr involvement in signaling the processing and handling of incoming nutrients when an exogenous meal is digested and absorbed, we conducted an in vivo analysis in lepr-/- and wt early (8 days post-fertilization) zebrafish larvae. The larvae were administered a bolus of protein hydrolysate (0%, 1%, 5%, and 15% lactalbumin) directly into the digestive tract lumen, and changes in the mRNA expression profile before and after (1 and 3 h) administration were quantified. The analysis showed transcriptional differences in the expressions of genes involved in the control of appetite and energy metabolism (cart, npy, agrp, and mc4r), sensing (casr, t1r1, t1r3, t1r2-1, t1r2-2, pept1a, and pept1b), and digestion (cck, pyy, try, ct, and amy), with more pronounced effects observed in the orexigenic than in the anorexigenic pathways, suggesting a role of lepr in their regulations. Differences in the mRNA levels of these genes in lepr-/-vs. wt larvae were also observed. Altogether, our analyses suggest an influence of lepr on physiological processes involved in nutrient acquisition, mainly control of food intake and digestion, during early development, whereas metabolism, energy allocation, and growth seem to be only slightly influenced.
Collapse
Affiliation(s)
- Gianmarco Del Vecchio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy; Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway
| | - Koji Murashita
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway; Aquaculture Research Department, Fisheries Technology Institute, Fisheries Research and Education Agency, 224-1 Hiruda, Tamaki, Watarai, Mie 519-0423, Japan
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, PO Box 7803, NO-5020 Bergen, Norway.
| |
Collapse
|
22
|
Bakshi A, Singh R, Rai U. Trajectory of leptin and leptin receptor in vertebrates: Structure, function and their regulation. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110652. [PMID: 34343670 DOI: 10.1016/j.cbpb.2021.110652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/23/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
The present review provides a comparative insight into structure, function and control of leptin system in fishes, herptiles, birds and mammals. In general, leptin acts as an anorexigenic hormone since its administration results in decrease of food intake in vertebrates. Nonetheless, functional paradox arises in fishes from contradictory observations on level of leptin during fasting and re-feeding. In addition, leptin is shown to modulate metabolic functions in fishes, reptiles, birds and mammals. Leptin also regulates reproductive and immune functions though more studies are warranted in non-mammalian vertebrates. The expression of leptin and its receptor is influenced by numerous factors including sex steroids, stress and stress-induced catecholamines and glucocorticoids though their effect in non-mammalian vertebrates is hard to be generalized due to limited studies.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Rajeev Singh
- Satyawati College, University of Delhi, Delhi 110052, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
23
|
Dissimilar regulation of glucose and lipid metabolism by leptin in two strains of gibel carp ( Carassius gibelio). Br J Nutr 2021; 125:1215-1229. [PMID: 32921323 DOI: 10.1017/s0007114520003608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previous nutritional studies have shown that insulin regulation is different between DT and A strains of gibel carp. As leptin plays a pivotal role in the effects of insulin, we hypothesised that leptin regulation of glucose and lipid metabolism would differ between the two strains. To test our hypothesis, recombinant human leptin was injected into two strains. The results showed that leptin activated the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), AMP-activated protein kinase-acetyl coenzyme A carboxylase and Janus kinase 2 (JAK2)-signal transducer and activator of transcription (STAT) signalling pathways in both strains. Hypoglycaemia induced by leptin might be due to higher glucose uptake by the liver and muscles together with enhanced glycolytic potential and reduced gluconeogenic potential. Decreased lipogenesis and up-regulated fatty acid oxidation were induced by leptin. In terms of genotype, the PI3K-AKT signalling pathway was more strongly activated by leptin in the muscle tissue of the A strain, as reflected by the heightened phosphorylation of AKT. Furthermore, glycogen content, glycolytic enzyme activity and gluconeogenic capability were higher in the A strain than the DT strain. Strain A had higher levels of fatty acid synthesis and lipolytic capacity in the liver than the DT strain, but the opposite was true in white muscle. Regarding leptin-genotype interactions, the DT strain displayed stronger regulation of glucose metabolism in the liver by leptin as compared with the A strain. Moreover, a more active JAK2-STAT signalling pathway accompanied by enhanced inhibition of fatty acid synthesis by leptin was observed in the DT strain. Overall, the regulation of glucose and lipid metabolism by leptin differed between the two strains, as expected.
Collapse
|
24
|
Deal CK, Volkoff H. Response of the thyroid axis and appetite-regulating peptides to fasting and overfeeding in goldfish (Carassius auratus). Mol Cell Endocrinol 2021; 528:111229. [PMID: 33662475 DOI: 10.1016/j.mce.2021.111229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
The thyroid axis is a major regulator of metabolism and energy homeostasis in vertebrates. There is conclusive evidence in mammals for the involvement of the thyroid axis in the regulation of food intake, but in fish, this link is unclear. In order to assess the effects of nutritional status on the thyroid axis in goldfish, Carassius auratus, we examined brain and peripheral transcripts of genes associated with the thyroid axis [thyrotropin-releasing hormone (TRH), thyrotropin-releasing hormone receptors (TRH-R type 1 and 2), thyroid stimulating hormone beta (TSHβ), deiodinase enzymes (DIO2, DIO3) and UDP-glucoronsyltransferase (UGT)] and appetite regulators [neuropeptide Y (NPY), proopiomelanocortin (POMC), agouti-related peptide (AgRP) and cholecystokinin (CCK)] in fasted and overfed fish for 7 and 14 day periods. We show that the thyroid axis responds to overfeeding, with an increase of brain TRH and TSHβ mRNA expression after 14 days, suggesting that overfeeding might activate the thyroid axis. In fasted fish, hepatic DIO3 and UGT transcripts were downregulated from 7 to 14 days, suggesting a time-dependent inhibition of thyroid hormone degradation pathways. Nutritional status had no effect on circulating levels of thyroid hormone. Central appetite-regulating peptides exhibited temporal changes in mRNA expression, with decreased expression of the appetite-inhibiting peptide POMC from 7 to 14 days for both fasted and overfed fish, with no change in central NPY or AgRP, or intestinal CCK transcript expression. Compared to control fish, fasting increased AgRP mRNA expression at both 7 and 14 days, and POMC expression was higher than controls only at 7 days. Our results indicate that nutritional status time-dependently affects the thyroid axis and appetite regulators, although no clear correlation between thyroid physiology and appetite regulators could be established. Our study helps to fill a knowledge gap in current fish endocrinological research on the effects of energy balance on thyroid metabolism and function.
Collapse
Affiliation(s)
- Cole K Deal
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Helene Volkoff
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Departments of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
25
|
Chen H, Liang X, Gu X, Zeng Q, Mao Z, Martyniuk CJ. Environmentally relevant concentrations of sertraline disrupts behavior and the brain and liver transcriptome of juvenile yellow catfish (Tachysurus fulvidraco): Implications for the feeding and growth axis. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124974. [PMID: 33450510 DOI: 10.1016/j.jhazmat.2020.124974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Sertraline (SER) is one of the most prevalent antidepressants detected in aquatic environments, but its impact on fish behavior and growth remain poorly understood. As such, behavior and growth were assessed in yellow catfish (Tachysurus fulvidraco) following SER exposure. SER induced shoaling, reduced food consumption and growth, and increased cannibalism at environmentally relevant concentrations. To ascertain toxicity mechanisms, acetylcholinesterase (AChE) activity and transcripts related to growth and feeding were measured. AChE activity was increased in fish exposed to 10 and 100 μg/L SER. Transcript levels of neuropeptide Y, somatostatin, growth hormone, and insulin growth factor 1 were reduced in the brain following SER exposure. RNA-seq conducted in brain and liver revealed that gene networks associated with feeding and growth (i.e. leptin expression networks in the brain and insulin signaling pathways in the liver) were altered, proposed to be associated with the decreased food intake and growth. The brain also accumulated SER, which may relate to neurobehavioral responses. Lastly, the main metabolite of SER, norsertraline, was detected in the liver, and may also relate to toxicity. This study uncovers mechanisms and key events proposed to lead to impaired behavior and growth after exposure to some antidepressants.
Collapse
Affiliation(s)
- Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.
| | - Qingfei Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
26
|
Blanco AM, Soengas JL. Leptin signalling in teleost fish with emphasis in food intake regulation. Mol Cell Endocrinol 2021; 526:111209. [PMID: 33588023 DOI: 10.1016/j.mce.2021.111209] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Leptin, the product of the obese (ob or Lep) gene, was first cloned in teleost fish in 2005, more than a decade after its identification in mammals. This was because bony fish and mammalian leptins share a very low amino acid sequence identity, which suggests different functionality of the leptin system in fish compared to that of mammals. Indeed, major differences are evident between the mammalian and fish leptin system. Thus, for instance, mammalian leptin is synthesized and released by the adipose tissue in response to the amount of fat depots, while several tissues (mainly the liver) are the main sources of leptin in fish, whose determining factors of production are still unclear. In mammals, the main physiological role for leptin is its involvement in the maintenance of energy balance by decreasing food intake and increasing energy expenditure, although a wide variety of actions have been attributed to this hormone (e.g., regulation of lipid and carbohydrate metabolism, reproduction and immune functions). In fish, available literature also points towards a multifunctional nature for leptin, although knowledge on its functions is limited. In this review, we offer an overview of teleostean leptin structure and mechanism of action, and discuss the available knowledge on the role of this hormone in food intake regulation in teleost fish, aiming to provide a comparative overview between the functioning of the teleostean and mammalian leptin systems.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain
| | - José Luis Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Pontevedra, Spain.
| |
Collapse
|
27
|
Gilannejad N, Rønnestad I, Lai F, Olderbakk-Jordal AE, Gottlieb Almeida AP, Martínez-Rodríguez G, Moyano FJ, Yúfera M. Daily rhythms of intestinal cholecystokinin and pancreatic proteases activity in Senegalese sole juveniles with diurnal and nocturnal feeding. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110868. [PMID: 33316387 DOI: 10.1016/j.cbpa.2020.110868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
The influence of diurnal and nocturnal feeding on daily rhythms of gut levels of cholecystokinin (CCK) and the activity of two key pancreatic proteases, trypsin and chymotrypsin, were examined in juveniles of Senegalese sole (Solea senegalensis), a species with nocturnal habits. Four feeding protocols were performed: P1) One morning meal; P2) Six meals during the light period; P3) Six meals during the dark period; and P4) 12 meals during 24 h. Daily activity patterns of both proteases were remarkably similar and showed a high correlation in all the experimental protocols. In P1, daily patterns of CCK and digestive enzymes showed a single maximum. In P2, CCK levels exhibited two peaks. Digestive enzymes activities showed slightly delayed peaks compared to CCK, although their daily fluctuations were not significant. In P3, intestinal CCK concentration exhibited two peaks at the end of light and dark periods, but only the second one was significant. The first maximum level of chymotrypsin activity occurred 4 h after the first CCK peak, while the second one coincided with the second CCK peak. Fluctuations of trypsin activity were not significant. In P4, CCK concentration showed three small peaks. Digestive enzymes daily fluctuations were not significant, although they showed an inverted trend with respect to CCK. The daily pattern of the gut CCK content in our study is in agreement with the anorexigenic function of this hormone. Our results support the existence of a negative feedback regulatory loop between CCK and pancreatic proteolytic enzymes in Senegalese sole juveniles.
Collapse
Affiliation(s)
- Neda Gilannejad
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), 11519 Puerto Real, Cádiz, Spain.
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | | | | | - Francisco J Moyano
- Depto. de Biología y Geología, Facultad de Ciencias, Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Almería, 04120 Almería, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), 11519 Puerto Real, Cádiz, Spain
| |
Collapse
|
28
|
Kwasek K, Wojno M, Iannini F, McCracken VJ, Molinari GS, Terova G. Nutritional programming improves dietary plant protein utilization in zebrafish Danio rerio. PLoS One 2020; 15:e0225917. [PMID: 32142555 PMCID: PMC7059923 DOI: 10.1371/journal.pone.0225917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Nutritional Programming (NP) has been shown to counteract the negative effects of dietary plant protein (PP) by introducing PP at an early age towards enhancement of PP utilization during later life stages. This study explored the effect of NP and its induction time on growth, expression of appetite-stimulating hormones, and any morphological changes in the gut possibly responsible for improved dietary PP utilization. At 3 days post-hatch (dph) zebrafish were distributed into 12 (3 L) tanks, 100 larvae per tank. This study included four groups: 1) The control (NP-FM) group received fishmeal (FM)-based diet from 13–36 dph and was challenged with PP-based diet during 36–66 dph; 2) The NP-PP group received NP with dietary PP in larval stage via live food enrichment during 3–13 dph followed by FM diet during 13–36 dph and PP diet during 36–66 dph; 3) The T-NP group received NP between 13–23 dph through PP diet followed by FM diet during 23–36 dph and PP diet during 36–66 dph; and 4) The PP group received PP diet from 13–66 dph. During the PP challenge the T-NP group achieved the highest weight gain compared to control and PP. Ghrelin expression in the brain was higher in T-NP compared to NP-FM and NP-PP, while in the gut it was reduced in both NP-PP and T-NP groups. Cholecystokinin expression showed an opposite trend to ghrelin. The brain neuropeptide Y expression was lower in NP-PP compared to PP but not different with NP-FM and T-NP groups. The highest villus length to width ratio in the middle intestine was found in T-NP compared to all other groups. The study suggests that NP induced during juvenile stages improves zebrafish growth and affects digestive hormone regulation and morphology of the intestinal lining–possible mechanisms behind the improved PP utilization in pre-adult zebrafish stages.
Collapse
Affiliation(s)
- Karolina Kwasek
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
- * E-mail:
| | - Michal Wojno
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Federica Iannini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Vance J. McCracken
- Department of Biological Sciences, Southern Illinois University-Edwardsville, Edwardsville, Illinois, United States of America
| | - Giovanni S. Molinari
- Center for Fisheries, Aquaculture, and Aquatic Sciences, School of Biological Sciences, Southern Illinois University-Carbondale, Carbondale, Illinois, United States of America
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
29
|
Weidner J, Jensen CH, Giske J, Eliassen S, Jørgensen C. Hormones as adaptive control systems in juvenile fish. Biol Open 2020; 9:bio046144. [PMID: 31996351 PMCID: PMC7044463 DOI: 10.1242/bio.046144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Growth is an important theme in biology. Physiologists often relate growth rates to hormonal control of essential processes. Ecologists often study growth as a function of gradients or combinations of environmental factors. Fewer studies have investigated the combined effects of environmental and hormonal control on growth. Here, we present an evolutionary optimization model of fish growth that combines internal regulation of growth by hormone levels with the external influence of food availability and predation risk. The model finds a dynamic hormone profile that optimizes fish growth and survival up to 30 cm, and we use the probability of reaching this milestone as a proxy for fitness. The complex web of interrelated hormones and other signalling molecules is simplified to three functions represented by growth hormone, thyroid hormone and orexin. By studying a range from poor to rich environments, we find that the level of food availability in the environment results in different evolutionarily optimal strategies of hormone levels. With more food available, higher levels of hormones are optimal, resulting in higher food intake, standard metabolism and growth. By using this fitness-based approach we also find a consequence of evolutionary optimization of survival on optimal hormone use. Where foraging is risky, the thyroid hormone can be used strategically to increase metabolic potential and the chance of escaping from predators. By comparing model results to empirical observations, many mechanisms can be recognized, for instance a change in pace-of-life due to resource availability, and reduced emphasis on reserves in more stable environments.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jacqueline Weidner
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| | | | - Jarl Giske
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| | - Sigrunn Eliassen
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| | - Christian Jørgensen
- University of Bergen, Department of Biological Sciences, Postboks 7803, N-5020 Bergen, Norway
| |
Collapse
|
30
|
Wen ZY, Qin CJ, Wang J, He Y, Li HT, Li R, Wang XD. Molecular characterization of two leptin genes and their transcriptional changes in response to fasting and refeeding in Northern snakehead (Channa argus). Gene 2020; 736:144420. [PMID: 32007585 DOI: 10.1016/j.gene.2020.144420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Leptin has been proved to play critical roles in energy metabolism, body weight regulation, food intake, reproduction and immunity in mammals. However, its roles are still largely unclear in fish. Here, we report two leptin genes (lepA and lepB) from the Northern snakehead (Channa argus) and their transcriptions in response to different feeding status. The snakehead lepA is 781 bp in length and contains a 480 bp open reading frame (ORF) encoding a 159-aa protein, while the snakehead lepB is 553 bp in length and contains a 477 bp ORF encoding a 158-aa protein. Multi-sequences alignment, three-dimensional (3D) model prediction, syntenic and genomic comparison, and phylogenetic analysis confirm two leptin genes are widely existing in teleost. Tissue distribution revealed that the two leptin genes exhibit different patterns. In a post-prandial experiment, the hepatic lepA and brain lepB showed a similar transcription pattern. In a long-term (2-week) fasting and refeeding experiment, the hepatic lepA and brain lepB showed a similar transcription change pattern induced by food deprivation stimulation but differential changes after refeeding. These findings suggest snakehead lepA and lepB are differential both in tissue distribution and molecular functions, and they might play as an important regulator in energy metabolism and food intake in fish, respectively.
Collapse
Affiliation(s)
- Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Chuan-Jie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Hua-Tao Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Rui Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Xiao-Dong Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
31
|
Montalbano G, Levanti M, Abbate F, Laurà R, Cavallaro M, Guerrera MC, Germanà A. Expression of ghrelin and leptin in the chemosensory system of adult zebrafish. Ann Anat 2020; 229:151460. [PMID: 31978567 DOI: 10.1016/j.aanat.2020.151460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 11/19/2022]
Abstract
Numerous data show that the chemosensory system seems to be modulated by changes in the circulating levels of different molecules such as ghrelin, orexin, leptin, NPY, CCK. The chemosensory system of the zebrafish is represented by the taste buds (skin, oral and oropharyngeal), the olfactory rosette and the solitary chemosensorial cells (SCCs). The purpose of our study was to analyze the distribution of two peripheral hormones such as ghrelin and leptin in the chemosensory organs of the zebrafish. Our results demonstrated the presence of immunoreaction for all antibodies used in the zebrafish chemosensory organs even if with different distribution. In particular, IR was observed for ghrelin in the olfactory rosette while IR for leptin was found in the olfactory rosette, in the skin and oropharyngeal taste buds and in the gills. Both these hormones were detected in the intestine, used as a control.
Collapse
Affiliation(s)
- G Montalbano
- Department of Veterinary Science, University of Messina, Neuromorphology Lab, Italy
| | - M Levanti
- Department of Veterinary Science, University of Messina, Neuromorphology Lab, Italy.
| | - F Abbate
- Department of Veterinary Science, University of Messina, Neuromorphology Lab, Italy
| | - R Laurà
- Department of Veterinary Science, University of Messina, Neuromorphology Lab, Italy
| | - M Cavallaro
- Department of Veterinary Science, University of Messina, Neuromorphology Lab, Italy
| | - M C Guerrera
- Department of Veterinary Science, University of Messina, Neuromorphology Lab, Italy
| | - A Germanà
- Department of Veterinary Science, University of Messina, Neuromorphology Lab, Italy
| |
Collapse
|
32
|
Yuan XC, Liang XF, Cai WJ, Li AX, Huang D, He S. Differential Roles of Two Leptin Gene Paralogues on Food Intake and Hepatic Metabolism Regulation in Mandarin Fish. Front Endocrinol (Lausanne) 2020; 11:438. [PMID: 32922360 PMCID: PMC7457076 DOI: 10.3389/fendo.2020.00438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
Leptin affects food intake regulation and energy homeostasis in mammals, as opposed to mammals who have a single leptin gene, fish have duplicated leptin gene paralogues. Until now, most functional studies on fish focused on the first reported paralogue without much explanation on specific gene paralogue. This study successfully expressed two homologous recombinant mandarin fish leptin genes (LepA and LepB) for the first time. To explore the differential roles of these two gene paralogues involved in food intake and energy homeostasis, mandarin fish were treated with homologous recombinant LepA and LepB proteins by acute IP administration. The results showed that LepB inhibited the food intake of mandarin fish after acute IP administration through modifying the expressions of hypothalamic orexigenic genes, while LepA had no significant effect on its food intake. In addition, LepB administration decreased the hepatic glycogen level through regulating the gene expressions of glycogen synthase and glycogen phosphorylase in mandarin fish until 4 d, while LepA did not change the hepatic glycogen level as it failed to change the expressions of these regulatory genes. Moreover, LepA and LepB downregulated the expressions of key gluconeogenic genes (phosphofructokinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase), indicating both mandarin fish leptins could regulate the rate of glucose production. However, these two gene paralogues presented secondary effects on lipid metabolism as they only enhanced the triglyceride level by modifying the gene expressions of adipose triglyceride lipase or acetyl CoA carboxylase just for 1 d after IP. Therefore, LepB played an important role in food intake and glucose homeostasis regulation, while LepA showed a limited role in gluconeogenesis and lipid metabolism.
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, China
- *Correspondence: Xu-Fang Liang
| | - Wen-Jing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, China
| | - Ai-Xuan Li
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, China
| | - Dong Huang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, China
| | - Shan He
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair/ Hubei Engineering Technology Research Center for Fish Breeding and Healthy Aquaculture, Wuhan, China
| |
Collapse
|
33
|
Gómez-Boronat M, Isorna E, Conde-Sieira M, Delgado MJ, Soengas JL, de Pedro N. First evidence on the role of palmitoylethanolamide in energy homeostasis in fish. Horm Behav 2020; 117:104609. [PMID: 31647920 DOI: 10.1016/j.yhbeh.2019.104609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/18/2023]
Abstract
The objective of this study was to investigate the role of palmitoylethanolamide (PEA) in the regulation of energy homeostasis in goldfish (Carassius auratus). We examined the effects of acute or chronic intraperitoneal treatment with PEA (20 μg·g-1 body weight) on parameters related to food intake and its regulatory mechanisms, locomotor activity, glucose and lipid metabolism, and the possible involvement of transcription factors and clock genes on metabolic changes in the liver. Acute PEA treatment induced a decrease in food intake at 6 and 8 h post-injection, comparable to that observed in mammals. This PEA anorectic effect in goldfish could be mediated through interactions with leptin and NPY, as PEA increased hepatic expression of leptin aI and reduced hypothalamic expression of npy. The PEA chronic treatment reduced weight gain, growth rate, and locomotor activity. The rise in glycolytic potential together with the increased potential of glucose to be transported into liver suggests an enhanced use of glucose in the liver after PEA treatment. In addition, part of glucose may be exported to be used in other tissues. The activity of fatty acid synthase (FAS) increased after chronic PEA treatment, suggesting an increase in the hepatic lipogenic capacity, in contrast with the mammalian model. Such lipogenic increment could be linked with the PEA-induction of REV-ERBα and BMAL1 found after the chronic treatment. As a whole, the present study shows the actions of PEA in several compartments related to energy homeostasis and feeding behavior, supporting a regulatory role for this N-acylethanolamine in fish.
Collapse
Affiliation(s)
- Miguel Gómez-Boronat
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.
| | - Esther Isorna
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - María J Delgado
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Nuria de Pedro
- Departamento de Genética, Fisiología y Microbiología, Unidad Docente de Fisiología Animal, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
34
|
Ahi EP, Brunel M, Tsakoumis E, Schmitz M. Transcriptional study of appetite regulating genes in the brain of zebrafish (Danio rerio) with impaired leptin signalling. Sci Rep 2019; 9:20166. [PMID: 31882937 PMCID: PMC6934527 DOI: 10.1038/s41598-019-56779-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
The hormone leptin is a key regulator of body weight, food intake and metabolism. In mammals, leptin acts as an anorexigen and inhibits food intake centrally by affecting the appetite centres in the hypothalamus. In teleost fish, the regulatory connections between leptin and other appetite-regulating genes are largely unknown. In the present study, we used a zebrafish mutant with a loss of function leptin receptor to investigate brain expression patterns of 12 orexigenic and 24 anorexigenic genes under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). Expression patterns were compared to wild-type zebrafish, in order to identify leptin-dependent differentially expressed genes under different feeding conditions. We provide evidence that the transcription of certain orexigenic and anorexigenic genes is influenced by leptin signalling in the zebrafish brain. We found that the expression of orexigenic genes was not affected by impaired leptin signalling under normal feeding conditions; however, several orexigenic genes showed increased transcription during fasting and refeeding, including agrp, apln, galr1a and cnr1. This suggests an inhibitory effect of leptin signal on the transcription of these orexigenic genes during short-term fasting and refeeding in functional zebrafish. Most pronounced effects were observed in the group of anorexigenic genes, where the impairment of leptin signalling resulted in reduced gene expression in several genes, including cart family, crhb, gnrh2, mc4r, pomc and spx, in the control group. This suggests a stimulatory effect of leptin signal on the transcription of these anorexigenic genes under normal feeding condition. In addition, we found multiple gain and loss in expression correlations between the appetite-regulating genes, in zebrafish with impaired leptin signal, suggesting the presence of gene regulatory networks downstream of leptin signal in zebrafish brain. The results provide the first evidence for the effects of leptin signal on the transcription of various appetite-regulating genes in zebrafish brain, under different feeding conditions. Altogether, these transcriptional changes suggest an anorexigenic role for leptin signal, which is likely to be mediated through distinct set of appetite-regulating genes under different feeding conditions.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Mathilde Brunel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentrum, Allmas Allé 5, SE-750 07 Uppsala, Sweden
| | - Emmanouil Tsakoumis
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
35
|
Li J, Chen T, Rao Y, Chen S, Wang B, Chen R, Ren C, Liu L, Yang Y, Yu H, Tang D, Yan A. Suppression of leptin-AI/AII transcripts by insulin in goldfish liver: A fish specific response of leptin under food deprivation. Gen Comp Endocrinol 2019; 283:113240. [PMID: 31394085 DOI: 10.1016/j.ygcen.2019.113240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/18/2019] [Accepted: 08/04/2019] [Indexed: 12/30/2022]
Abstract
Leptin is primarily considered a peripheral satiety hormone and is also found to perform important roles in energy homeostasis in vertebrates ranging from fish to mammals. The liver is a major source of leptin production in teleost fish. Using goldfish as a model, a previous report by our group illustrated the positive regulation of leptin mRNA levels by treatment with the hyperglycemic hormone glucagon, and our present study provided evidence for the negative regulation of hepatic leptin-AI and leptin-AII transcripts through the administration of the hypoglycemic hormone insulin. This study is the first to demonstrate changes in the hepatopancreatic insulin, glucagon, leptin-AI and leptin-AII mRNA levels in goldfish during fasting and refeeding. Insulin was found to be effective in suppressing leptin-AI and leptin-AII transcript levels in goldfish liver via both in vivo intraperitoneal injection and in vitro cell incubation approaches. Only the insulin receptor, not the IGF-I receptor, was involved in insulin-inhibited leptin mRNA level. The suppression of leptin levels by insulin was caused by the activation of MKK3/6/p38MAPK and MEK1/2/Erk1/2 cascades. Insulin treatment could eliminate the stimulation of glucagon on leptin mRNA level. Our study describes the regulation and signal transduction mechanism of insulin on leptin mRNA levels in the goldfish liver, suggesting that the leptin function in fish is speculated to be not only an anorexigenic factor but also a metabolic mediator. This also supports the hypothesis that the poikilothermal fish use a passive survival strategy during the periods of food deprivation, which is mediated by the fish-specifically high leptin levels induced by the cooperation of insulin and glucagon.
Collapse
Affiliation(s)
- Jiaxi Li
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yingzhu Rao
- Institute of Applied Biotechnology, School of Life Science and Technology, Lingnan Normal University, Zhanjiang, China
| | - Shuang Chen
- The Beijing Genomics Institute (BGI), Shenzhen, China
| | - Bin Wang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rong Chen
- Institute of Applied Biotechnology, School of Life Science and Technology, Lingnan Normal University, Zhanjiang, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lian Liu
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Ying Yang
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Hui Yu
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Dongsheng Tang
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Aifen Yan
- School of Life Science and Engineering, School of Stomatology and Medicine, Foshan University, Foshan, China.
| |
Collapse
|
36
|
Volkoff H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol Cell Endocrinol 2019; 497:110437. [PMID: 31054868 DOI: 10.1016/j.mce.2019.04.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022]
Abstract
The frequencies of eating disorders and obesity have increased worldwide in recent years. Their pathophysiologies are still unclear, but recent evidence suggests that they might be related to changes in endocrine and neural factors that regulate feeding and energy homeostasis. In order to develop efficient therapeutic drugs, a more thorough knowledge of the neuronal circuits and mechanisms involved is needed. Although to date, rodents have mostly been used models in the area of neuroscience and neuroendocrinology, an increasing number of studies use non-mammalian vertebrates, in particular fish, as model systems. Fish present several advantages over mammalian models and they share genetic and physiological homology to mammals with close similarities in the mechanisms involved in the neural and endocrine regulation of appetite. This review briefly describes the regulation of feeding in two model species, goldfish and zebrafish, how this regulation compares to that in mammals, and how these fish could be used for studies on endocrine regulation of eating and weight and its dysregulations.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
37
|
Tang N, Zhang X, Wang S, Qi J, Tian Z, Wang B, Chen H, Wu Y, Wang M, Xu S, Chen D, Li Z. UCN3 suppresses food intake in coordination with CCK and the CCK2R in Siberian sturgeon (Acipenser baerii). Comp Biochem Physiol A Mol Integr Physiol 2019; 234:106-113. [PMID: 31051262 DOI: 10.1016/j.cbpa.2019.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Urocortin-3 (UCN3) as a brain-gut peptide inhibits food intake of animal, but the underlying mechanism is not clear. To explore the appetite mechanism about the action of UCN3 in fish, intraperitoneal injection of UCN3 with CCK8, Lorglumide (CCK1R antagonist) or LY225910 (CCK2R antagonist) were conducted. Siberian sturgeon administrated with UCN3 and CCK8 showed a drastic reduction in food intake. The anorectic effect of UCN3 was significantly blocked by LY225910, but not affected by Lorglumide. Furthermore, LY225910 could effectively reverse appetite factor mRNA expressions, including cck, pyy, cart, npy, ucn3, apelin and nucb2 in the whole brain, stomach and intestinum valvula, but Lorglumide could only partially reverse these effects, suggesting the anorectic effect of UCN3 may be primarily mediated CCK2R in Siberian sturgeon. This study indicates for the first time in fish that UCN3 may inhibit food intake in coordination with CCK and CCK2R.
Collapse
Affiliation(s)
- Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Mei Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shaoqi Xu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Kuz’mina VV. Effect of Cholecystokinin on the Activity of Peptidases and Glycosidases of the Intestinal Mucosa in Carp Cyprinus carpio. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Li Q, Wen H, Li Y, Zhang Z, Zhou Y, Qi X. Evidence for the Direct Effect of the NPFF Peptide on the Expression of Feeding-Related Factors in Spotted Sea Bass ( Lateolabrax maculatus). Front Endocrinol (Lausanne) 2019; 10:545. [PMID: 31447787 PMCID: PMC6691130 DOI: 10.3389/fendo.2019.00545] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
Neuropeptide FF (NPFF) is a family member of RF-amide peptides, which are suggested to be involved in the control of vertebrate feeding behavior. However, little is known about the effect of the NPFF peptide on feeding-related processes in basal vertebrates. In this study, four full-length cDNAs, npff, npffr1, npffr2-1, and npffr2-2, were cloned from spotted sea bass and characterized. The conserved NPFF peptide is biologically active because it functionally interacts with different receptors expressed in cultured eukaryotic cells to enhance CRE promoter activity. Tissue distribution analysis showed that the highest npff mRNA expression occurred in the telencephalon, hypothalamus, medulla, gonad and muscle, but the npffrs mRNAs were mainly distributed within the central nervous system (CNS). In situ hybridization (ISH) detected npff-expressing cells in several specific regions ranging across the telencephalon and midbrain to the hypothalamus. Incubation of the spotted sea bass conserved NPFF peptide significantly increased the expression of orexin (orx) and neuropeptide Y (npy) mRNA and decreased the expression of leptin (lep), somatostatin (ss), and cholecystokinin (cck) mRNA in brain cells. Similarly, the conserved NPFF peptide also heightened the expression of gastrin (gas), ghrelin (ghrl), and motilin (mtl) mRNA and significantly reduced the expression of cck mRNA in the intestine and stomach. Taken together, these data suggest that the NPFF peptide may play a stimulating role in regulating feeding-related processes in spotted sea bass.
Collapse
|
40
|
Chen T, Wong MKH, Chan BCB, Wong AOL. Mechanisms for Temperature Modulation of Feeding in Goldfish and Implications on Seasonal Changes in Feeding Behavior and Food Intake. Front Endocrinol (Lausanne) 2019; 10:133. [PMID: 30899246 PMCID: PMC6416165 DOI: 10.3389/fendo.2019.00133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 11/22/2022] Open
Abstract
In fish models, seasonal change in feeding is under the influence of water temperature. However, the effects of temperature on appetite control can vary among fish species and the mechanisms involved have not been fully characterized. Using goldfish (Carassius auratus) as a model, seasonal changes in feeding behavior and food intake were examined in cyprinid species. In our study, foraging activity and food consumption in goldfish were found to be reduced with positive correlation to the gradual drop in water temperature occurring during the transition from summer (28.4 ± 2.2°C) to winter (15.1 ± 2.6°C). In goldfish with a 4-week acclimation at 28°C, their foraging activity and food consumption were notably higher than their counterparts with similar acclimation at 15°C. When compared to the group at 28°C during summer, the attenuation in feeding responses at 15°C during the winter also occurred with parallel rises of leptin I and II mRNA levels in the liver. Meanwhile, a drop in orexin mRNA along with concurrent elevations of CCK, MCH, POMC, CART, and leptin receptor (LepR) transcript expression could be noted in brain areas involved in feeding control. In short-term study, goldfish acclimated at 28°C were exposed to 15°C for 24 h and the treatment was effective in reducing foraging activity and food intake. The opposite was true in reciprocal experiment with a rise in water temperature to 28°C for goldfish acclimated at 15°C. In parallel time-course study with lowering of water temperature from 28 to 15°C, short-term exposure (6-12 h) of goldfish to 15°C could also increase leptin I and II mRNA levels in the liver. Similar to our seasonality study, transcript level of orexin was reduced along with up-regulation of CCK, MCH, POMC, CART, and LepR gene expression in different brain areas. Our results, as a whole, suggest that temperature-driven regulation of leptin output from the liver in conjunction with parallel modulations of orexigenic/anorexigenic signals and leptin responsiveness in the brain may contribute to the seasonal changes of feeding behavior and food intake observed in goldfish.
Collapse
|
41
|
Melo-Duran D, Gonzalez-Ortiz G, Sola-Oriol D, Martinez-Mora M, Perez J, Bedford M. Relationship between peptide YY, cholecystokinin and fermentation products in fasted, re-fed and ad libitum fed broiler chickens. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Bertucci JI, Blanco AM, Sundarrajan L, Rajeswari JJ, Velasco C, Unniappan S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front Endocrinol (Lausanne) 2019; 10:83. [PMID: 30873115 PMCID: PMC6403160 DOI: 10.3389/fendo.2019.00083] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endocrine factors regulate food intake and growth, two interlinked physiological processes critical for the proper development of organisms. Somatic growth is mainly regulated by growth hormone (GH) and insulin-like growth factors I and II (IGF-I and IGF-II) that act on target tissues, including muscle, and bones. Peptidyl hormones produced from the brain and peripheral tissues regulate feeding to meet metabolic demands. The GH-IGF system and hormones regulating appetite are regulated by both internal (indicating the metabolic status of the organism) and external (environmental) signals. Among the external signals, the most notable are diet availability and diet composition. Macronutrients and micronutrients act on several hormone-producing tissues to regulate the synthesis and secretion of appetite-regulating hormones and hormones of the GH-IGF system, eventually modulating growth and food intake. A comprehensive understanding of how nutrients regulate hormones is essential to design diet formulations that better modulate endogenous factors for the benefit of aquaculture to increase yield. This review will discuss the current knowledge on nutritional regulation of hormones modulating growth and food intake in fish.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
43
|
Khoo SYS, Clemens KJ, McNally GP. Palatable food self-administration and reinstatement are not affected by dual orexin receptor antagonism. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:147-157. [PMID: 28663114 DOI: 10.1016/j.pnpbp.2017.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022]
Abstract
The orexins are widely regarded potential therapeutic targets for a range of disorders of appetitive motivation, including obesity. The motivational activator theory, the first coherent account of the orexin system's role in appetitive motivation, predicts that orexin release motivates appetitive behaviour when the reinforcer is highly salient, available under a high unit-cost or when reward seeking is cue-driven. The present study tested the effect of intracerebroventricular (i.c.v.) administration of the highly potent and commercially available dual orexin receptor antagonist, TCS 1102, on self-administration and reinstatement of palatable food seeking in hungry and sated rats. TCS 1102 was also tested on FR1, FR5, FR10 and PR schedules. Orexin neuron activation was measured by c-Fos/orexin-A immunohistochemistry after cue-induced reinstatement, an extinction test, or a home-cage control. No effect of i.c.v. TCS 1102 was observed on self-administration at any fixed or progressive ratio schedule of reinforcement or reinstatement in hungry or sated rats. Although there was robust recruitment of orexin neurons during behavioural testing conditions, there was no specific activation of these neurons during cue-induced reinstatement when compared to extinction testing conditions. These results suggest that orexin antagonism may not be a useful therapeutic target for obesity as it does not appear to regulate food-seeking, and that the conditions determining orexin involvement as a motivational activator may be less clear than currently understood.
Collapse
Affiliation(s)
| | - Kelly J Clemens
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
44
|
Zhang X, Qi J, Tang N, Wang S, Wu Y, Chen H, Tian Z, Wang B, Chen D, Li Z. Intraperitoneal injection of nesfatin-1 primarily through the CCK-CCK1R signal pathway affects expression of appetite factors to inhibit the food intake of Siberian sturgeon (Acipenser baerii). Peptides 2018; 109:14-22. [PMID: 30261207 DOI: 10.1016/j.peptides.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
Nesfatin-1 is an 82-amino acid protein derived from nucleobindin 2 (NUCB2), which could inhibit food intake in fish and mammals. However, the neuroendocrine mechanism of nesfatin-1 in animal appetite regulation is unclear. To explore the feeding mechanism of nesfatin-1 in Siberian sturgeon (Acipenser baerii), intraperitoneal injections of nesfatin-1 and sulfated cholecystokinin octapeptide (CCK8), Lorglumide (CCK1R selective antagonist), or LY 225,910 (CCK2R selective antagonist) were performed. Co-injection of nesfatin-1 and CCK8 synergistically significantly decreased the food intake in 1 h. Lorglumide reversed the anorectic effect of nesfatin-1, but LY 225,910 had no effect. Moreover, Lorglumide could also reverse the expressions of appetite factors including nucb2, cck, unc3, cart, apelin, pyy, and npy induced by nesfatin-1 in the brain, stomach, and liver, while LY 225,910 partially reversed these changes. These results indicate that nesfatin-1 inhibits the appetite of Siberian sturgeon mainly through the CCK-CCK1R signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China; The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, 5# Yushan Road, Qingdao, Shandong, China
| | - Jinwen Qi
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Ni Tang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Shuyao Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhengzhi Tian
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, 211# Huimin Road, Chengdu, Sichuan, China.
| |
Collapse
|
45
|
Mandic S, Volkoff H. The effects of fasting and appetite regulators on catecholamine and serotonin synthesis pathways in goldfish ( Carassius auratus ). Comp Biochem Physiol A Mol Integr Physiol 2018; 223:1-9. [DOI: 10.1016/j.cbpa.2018.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/09/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
|
46
|
Imperatore R, Coccia E, D'Angelo L, Varricchio E, De Girolamo P, Paolucci M. Evidence for leptin receptor immunoreactivity in the gastrointestinal tract and gastric leptin regulation in the rainbow trout (Oncorhynchus mykiss). Ann Anat 2018; 220:70-78. [PMID: 30114450 DOI: 10.1016/j.aanat.2018.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/18/2022]
Abstract
In this study, evidence for leptin receptor (LR) and gastric leptin immunoreactivity along the digestive tract of the rainbow trout (Oncorhynchus mykiss), is reported. Besides this, the regulation of gastric leptin and its transcript by fatty acids was analyzed in vitro. LR was detected mainly in the cells of the stomach gastric glands and in the brush border of the epithelium of the anterior, middle and distal intestine. In the stomach LR was co-distributed with leptin. The regulation of gastric leptin and its transcript by fatty acids was analyzed by in vitro incubations. Rabbit polyclonal antibodies anti rainbow trout leptin were developed and employed to detect leptin concentration in the stomach and in the incubation medium. Stomach slices were incubated with butyric (4:0), oleic (18:1n-9), α-linolenic (18:3n-3) and arachidonic fatty acids (20:4n-6). All fatty acids caused an increase in the protein in both the stomach and culture medium, while leptin transcript was not modified. Overall, the results confirm the gastric leptin release upon nutritional modulation.
Collapse
Affiliation(s)
- Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100 Benevento, Italy
| | - Elena Coccia
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100 Benevento, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino, 1, 80137 Naples, Italy
| | - Ettore Varricchio
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100 Benevento, Italy
| | - Paolo De Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino, 1, 80137 Naples, Italy
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11, 82100 Benevento, Italy.
| |
Collapse
|
47
|
Imperatore R, D'Angelo L, Safari O, Motlagh HA, Piscitelli F, de Girolamo P, Cristino L, Varricchio E, di Marzo V, Paolucci M. Overlapping Distribution of Orexin and Endocannabinoid Receptors and Their Functional Interaction in the Brain of Adult Zebrafish. Front Neuroanat 2018; 12:62. [PMID: 30104964 PMCID: PMC6077257 DOI: 10.3389/fnana.2018.00062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Hypocretins/Orexins neuropeptides are known to regulate numerous physiological functions, such as energy homeostasis, food intake, sleep/wake cycle, arousal and wakefulness, in vertebrates. Previous studies on mice have revealed an intriguing orexins/endocannabinoids (ECs) signaling interaction at both structural and functional levels, with OX-A behaving as a strong enhancer of 2-arachydonoyl-glycerol (2-AG) biosynthesis. In this study, we describe, for the first time in the brain of zebrafish, the anatomical distribution and co-expression of orexin (OX-2R) and endocannabinoid (CB1R) receptors, suggesting a functional interaction. The immunohistochemical colocalization of these receptors by confocal imaging in the dorsal and ventral telencephalon, suprachiasmatic nucleus (SC), thalamus, hypothalamus, preoptic area (PO) and cerebellum, is reported. Moreover, biochemical quantification of 2-AG levels by LC-MS supports the occurrence of OX-A-induced 2-AG biosynthesis in the zebrafish brain after 3 h of OX-A intraperitoneal (i.p.; 3 pmol/g) or intracerebroventricular (i.c.v.; 0.3 pmol/g) injection. This effect is likely mediated by OX-2R as it is counteracted by i.p./i.c.v administration of OX-2R antagonist (SB334867, 10 pmol/g). This study provides compelling morphological and functional evidence of an OX-2R/CB1R signaling interaction in the brain of adult zebrafish, suggesting the use of this well-established vertebrate animal model for the study of complex and phylogenetically conserved physiological functions.
Collapse
Affiliation(s)
- Roberta Imperatore
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy.,Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy.,Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Omid Safari
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamidreza Ahmadniaye Motlagh
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Ettore Varricchio
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| | - Vincenzo di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Marina Paolucci
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| |
Collapse
|
48
|
Garcia-Suarez O, Cabo R, Abbate F, Randazzo B, Laurà R, Piccione G, Germanà A, Levanti M. Presence and distribution of leptin and its receptor in the gut of adult zebrafish in response to feeding and fasting. Anat Histol Embryol 2018; 47:456-465. [PMID: 29998487 DOI: 10.1111/ahe.12384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/07/2017] [Accepted: 06/12/2018] [Indexed: 01/27/2023]
Abstract
Leptin is an anorectic hormone secreted mainly by peripheral adipocytes but also by other central and peripheral tissues. It acts by means of a receptor called OB-R, influencing not only appetite and body mass but being also involved in many fields like endocrinology, metabolism and reproduction. Immunohistochemistry and qRT-PCR techniques were, respectively, used to demonstrate the presence of leptin and its receptor in the gut of adult zebrafish and to evaluate the leptin gene expression response to feeding and fasting. Immunoreactivity for the antibodies utilized was demonstrated in feeding but not in fasting fish, and the gene expression analysis corroborates the data obtained by immunohistochemistry. Therefore, all the obtained results support the hypothesis of the role of this hormone in food regulation in zebrafish.
Collapse
Affiliation(s)
- Olivia Garcia-Suarez
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Roberto Cabo
- Departamento de Morfología y Biología Celular, Grupo SINPOS, Universidad de Oviedo, Oviedo, Spain
| | - Francesco Abbate
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Basilio Randazzo
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Rosaria Laurà
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Giuseppe Piccione
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Antonino Germanà
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Maria Levanti
- Dipartimento di Scienze Veterinarie, Zebrafish Neuromorphology Lab, Università di Messina, Polo Universitario dell'Annunziata, Messina, Italy
| |
Collapse
|
49
|
Functional Analysis of Promoters of Genes in Lipid Metabolism and Their Transcriptional Response to STAT3 under Leptin Signals. Genes (Basel) 2018; 9:genes9070334. [PMID: 29970803 PMCID: PMC6071087 DOI: 10.3390/genes9070334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
We characterized the promoters of target genes of the signal transducer and activator of transcription 3, STAT3 (carnitine palmitoyltransferase I, CPT Iα1b, acetyl-CoA carboxylase alpha, ACCα; fatty acid synthase, FAS; and peroxisome proliferator-activated receptor gamma, PPARγ) in a teleost Pelteobagrus fulvidraco. Binding sites of STAT3 were predicted on these promoters, indicating that STAT3 probably mediated their transcriptional activities. Leptin had no effect on the activity of ACCα and PPARγ promoters, but increased CPT Iα1b promoter activity and decreased FAS promoter activity. The −979/−997 STAT3 binding site of CPT Iα1b and the −794/−812 STAT3 binding site of FAS were functional binding loci responsible for leptin-induced transcriptional activation. The study provided direct evidence that STAT3 regulated the expression of CPT Iα1b and FAS at the transcription level, and determined the STAT3 response element on promoters of CPT Iα1b and FAS under leptin signal.
Collapse
|
50
|
Anderson K, Kuo CY, Lu MW, Bar I, Elizur A. A transcriptomic investigation of digestive processes in orange-spotted grouper, Epinephelus coioides, before, during, and after metamorphic development. Gene 2018; 661:95-108. [DOI: 10.1016/j.gene.2018.03.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 11/26/2022]
|