1
|
Pandey VK, Premkumar K, Kundu P, Shankar BS. PGE2 induced miR365/IL-6/STAT3 signaling mediates dendritic cell dysfunction in cancer. Life Sci 2024; 350:122751. [PMID: 38797363 DOI: 10.1016/j.lfs.2024.122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
AIM To understand the mechanism of prostaglandin E2 (PGE2)-mediated immunosuppression in dendritic cells (DCs). MAIN METHODS In vivo experiments were conducted on 4T1 tumor bearing mice (TBM). In vitro experiments were performed in bone marrow-derived DCs (BMDCs), or spleen cells. Cytokines were monitored by ELISA/ELIspot. Gene expression was monitored by RT-PCR/flow cytometry. KEY FINDINGS In silico, in vitro, and in vivo experiments in 4T1 TBM revealed that PGE2 induced IL-6/pSTAT3 signaling through EP4 receptors in DCs, resulting in their dysfunction. These effects were reversed by EP4 antibody neutralization, EP4 antagonist, and STAT3 inhibitory peptides. PGE2 induced IL-6 was regulated by miR-365, as its mimic inhibited PGE2 induced IL-6 and the inhibitor increased lL-6 levels in DC. Bio-informatic analysis in human mammary cancers also revealed a strong compared co-relation between PGE2 and IL-6 (Correlation AnalyzeR) (R = 0.94). Mice bearing PTGS-2 KD 4T1 tumors had decreased tumor burden, PGE2, EP4, IL-6, and pSTAT3 signaling, along with improved DCs and T cell functions. Treatment of mice with a cyclooxygenase-2 (COX-2) inhibitor or EP4 antagonist decreased tumor burden, and this effect of EP4 antagonist was abrogated upon in vivo depletion of CD11c cells, indicating the crucial role of PGE2 signaling in DCs in tumor progression. SIGNIFICANCE In summary, our data highlights the importance of dendritic cells in mediating PGE2-mediated immunosuppression and the use of EP4 or STAT3 inhibitors or miR365 mimics can restore immunogenicity in cancer.
Collapse
Affiliation(s)
- Vipul K Pandey
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Kavitha Premkumar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Priya Kundu
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
2
|
Rajah Kumaran K, Yunusa S, Perimal E, Wahab H, Müller CP, Hassan Z. Insights into the Pathophysiology of Alzheimer's Disease and Potential Therapeutic Targets: A Current Perspective. J Alzheimers Dis 2023; 91:507-530. [PMID: 36502321 DOI: 10.3233/jad-220666] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aging population increases steadily because of a healthy lifestyle and medical advancements in healthcare. However, Alzheimer's disease (AD) is becoming more common and problematic among older adults. AD-related cases show an increasing trend annually, and the younger age population may also be at risk of developing this disorder. AD constitutes a primary form of dementia, an irreversible and progressive brain disorder that steadily damages cognitive functions and the ability to perform daily tasks. Later in life, AD leads to death as a result of the degeneration of specific brain areas. Currently, the cause of AD is poorly understood, and there is no safe and effective therapeutic agent to cure or slow down its progression. The condition is entirely preventable, and no study has yet demonstrated encouraging findings in terms of treatment. Identifying this disease's pathophysiology can help researchers develop safe and efficient therapeutic strategies to treat this ailment. This review outlines and discusses the pathophysiology that resulted in the development of AD including amyloid-β plaques, tau neurofibrillary tangles, neuroinflammation, oxidative stress, cholinergic dysfunction, glutamate excitotoxicity, and changes in neurotrophins level may sound better based on the literature search from Scopus, PubMed, ScienceDirect, and Google Scholar. Potential therapeutic strategies are discussed to provide more insights into AD mechanisms by developing some possible pharmacological agents for its treatment.
Collapse
Affiliation(s)
- Kesevan Rajah Kumaran
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Pulau Pinang, Malaysia
| | - Suleiman Yunusa
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Department of Pharmacology, Bauchi State University Gadau, Bauchi State, Nigeria
| | - Enoch Perimal
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Habibah Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Christian P Müller
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.,Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
3
|
Sadeghmousavi S, Eskian M, Rahmani F, Rezaei N. The effect of insomnia on development of Alzheimer's disease. J Neuroinflammation 2020; 17:289. [PMID: 33023629 PMCID: PMC7542374 DOI: 10.1186/s12974-020-01960-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia and a neurodegenerative disorder characterized by memory deficits especially forgetting recent information, recall ability impairment, and loss of time tracking, problem-solving, language, and recognition difficulties. AD is also a globally important health issue but despite all scientific efforts, the treatment of AD is still a challenge. Sleep has important roles in learning and memory consolidation. Studies have shown that sleep deprivation (SD) and insomnia are associated with the pathogenesis of Alzheimer's disease and may have an impact on the symptoms and development. Thus, sleep disorders have decisive effects on AD; this association deserves more attention in research, diagnostics, and treatment, and knowing this relation also can help to prevent AD through screening and proper management of sleep disorders. This study aimed to show the potential role of SD and insomnia in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Shaghayegh Sadeghmousavi
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Farzaneh Rahmani
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nima Rezaei
- Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Fan X, Li J, Deng X, Lu Y, Feng Y, Ma S, Wen H, Zhao Q, Tan W, Shi T, Wang Z. Design, synthesis and bioactivity study of N-salicyloyl tryptamine derivatives as multifunctional agents for the treatment of neuroinflammation. Eur J Med Chem 2020; 193:112217. [PMID: 32182488 DOI: 10.1016/j.ejmech.2020.112217] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022]
Abstract
Because of the complex etiology in neuroinflammatory process, the design of multifunctional agents is a potent strategy to cure neuroinflammatory diseases including AD and PD. Herein, based on the combination principles, 23 of N-salicyloyl tryptamine derivatives as multifunctional agents were designed and their new application for anti-neuroinflammation was disclosed. In cyclooxygenase assay, two compounds 3 and 16 displayed extremely preferable COX-2 inhibition than N-salicyloyl tryptamine. In LPS-induced C6 and BV2 cell models, some compounds decreased the production of proinflammatory mediators NO, PGE2, TNF-α, iNOS, COX-2 and ROS, while increased the production of IL-10. Among them, compound 3 and 16 showed approximately six-fold better inhibition on nitric oxide production than N-salicyloyl tryptamine in C6. Besides, compounds 3, 13 and 16 attenuated the activation of BV2 and C6 cells. More importantly, in vivo, compounds 3 and 16 reduced GFAP and Iba-1 levels in the hippocampus, and displayed neuroprotection in Nissl staining. Besides, both compounds 3 and 16 had high safety (LD50 > 1000 mg/kg). Longer plasma half-life of compounds 3 and 16 than melatonin supported combination strategy. All these results demonstrated that N-salicyloyl tryptamine derivatives are potential anti-neuroinflammation agents for the treatment of neurodegenerative disorder.
Collapse
Affiliation(s)
- Xiaohong Fan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shumeng Ma
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huaixiu Wen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000, China
| | - Quanyi Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Wu J, Wang B, Li M, Shi YH, Wang C, Kang YG. Network pharmacology identification of mechanisms of cerebral ischemia injury amelioration by Baicalin and Geniposide. Eur J Pharmacol 2019; 859:172484. [PMID: 31229537 DOI: 10.1016/j.ejphar.2019.172484] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
Abstract
Cerebral ischemia is one of the main causes of human neurological dysfunction. Baicalin (BC) and Geniposide (GP) and their combination (BC/GP) have an ameliorative effect on cerebral ischemia. Here, we use network pharmacology to predict the targets of BC, GP and BC/GP, then explored the protective mechanisms of the drugs on cerebral ischemia injury caused by abnormal activation of microglia cells in vitro. The results indicate that 45 targets related to cerebral ischemic injury were predicted by network pharmacology, and 26 cerebral ischemia related pathways were extracted by the KEGG database. In vitro lipopolysaccharide (LPS) stimulated BV-2 cells to establish a model of inflammatory injury induced by microglia. The effects of BC, GP and BC/GP on the expression of TNF-α, IL-1β and IL-10, TGF-β and TNF-α were verified. Network pharmacology predicts the regulation of the 5-LOX/CysLTs inflammatory pathway. Finally, we found that GP and BC/GP exert anti-inflammatory and neuroprotective effects by regulating the polarization state of microglia and down-regulating 5-LOX/CysLTs, and has certain protective effects on nerve damage following cerebral ischemia.
Collapse
Affiliation(s)
- Jie Wu
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Bin Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Min Li
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yong-Heng Shi
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Chuan Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ya-Guo Kang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|
6
|
Mannava S, Whitney KE, Kennedy MI, King J, Dornan GJ, Klett K, Chahla J, Evans TA, Huard J, LaPrade RF. The Influence of Naproxen on Biological Factors in Leukocyte-Rich Platelet-Rich Plasma: A Prospective Comparative Study. Arthroscopy 2019; 35:201-210. [PMID: 30472018 DOI: 10.1016/j.arthro.2018.07.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023]
Abstract
PURPOSE To quantify and compare normative catabolic and anabolic factor concentrations in leukocyte-rich platelet-rich plasma (LR-PRP) at various time points, including baseline, 1 week after initiating naproxen use, and after a 1-week washout period. METHODS Asymptomatic healthy donors aged between 18 and 70 years were recruited (average age, 36.6 years; range, 25-64 years). Subjects were excluded from the study if they were actively taking any prescribed medications or nonsteroidal anti-inflammatory drugs (NSAIDs) or if they had any of the following at present or previously: blood or immunosuppression disorders, cancer, osteonecrosis, rheumatoid arthritis, avascular necrosis, NSAID intolerance, gastrointestinal or peptic ulcer disease, or kidney dysfunction. The anabolic factors vascular endothelial growth factor, fibroblast growth factor 2, platelet-derived growth factor AB (PDGF-AB), and platelet-derived growth factor AA (PDGF-AA) and the catabolic factors interleukin (IL) 1β, IL-6, IL-8, and tumor necrosis factor α in LR-PRP were measured. Peripheral blood was drawn at 3 time points: baseline, after 1 week of naproxen use, and after a 1-week washout period. RESULTS The angiogenic factors PDGF-AA (44% decrease in median) and PDGF-AB (47% decrease) significantly declined from baseline (P < .05) after 1 week of naproxen use. There was a significant recovery (P < .05) of PDGF-AA (94% increase) and PDGF-AB (153% increase) levels after the 1-week washout period, with a return to baseline levels. The catabolic factor IL-6 also had a significant decline from baseline (77% decrease in median, P < .05) after 1 week of naproxen use. After a 1-week washout period, the IL-6 level was similar to the baseline level (130% increase, P < .05). CONCLUSIONS Naproxen use diminished several biological factors in LR-PRP; however, a 1-week washout period was sufficient for the recovery of PDGF-AA, PDGF-AB, and IL-6 to return to baseline levels. Tumor necrosis factor α, IL-1β, IL-8, vascular endothelial growth factor, and fibroblast growth factor 2 did not show differences between the 3 time points of data collection. Discontinuing NSAIDs for a minimum of 1 week before LR-PRP treatment may improve certain biological factor levels. LEVEL OF EVIDENCE Level II, prospective comparative study.
Collapse
Affiliation(s)
- Sandeep Mannava
- Center of Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A
| | | | | | - Jill King
- The Steadman Clinic, Vail, Colorado, U.S.A
| | | | | | | | - Thos A Evans
- Center of Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A
| | - Johnny Huard
- Center of Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A
| | - Robert F LaPrade
- Center of Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A..
| |
Collapse
|
7
|
Magistri M, Velmeshev D, Makhmutova M, Patel P, Sartor GC, Volmar CH, Wahlestedt C, Faghihi MA. The BET-Bromodomain Inhibitor JQ1 Reduces Inflammation and Tau Phosphorylation at Ser396 in the Brain of the 3xTg Model of Alzheimer's Disease. Curr Alzheimer Res 2017; 13:985-95. [PMID: 27117003 PMCID: PMC5026248 DOI: 10.2174/1567205013666160427101832] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by welldefined neuropathological brain changes including amyloid plaques, neurofibrillary tangles and the presence of chronic neuroinflammation. OBJECTIVE The brain penetrant BET bromodomain inhibitor JQ1 has been shown to regulate inflammation responses in vitro and in vivo, but its therapeutic potential in AD is currently unknown. METHOD Three-month-old 3xTg mice were injected once a day with JQ1 (50 mg/kg) or vehicle for 15 weeks. At the end of the treatment learning and memory was assessed using the modified Barnes maze and the Y maze behavioral tests. Tissue from the brain and other organs was collected for molecular evaluation of neuroinflammation tau pathology and amyloid β. RESULTS JQ1 treatment reduced splenomegaly and neuroinflammation in the brain of treated mice where we observed a reduction in the expression of the pro-inflammatory modulators Il-1b, Il-6, Tnfa, Ccl2, Nos2 and Ptgs2. Additionally, JQ1-treated mice showed a reduction of tau phosphorylation at Ser396 in the hippocampus and frontal cortex while total levels of tau remained unaffected. On the other hand, JQ1 did not ameliorate learning and memory deficits in 7-month-old 3xTg mice. CONCLUSION Taken together, our data suggest that BET bromodomain inhibitors hold the promise to be used for the treatment of neurological disorders characterized by neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation & Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, 1501 NW 10th Ave, BRB 508, Miami, FL 33136, USA.
| |
Collapse
|
8
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
9
|
Brown JA, Codreanu SG, Shi M, Sherrod SD, Markov DA, Neely MD, Britt CM, Hoilett OS, Reiserer RS, Samson PC, McCawley LJ, Webb DJ, Bowman AB, McLean JA, Wikswo JP. Metabolic consequences of inflammatory disruption of the blood-brain barrier in an organ-on-chip model of the human neurovascular unit. J Neuroinflammation 2016; 13:306. [PMID: 27955696 PMCID: PMC5153753 DOI: 10.1186/s12974-016-0760-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022] Open
Abstract
Background Understanding blood-brain barrier responses to inflammatory stimulation (such as lipopolysaccharide mimicking a systemic infection or a cytokine cocktail that could be the result of local or systemic inflammation) is essential to understanding the effect of inflammatory stimulation on the brain. It is through the filter of the blood-brain barrier that the brain responds to outside influences, and the blood-brain barrier is a critical point of failure in neuroinflammation. It is important to note that this interaction is not a static response, but one that evolves over time. While current models have provided invaluable information regarding the interaction between cytokine stimulation, the blood-brain barrier, and the brain, these approaches—whether in vivo or in vitro—have often been only snapshots of this complex web of interactions. Methods We utilize new advances in microfluidics, organs-on-chips, and metabolomics to examine the complex relationship of inflammation and its effects on blood-brain barrier function ex vivo and the metabolic consequences of these responses and repair mechanisms. In this study, we pair a novel dual-chamber, organ-on-chip microfluidic device, the NeuroVascular Unit, with small-volume cytokine detection and mass spectrometry analysis to investigate how the blood-brain barrier responds to two different but overlapping drivers of neuroinflammation, lipopolysaccharide and a cytokine cocktail of IL-1β, TNF-α, and MCP1,2. Results In this study, we show that (1) during initial exposure to lipopolysaccharide, the blood-brain barrier is compromised as expected, with increased diffusion and reduced presence of tight junctions, but that over time, the barrier is capable of at least partial recovery; (2) a cytokine cocktail also contributes to a loss of barrier function; (3) from this time-dependent cytokine activation, metabolic signature profiles can be obtained for both the brain and vascular sides of the blood-brain barrier model; and (4) collectively, we can use metabolite analysis to identify critical pathways in inflammatory response. Conclusions Taken together, these findings present new data that allow us to study the initial effects of inflammatory stimulation on blood-brain barrier disruption, cytokine activation, and metabolic pathway changes that drive the response and recovery of the barrier during continued inflammatory exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0760-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jacquelyn A Brown
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA
| | - Mingjian Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Stacy D Sherrod
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dmitry A Markov
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Clayton M Britt
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Orlando S Hoilett
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Ronald S Reiserer
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Philip C Samson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA
| | - Lisa J McCawley
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Donna J Webb
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - Aaron B Bowman
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.,Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - John A McLean
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Innovative Technology, Vanderbilt University, Nashville, TN, 37235, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - John P Wikswo
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235, USA. .,Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, 6301 Stevenson Center, Nashville, TN, 37235, USA. .,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA. .,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Rosenberger AFN, Morrema THJ, Gerritsen WH, van Haastert ES, Snkhchyan H, Hilhorst R, Rozemuller AJM, Scheltens P, van der Vies SM, Hoozemans JJM. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer's disease pathology. J Neuroinflammation 2016; 13:4. [PMID: 26732432 PMCID: PMC4702323 DOI: 10.1186/s12974-015-0470-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. In addition to the occurrence of amyloid deposits and widespread tau pathology, AD is associated with a neuroinflammatory response characterized by the activation of microglia and astrocytes. Protein kinase 2 (CK2, former casein kinase II) is involved in a wide variety of cellular processes. Previous studies on CK2 in AD showed controversial results, and the involvement of CK2 in neuroinflammation in AD remains elusive. METHODS In this study, we used immunohistochemical and immunofluorescent staining methods to investigate the localization of CK2 in the hippocampus and temporal cortex of patients with AD and non-demented controls. We compared protein levels with Western blotting analysis, and we investigated CK2 activity in human U373 astrocytoma cells and human primary adult astrocytes stimulated with IL-1β or TNF-α. RESULTS We report increased levels of CK2 in the hippocampus and temporal cortex of AD patients compared to non-demented controls. Immunohistochemical analysis shows CK2 immunoreactivity in astrocytes in AD and control cases. In AD, the presence of CK2 immunoreactive astrocytes is increased. CK2 immunopositive astrocytes are associated with amyloid deposits, suggesting an involvement of CK2 in the neuroinflammatory response. In U373 cells and human primary astrocytes, the selective CK2 inhibitor CX-4945 shows a dose-dependent reduction of the IL-1β or TNF-α induced MCP-1 and IL-6 secretion. CONCLUSIONS This data suggests that CK2 in astrocytes is involved in the neuroinflammatory response in AD. The reduction in pro-inflammatory cytokine secretion by human astrocytes using the selective CK2 inhibitor CX-4945 indicates that CK2 could be a potential target to modulate neuroinflammation in AD.
Collapse
Affiliation(s)
- Andrea F N Rosenberger
- Alzheimer center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Tjado H J Morrema
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Wouter H Gerritsen
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Elise S van Haastert
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Hripsime Snkhchyan
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Riet Hilhorst
- PamGene International BV, Wolvenhoek 10, 5211 HH, 's-Hertogenbosch, The Netherlands.
| | - Annemieke J M Rozemuller
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Philip Scheltens
- Alzheimer center & Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands.
| | - Saskia M van der Vies
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Wang P, Guan PP, Wang T, Yu X, Guo JJ, Wang ZY. Aggravation of Alzheimer's disease due to the COX-2-mediated reciprocal regulation of IL-1β and Aβ between glial and neuron cells. Aging Cell 2014; 13:605-615. [PMID: 24621265 PMCID: PMC4326948 DOI: 10.1111/acel.12209] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2014] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and displays the characteristics of chronic neurodegenerative disorders; amyloid plaques (AP) that contain amyloid β-protein (Aβ) accumulate in AD, which is also characterized by tau phosphorylation. Epidemiological evidence has demonstrated that long-term treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) markedly reduces the risk of AD by inhibiting the expression of cyclooxygenase 2 (COX-2). Although the levels of COX-2 and its metabolic product prostaglandin (PG)E2 are elevated in the brain of AD patients, the mechanisms for the development of AD remain unknown. Using human- or mouse-derived glioblastoma and neuroblastoma cell lines as model systems, we delineated the signaling pathways by which COX-2 mediates the reciprocal regulation of interleukin-1β (IL-1β) and Aβ between glial and neuron cells. In glioblastoma cells, COX-2 regulates the synthesis of IL-1β in a PGE2 -dependent manner. Moreover, COX-2-derived PGE2 signals the activation of the PI3-K/AKT and PKA/CREB pathways via cyclic AMP; these pathways transactivate the NF-κB p65 subunit via phosphorylation at Ser 536 and Ser 276, leading to IL-1β synthesis. The secretion of IL-1β from glioblastoma cells in turn stimulates the expression of COX-2 in human or mouse neuroblastoma cells. Similar regulatory mechanisms were found for the COX-2 regulation of BACE-1 expression in neuroblastoma cells. More importantly, Aβ deposition mediated the inflammatory response of glial cells via inducing the expression of COX-2 in glioblastoma cells. These findings not only provide new insights into the mechanisms of COX-2-induced AD but also initially define the therapeutic targets of AD.
Collapse
Affiliation(s)
| | | | - Tao Wang
- College of Life and Health Sciences, Northeastern UniversityShenyang, 110819, China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern UniversityShenyang, 110819, China
| | - Jian-Jun Guo
- College of Life and Health Sciences, Northeastern UniversityShenyang, 110819, China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern UniversityShenyang, 110819, China
| |
Collapse
|
12
|
Wang P, Zhu F, Konstantopoulos K. Interleukin-6 synthesis in human chondrocytes is regulated via the antagonistic actions of prostaglandin (PG)E2 and 15-deoxy-Δ(12,14)-PGJ2. PLoS One 2011; 6:e27630. [PMID: 22096605 PMCID: PMC3214064 DOI: 10.1371/journal.pone.0027630] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/20/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Elevated levels of interleukin-6 (IL-6), prostaglandin (PG)E(2), PGD(2) and its dehydration end product 15-deoxy-Δ(12,14)-PGJ(2) (15d-PGJ(2)) have been detected in joint synovial fluids from patients with rheumatoid arthritis (RA). PGE(2) directly stimulates IL-6 production in human articular chondrocytes. However, the effects of PGD(2) and 15d-PGJ(2) in the absence or presence of PGE(2) on IL-6 synthesis in human chondrocytes have yet to be determined. It is believed that dysregulated overproduction of IL-6 is responsible for the systemic inflammatory manifestations and abnormal laboratory findings in RA patients. METHODOLOGY/PRINCIPAL FINDINGS Using the T/C-28a2 chondrocyte cell line as a model system, we report that exogenous PGE(2) and PGD(2)/15d-PGJ(2) exert antagonistic effects on IL-6 synthesis in human T/C-28a2 chondrocytes. Using a synthesis of sophisticated molecular biology techniques, we determined that PGE(2) stimulates Toll-like receptor 4 (TLR4) synthesis, which is in turn responsible for the activation of the ERK1/2, PI3K/Akt and PKA/CREB pathways that phosphorylate the NF-κB p65 subunit leading to NF-κB activation. Binding of the activated NF-κB p65 subunit to IL-6 promoter induces IL-6 synthesis in human T/C28a2 chondrocytes. PGD(2) or 15d-PGJ(2) concurrently downregulates TLR4 and upregulates caveolin-1, which in turn inhibit the PGE(2)-dependent ERK1/2, PI3-K and PKA activation, and ultimately with NF-κB-dependent IL-6 synthesis in chondrocytes. CONCLUSIONS/SIGNIFICANCE We have delineated the signaling cascade by which PGE(2) and PGD(2)/15d-PGJ(2) exert opposing effects on IL-6 synthesis in human chondrocytes. Elucidation of the molecular pathway of IL-6 synthesis and secretion by chondrocytes will provide insights for developing strategies to reduce inflammation and pain in RA patients.
Collapse
Affiliation(s)
- Pu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fei Zhu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences in Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
13
|
Abstract
Diets rich in SFA have been implicated in Alzheimer's disease (AD). There is strong evidence to suggest that microglial activation augments the progression of AD. However, it remains uncertain whether SFA can initiate microglial activation and whether this response can cause neuronal death. Using the BV-2 microglial cell line and primary microglial culture, we showed that palmitic acid (PA) and stearic acid (SA) could activate microglia, as assessed by reactive morphological changes and significantly increased secretion of pro-inflammatory cytokines, NO and reactive oxygen species, which trigger primary neuronal death. In addition, the mRNA level of these pro-inflammatory mediators determined by RT-PCR was also increased by PA and SA. We further investigated the intracellular signalling mechanism underlying the release of pro-inflammatory mediators from PA-activated microglial cells. The present results showed that PA activated the phosphorylation and nuclear translocation of the p65 subunit of NF-κB. Furthermore, pyrrolidine dithiocarbamate, a NF-κB inhibitor, attenuated the production of pro-inflammatory mediators except for IL-6 in PA-stimulated microglia. Administration of anti-Toll-like receptor (TLR)4-neutralising antibody repressed PA-induced NF-κB activation and pro-inflammatory mediator production. In conclusion, the present in vitro study demonstrates that SFA could activate microglia and stimulate the TLR4/NF-κB pathway to trigger the production of pro-inflammatory mediators, which may contribute to neuronal death.
Collapse
|
14
|
Yang X, Askarova S, Sheng W, Chen JK, Sun AY, Sun GY, Yao G, Lee JCM. Low energy laser light (632.8 nm) suppresses amyloid-β peptide-induced oxidative and inflammatory responses in astrocytes. Neuroscience 2010; 171:859-68. [PMID: 20884337 PMCID: PMC2987533 DOI: 10.1016/j.neuroscience.2010.09.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 12/20/2022]
Abstract
Oxidative stress and inflammation are important processes in the progression of Alzheimer's disease (AD). Recent studies have implicated the role of amyloid β-peptides (Aβ) in mediating these processes. In astrocytes, oligomeric Aβ induces the assembly of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complexes resulting in its activation to produce anionic superoxide. Aβ also promotes production of pro-inflammatory factors in astrocytes. Since low energy laser has previously been reported to attenuate oxidative stress and inflammation in biological systems, the objective of this study was to examine whether this type of laser light was able to abrogate the oxidative and inflammatory responses induced by Aβ. Primary rat astrocytes were exposed to Helium-Neon laser (λ=632.8 nm), followed by the treatment with oligomeric Aβ. Primary rat astrocytes were used to measure Aβ-induced production of superoxide anions using fluorescence microscopy of dihydroethidium (DHE), assembly of NADPH oxidase subunits by the colocalization between the cytosolic p47(phox) subunit and the membrane gp91(phox) subunit using fluorescent confocal microscopy, phosphorylation of cytosolic phospholipase A(2) cPLA(2) and expressions of pro-inflammatory factors including interleukin-1β (IL-1β) and inducible nitric-oxide synthase (iNOS) using Western blot Analysis. Our data showed that laser light at 632.8 nm suppressed Aβ-induced superoxide production, colocalization between NADPH oxidase gp91(phox) and p47(phox) subunits, phosphorylation of cPLA(2,) and the expressions of IL-1β and iNOS in primary astrocytes. We demonstrated for the first time that 632.8 nm laser was capable of suppressing cellular pathways of oxidative stress and inflammatory responses critical in the pathogenesis in AD. This study should prove to provide the groundwork for further investigations for the potential use of laser therapy as a treatment for AD.
Collapse
Affiliation(s)
- Xiaoguang Yang
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211
| | - Sholpan Askarova
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211
| | - Wenwen Sheng
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | - JK Chen
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211
| | - Albert Y. Sun
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65211
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211
- Department of Biochemistry, University of Missouri, Columbia, MO 65211
| | - Gang Yao
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211
| | - James C-M. Lee
- Department of Biological Engineering, University of Missouri, Columbia, MO 65211
| |
Collapse
|
15
|
Serrano-Pérez MC, Martín ED, Vaquero CF, Azcoitia I, Calvo S, Cano E, Tranque P. Response of transcription factor NFATc3 to excitotoxic and traumatic brain insults: Identification of a subpopulation of reactive astrocytes. Glia 2010; 59:94-107. [DOI: 10.1002/glia.21079] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/23/2010] [Indexed: 01/21/2023]
|
16
|
Krause DL, Müller N. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer's disease. Int J Alzheimers Dis 2010; 2010. [PMID: 20798769 PMCID: PMC2925207 DOI: 10.4061/2010/732806] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 04/28/2010] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation has been implicated in the pathology of Alzheimer's disease (AD) for decades. Still it has not been fully understood when and how inflammation arises in the course of AD. Whether inflammation is an underling cause or a resulting condition in AD remains unresolved. Mounting evidence indicates that microglial activation contributes to neuronal damage in neurodegenerative diseases. However, also beneficial aspects of microglial activation have been identified. The purpose of this review is to highlight new insights into the detrimental and beneficial role of neuroinflammation in AD. It is our intention to focus on newer controversies in the field of microglia activation. Precisely, we want to shed light on whether neuroinflammation is associated to brain tissue damage and functional impairment or is there also a damage limiting activity. In regard to this, we discuss the limitations and the advantages of anti-inflammatory treatment options and identify what future implications might result from this underling neuroinflammation for AD therapy.
Collapse
Affiliation(s)
- Daniela L Krause
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | | |
Collapse
|
17
|
Wang P, Zhu F, Konstantopoulos K. Prostaglandin E2 induces interleukin-6 expression in human chondrocytes via cAMP/protein kinase A- and phosphatidylinositol 3-kinase-dependent NF-kappaB activation. Am J Physiol Cell Physiol 2010; 298:C1445-56. [PMID: 20457835 DOI: 10.1152/ajpcell.00508.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated levels of prostaglandin (PG)E(2) and interleukin (IL)-6 have been reported in the cartilage and synovial fluid from patients with arthritic disorders. PGE(2) regulates IL-6 production in numerous different cells including macrophages and synovial fibroblasts. Although PGE(2) stimulates IL-6 expression in human chondrocytes, the underlying signaling pathway of this process has yet to be delineated. Here, we investigate the mechanism of IL-6 induction in human T/C-28a2 chondrocytes treated with exogenously added PGE(2). PGE(2) induces IL-6 mRNA and protein expression via a cAMP-dependent pathway, reaching maximal levels after 60 min of stimulation before declining to baseline levels at 6 h. Forskolin, an adenylyl cyclase activator, also stimulates IL-6 expression in human chondrocytes in a dose- and time-dependent fashion. Inhibition of downstream effectors of cAMP activity such as protein kinase A (PKA) or phosphatidylinositol 3 kinase (PI3K) blocks PGE(2)- and forskolin-induced IL-6 upregulation. Simultaneous inhibition of PKA and PI3K reduces IL-6 expression in stimulated chondrocytes well below the basal levels of untreated cells. Gel shift, supershift, and chromatin immunoprecipitation assays reveal the activation and binding of the nuclear factor (NF)-kappaB p65 subunit to the IL-6 promoter, which is markedly suppressed by selective PI3K or PKA pharmacological inhibitors. p65 knockdown completely abrogates IL-6 mRNA synthesis in PGE(2)- and forskolin-primed chondrocytes. Cumulatively, our data show that PGE(2) and forskolin induce IL-6 expression in human chondrocytes via cAMP/PKA and PI3K-dependent pathways, which in turn regulate the activation and binding of p65 to the IL-6 promoter.
Collapse
Affiliation(s)
- Pu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
18
|
|
19
|
Strauss KI. Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain Behav Immun 2008; 22:285-98. [PMID: 17996418 PMCID: PMC2855502 DOI: 10.1016/j.bbi.2007.09.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/14/2007] [Accepted: 09/20/2007] [Indexed: 12/22/2022] Open
Abstract
Overexpression of COX2 appears to be both a marker and an effector of neural damage after a variety of acquired brain injuries, and in natural or pathological aging of the brain. COX2 inhibitors may be neuroprotective in the brain by reducing prostanoid and free radical synthesis, or by directing arachidonic acid down alternate metabolic pathways. The arachidonic acid shunting hypothesis proposes that COX2 inhibitors' neuroprotective effects may be mediated by increased formation of potentially beneficial eicosanoids. Under conditions where COX2 activity is inhibited, arachidonic acid accumulates or is converted to eicosanoids via lipoxygenases and cytochrome P450 (CYP) epoxygenases. Several P450 eicosanoids have been demonstrated to have beneficial effects in the brain and/or periphery. We suspect that arachidonic acid shunting may be as important to functional recovery after brain injuries as altered prostanoid formation per se. Thus, COX2 inhibition and arachidonic acid shunting have therapeutic implications beyond the suppression of prostaglandin synthesis and free radical formation.
Collapse
Affiliation(s)
- Kenneth I Strauss
- Mayfield Neurotrauma Research Lab, Department of Neurosurgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML515, Cincinnati, OH 45267, USA.
| |
Collapse
|
20
|
de Jong D, Jansen R, Hoefnagels W, Jellesma-Eggenkamp M, Verbeek M, Borm G, Kremer B. No effect of one-year treatment with indomethacin on Alzheimer's disease progression: a randomized controlled trial. PLoS One 2008; 3:e1475. [PMID: 18213383 PMCID: PMC2194921 DOI: 10.1371/journal.pone.0001475] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 11/06/2007] [Indexed: 11/19/2022] Open
Abstract
Background The objective of this study was to determine whether treatment with the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin slows cognitive decline in patients with Alzheimer's disease (AD). Methodology/Principal Findings This double-blind, randomized, placebo-controlled trial was conducted between May 2000 and September 2005 in two hospitals in the Netherlands. 51 patients with mild to moderate AD were enrolled into the study. Patients received 100 mg indomethacin or placebo daily for 12 months. Additionally, all patients received omeprazole. The primary outcome measure was the change from baseline after one year of treatment on the cognitive subscale of the AD Assessment Scale (ADAS-cog). Secondary outcome measures included the Mini-Mental State Examination, the Clinician's Interview Based Impression of Change with caregiver input, the noncognitive subscale of the ADAS, the Neuropsychiatric Inventory, and the Interview for Deterioration in Daily life in Dementia. Considerable recruitment problems of participants were encountered, leading to an underpowered study. In the placebo group, 19 out of 25 patients completed the study, and 19 out of 26 patients in the indomethacin group. The deterioration on the ADAS-cog was less in the indomethacin group (7.8±7.6), than in the placebo group (9.3±10.0). This difference (1.5 points; CI −4.5–7.5) was not statistically significant, and neither were any of the secondary outcome measures. Conclusions/Significance The results of this study are inconclusive with respect to the hypothesis that indomethacin slows the progression of AD. Trial Registration ClinicalTrials.gov NCT00432081
Collapse
Affiliation(s)
- Daniëlle de Jong
- Department of Neurology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Tsai MJ, Shyue SK, Weng CF, Chung Y, Liou DY, Huang CT, Kuo HS, Lee MJ, Chang PT, Huang MC, Huang WC, Liou KD, Cheng H. Effect of enhanced prostacyclin synthesis by adenovirus-mediated transfer on lipopolysaccharide stimulation in neuron-glia cultures. Ann N Y Acad Sci 2006; 1042:338-48. [PMID: 15965079 DOI: 10.1196/annals.1338.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostacyclin (PGI2) is known as a short-lived, potent vasodilator and platelet anti-aggregatory eicosanoid. This work attempts to selectively augment PGI2 synthesis in neuron-glia cultures by adenoviral (Ad) gene transfer of PGI synthase (PGIS) or bicistronic cyclooxygenase 1 (COX-1)/PGIS and examines whether PGI2 confers protection against lipopolysaccharide (LPS) stimulation. Cultures released low levels of eicosanoids. Upon Ad-PGIS or Ad-COX-1/PGIS infection, cultures selectively increased prostacyclin release. Both PGIS- and COX-1/PGIS-overexpressed cultures contained fewer microglial numbers. Further, they significantly attenuated LPS-induced iNOS expression and lactate, nitric oxide, and TNF-alpha production. Taken together, enhanced prostacyclin synthesis in neuron-glial cultures reduced microglia number and suppressed LPS stimulation.
Collapse
Affiliation(s)
- May-Jywan Tsai
- Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Shih-pai Road, Sec. 2, Taipei, Taiwan 11217
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Noguchi K, Maeda M, Ruwanpura SMPM, Ishikawa I. Prostaglandin E2 (PGE2) downregulates interleukin (IL)-1alpha-induced IL-6 production via EP2/EP4 subtypes of PGE2 receptors in human periodontal ligament cells. Oral Dis 2005; 11:157-62. [PMID: 15888106 DOI: 10.1111/j.1601-0825.2005.01059.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Prostaglandin E2 (PGE2) exerts its biological actions via EP receptors, which are divided into four subtypes, EP1, EP2, EP3 and EP4. In the present study, we examined whether PGE2 regulated interleukin (IL)-1alpha-induced IL-6 production in human periodontal ligament (PDL) cells and if so, which subtypes of PGE2 receptors were involved. METHODS PDL cells were stimulated with vehicle or IL-1alpha in the presence or absence of indomethacin (a cylooxygenase inhibitor), PGE2 or various EP agonists. IL-6 and PGE2 levels were measured by enzyme-linked immunosorbent assay. EP receptor mRNA expression was examined by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Indomethacin significantly enhanced IL-1alpha-induced IL-6 production by PDL cells, although it completely inhibited IL-1alpha-induced PGE2 production. Exogenous PGE2 significantly suppressed IL-1alpha-induced IL-6 production. Butaprost, a selective EP2 agonist, and ONO-AE1-329, a selective EP4 agonist, significantly inhibited IL-1alpha-induced IL-6 production, although 17-phenyl-omega-trinor PGE2, an EP1 agonist, and ONO-AP-324, an EP3 agonist, did not affect it. RT-PCR analysis showed that EP2 and EP4 mRNA was expressed in PDL cells. CONCLUSIONS We suggest that PGE2 downregulates IL-1alpha-induced IL-6 production via EP2/EP4 receptors in human PDL cells.
Collapse
Affiliation(s)
- K Noguchi
- Department of Hard Tissue Engineering, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
23
|
Aronica E, Gorter JA, Rozemuller AJ, Yankaya B, Troost D. Activation of metabotropic glutamate receptor 3 enhances interleukin (IL)-1beta-stimulated release of IL-6 in cultured human astrocytes. Neuroscience 2005; 130:927-33. [PMID: 15652990 DOI: 10.1016/j.neuroscience.2004.10.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2004] [Indexed: 11/23/2022]
Abstract
Previous studies have demonstrated that human astrocytes express mRNA and receptor protein for group I and II metabotropic glutamate receptors (mGluRs). Whether these receptors can influence the inflammatory and immune response and can modulate the capacity of astrocytes to produce inflammatory cytokines is still unclear. Inflammatory cytokines can be produced by activated glial cells and play a critical role in several neurological disorders. Astrocyte-enriched human cell cultures growing in a serum-free chemically defined medium were used to study the regulation of IL (interleukin)-1beta and IL-6 in response to mGluR activation. Astrocytes cultured in the absence or in the presence of epidermal growth factor (EGF), did not secrete significant IL-1beta and IL-6, as determined by specific enzyme-linked immunosorbent assay (ELISA). Activation of mGluRs using (S)-3,5-dihydroxyphenylglycine (DHPG; selective group I agonist) or DCG-IV (selective group II agonist) did not affect the production of interleukins under both growth conditions. On exposure to IL-1beta high levels of IL-6 were detected. Activation of mGluR3 with DCG-IV (but not of mGluR5 with DHPG) enhanced, in the presence of IL-1beta, the release of IL-6 in a dose dependent manner in astrocytes cultured under conditions (+EGF) in which the mGluR expression is known to be upregulated. The effect of mGluR3 activation on IL-1beta stimulated release of IL-6 was prevented by selective group II mGluR antagonists. The capacity of mGluR3 to modulate the release of IL-6 in the presence of IL-1beta supports the possible involvement of this receptor subtype in the regulation of the inflammatory and immune response under pathological conditions associated with glial cell activation.
Collapse
Affiliation(s)
- E Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Aronica E, Gorter JA, Rozemuller AJ, Yankaya B, Troost D. Interleukin-1 beta down-regulates the expression of metabotropic glutamate receptor 5 in cultured human astrocytes. J Neuroimmunol 2005; 160:188-94. [PMID: 15710472 DOI: 10.1016/j.jneuroim.2004.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/23/2004] [Accepted: 11/24/2004] [Indexed: 11/29/2022]
Abstract
Expression of metabotropic glutamate receptor 5 (mGluR5) protein is known to be plastic and to depend critically on the astrocytes' microenvironment. In the present study we investigated whether interleukins, which are involved in the immune response following brain injury, could contribute to the regulation of mGluR5 protein in human astrocytes in culture. Using Western blotting and immunocytochemistry, no detectable changes in the expression of the mGluR5 protein were observed with both interleukin 1beta and interleukin 6 in undifferentiated cultures (growing in serum free media). In contrast, in cultures that had been morphologically differentiated by exposure to epidermal growth factor (EGF), addition of interleukin 1beta (but not interleukin 6) reduced mGluR5 protein expression. In addition, stimulation of phosphoinositide hydrolysis by the selective group I agonist (S)-3,5-dihydroxyphenylglycine (DHPG) was reduced after exposure to interleukin 1beta. The suppressive effect on mGluR5 was prevented by the interleukin 1 receptor antagonist. Thus, interleukin 1beta may represent an additional pathway through which mGluR5 expression and function can be modulated in astrocytes under different pathological conditions associated with an inflammatory response.
Collapse
Affiliation(s)
- Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Kagiwada K, Chida D, Sakatani T, Asano M, Nambu A, Kakuta S, Iwakura Y. Interleukin (IL)-6, but not IL-1, induction in the brain downstream of cyclooxygenase-2 is essential for the induction of febrile response against peripheral IL-1alpha. Endocrinology 2004; 145:5044-8. [PMID: 15271886 DOI: 10.1210/en.2004-0054] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-1 is an endogenous pyrogen produced upon inflammation or infection. Previously, we showed that, upon injection with turpentine, IL-1 is induced in the brain in association with the development of fever. The role of endogenous IL-1 in the brain and the signaling cascade to activate thermosensitive neurons, however, remain to be elucidated. In this report, febrile response was analyzed after peripheral injection of IL-1alpha. We found that a normal febrile response was induced even in IL-1alpha/beta-deficient mice, indicating that production of IL-1 in the brain is not necessarily required for the response. In contrast, IL-6-deficient mice did not exhibit a febrile response. Cyclooxygenase (Cox)-2 expression in the brain was strongly induced 1.5 h after injection of IL-1alpha, whereas IL-6 expression was observed 3 h after the injection. Cox-2 expression in the brain was not influenced by IL-6 deficiency, whereas indomethacin, an inhibitor of cyclooxygenases, completely inhibited induction of IL-6. These observations suggest a mechanism of IL-1-induced febrile response in which IL-1 in the blood activates Cox-2, with the resulting prostaglandin E(2) inducing IL-6 in the brain, leading to the development of fever.
Collapse
Affiliation(s)
- Kyoko Kagiwada
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Garbacki N, Tits M, Angenot L, Damas J. Inhibitory effects of proanthocyanidins from Ribes nigrum leaves on carrageenin acute inflammatory reactions induced in rats. BMC Pharmacol 2004; 4:25. [PMID: 15498105 PMCID: PMC526370 DOI: 10.1186/1471-2210-4-25] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 10/21/2004] [Indexed: 01/10/2023] Open
Abstract
Background The anti-inflammatory effects of proanthocyanidins (PACs), isolated from blackcurrant (Ribes nigrum L.) leaves, were analysed using carrageenin-induced paw oedema and carrageenin-induced pleurisy in rats. Results Pretreatment of the animals with PACs (10, 30, 60 and 100 mg/kg, i.p.) reduced paw oedema induced by carrageenin in a dose and time-dependent manner. PACs also inhibited dose-dependently carrageenin-induced pleurisy in rats. They reduced (A) lung injury, (B) pleural exudate formation, (C) polymorphonuclear cell infiltration, (D) pleural exudate levels of TNF-α, IL-1β and CINC-1 but did not affect IL-6 and IL-10 levels. They reduced (E) pleural exudate levels of nitrite/nitrate (NOx). In indomethacin treated rats, the volume of pleural exudate was low, its content in leukocytes and its contents in TNF-α, IL-1β, IL-6 and IL-10 but not in NOx were reduced. These data suggest that the anti-inflammatory properties of PACs are achieved through a different pattern from those of indomethacin. Conclusion These results suggest that the main mechanism of the anti-inflammatory effect of PACs mainly lies in an interference with the migration of the leukocytes. Moreover, PACs inhibited in vivo nitric oxide release.
Collapse
Affiliation(s)
- Nancy Garbacki
- Laboratoire de Physiologie humaine, CHU, Tour 3, Université de Liège, Avenue de l'Hôpital, 3, B-4000 Sart Tilman, Belgium
| | - Monique Tits
- Laboratoire de Pharmacognosie (C.P.S.N.S.), CHU, Tour 4, Université de Liège, avenue de l'Hôpital 1, B-4000 Sart-Tilman, Belgium
| | - Luc Angenot
- Laboratoire de Pharmacognosie (C.P.S.N.S.), CHU, Tour 4, Université de Liège, avenue de l'Hôpital 1, B-4000 Sart-Tilman, Belgium
| | - Jacques Damas
- Laboratoire de Physiologie humaine, CHU, Tour 3, Université de Liège, Avenue de l'Hôpital, 3, B-4000 Sart Tilman, Belgium
| |
Collapse
|
27
|
Perioli L, Ambrogi V, Bernardini C, Grandolini G, Ricci M, Giovagnoli S, Rossi C. Potential prodrugs of non-steroidal anti-inflammatory agents for targeted drug delivery to the CNS. Eur J Med Chem 2004; 39:715-27. [PMID: 15276305 DOI: 10.1016/j.ejmech.2004.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 04/29/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Recently non-steroidal anti-inflammatory drugs (NSAIDs) have been proposed to prevent or to cure Alzheimer's disease. In this respect, we synthesized new potential prodrugs of several NSAIDs in order to increase their access to the brain. The carboxylic group of NSAIDs was attached to the 1,4-dihydro-1-methylpyridine-3-carboxylate moiety, which acts as a carrier, via an amino alcohol bridge, according to the chemical delivery approach developed by Bodor. The lipophilicity of potential prodrugs was evaluated both via traditional experimental parameters, such as partition coefficient and chromatographic R(m) value, and by predictive computational methods. From experimental parameters, all prodrugs were more lipophilic when compared to their corresponding parent compounds and consequently a better blood brain barrier (BBB) penetration is hypothesised. Prodrug lipophilicity was correlated with a calculated log P value according to Kowwin's method. The correlation between experimental Rm0 and calculated log P, determined by PLS analysis, was good for all compounds with the exception of compound 7i. In addition the BBB permeation profile of our synthesized compounds was predicted using the BBB VolSurf model and seven of the synthesized prodrugs resulted in good candidates for BBB penetration.
Collapse
Affiliation(s)
- Luana Perioli
- Dipartimento di Chimica e Tecnologia del Farmaco, Via del Liceo 1, Università degli Studi di Perugia, 06123 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Moore AH, Olschowka JA, Williams JP, Paige SL, O'Banion MK. Radiation-induced edema is dependent on cyclooxygenase 2 activity in mouse brain. Radiat Res 2004; 161:153-60. [PMID: 14731075 DOI: 10.1667/rr3116] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cerebrovascular dysfunction, characterized by compromise of the blood-brain barrier and formation of cerebral edema, is common during the acute period after brain irradiation and may contribute to delayed pathology (e.g. vascular collapse, white matter necrosis) that leads to functional deficits. Another response of normal brain tissue to radiation is the induction of inflammatory markers, such as cytokine expression and glial activation. In particular, radiation-induced neuroinflammation is associated with an elevation in cyclooxygenase 2 (COX2), one of two isoforms of the obligate enzyme in prostanoid synthesis and the principal target of non-steroid anti-inflammatory drugs. Since prostanoids serve as autocrine and paracrine mediators in numerous physiological and pathological processes, including vasoregulation, we investigated COX2 protein expression and COX2-mediated prostanoid production in radiation-induced cerebral edema in male C57/BL6 mice. We found that radiation induces COX2 protein that is accompanied by specific increases in prostaglandin E(2) and thromboxane A(2) within 4 and 24 h after brain irradiation. Furthermore, we showed that treatment with NS-398, a selective COX2 inhibitor, attenuated prostanoid induction and edema formation. These results suggest that radiation-induced changes in vascular permeability are dependent on COX2 activity, implicating this enzyme and its products as targets for potential therapeutic treatment/protection from the effects of radiation on normal brain tissue.
Collapse
Affiliation(s)
- Amy H Moore
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
29
|
Tipton DA, Flynn JC, Stein SH, Dabbous MK. Cyclooxygenase-2 inhibitors decrease interleukin-1beta-stimulated prostaglandin E2 and IL-6 production by human gingival fibroblasts. J Periodontol 2004; 74:1754-63. [PMID: 14974816 DOI: 10.1902/jop.2003.74.12.1754] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Previous work showed that normal and aggressive periodontitis (AgP) gingival fibroblasts produce the bone-resorbing cytokine IL-6. PGE2 is important in regulating IL-6 production. Non-steroidal anti-inflammatory drugs inhibit PG synthesis via COX-1 and/or COX-2 isoenzymes and may inhibit periodontal destruction. COX-2 is induced after cellular activation (i.e., by inflammatory cytokines such as IL-1beta). Little is known about IL-1beta-stimulated AgP fibroblast IL-6 and PGE2 production and their regulation by COX inhibitors. The objective of this study was to determine the effects of COX-2 inhibitors on amounts of PGE2 and IL-6 made by IL-1beta-stimulated gingival fibroblasts. METHODS Gingival fibroblasts (2.5 x 10(4)) from healthy or severe periodontitis patients were cultured in serum-free medium, with or without IL-1beta (10(-11)M) for 24 hours, with or without the COX-1/2 inhibitor indomethacin or the selective COX-2 inhibitors NS-398, celecoxib, or rofecoxib. PGE2 and IL-6 in culture supernatants were determined by specific enzyme-linked immunosorbent assay (ELISA)s. RESULTS All of the COX inhibitors caused dose-dependent decreases in IL-1beta-stimulated PGE2, to a maximum of > 90% in all cell lines (P < or = 0.0001). The selective COX-2 inhibitors, but not indomethacin, caused partial (generally up to approximately 60%), dose-dependent decreases in IL-1beta-stimulated IL-6 in all cell lines (P < or = 0.003). When exogenous PGE2 was added concurrently with COX-2 inhibitors before addition of IL-1beta, IL-6 production returned to levels at or approaching that produced by cells exposed only to IL-1beta (P < or = 0.04). CONCLUSION The results suggest that COX-2 inhibition may be useful in helping to control fibroblast production of IL-6 in patients with severe periodontitis.
Collapse
Affiliation(s)
- David A Tipton
- Department of Periodontology, The University of Tennessee Health Science Center, College of Dentistry, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
30
|
Li RC, Row BW, Gozal E, Kheirandish L, Fan Q, Brittian KR, Guo SZ, Sachleben LR, Gozal D. Cyclooxygenase 2 and intermittent hypoxia-induced spatial deficits in the rat. Am J Respir Crit Care Med 2003; 168:469-75. [PMID: 12773326 DOI: 10.1164/rccm.200211-1264oc] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intermittent hypoxia (IH) during sleep, a critical feature of sleep apnea, induces significant neurobehavioral deficits in the rat. Cyclooxygenase (COX)-2 is induced during stressful conditions such as cerebral ischemia and could play an important role in IH-induced learning deficits. We therefore examined COX-1 and COX-2 genes and COX-2 protein expression and activity (prostaglandin E2 [PGE2] tissue concentration) in cortical regions of rat brain after exposure to either IH (10% O2 alternating with 21% O2 every 90 seconds) or sustained hypoxia (10% O2). In addition, the effect of selective COX-2 inhibition with NS-398 on IH-induced neurobehavioral deficits was assessed. IH was associated with increased COX-2 protein and gene expression from Day 1 to Day 14 of exposure. No changes were found in COX-1 gene expression after exposure to hypoxia. IH-induced COX-2 upregulation was associated with increased PGE2 tissue levels, neuronal apoptosis, and neurobehavioral deficits. Administration of NS-398 abolished IH-induced apoptosis and PGE2 increases without modifying COX-2 mRNA expression. Furthermore, NS-398 treatment attenuated IH-induced deficits in the acquisition and retention of a spatial task in the water maze. We conclude that IH induces upregulation and activation of COX-2 in rat cortex and that COX-2 may play a role in IH-mediated neurobehavioral deficits.
Collapse
Affiliation(s)
- Richard C Li
- Kosair Children's Hospital Research Institute, 570 South Preston Street, Suite 321, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Blasko I, Grubeck-Loebenstein B. Role of the immune system in the pathogenesis, prevention and treatment of Alzheimer's disease. Drugs Aging 2003; 20:101-13. [PMID: 12534311 DOI: 10.2165/00002512-200320020-00002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The dysregulation in the metabolism of beta-amyloid precursor protein and consequent deposition of amyloid-beta (Abeta) has been envisaged as crucial for the development of neurodegeneration in Alzheimer's disease (AD). Amyloid deposition begins 10-20 years before the appearance of clinical dementia. During this time, the brain is confronted with increasing amounts of toxic Abeta peptides and data from the last decade intriguingly suggest that both the innate and the adaptive immune systems may play an important role in the disorder. Innate immunity in the brain is mainly represented by microglial cells, which phagocytose and degrade Abeta. As the catabolism of Abeta decreases, glial cells become overstimulated and start to produce substances that are toxic to neurons, such as nitric oxide and inflammatory proteins. Pro-inflammatory cytokines can be directly toxic or stimulate Abeta production and increase its cytotoxicity. A therapeutic possibility arises from clinical studies, which demonstrate that nonsteroidal anti-inflammatory drugs (NSAIDs) may delay the onset and slow the progression of AD. Recent data show that in addition to the suppression of inflammatory processes in the brain NSAIDs may decrease the production of Abeta peptides. The role of adaptive immunity lies mainly in the fact that Abeta can be recognised as an antigen. Immunisation with Abeta peptides and peripheral administration of Abeta-specific antibodies both decrease senile plaques and cognitive dysfunction in murine models of AD. A recent trial in humans seems still to be hampered by adverse effects. As adaptive immunity decreases with aging while innate immunity remains intact, immunotherapy for AD will have to be adapted to this situation. Strategies that combine vaccination and inflammatory drug treatment could be considered.
Collapse
Affiliation(s)
- Imrich Blasko
- Department of Psychiatry, University Hospital of Innsbruck, Austria
| | | |
Collapse
|
32
|
Wilson CJ, Finch CE, Cohen HJ. Cytokines and cognition--the case for a head-to-toe inflammatory paradigm. J Am Geriatr Soc 2002; 50:2041-56. [PMID: 12473019 DOI: 10.1046/j.1532-5415.2002.50619.x] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The brain is not only immunologically active of its own accord, but also has complex peripheral immune interactions. Given the central role of cytokines in neuroimmmunoendocrine processes, it is hypothesized that these molecules influence cognition via diverse mechanisms. Peripheral cytokines penetrate the blood-brain barrier directly via active transport mechanisms or indirectly via vagal nerve stimulation. Peripheral administration of certain cytokines as biological response modifiers produces adverse cognitive effects in animals and humans. There is abundant evidence that inflammatory mechanisms within the central nervous system (CNS) contribute to cognitive impairment via cytokine-mediated interactions between neurons and glial cells. Cytokines mediate cellular mechanisms subserving cognition (e.g., cholinergic and dopaminergic pathways) and can modulate neuronal and glial cell function to facilitate neuronal regeneration or neurodegeneration. As such, there is a growing appreciation of the role of cytokine-mediated inflammatory processes in neurodegenerative diseases such as Alzheimer's disease and vascular dementia. Consistent with their involvement as mediators of bidirectional communication between the CNS and the peripheral immune system, cytokines play a key role in the hypothalamic-pituitary-adrenal axis activation seen in stress and depression. In addition, complex cognitive systems such as those that underlie religious beliefs, can modulate the effects of stress on the immune system. Indirect means by which peripheral or central cytokine dysregulation could affect cognition include impaired sleep regulation, micronutrient deficiency induced by appetite suppression, and an array of endocrine interactions. Given the multiple levels at which cytokines are capable of influencing cognition it is plausible that peripheral cytokine dysregulation with advancing age interacts with cognitive aging.
Collapse
Affiliation(s)
- Craig J Wilson
- St. Vincent Institute on Aging, St. Vincent Hospitals and Health Services, Indianapolis, Indiana 46260, USA.
| | | | | |
Collapse
|
33
|
Brambilla R, Neary JT, Cattabeni F, Cottini L, D'Ippolito G, Schiller PC, Abbracchio MP. Induction of COX-2 and reactive gliosis by P2Y receptors in rat cortical astrocytes is dependent on ERK1/2 but independent of calcium signalling. J Neurochem 2002; 83:1285-96. [PMID: 12472883 DOI: 10.1046/j.1471-4159.2002.01239.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study has been aimed at characterizing the ATP/P2 receptor (and transductional pathways) responsible for the morphological changes induced in vitro by alphabetamethyleneATP on rat astrocytes obtained from cerebral cortex, a brain area highly involved in neurodegenerative diseases. Exposure of cells to this purine analogue resulted in elongation of cellular processes, an event reproducing in vitro a major hallmark of in vivo reactive gliosis. alphabetamethyleneATP-induced gliosis was prevented by the P2X/P2Y blocker pyridoxalphosphate-6-azophenyl-2'-4'-disulfonic acid, but not by the selective P2X antagonist 2',3'-O-(2,4,6-trinitrophenyl)-ATP, ruling out a role for ligand-gated P2X receptors. Conversely, the Gi/Go protein inactivator pertussis toxin completely prevented alphabetamethyleneATP-induced effects. No effects were induced by alphabetamethyleneATP on intracellular calcium concentrations. RT-PCR and western blot analysis showed that alphabetamethyleneATP-induced gliosis involves up-regulation of cyclooxygenase-2 (but not lipooxygenase). Also this effect was fully prevented by pyridoxalphosphate-6-azophenyl-2'-4'-disulfonic acid. Experiments with inhibitors of mitogen-activated protein kinases (MAPK) suggest that extracellular signal regulated protein kinases (ERK)1/2 mediate both cyclooxygenase-2 induction and the associated in vitro gliosis. These findings suggest that purine-induced gliosis involves the activation of a calcium-independent G-protein-coupled P2Y receptor linked to ERK1/2 and cyclooxygenase-2. Based on the involvement of cyclooxygenase-2 and inflammation in neurodegenerative diseases, these findings open up new avenues in the identification of novel biological targets for the pharmacological manipulation of neurodegeneration.
Collapse
Affiliation(s)
- Roberta Brambilla
- Department of Pharmacological Sciences, University of Milan School of Pharmacy, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Hoozemans JJM, Veerhuis R, Janssen I, van Elk EJ, Rozemuller AJM, Eikelenboom P. The role of cyclo-oxygenase 1 and 2 activity in prostaglandin E2 secretion by cultured human adult microglia: Implications for Alzheimer’s disease. Brain Res 2002; 951:218-26. [PMID: 12270500 DOI: 10.1016/s0006-8993(02)03164-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Microglial cyclo-oxygenase (COX) expression is considered to be important in the pathogenesis of Alzheimer's disease (AD) and, therefore, constitutes a key target for therapeutic intervention. We investigated the influence of AD plaque associated factors on COX-1 and COX-2 expression and activity in adult human microglial cells in vitro. COX-2 immunoreactivity and mRNA were induced by lipopolysaccharide (LPS), not by AD plaque associated cytokines interleukin (IL)-1alpha, IL-1beta, IL-6, tumor necrosis factor (TNF)-alpha, or amyloid (A)beta(1-42). To assess functional COX activity, the release of PGE(2) into the culture medium was determined. LPS and also arachidonic acid (AA) dose-dependently stimulated PGE(2) release. The effects of AA are independent from induction of COX mRNA expression, or of de novo protein synthesis. No effects of either plaque-associated cytokines or Abeta(1-42) on PGE(2) secretion were seen, even when cells were co-stimulated with AA, to provide enough substrate. COX isotype selective inhibitors were used to discern relative contributions of COX-1 and COX-2 activities to microglial PGE(2) secretion. COX-2 and in part COX-1-selective inhibitors inhibited LPS-induced PGE(2) secretion, whereas the AA-induced PGE(2) secretion was reduced by COX-1-selective inhibitors only. Apparently, adult human microglia in vitro (1) constitutively express COX-1, and (2) do not express COX-2 upon exposure to either Abeta or plaque associated cytokines. In the light of microglial COX activity as a potential therapeutical target in AD, the data presented in this study suggest that classical NSAIDs, rather than selective COX-2 inhibitors, are more potent in reducing microglial prostaglandin secretion.
Collapse
Affiliation(s)
- Jeroen J M Hoozemans
- Department of Pathology, Graduate School Neurosciences Amsterdam, Research Institute Neurosciences, Vrije Universiteit Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Kyrkanides S, Moore AH, Olschowka JA, Daeschner JC, Williams JP, Hansen JT, Kerry O'Banion M. Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:159-69. [PMID: 12225870 DOI: 10.1016/s0169-328x(02)00353-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the contribution of cyclooxygenase-2 (COX-2) to peripheral inflammation is well documented, little is known about its role in brain inflammation. For this purpose we studied COX-2 expression in the mouse brain following ionizing radiation in vivo, as well as in murine glial cell cultures in vitro. The possible role of COX-2 in modulating brain inflammation was examined utilizing NS-398, a COX-2 selective inhibitor. Our results indicate that COX-2 is significantly induced in astrocyte and microglial cultures by radiation injury as well as in brain. Increased levels of prostaglandin E(2) in irradiated brain were reduced by NS-398. Moreover, NS-398 administration significantly attenuated levels of induction for the majority of inflammatory mediators examined, including TNFalpha, IL-1beta, IL-6, iNOS, ICAM-1, and MMP-9. In contrast, the chemokines MIP-2 and MCP-1 showed enhanced levels of induction following NS-398 administration. These results indicate that COX-2 modulates the inflammatory response in brain following radiation injury, and suggest the use of COX-2 selective inhibitors for the management of CNS inflammation.
Collapse
Affiliation(s)
- Stephanos Kyrkanides
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Oncostatin-M (OSM), a pluripotent cytokine of the interleukin-6 (IL-6) family, is produced in a number of inflammatory conditions. Known sources of OSM include monocytes-macrophages and T-cells. Here we present microglia, the resident macrophages of the brain, as a source of OSM in the CNS. In this context, we describe a novel inducer of OSM, prostaglandin E(2) (PGE(2)). PGE(2) induces OSM expression in microglia, monocytes, and macrophages of human and murine origin. PGE(2) induction of OSM is mimicked by cholera toxin, an activator of stimulatory G (G(s))-proteins; by forskolin, an activator of adenylate cyclase; and by the cAMP analog, dibutyryl-cAMP. PGE(2) induction of OSM gene expression is inhibited by the adenylate cyclase inhibitor 2',5'-dideoxyadenosine, by the protein kinase A (PKA) inhibitor H-89, and by a dominant-negative PKA construct. These data indicate that PGE(2) signals via G(s)-protein-coupled receptor(s), adenylate cyclase, and PKA to induce OSM expression. Accordingly, other activators of cAMP signaling such as norepinephrine and PGE(1) induce OSM. The ability of PGE(2) to induce OSM expression was tested under more physiological conditions, using cocultures of astrocytes and monocytes. Treatment of the cocultures with IL-1beta or tumor necrosis factor-alpha (TNF-alpha) results in production of PGE(2) and OSM. PGE(2) produced in the cocultures is responsible for OSM induction, because pretreatment with indomethacin, an inhibitor of prostaglandin synthesis, as well as depletion of PGE(2), abrogate OSM expression induced by IL-1beta or TNF-alpha. These data suggest that in the CNS, OSM may be produced through collaboration of astrocytes and macrophages-microglia.
Collapse
|
37
|
Veerhuis R, Hoozemans JJM, Janssen I, Boshuizen RS, Langeveld JPM, Eikelenboom P. Adult human microglia secrete cytokines when exposed to neurotoxic prion protein peptide: no intermediary role for prostaglandin E2. Brain Res 2002; 925:195-203. [PMID: 11792368 DOI: 10.1016/s0006-8993(01)03273-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prion diseases are characterized by accumulation of protease resistant isoforms of prion protein (termed PrP(SC)), glial activation and neurodegeneration. The time course of PrP deposition, appearance of activated microglia, and of neuronal apoptosis in experimentally-induced prion disease suggests that microglial activation precedes the process of neuronal loss. Activated microglia and inflammatory mediators, including cytokines and prostaglandin E2 (PGE2) co-localize with PrP deposits. In vitro, mouse microglia secrete neurotoxic agents and interleukins (IL)-1 and IL-6, when exposed to synthetic peptides representing the neurotoxic fragment of PrP. In this study, adult human microglia were found to secrete IL-6 and TNF-alpha upon exposure to synthetic fibrillar PrP105-132, the putative transmembrane domain of PrP. Little cytokine release occurred following exposure of microglia to C-terminally amidated, nonfibrillar PrP105-132, suggesting that the degree of fibrillarity of PrP peptides affects their biological properties. Non-steroidal anti-inflammatory drugs (NSAIDs) are thought to exert beneficial effects in neurodegenerative disorders through suppressive effects on microglial activation and on cyclooxygenase (COX) activity. Since microglial COX-2 expression and PGE(2) synthesis are increased in human and experimental prion diseases, we investigated the effects of the NSAIDs indomethacin and BF389, an experimental COX-2 selective inhibitor, on the PrP105-132-induced microglial IL-6 and TNF-alpha synthesis in vitro. No inhibitory effects of the NSAIDs were observed. Furthermore, PrP105-132 did not stimulate microglial PGE(2) synthesis. We conclude that, unlike IL-1beta-induced IL-6 synthesis in astrocytes, the PrP-induced IL-6 synthesis in human adult microglia is not PGE2 mediated.
Collapse
Affiliation(s)
- Robert Veerhuis
- Research Institute Neurosciences Vrije Universiteit, Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Hurley SD, Olschowka JA, O'Banion MK. Cyclooxygenase inhibition as a strategy to ameliorate brain injury. J Neurotrauma 2002; 19:1-15. [PMID: 11852973 DOI: 10.1089/089771502753460196] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cyclooxygenase (COX) is the obligate, rate-limiting enzyme for the conversion of arachidonic acid into prostaglandins. Two COX enzymes have been identified: a constitutively expressed COX-1 and an inducible, highly regulated COX-2. Widely used to treat chronic inflammatory disorders, COX inhibitors have shown promise in attenuating inflammation associated with brain injury. However, the use of COX inhibition in the treatment of brain injury has met with mixed success. This review summarizes our current understanding of COX expression in the central nervous system and the effects of COX inhibitors on brain injury. Three major targets for COX inhibition in the treatment brain injury have been identified. These are the cerebrovasculature, COX-2 expression by vulnerable neurons, and the neuroinflammatory response. Evidence suggests that given the right treatment paradigm, COX inhibition can influence each of these three targets. Drug interactions and general considerations for administrative paradigms are also discussed. Although therapies targeted to specific prostaglandin species, such as PGE2, might prove more ameliorative for brain injury, at the present time non-specific COX inhibitors and COX-2 specific inhibitors are readily available to researchers and clinicians. We believe that COX inhibition will be a useful, ameliorative adjunct in the treatment of most forms of brain injury.
Collapse
Affiliation(s)
- Sean D Hurley
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, New York 14642, USA
| | | | | |
Collapse
|
39
|
Fiebich BL, Schleicher S, Spleiss O, Czygan M, Hüll M. Mechanisms of prostaglandin E2-induced interleukin-6 release in astrocytes: possible involvement of EP4-like receptors, p38 mitogen-activated protein kinase and protein kinase C. J Neurochem 2001; 79:950-8. [PMID: 11739606 DOI: 10.1046/j.1471-4159.2001.00652.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of cyclooxygenase-2 (COX-2) and the synthesis of prostaglandin E2 (PGE2) as well as of cytokines such as interleukin-6 (IL-6) have all been suggested to propagate neuropathology in different brain disorders such as HIV-dementia, prion diseases, stroke and Alzheimer's disease. In this report, we show that PGE2-stimulated IL-6 release in U373 MG human astroglioma cells and primary rat astrocytes. PGE2-induced intracellular cAMP formation was mediated via prostaglandin E receptor 2 (EP2), but inhibition of cAMP formation and protein kinase A or blockade of EP1/EP2 receptors did not affect PGE2-induced IL-6 synthesis. This indicates that the cAMP pathway is not part of PGE2-induced signal transduction cascade leading to IL-6 release. The EP3/EP1-receptor agonist sulprostone failed to induce IL-6 release, suggesting an involvement of EP4-like receptors. PGE2-activated p38 mitogen-activated kinase (p38 MAPK) and protein kinase C (PKC). PGE2-induced IL-6 synthesis was inhibited by specific inhibitors of p38 MAPK (SB202190) and PKC (GF203190X). Although, up to now, EP receptors have only rarely been linked to p38 MAPK or PKC activation, these results suggest that PGE2 induces IL-6 via an EP4-like receptor by the activation of PKC and p38 MAPK via an EP4-like receptor independently of cAMP.
Collapse
Affiliation(s)
- B L Fiebich
- Department of Psychiatry, University of Freiburg Medical School, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
40
|
Araki E, Forster C, Dubinsky JM, Ross ME, Iadecola C. Cyclooxygenase-2 inhibitor ns-398 protects neuronal cultures from lipopolysaccharide-induced neurotoxicity. Stroke 2001; 32:2370-5. [PMID: 11588328 DOI: 10.1161/hs1001.096057] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The prostanoid-synthesizing enzyme cyclooxygenase (COX)-2 is markedly upregulated after cerebral ischemia and may participate in the mechanisms by which postischemic inflammation contributes to the late stages of ischemic brain injury. In the present study, we sought to provide additional evidence for a role of COX-2 in the mechanisms of neurotoxicity associated with inflammation. METHODS Nine-day-old neuronal-glial cultures, prepared from the cerebral cortex of newborn C57BL/6J mice, were exposed to lipopolysaccharide (LPS), a potent proinflammatory agent. The contribution of COX-2 was investigated by using the COX-2 inhibitor NS-398. RESULTS LPS produced a dose-dependent (0.001 to 10 microg/mL) and selective neuronal death that was well developed 72 hours after treatment. The effect was associated with a marked increase in the concentration of the COX reaction product prostaglandin E(2) (PGE(2)) and of the cytokine tumor necrosis factor-alpha (TNF-alpha). NS-398 (10 micromol/L) blocked the PGE(2) increase, attenuated the TNF-alpha increase, and prevented the neuronal death produced by LPS. TNF-alpha-blocking antibodies attenuated LPS-induced neuronal death, but the protection was less pronounced than that afforded by NS-398. LPS failed to elevate PGE(2) or to produce cell death in neuron-enriched cultures, suggesting that glial cells are required for these effects. CONCLUSIONS COX-2, in part through TNF-alpha-related mechanisms, contributes to LPS-induced neuronal death. The data support the hypothesis that COX-2, in addition to its role in glutamate excitotoxicity, participates in the cytotoxicity associated with inflammation.
Collapse
Affiliation(s)
- E Araki
- Center for Clinical and Molecular Neurobiology, Department of Neurology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
41
|
Brambilla R, Schiller P, D?Ippolito G, Neary JT, Burnstock G, Cattabeni F, Abbracchio MP. Identification of a novel P2 receptor associated with cyclooxygenase-2 upregulation and reactive astrogliosis. Drug Dev Res 2001. [DOI: 10.1002/ddr.1182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Brambilla R, Abbracchio MP. Modulation of cyclooxygenase-2 and brain reactive astrogliosis by purinergic P2 receptors. Ann N Y Acad Sci 2001; 939:54-62. [PMID: 11462804 DOI: 10.1111/j.1749-6632.2001.tb03612.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Astroglial cells respond to trauma and ischemia with reactive gliosis, a reaction characterized by increased astrocytic proliferation and hypertrophy. Although beneficial to a certain extent, excessive gliosis may be detrimental, contributing to neuronal death in neurodegenerative diseases. We have tested the hypothesis that ATP may act as a trigger of reactive gliosis in an in vitro model (rat brain primary astrocytes) where reactive astrogliosis can be quantified as elongation of astrocytic processes. Challenge of cells with the ATP analog alpha,beta methyleneATP (alpha,beta meATP) resulted in concentration dependent elongation of astrocytic processes, an effect that was fully counteracted by the non-selective ATP/P2 receptor antagonists suramin and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). Signalling studies revealed that alpha,beta meATP-induced gliosis is mediated by a novel G-protein-coupled receptor (a P2Y receptor) coupled to an early release of arachidonic acid. Challenge of cells with alpha,beta meATP also resulted in an increase of inducible cyclooxygenase-2 (COX-2), the activity of which has been reported to be pathologically increased in a variety of neurodegenerative diseases characterized by inflammation and astrocytic activation. Induction of COX-2 by alpha,beta meATP was causally related to reactive astrogliosis, since the selective COX-2 inhibitor NS-398 prevented both the purine-induced elongation of astrocytic processes and the associated COX-2 increase. Preliminary data on the putative receptor-to-nucleus pathways responsible for purine-induced gliosis suggest that induction of the COX-2 gene may occur through the protein kinase C/mitogen activated protein kinase system, and may involve the formation of activated AP-1 transcription complexes. We speculate that antagonists selective at this novel P2Y receptor subtype may represent a novel class of neuroprotective agents able to slow down neurodegeneration by counteracting the inflammatory events contributing to neuronal cell death.
Collapse
Affiliation(s)
- R Brambilla
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | |
Collapse
|
43
|
Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol Dis 2000; 7:682-9. [PMID: 11114266 DOI: 10.1006/nbdi.2000.0321] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic inflammation and astrocytosis are characteristic histopathological features of Alzheimer's Disease (AD). Astrocytes are one of the predominant cell types in the brain. In AD they are activated and produce inflammatory components such as complement components, acute phase proteins, and cytokines. In this study we analyzed the effect of cytokines on the production of amyloid beta (Abeta) in the astrocytoma cell line U373 and in primary human astrocytes isolated postmortem from healthy aged persons as well as from patients with AD. Astrocytes did not produce Abeta in the absence of stimuli or following stimulation with IL-1beta, TNFalpha, IL-6, and TGF-beta1. Neither did combinations of TNFalpha and IL-1beta, IL-6 or TGF-beta1, or the coadministration of IFNgamma and IL-6 or TGF-beta1 induce Abeta production. In contrast, pronounced production of Abeta1-40 and Abeta1-42 was observed when primary astrocytes or astrocytoma cells were stimulated with combinations of IFNgamma and TNFalpha or IFNgamma and IL-1beta. Induction of Abeta production was accompanied by decreased glycosylation of APP as well as by increased secretion of APPsbeta. Our results suggest that astrocytes may be an important source of Abeta in the presence of certain combinations of inflammatory cytokines. IFNgamma in combination with TNFalpha or IL-1beta seems to trigger Abeta production by supporting beta-secretase cleavage of the immature APP molecule.
Collapse
Affiliation(s)
- I Blasko
- Institute for Biomedical Aging Research of the Austrian Academy of Sciences, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
44
|
Fiebich BL, Mueksch B, Boehringer M, Hüll M. Interleukin-1beta induces cyclooxygenase-2 and prostaglandin E(2) synthesis in human neuroblastoma cells: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB. J Neurochem 2000; 75:2020-8. [PMID: 11032891 DOI: 10.1046/j.1471-4159.2000.0752020.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostaglandins (PGs), which are generated by the enzymatic activity of cyclooxygenase (COX)-1 and -2, modulate several functions in the CNS such as the generation of fever, the sleep/wake cycle, and the perception of pain. Moreover, the neuronal induction of COX-2 has been linked to neuroinflammatory aspects of Alzheimer's disease (AD). The regulation of COX expression in neuronal cells is only partly understood and has been mainly linked to synaptic activity. In pathophysiological situations, however, cytokines may be potent stimulators of neuronal COX expression. Here we show that interleukin (IL)-1beta induces COX-2 mRNA and protein synthesis and the release of PGE(2) in the human neuroblastoma cell line SK-N-SH. We further demonstrate that both a free radical scavenger and an inhibitor of p38 mitogen-activated protein kinase (MAPK) reduce IL-1beta-induced synthesis of COX-2. IL-1beta induces p38 MAPK phosphorylation and activation of the nuclear factor-kappaB independently from each other. Our data suggest that IL-1beta-induced COX-2 expression in SK-N-SH cells is regulated by different mechanisms, presumably involving mRNA transcription and mRNA stability. The ability of p38 MAPK to augment COX-2 expression in human neuroblastoma cells, as shown here, suggests that p38 MAPK may be involved in neuronal expression of COX-2 in AD.
Collapse
Affiliation(s)
- B L Fiebich
- Department of Psychiatry, University of Freiburg Medical School, Freiburg, Germany.
| | | | | | | |
Collapse
|
45
|
Bour AM, Westendorp RG, Laterveer JC, Bollen EL, Remarque EJ. Interaction of indomethacin with cytokine production in whole blood. Potential mechanism for a brain-protective effect. Exp Gerontol 2000; 35:1017-24. [PMID: 11121687 DOI: 10.1016/s0531-5565(00)00128-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both Alzheimer's disease and vascular dementia are featured by inflammatory responses and it is known that non-steroidal anti-inflammatory drugs (NSAIDs) decrease the risk and severity of these diseases. To study the effect of NSAIDs on PGE2 levels and pro- and anti-inflammatory cytokine levels in the whole blood assay, blood samples from 23 elderly persons aged 85 years were stimulated with thrombin or LPS as primary stimulus. Indomethacin was added in concentrations ranging from 0.4 to 16 microg/ml and acetylsalicylic acid was added to in concentrations ranging from 0.5 to 8.0 microg/ml. Indomethacin abrogated thrombin- and LPS-induced PGE2 production at all concentrations tested. In addition, indomethacin reduced the production of thrombin-induced IL-6 and IL-10 (p<0.05) at physiological concentrations. Indomethacin reduced the production of LPS-induced IL-6, IL-1 beta and IL-10 (p<0.05) at the highest indomethacin concentration tested. Similar results were obtained upon incubation with acetylsalicylic acid. It is concluded that indomethacin may reduce the thrombin-induced inflammatory reaction by decreasing IL-6 through inhibition of PGE2 synthesis. This IL-6 reduction may be relevant for the ability of indomethacin to reduce the risk of Alzheimer's disease. However, the decrease in IL-10 production due to indomethacin suggests a more inflammatory state.
Collapse
Affiliation(s)
- A M Bour
- Section of Gerontology and Geriatrics, Department of General Internal Medicine, Leiden University Medical Center, LUMC Building 1 C2-R, P.O. Box 9600, 2300 Leiden RC, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Brambilla R, Ceruti S, Malorni W, Cattabeni F, Abbracchio MP. A novel gliotic P2 receptor mediating cyclooxygenase-2 induction in rat and human astrocytes. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 2000; 81:3-9. [PMID: 10869693 DOI: 10.1016/s0165-1838(00)00152-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In astrocytic cultures maintained in vitro, a brief challenge with the ATP analog alpha,beta methyleneATP (alpha,betameATP) results, 3 days later, in marked elongation of astrocytic processes, an event that resembles the astrocytic hypertrophy known to occur in vivo during reactive astrogliosis. alpha,beta meATP-induced effects were observed in primary astrocytes obtained from both rat striatum and cortex (a brain area highly involved in chronic neurodegenerative pathologies), as well as in human astrocytoma cells (ADF cells). Purine-induced gliosis could be reversed by the non-selective P2X/P2Y receptor antagonist pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS), but not by oxidized ATP (an antagonist of the P2X(7) receptor), in line with previous studies of our laboratory suggesting the involvement of a P2Y receptor subtype. Induction of reactive gliosis was preceded by increased expression of cyclooxygenase-2 (COX-2), an enzyme whose excessive activation has been implicated in both acute and chronic neurodegenerative diseases. The selective COX-2 inhibitor NS-398 prevented both purine-induced astrogliosis and the associated COX-2 induction, suggesting that inhibition of the transcription of the COX-2 gene may also contribute to the anti-inflammatory properties of this agent. Significant blockade of both alpha,beta meATP-mediated reactive gliosis and COX-2 induction was also observed with PPADS. These data suggest that COX-2 mediates P2Y receptor-induced reactive astrogliosis, and that antagonists selective for this receptor subtype may represent a novel class of anti-inflammatory agents of potential interest in acute and chronic neurological disorders characterized by an inflammatory component and reactive gliosis.
Collapse
Affiliation(s)
- R Brambilla
- Institute of Pharmacological Sciences, University of Milan, Via Balzaretti, 9, 20133, Milan, Italy
| | | | | | | | | |
Collapse
|
47
|
Akama KT, Van Eldik LJ. Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. J Biol Chem 2000; 275:7918-24. [PMID: 10713108 DOI: 10.1074/jbc.275.11.7918] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Alzheimer's disease, beta-amyloid (Abeta) plaques are surrounded by activated astrocytes and microglia. A growing body of evidence suggests that these activated glia contribute to neurotoxicity through the induction of inflammatory cytokines such as interleukin (IL)-1beta and tumor necrosis factor-alpha (TNFalpha) and the production of neurotoxic free radicals, mediated in part by the expression of inducible nitric-oxide synthase (iNOS). Here, we address the possibility that Abeta-stimulated iNOS expression might result from an initial induction of IL-1beta and TNFalpha. We find that in Abeta-stimulated astrocyte cultures, IL-1beta and TNFalpha production occur before iNOS production, new protein synthesis is required for increased iNOS mRNA levels, and the IL-1 receptor antagonist IL-1ra can inhibit nitrite accumulation. Likewise, dominant-negative mutants of tumor necrosis factor-alpha receptor-associated factor (TRAF) 6, TRAF2, and NFkappaB-inducing kinase (NIK), intracellular proteins involved in IL-1 and TNFalpha receptor signaling cascades, inhibit Abeta-stimulated iNOS promoter activity. Our data suggest that Abeta stimulation of astrocyte iNOS is mediated in part by IL-1beta and TNFalpha, and involves a TRAF6-, TRAF2-, and NIK-dependent signaling mechanism.
Collapse
Affiliation(s)
- K T Akama
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
48
|
Halliday G, Robinson SR, Shepherd C, Kril J. Alzheimer's disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol Physiol 2000; 27:1-8. [PMID: 10696521 DOI: 10.1046/j.1440-1681.2000.03200.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Of the neurodegenerative diseases that cause dementia, Alzheimer's disease (AD) is the most common. Three major pathologies characterize the disease: senile plaques, neurofibrillary tangles and inflammation. We review the literature on events contributing to the inflammation and the treatments thought to target this pathology. 2. The senile plaques of AD consist primarily of complexes of the beta-amyloid protein. This protein is central to the pathogenesis of the disease. 3. Inflammatory microglia are consistently associated with senile plaques in AD, although the classic inflammatory response (immunoglobulin and leucocyte infiltration) is absent. beta-Amyloid fragments appear to mediate such inflammatory mechanisms by activating the complement pathway in a similar fashion to immunoglobulin. 4. Epidemiological studies have identified a reduced risk of AD in patients with arthritis and in leprosy patients treated with anti-inflammatory drugs. Longitudinal studies have shown that the consumption of anti-inflammatory medications reduces the risk of AD only in younger patients (< 75 years). 5. There is a considerable body of in vitro evidence indicating that the inflammatory response of microglial cells is reduced by non-steroidal anti-inflammatory drugs (NSAID). However, no published data are available concerning the effects of these medications on brain pathology in AD. 6. Cyclo-oxygenase 2 enzyme is constitutively expressed in neurons and is up-regulated in degenerative brain regions in AD. Non-steroidal anti-inflammatory drugs may reduce this expression. 7. Platelets are a source of beta-amyloid and increased platelet activation and increased circulating beta-amyloid have been identified in AD. Anti-platelet medication (including NSAID) would prevent such activation and its potentially harmful consequences. 8. Increased levels of luminal beta-amyloid permeabilizes the blood-brain barrier (BBB) and increases vasoconstriction of arterial vessels, paralleling the alterations observed with infection and inflammation. Cerebral amyloidosis is highly prevalent in AD, compromising the BBB and vasoactivity. Anti-inflammatory medications may alleviate these problems.
Collapse
Affiliation(s)
- G Halliday
- Prince of Wales Medical Research Institute, Randwick, Australia.
| | | | | | | |
Collapse
|
49
|
Questions and Answers. Ann N Y Acad Sci 1999. [DOI: 10.1111/j.1749-6632.1999.tb07993.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Abstract
The physiological function of interleukin-6 (IL-6) within the central nervous system (CNS) is complex; IL-6 exerts neurotrophic and neuroprotective effects, and yet can also function as a mediator of inflammation, demyelination, and astrogliosis, depending on the cellular context. In the normal brain, IL-6 levels remain low. However, elevated expression occurs in injury, infection, stroke, and inflammation. Given the diverse biological functions of IL-6 and its expression in numerous CNS conditions, it is critical to understand its regulation in the brain in order to control its expression and ultimately its effects. Accumulating data demonstrate that the predominant CNS source of IL-6 is the activated astrocyte. Furthermore, a wide range of factors have been demonstrated to be involved in IL-6 regulation by astrocytes. In this review, we summarize information concerning IL-6 regulation in astrocytes, focusing on the role of proinflammatory factors, neurotransmitters, and second messengers.
Collapse
Affiliation(s)
- N J Van Wagoner
- Department of Cell Biology, The University of Alabama at Birmingham, 35294-0005, USA
| | | |
Collapse
|