1
|
From M, Crosby KM. Endocannabinoid and nitric oxide interactions in the brain. Neuroscience 2025; 569:267-276. [PMID: 39909337 DOI: 10.1016/j.neuroscience.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Endogenous cannabinoids (eCBs) and nitric oxide (NO) are classical retrograde transmitters that modulate synaptic function throughout the brain. Although much is known about how these signals individually control synaptic activity and behavior, accumulating evidence suggests that they can also interact in a multitude of ways in the brain and beyond. Here, we present evidence for interactions between endogenous cannabinoids and nitric oxide in the brain. Specifically, we describe the effects of eCBs on NO synthesis and downstream signaling and in turn, we discuss how NO alters eCB levels and signaling pathways. We also provide an overview on how these transmitters work together or in opposition at the same synapses. This information will further our understanding of how two important, ubiquitous signals interact in the brain to ultimately affect neural function and behavior. Because eCBs and NO are involved in many physiological and pathological phenomena, understanding how these transmitters interact in non-human animals could lead to important therapeutic interventions in humans that potentially target both systems.
Collapse
Affiliation(s)
- Mary From
- Biology Department, Mount Allison University, 63B York Street, Sackville, NB E4L1G7, Canada
| | - Karen M Crosby
- Biology Department, Mount Allison University, 63B York Street, Sackville, NB E4L1G7, Canada.
| |
Collapse
|
2
|
Chong PS, Poon CH, Fung ML, Guan L, Steinbusch HWM, Chan YS, Lim WL, Lim LW. Distribution of neuronal nitric oxide synthase immunoreactivity in adult male Sprague-Dawley rat brain. Acta Histochem 2019; 121:151437. [PMID: 31492421 DOI: 10.1016/j.acthis.2019.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/22/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022]
Abstract
Neuronal NOS (nNOS) accounts for most of the NO production in the nervous system that modulates synaptic transmission and neuroplasticity. Although previous studies have selectively described the localisation of nNOS in specific brain regions, a comprehensive distribution profile of nNOS in the brain is lacking. Here we provided a detailed morphological characterization on the rostro-caudal distribution of neurons and fibres exhibiting positive nNOS-immunoreactivity in adult Sprague-Dawley rat brain. Our results demonstrated that neurons and fibres in the brain regions that exhibited high nNOS immunoreactivity include the olfactory-related areas, intermediate endopiriform nucleus, Islands of Calleja, subfornical organ, ventral lateral geniculate nucleus, parafascicular thalamic nucleus, superior colliculus, lateral terminal nucleus, pedunculopontine tegmental nucleus, periaqueductal gray, dorsal raphe nucleus, supragenual nucleus, nucleus of the trapezoid body, and the cerebellum. Moderate nNOS immunoreactivity was detected in the cerebral cortex, caudate putamen, hippocampus, thalamus, hypothalamus, amygdala, and the spinal cord. Finally, low NOS immunoreactivity were found in the corpus callosum, fornix, globus pallidus, anterior commissure, and the dorsal hippocampal commissure. In conclusion, this study provides a comprehensive view of the morphology and localisation of nNOS immunoreactivity in the brain that would contribute to a better understanding of the role played by nNOS in the brain.
Collapse
Affiliation(s)
- Pit Shan Chong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Li Guan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Harry W M Steinbusch
- Department of Neuroscience and European Graduate School of Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Wei Ling Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Department of Biological Sciences, Sunway University, Selangor, Malaysia.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China; Department of Biological Sciences, Sunway University, Selangor, Malaysia.
| |
Collapse
|
3
|
Opioids and matrix metalloproteinases: the influence of morphine on MMP-9 production and cancer progression. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:123-133. [PMID: 30656360 DOI: 10.1007/s00210-019-01613-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022]
Abstract
Opioids are widely administered to alleviate pain, including chronic pain in advanced cancer patients. Among opioids, morphine is one of the most clinically effective drugs for the palliative management of severe pain. In the last few decades, there has been a debate around the possible influence of opioids such as morphine on tumour growth and metastasis. Whilst several in vitro and in vivo studies suggest the possible modulatory effects of morphine on tumour cells, little is known about the impact of this analgesic drug on other mediators such as matrix metalloproteinases (MMPs) that play a key role in the control of cancer cell invasion and metastasis. MMP-9 has been considered as one of the principal mediators in regulation of not only the initial steps of cancer but during the invasion and spreading of cancer cells to distant organs. Herein, current studies regarding the direct and indirect effects of morphine on regulation of MMP-9 production are discussed. In addition, drawing from previous in vivo and in vitro studies on morphine action in regulating MMP-9 production, the potential roles of several underlying factors are summarised, including nuclear factor kappa-B and intracellular molecules such as nitric oxide.
Collapse
|
4
|
Pouchain Ribeiro Neto R, Clarke IJ, Conductier G. Alteration in the relationship between tanycytes and gonadotrophin-releasing hormone neurosecretory terminals following long-term metabolic manipulation in the sheep. J Neuroendocrinol 2017; 29. [PMID: 28722251 DOI: 10.1111/jne.12509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/30/2022]
Abstract
The activity of the hypothalamic-pituitary gonadal axis is influenced by energy reserves, such that an increase or a decrease in adiposity may perturb the secretion and action of gonadotrophin-releasing hormone (GnRH). This is considered to be a result of the signalling of hormones such as leptin, which act upon neuronal systems controlling GnRH secretion. Other work shows plasticity in the relationship between tanycytes and GnRH neurosecretory terminals in the median eminence across the oestrous cycle and we hypothesised that a similar plasticity may occur with altered metabolic status. We studied Lean, Normal and Fat ovariectomised ewes, which displayed differences in gonadotrophin status, and investigated the relationship between tanycytes and GnRH neuroterminals. Under both Lean and Fat conditions, an altered anatomical arrangement between these two elements was observed in the vicinity of the blood vessels of the primary plexus of the hypophysial portal blood system. These data suggest that such plasticity is an important determinant of the rate of secretion of GnRH in animals of differing metabolic status and that this also contributes to the relative hypogonadotrophic condition prevailing with metabolic extremes.
Collapse
Affiliation(s)
- R Pouchain Ribeiro Neto
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - I J Clarke
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - G Conductier
- Department of Physiology, Monash University, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Lipina C, Hundal HS. The endocannabinoid system: 'NO' longer anonymous in the control of nitrergic signalling? J Mol Cell Biol 2017; 9:91-103. [PMID: 28130308 PMCID: PMC5439392 DOI: 10.1093/jmcb/mjx008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
The endocannabinoid system (ECS) is a key cellular signalling system that has been implicated in the regulation of diverse cellular functions. Importantly, growing evidence suggests that the biological actions of the ECS may, in part, be mediated through its ability to regulate the production and/or release of nitric oxide, a ubiquitous bioactive molecule, which functions as a versatile signalling intermediate. Herein, we review and discuss evidence pertaining to ECS-mediated regulation of nitric oxide production, as well as the involvement of reactive nitrogen species in regulating ECS-induced signal transduction by highlighting emerging work supporting nitrergic modulation of ECS function. Importantly, the studies outlined reveal that interactions between the ECS and nitrergic signalling systems can be both stimulatory and inhibitory in nature, depending on cellular context. Moreover, such crosstalk may act to maintain proper cell function, whereas abnormalities in either system can undermine cellular homoeostasis and contribute to various pathologies associated with their dysregulation. Consequently, future studies targeting these signalling systems may provide new insights into the potential role of the ECS–nitric oxide signalling axis in disease development and/or lead to the identification of novel therapeutic targets for the treatment of nitrosative stress-related neurological, cardiovascular, and metabolic disorders.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, DundeeDD1 5EH, UK
| |
Collapse
|
6
|
Coldren KM, Li DP, Kline DD, Hasser EM, Heesch CM. Acute hypoxia activates neuroendocrine, but not presympathetic, neurons in the paraventricular nucleus of the hypothalamus: differential role of nitric oxide. Am J Physiol Regul Integr Comp Physiol 2017; 312:R982-R995. [PMID: 28404583 DOI: 10.1152/ajpregu.00543.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022]
Abstract
Hypoxia results in decreased arterial Po2, arterial chemoreflex activation, and compensatory increases in breathing, sympathetic outflow, and neuroendocrine secretions, including increased secretion of AVP, corticotropin-releasing hormone (CRH), adrenocorticotropin hormone (ACTH), and corticosterone. In addition to a brain stem pathway, including the nucleus tractus solitarius (nTS) and the rostral ventrolateral medulla (RVLM), medullary pathways to the paraventricular nucleus of the hypothalamus (PVN) contribute to chemoreflex responses. Experiments evaluated activation of specific cell phenotypes within the PVN following an acute hypoxic stimulus (AH; 2 h, 10% O2) in conscious rats. Retrograde tracers (from spinal cord and RVLM) labeled presympathetic (PreS) neurons, and immunohistochemistry identified AVP- and CRH-immunoreactive (IR) cells. c-Fos-IR was an index of neuronal activation. Hypoxia activated AVP-IR (~6%) and CRH-IR (~15%) cells, but not PreS cells in the PVN, suggesting that sympathoexcitation during moderate AH is mediated mainly by a pathway that does not include PreS neurons in the PVN. Approximately 14 to 17% of all PVN cell phenotypes examined expressed neuronal nitric oxide synthase (nNOS-IR). AH activated only nNOS-negative AVP-IR neurons. In contrast ~23% of activated CRH-IR neurons in the PVN contained nNOS. In the median eminence, CRH-IR terminals were closely opposed to tanycyte processes and end-feet (vimentin-IR) in the external zone, where vascular NO participates in tanycyte retraction to facilitate neuropeptide secretion into the pituitary portal circulation. Results are consistent with an inhibitory role of NO on AVP and PreS neurons in the PVN and an excitatory role of NO on CRH secretion in the PVN and median eminence.
Collapse
Affiliation(s)
- K Max Coldren
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - De-Pei Li
- Department of Critical Care, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David D Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | - Cheryl M Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; .,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri
| |
Collapse
|
7
|
Abstract
Gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone, and luteinizing hormone orchestrate the reproduction cycle and regulate the sex steroid secretion from the gonads. In mammals, GnRH1 is secreted as a hormone from the hypothalamus, whereas both GnRH1 and GnRH2 are present as neurotransmitters/peptides in various tissues, where the peptides exert many different effects. mRNA coding for GnRH1 and GnRH2 have been described in the human gastrointestinal tract, and GnRH has been found in both submucosal and myenteric neurons. mRNA coding for GnRH and the fully expressed peptide have been found in rat enteric neurons by some researchers but not by others. mRNA coding for GnRH receptors, but not the fully expressed receptor, has been found in one rat study. GnRH influences gastrointestinal motility and secretion. GnRH analogs are clinically used in the treatment of sex hormone-dependent diseases, i.e., endometriosis and malignancies, and as pretreatment for in vitro fertilization. Reduced numbers of enteric neurons and IgM antibodies against GnRH and progonadoliberin-2 (precursor of GnRH2) have been observed after such treatment, with the clinical picture of gastrointestinal dysmotility. Similarly, a rat model of enteric neurodegeneration has been developed after administration of the GnRH analog buserelin. Serum IgM antibodies against GnRH1, progonadoliberin-2, and GnRH receptors have been described in patients with signs and symptoms of gastrointestinal dysmotility and/or autonomic dysfunction, such as irritable bowel syndrome, enteric dysmotility, diabetes mellitus, and primary Sjögren's syndrome. Thus, apart from regulation of reproduction and sex hormone secretion, GnRH also constitutes a part of enteric nervous system (ENS) and its functions during physiological and pathological conditions. This review aimed to describe the role of GnRH in the ENS.
Collapse
Affiliation(s)
- Bodil Ohlsson
- Lund University, Lund, Sweden
- Division of Internal Medicine, Skåne University Hospital, Lund, Sweden
- *Correspondence: Bodil Ohlsson,
| |
Collapse
|
8
|
Prevot V, Bellefontaine N, Baroncini M, Sharif A, Hanchate NK, Parkash J, Campagne C, de Seranno S. Gonadotrophin-releasing hormone nerve terminals, tanycytes and neurohaemal junction remodelling in the adult median eminence: functional consequences for reproduction and dynamic role of vascular endothelial cells. J Neuroendocrinol 2010; 22:639-49. [PMID: 20492366 PMCID: PMC3168864 DOI: 10.1111/j.1365-2826.2010.02033.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although coordinated actions of several areas within the hypothalamus are involved in the secretion of gonadotrophin-releasing hormone (GnRH), the median eminence of the hypothalamus, where the nerve terminals are located, plays a particularly critical role in the release of GnRH. In adult females, prior to the preovulatory surge of GnRH, the retraction of specialised ependymoglial cells lining the floor of the third ventricle named tanycytes allows for the juxtaposition of GnRH nerve terminals with the adjacent pericapillary space of the pituitary portal vasculature, thus forming direct neurohaemal junctions. These morphological changes occur within a few hours and are reversible. Such remodelling may promote physiological conditions to enhance the central release of GnRH and potentiate oestrogen-activated GnRH release. This plasticity involves dynamic cell interactions that bring into play tanycytes, astrocytes, vascular endothelial cells and GnRH neurones themselves. The underlying signalling pathways responsible for these structural changes are comprised of highly diffusible gaseous molecules, such as endothelial nitric oxide, and paracrine communication processes involving receptors of the erbB tyrosine kinase family, transforming growth factor beta 1 and eicosanoids, such as prostaglandin E(2). Some of these molecules, as a result of their ability to diffuse within the median eminence, may also serve as synchronizing cues allowing for the occurrence of functionally meaningful episodes of GnRH secretion by coordinating GnRH release from the GnRH neuroendocrine terminals.
Collapse
Affiliation(s)
- V Prevot
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, Lille, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Stagni E, Bucolo C, Motterlini R, Drago F. Morphine-induced ocular hypotension is modulated by nitric oxide and carbon monoxide: role of mu3 receptors. J Ocul Pharmacol Ther 2010; 26:31-5. [PMID: 20148660 DOI: 10.1089/jop.2009.0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Recent findings generated from our laboratory have demonstrated the involvement of nitric oxide (NO) in morphine-induced reduction of intraocular pressure (IOP). The present study was designed to investigate the possible involvement of carbon monoxide (CO) in morphine-induced reduction of IOP and the role of mu(3) opioid receptors. METHODS New Zealand rabbits were used in this study. They were pretreated with the nitric oxide synthase inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME, 1%, 30 microL), or an inhibitor of heme oxygenase (HO), zinc protoporphyrin-IX (ZnPP-IX; 0.1 mg/kg; i.v.). The same animals were then treated with morphine (100 microg/30 microL) with or without NO or CO donors administration, sodium nitroprusside (SNP) and tricarbonylchloro(glycinato)ruthenium(II) (CORM-3), respectively. A separate set of animals were pretreated with the nonselective opioid receptor antagonist, naloxone (100 microg/30 microL), or the micro(3) opioid receptor inhibitor, L-glutathione (GSH, 1%, 30 microL), in the presence of SNP or CORM-3 followed by morphine administration. IOP measurements were taken at different times after monolateral instillation of morphine. RESULTS Morphine induced a significant decrease in IOP and pretreatment with ZnPP-IX or L-NAME significantly prevented this effect whereas administration of NO or CO donors amplified morphine-induced decrease in IOP. This effect was partially abrogated both by pretreatment with ZnPP-IX or L-NAME, and by pretreatment with naloxone and GSH suggesting that the decrease in IOP relies on exogenous NO and CO liberated from SNP and CORM-3, respectively. CONCLUSIONS We conclude that the endogenous NO/CO system and micro(3) receptors contribute to morphine-induced ocular hypotension and that the reduction of IOP elicited by morphine can be augmented by exogenous NO and CO.
Collapse
Affiliation(s)
- Edoardo Stagni
- Department of Experimental and Clinical Pharmacology, School of Medicine, University of Catania, Catania, Italy
| | | | | | | |
Collapse
|
10
|
Howlett AC, Blume LC, Dalton GD. CB(1) cannabinoid receptors and their associated proteins. Curr Med Chem 2010; 17:1382-93. [PMID: 20166926 PMCID: PMC3179980 DOI: 10.2174/092986710790980023] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 02/18/2010] [Indexed: 12/22/2022]
Abstract
CB1 receptors are G-protein coupled receptors (GPCRs) abundant in neurons, in which they modulate neurotransmission. The CB(1) receptor influence on memory and learning is well recognized, and disease states associated with CB(1) receptors are observed in addiction disorders, motor dysfunction, schizophrenia, and in bipolar, depression, and anxiety disorders. Beyond the brain, CB(1) receptors also function in liver and adipose tissues, vascular as well as cardiac tissue, reproductive tissues and bone. Signal transduction by CB(1) receptors occurs through interaction with Gi/o proteins to inhibit adenylyl cyclase, activate mitogen-activated protein kinases (MAPK), inhibit voltage-gated Ca(2+) channels, activate K(+) currents (K(ir)), and influence Nitric Oxide (NO) signaling. CB(1) receptors are observed in internal organelles as well as plasma membrane. beta-Arrestins, adaptor protein AP-3, and G-protein receptor-associated sorting protein 1 (GASP1) modulate cellular trafficking. Cannabinoid Receptor Interacting Protein1a (CRIP1a) is an accessory protein whose function has not been delineated. Factor Associated with Neutral sphingomyelinase (FAN) regulates ceramide signaling. Such diversity in cellular signaling and modulation by interacting proteins suggests that agonists and allosteric modulators could be developed to specifically regulate unique, cell type-specific responses.
Collapse
Affiliation(s)
- Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
11
|
Interactions between morphine and nitric oxide in various organs. J Anesth 2009; 23:554-68. [DOI: 10.1007/s00540-009-0793-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 05/11/2009] [Indexed: 02/02/2023]
|
12
|
Carney ST, Lloyd ML, MacKinnon SE, Newton DC, Jones JD, Howlett AC, Norford DC. Cannabinoid regulation of nitric oxide synthase I (nNOS) in neuronal cells. J Neuroimmune Pharmacol 2009; 4:338-49. [PMID: 19365734 PMCID: PMC2719736 DOI: 10.1007/s11481-009-9153-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 03/18/2009] [Indexed: 02/02/2023]
Abstract
In our previous studies, CB(1) cannabinoid receptor agonists stimulated production of cyclic GMP and translocation of nitric oxide (NO)-sensitive guanylyl cyclase in neuronal cells (Jones et al., Neuropharmacology 54:23-30, 2008). The purpose of these studies was to elucidate the signal transduction of cannabinoid-mediated neuronal nitric oxide synthase (nNOS) activation in neuronal cells. Cannabinoid agonists CP55940 (2-[(1S,2R,5S)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol), WIN55212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate), and the metabolically stable analog of anandamide, (R)-(+)-methanandamide stimulated NO production in N18TG2 cells over a 20-min period. Rimonabant (N-(piperidin-lyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-H-pyrazole-3-carboxamide), a CB(1) receptor antagonist, partially or completely curtailed cannabinoid-mediated NO production. Inhibition of NOS activity (N ( G )-nitro-L: -arginine) or signaling via Gi/o protein (pertussis toxin) significantly limited NO production by cannabinoid agonists. Ca(2+) mobilization was not detected in N18TG2 cells after cannabinoid treatment using Fluo-4 AM fluorescence. Cannabinoid-mediated NO production was attributed to nNOS activation since endothelial NOS and inducible NOS protein and mRNA were not detected in N18TG2 cells. Bands of 160 and 155 kDa were detected on Western blot analysis of cytosolic and membrane fractions of N18TG2 cells, using a nNOS antibody. Chronic treatment of N18TG2 cells with cannabinoid agonists downregulated nNOS protein and mRNA as detected using Western blot analysis and real-time polymerase chain reaction, respectively. Cannabinoid agonists stimulated NO production via signaling through CB(1) receptors, leading to activation of Gi/o protein and enhanced nNOS activity. The findings of these studies provide information related to cannabinoid-mediated NO signal transduction in neuronal cells, which has important implications in the ongoing elucidation of the endocannabinoid system in the nervous system.
Collapse
Affiliation(s)
- Skyla T. Carney
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707 USA
| | - Michael L. Lloyd
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707 USA
| | - Shanta E. MacKinnon
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707 USA
| | - Doshandra C. Newton
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707 USA
| | - Jenelle D. Jones
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 USA
| | - Allyn C. Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 USA
| | - Derek C. Norford
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707 USA
| |
Collapse
|
13
|
|
14
|
Stefano GB, Cadet P, Kream RM, Zhu W. The presence of endogenous morphine signaling in animals. Neurochem Res 2008; 33:1933-9. [PMID: 18777209 DOI: 10.1007/s11064-008-9674-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/13/2008] [Indexed: 11/28/2022]
Abstract
Recent empirical findings have contributed valuable mechanistic information in support of a regulated de novo biosynthetic pathway for chemically authentic morphine and related morphinan alkaloids within animal cells. Importantly, we and others have established that endogenously expressed morphine represents a key regulatory molecule effecting local circuit autocrine/paracrine cellular signaling via a novel mu(3) opiate receptor coupled to constitutive nitric oxide production and release. The present report provides an integrated review of the biochemical, pharmacological, and molecular demonstration of mu(3) opiate receptors in historical linkage to the elucidation of mechanisms of endogenous morphine production by animal cells and organ systems. Ongoing research in this exciting area provides a rare window of opportunity to firmly establish essential biochemical linkages between dopamine, a morphine precursor, and animal biosynthetic pathways involved in morphine biosynthesis that have been conserved throughout evolution.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York-College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | |
Collapse
|
15
|
Cella M, Leguizamón GF, Sordelli MS, Cervini M, Guadagnoli T, Ribeiro ML, Franchi AM, Farina MG. Dual effect of anandamide on rat placenta nitric oxide synthesis. Placenta 2008; 29:699-707. [PMID: 18561998 DOI: 10.1016/j.placenta.2008.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/05/2008] [Accepted: 05/07/2008] [Indexed: 10/21/2022]
Abstract
Anandamide (AEA) has been reported to have pleiotropic effects on reproduction, but the mechanism by which it exerts these effects is unclear. The aim of this study is to characterize rat placental endocannabinoid system and to analyze the possible functional role of AEA in the regulation of NO levels in rat placenta during pregnancy. We found that cannabinoids receptors (CB1 and CB2), FAAH and TRPV1 were expressed in chorio-allantoic placenta. NOS activity peaked at day 13 and decreased with progression of pregnancy. Both exogenous and endogenous AEA significantly decreased NOS activity. Although pre-incubation with AM251 (CB1 antagonist) or AM630 (CB2 antagonist) had no effect, co-incubation with both antagonists induced NOS activity. Furthermore, pre-incubation with exogenous AEA and both antagonists resulted in the induction of placental NOS activity and this effect was reverted with capsazepine (selective TRPV1 antagonist). Additionally, the enhanced NO synthesis caused by capsaicin was abrogated by co-treatment with capsazepine, illustrating that NOS activity could be modulated by TRPV1. Finally, the inhibition of TRPV1 receptor by capsazepine caused a significant fall in NOS activity. These data support the concept that AEA modulates NO levels by two independent pathways: (1) diminishing the NOS activity via CBs; and (2) stimulating NO synthesis via TRPV1. We hypothesized that AEA have an important implication in the normal function of placental tissues.
Collapse
Affiliation(s)
- M Cella
- Laboratory of Physiopathology of Pregnancy and Labor - CEFYBO, School of Medicine, (National Research Council - University of Buenos Aires), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Stefano GB, Kream RM, Mantione KJ, Sheehan M, Cadet P, Zhu W, Bilfinger TV, Esch T. Endogenous morphine/nitric oxide-coupled regulation of cellular physiology and gene expression: implications for cancer biology. Semin Cancer Biol 2008; 18:199-210. [PMID: 18203618 PMCID: PMC2432462 DOI: 10.1016/j.semcancer.2007.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/05/2007] [Indexed: 12/19/2022]
Abstract
Cancer is a simplistic, yet complicated, process that promotes uncontrolled growth. In this regard, this unconstrained proliferation may represent primitive phenomena whereby cellular regulation is suspended or compromised. Given the new empirical evidence for a morphinergic presence and its profound modulatory actions on several cellular processes it is not an overstatement to hypothesize that morphine may represent a key chemical messenger in the process of modulating proliferation of diverse cells. This has been recently demonstrated by the finding of a novel opiate-alkaloid selective receptor subtype in human multilineage progenitor cells (MLPC). Adding to the significance of morphinergic signaling are the findings of its presence in plant, invertebrate and vertebrate cells, which also have been shown to synthesize this messenger as well. Interestingly, we and others have shown that some cancerous tissues contain morphine. Furthermore, in medullary histolytic reticulosis, which is exemplified by cells having hyperactivity, the mu3 (mu3) opiate select receptor was not present. Thus, it would appear that morphinergic signaling has inserted itself in many processes taking a long time to evolve, including those regulating the proliferation of cells across diverse phyla.
Collapse
Affiliation(s)
- George B Stefano
- Neuroscience Research Institute, State University of New York - SUNY College at Old Westbury, P.O. Box 210, Old Westbury, NY 11568, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The human costs of stroke are very large and growing; it is the third largest cause of death in the United States and survivors are often faced with loss of ability to function independently. There is a large need for therapeutic approaches that act to protect neurons from the injury produced by ischemia and reperfusion. The goal of this review is to introduce and discuss the available data that endogenous cannabinoid signaling is altered during ischemia and that it contributes to the consequences of ischemia-induced injury. Overall, the available data suggest that inhibition of CB1 receptor activation together with increased CB2 receptor activation produces beneficial effects.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin; Milwaukee, WI 53226, USA.
| |
Collapse
|
18
|
Cadet P, Mantione KJ, Zhu W, Kream RM, Sheehan M, Stefano GB. A Functionally Coupled μ3-Like Opiate Receptor/Nitric Oxide Regulatory Pathway in Human Multi-Lineage Progenitor Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:5839-44. [DOI: 10.4049/jimmunol.179.9.5839] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Dortch-Carnes J, Russell K. Morphine-stimulated nitric oxide release in rabbit aqueous humor. Exp Eye Res 2007; 84:185-90. [PMID: 17094965 PMCID: PMC1766947 DOI: 10.1016/j.exer.2006.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 09/18/2006] [Accepted: 09/22/2006] [Indexed: 11/20/2022]
Abstract
Recent studies in our laboratory have demonstrated a role of nitric oxide (NO) in morphine-induced reduction of intraocular pressure (IOP) and pupil diameter (PD) in the New Zealand white (NZW) rabbit. The present study was designed to determine the effect of morphine on NO release in the aqueous humor of NZW rabbits, as this effect could be associated with morphine-mediated changes in aqueous humor dynamics and iris function. Dark-adapted NZW rabbits were treated as follows: (1) treatment with morphine (10, 33 or 100 microg, 5 min); (2) treatment with morphine or endomorphin-1 for 5, 15 or 30 min; (3) pretreatment with naloxone (100 microg), L-NAME (125 microg) or reduced glutathione (GSH, 100 microg) for 30 min, followed by treatment with morphine (100 microg, 5 min). After the various treatment regimens, aqueous humor samples were obtained by paracenthesis and immediately assayed for nitrates and nitrites (an index of NO production), using a microplate assay kit. Morphine caused a dose-dependent increase in the levels of NO in aqueous humor after 5 min of treatment with each dose. Rabbits treated with endomorphin-1 (100 microg) had no significant change in NO levels in aqueous at any point in the course of time. Aqueous samples from rabbits treated with morphine (100 microg) for 5 min increased from 29.84+/-2.39 microM (control) to 183.94+/-23.48 microM (treated). The increase in NO levels by morphine (100 microg, 5 min) was completely inhibited in the presence of naloxone (100 microg), L-NAME (125 microg) or GSH (100 microg). These results indicate that morphine-induced increase in NO production in aqueous humor is a transient response that is linked to the activation of mu opioid receptors. Data obtained suggest that morphine-stimulated changes in ocular hydrodynamics and iris function are due, in part, to increased release of NO in aqueous humor. In addition, the sensitivity of the response to l-NAME and GSH suggests that morphine-induced release of nitric oxide into aqueous humor is mediated by activation of mu-3 opioid receptors found in the anterior segment of the eye.
Collapse
Affiliation(s)
- Juanita Dortch-Carnes
- Department of pharmacology/Toxicology Morehouse School of Medicine, 720 Westview Drive, SW Atlanta, GA 30310-1495, USA.
| | | |
Collapse
|
20
|
Koch M, Dehghani F, Habazettl I, Schomerus C, Korf HW. Cannabinoids attenuate norepinephrine-induced melatonin biosynthesis in the rat pineal gland by reducing arylalkylamine N-acetyltransferase activity without involvement of cannabinoid receptors. J Neurochem 2006; 98:267-78. [PMID: 16805813 DOI: 10.1111/j.1471-4159.2006.03873.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cannabinoids modulate neuronal and neuroendocrine circuits by binding to cannabinoid receptors acting upon cAMP/Ca(2+)-mediated intracellular signaling cascades. The rat pineal represents an established model to investigate intracellular signaling processes because a well defined input, the neurotransmitter norepinephrine, is transformed via cAMP/Ca(2+)-dependent mechanisms into an easily detectable output signal, the biosynthesis of melatonin. Here we investigated the impact of cannabinoids on norepinephrine-regulated melatonin biosynthesis in the rat pineal. We demonstrated that treatment of cultured rat pineals with 9-carboxy-11-nor-delta-9-tetrahydrocannabinol (THC), cannabidiol or cannabinol significantly reduced norepinephrine-induced arylalkylamine N-acetyltransferase (AANAT) activity and melatonin biosynthesis. These effects were not mimicked by the cannabinoid receptor agonist WIN55,212-2 and were not blocked by cannabinoid 1 and 2 receptor antagonists. The cannabinoids used did not affect norepinephrine-induced increases in cAMP/Ca(2+) levels. Notably, cannabinoids were found to directly inhibit AANAT activity in lysates of the pineal gland. This effect was specific in so far as cannabinoids did not influence the activity of hydroxyindole-O-methyltransferase (HIOMT), the last enzyme in melatonin biosynthesis. Taken together, our data strongly suggest that cannabinoids inhibit AANAT activity and attenuate melatonin biosynthesis through intracellular actions without involvement of classical cannabinoid receptor-dependent signaling cascades.
Collapse
Affiliation(s)
- Marco Koch
- Dr Senckenbergische Anatomie, Anatomisches Institut II, Fachbereich Medizin der Johann Wolfgang Goethe-Universität, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
21
|
Howlett AC, Mukhopadhyay S, Norford DC. Endocannabinoids and reactive nitrogen and oxygen species in neuropathologies. J Neuroimmune Pharmacol 2006; 1:305-16. [PMID: 18040807 DOI: 10.1007/s11481-006-9022-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 05/16/2006] [Indexed: 01/25/2023]
Abstract
Neuropathologies that affect our population include ischemic stroke and neurodegenerative diseases of immune origin, including multiple sclerosis. The endocannabinoid system in the brain, including agonists anandamide (arachidonyl ethanolamide) and 2-arachidonoylglycerol, and the CB1 and CB2 cannabinoid receptors, has been implicated in the pathophysiology of these disease states, and can be a target for therapeutic interventions. This review concentrates on cellular signal transduction pathways believed to be involved in the cellular damage.
Collapse
Affiliation(s)
- Allyn C Howlett
- Neuroscience of Drug Abuse Research Program, 208 Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA.
| | | | | |
Collapse
|
22
|
Abstract
The cannabinoid receptor family currently includes two types: CB1, characterized in neuronal cells and brain, and CB2, characterized in immune cells and tissues. CB1 and CB2 receptors are members of the superfamily of seven-transmembrane-spanning (7-TM) receptors, having a protein structure defined by an array of seven membrane-spanning helices with intervening intracellular loops and a C-terminal domain that can associate with G proteins. Cannabinoid receptors are associated with G proteins of the Gi/o family (Gi1, 2 and 3, and Go1 and 2). Signal transduction via Gi inhibits adenylyl cyclase in most tissues and cells, although signaling via Gs stimulates adenylyl cyclase in some experimental models. Evidence exists for cannabinoid receptor-mediated Ca2+ fluxes and stimulation of phospholipases A and C. Stimulation of CB1 and CB2 cannabinoid receptors leads to phosphorylation and activation of p42/p44 mitogen-activated protein kinase (MAPK), p38 MAPK and Jun N-terminal kinase (JNK) as signaling pathways to regulate nuclear transcription factors. The CB1 receptor regulates K+ and Ca2+ ion channels, probably via Go. Ion channel regulation serves as an important component of neurotransmission modulation by endogenous cannabinoid compounds released in response to neuronal depolarization. Cannabinoid receptor signaling via G proteins results from interactions with the second, third and fourth intracellular loops of the receptor. Desensitization of signal transduction pathways that couple through the G proteins probably entails phosphorylation of critical amino acid residues on these intracellular surfaces.
Collapse
Affiliation(s)
- A C Howlett
- Neuroscience/Drug Abuse Research Program, 208 JLC-BBRI, North Carolina Central University, 700 George Street, Durham, NC 27707, USA.
| |
Collapse
|
23
|
Santamarta MT, Ulibarri I, Pineda J. Inhibition of neuronal nitric oxide synthase attenuates the development of morphine tolerance in rats. Synapse 2005; 57:38-46. [PMID: 15858834 DOI: 10.1002/syn.20151] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our previous results have shown the involvement of nitric oxide in acute opioid desensitization of mu-opioid receptors in vitro. In the present study, we investigated the effect of repeated administration of 7-nitroindazole (7-NI; 30 mg/kg/12 h, i.p., 3 days), an inhibitor of neuronal nitric oxide synthase in vivo, on mu-opioid receptor tolerance induced by subchronic treatment with morphine in rats. The inhibitory effect of the opioid agonist Met5-enkephalin (ME) on the cell firing rate was evaluated by single-unit extracellular recordings of noradrenergic neurons in the locus coeruleus from brain slices, and the antinociceptive effect of morphine was measured by tail-flick techniques. In morphine-treated animals, concentration-effect curves for ME in the locus coeruleus were shifted by 5-fold to the right as compared to those in sham-treated animals, which confirmed the induction of mu-opioid receptor tolerance. However, tolerance to ME in morphine-treated rats was fully prevented by co-administration of 7-NI when compared to the vehicle-morphine group. Likewise, the antinociceptive effect of morphine was reduced in morphine-treated animals as compared to the sham group, whereas the antinociceptive tolerance was partially prevented by co-administration of 7-NI in morphine-treated rats (when compared to the vehicle-morphine group). Finally, 7-NI administration in sham-treated rats failed to change the effect induced by ME on the locus coeruleus or by morphine in the tail-flick test as compared to vehicle groups. These results demonstrate that subchronic administration of a neuronal inhibitor of nitric oxide synthase attenuates the development of morphine tolerance to the cellular and analgesic effects of mu-opioid receptor agonists.
Collapse
Affiliation(s)
- María Teresa Santamarta
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, E-48940 Leioa, Bizkaia, Spain
| | | | | |
Collapse
|
24
|
Salamon E, Esch T, Stefano GB. Role of amygdala in mediating sexual and emotional behavior via coupled nitric oxide release. Acta Pharmacol Sin 2005; 26:389-95. [PMID: 15780186 DOI: 10.1111/j.1745-7254.2005.00083.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Although the anatomical configuration of the amygdala has been studied a great deal, very little research has been conducted on understanding the precise mechanism by which this emotional regulatory center exerts its control on emotional and sexual behavior. By applying research methodology from the Neuroscience Research Institute, State University of New York, College at Old Westbury, we intended to demonstrate that much of the mediated effects of the amygdala, specifically the regulation of the male and female sexual response cycles, as well as related emotional considerations, exert their effects coupled to nitric oxide (NO) release. Furthermore, by using current anatomical and histological data, we demonstrated that amygdalar tissue rich in endocannabinoid and opiate, as well as catecholamine, receptors could exert its neurochemical effects within an NO-mediated paradigm. This paradigm, together with the existence of estrogen and androgen signaling within the amygdala, further lends credence to our theoretical framework. We begin with a brief anatomical and functional review of amygdalar function, and then proceed to demonstrate its relationship with NO.
Collapse
Affiliation(s)
- Elliott Salamon
- Neuroscience Research Institute, State University of New York, College at Old Westbury, Old Westbury, New York 11568, USA.
| | | | | |
Collapse
|
25
|
Vannacci A, Giannini L, Passani MB, Di Felice A, Pierpaoli S, Zagli G, Fantappiè O, Mazzanti R, Masini E, Mannaioni PF. The endocannabinoid 2-arachidonylglycerol decreases the immunological activation of Guinea pig mast cells: involvement of nitric oxide and eicosanoids. J Pharmacol Exp Ther 2004; 311:256-64. [PMID: 15187170 DOI: 10.1124/jpet.104.068635] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The antigen-induced release of histamine from sensitized guinea pig mast cells was dose-dependently reduced by endogenous (2-arachidonylglycerol; 2AG) and exogenous [(1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol (CP55,940)] cannabinoids. The inhibitory action afforded by 2AG and CP55,940 was reversed by N-[(1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl]5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide (SR144528), a selective cannabinoid 2 (CB(2)) receptor antagonist, and left unchanged by the selective CB(1) antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251). The inhibitory action of 2AG and CP55,940 was reduced by the unselective nitric-oxide synthase (NOS) inhibitor N-monomethyl-L-arginine methylester (l-NAME) and reinstated by L-arginine, the physiological substrate. The inhibitory action of 2AG and CP55,940 was also reduced by the unselective cyclooxygenase (COX) inhibitor indomethacin and the selective COX-2 blocker rofecoxib. Both 2AG and CP55,940 significantly increased the production of nitrite from mast cells, which was abrogated by L-NAME and N-(3-(aminomethyl)benzyl)acetamidine (1400W), a selective inducible NOS (iNOS) inhibitor. Nitrite production consistently paralleled a CP55,940-induced increase in the expression of iNOS protein in mast cells. Both 2AG and CP55,940 increased the generation of prostaglandin E(2) from mast cells, which was abrogated by indomethacin and rofecoxib and parallel to the CP55,940-induced expression of COX-2 protein. Mast cell challenge with antigen was accompanied by a net increase in intracellular calcium levels. Both cannabinoid receptor ligands decreased the intracellular calcium levels, which were reversed by SR144528 and l-NAME. In unstimulated mast cells, both ligands increased cGMP levels. The increase was abrogated by SR144528, l-NAME, indomethacin, and rofecoxib. Our results suggest that 2AG and CP55,940 decreased mast cell activation in a manner that is susceptible to a CB(2) receptor antagonist and to inhibition of nitric oxide and prostanoid pathways.
Collapse
Affiliation(s)
- Alfredo Vannacci
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pier-accini, n 6, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Klein TW, Newton C, Larsen K, Lu L, Perkins I, Nong L, Friedman H. The cannabinoid system and immune modulation. J Leukoc Biol 2003; 74:486-96. [PMID: 12960289 DOI: 10.1189/jlb.0303101] [Citation(s) in RCA: 376] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studies on the effects of marijuana smoking have evolved into the discovery and description of the endocannabinoid system. To date, this system is composed of two receptors, CB1 and CB2, and endogenous ligands including anandamide, 2-arachidonoyl glycerol, and others. CB1 receptors and ligands are found in the brain as well as immune and other peripheral tissues. Conversely, CB2 receptors and ligands are found primarily in the periphery, especially in immune cells. Cannabinoid receptors are G protein-coupled receptors, and they have been linked to signaling pathways and gene activities in common with this receptor family. In addition, cannabinoids have been shown to modulate a variety of immune cell functions in humans and animals and more recently, have been shown to modulate T helper cell development, chemotaxis, and tumor development. Many of these drug effects occur through cannabinoid receptor signaling mechanisms and the modulation of cytokines and other gene products. It appears the immunocannabinoid system is involved in regulating the brain-immune axis and might be exploited in future therapies for chronic diseases and immune deficiency.
Collapse
Affiliation(s)
- Thomas W Klein
- University of South Florida, College of Medicine, Department of Medical Microbiology and Immunology, Tampa 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Cadet P, Mantione KJ, Stefano GB. Molecular identification and functional expression of mu 3, a novel alternatively spliced variant of the human mu opiate receptor gene. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:5118-23. [PMID: 12734358 DOI: 10.4049/jimmunol.170.10.5118] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies from our laboratory have revealed a novel mu opiate receptor, mu 3, which is expressed in both vascular tissues and leukocytes. The mu 3 receptor is selective for opiate alkaloids and is insensitive to opioid peptides. We now identify the mu 3 receptor at the molecular level using a 441-bp conserved region of the mu 1 receptor. Sequence analysis of the isolated cDNA suggests that it is a novel, alternatively spliced variant of the mu opiate receptor gene. To determine whether protein expressed from this cDNA exhibits the biochemical characteristics expected of the mu 3 receptor, the cDNA clone was expressed in a heterologous system. At the functional level, COS-1 cells transfected with the mu 3 receptor cDNA exhibited dose-dependent release of NO following treatment with morphine, but not opioid peptides (i.e., Met-enkephalin). Naloxone was able to block the effect of morphine on COS-1 transfected cells. Nontransfected COS-1 cells did not produce NO in the presence of morphine or the opioid peptides at similar concentrations. Receptor binding analysis with [(3)H]dihydromorphine further supports the opiate alkaloid selectivity and opioid peptide insensitivity of this receptor. These data suggest that this new mu opiate receptor cDNA encodes the mu 3 opiate receptor, since it exhibits biochemical characteristics known to be unique to this receptor (opiate alkaloid selective and opioid peptide insensitive). Furthermore, using Northern blot, RT-PCR, and sequence analysis, we have demonstrated the expression of this new mu variant in human vascular tissue, mononuclear cells, polymorphonuclear cells, and human neuroblastoma cells.
Collapse
MESH Headings
- Alternative Splicing/physiology
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive/genetics
- Blotting, Northern
- COS Cells
- Chlorocebus aethiops
- Cloning, Molecular
- Gene Expression/physiology
- Gene Library
- Humans
- Molecular Sequence Data
- Narcotic Antagonists/metabolism
- Narcotic Antagonists/pharmacology
- Organ Specificity/genetics
- Protein Binding/drug effects
- Protein Binding/genetics
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Transfection
Collapse
Affiliation(s)
- Patrick Cadet
- Neuroscience Research Institute, State University of New York, Old Westbury, NY 11568, USA
| | | | | |
Collapse
|
28
|
Fowler CJ. Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, 'entourage' compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 41:26-43. [PMID: 12505646 DOI: 10.1016/s0165-0173(02)00218-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is good evidence that plant-derived and synthetic cannabinoids possess neuroprotective properties. These compounds, as a result of effects upon CB(1) cannabinoid receptors, reduce the release of glutamate, and in addition reduce the influx of calcium following NMDA receptor activation. The major obstacle to the therapeutic utilization of such compounds are their psychotropic effects, which are also brought about by actions on CB(1) receptors. However, synthesis of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, which also have neuroprotective properties, are increased under conditions of severe inflammation and ischemia, raising the possibility that compounds that prevent their metabolism may be of therapeutic utility without having the drawback of producing psychotropic effects. In this review, the evidence indicating neuroprotective actions of plant-derived, synthetic and endogenous cannabinoids is presented. In addition, the pharmacological properties of endogenous anandamide-related compounds that are not active upon cannabinoid receptors, but which are also produced during conditions of severe inflammation and ischemia and may contribute to a neuroprotective action are reviewed.
Collapse
Affiliation(s)
- Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
29
|
Mukhopadhyay S, Shim JY, Assi AA, Norford D, Howlett AC. CB(1) cannabinoid receptor-G protein association: a possible mechanism for differential signaling. Chem Phys Lipids 2002; 121:91-109. [PMID: 12505694 DOI: 10.1016/s0009-3084(02)00153-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Effects of cannabinoid compounds on neurons are predominantly mediated by the CB(1) cannabinoid receptor. Onset of signaling cascades in response to cannabimimetic drugs is triggered by the interaction of the cannabinoid receptor with G(i/o) proteins. Much work has been done to delineate the cannabinoid agonist-induced downstream signaling events; however, it remains to define the molecular basis of cannabinoid receptor-G protein interactions that stimulate these signaling pathways. In this review, we discuss several signal transduction pathways, focusing on studies that demonstrate the efficacy of CB(1) receptor agonists through G protein mediated pathways.
Collapse
Affiliation(s)
- Somnath Mukhopadhyay
- Neuroscience and Drug Abuse Research Program, J L Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | | | | | | | | |
Collapse
|
30
|
Homayoun H, Khavandgar S, Namiranian K, Dehpour AR. The effect of cyclosporin A on morphine tolerance and dependence: involvement of L-arginine/nitric oxide pathway. Eur J Pharmacol 2002; 452:67-75. [PMID: 12323386 DOI: 10.1016/s0014-2999(02)02243-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cyclosporin A is known to decrease nitric oxide (NO) production in nervous tissues. The effects of systemic cyclosporine A on the induction and expression of morphine tolerance and dependence, acute morphine-induced antinociception, and the probable involvement of the L-arginine/nitric oxide pathway in these effects were assessed in mice. Cyclosporin A (20 mg/kg), N(G)-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg) and a combination of the two at lower and per se non-effective doses (5 and 3 mg/kg, respectively) showed a similar pattern of action, inhibiting the induction of tolerance to morphine-induced antinociception and increasing the antinociception threshold in the expression phase of morphine tolerance. These agents also inhibited the expression of morphine dependence as assessed by naloxone-precipitated withdrawal signs, while having no effect on the induction of morphine dependence. L-Arginine, at a per se non-effective dose (60 mg/kg), inhibited the effects of Cyclosporin A. Moreover, acute administration of Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) enhanced the antinociception induced by acute administration of morphine (5 mg/kg), while chronic pretreatment with Cyclosporin A (20 mg/kg) or L-NAME (10 mg/kg) for 2 days (twice daily) did not affect morphine-induced antinociception. The inducible nitric oxide synthase inhibitor, aminoguanidine (100 mg/kg), did not alter morphine antinociception, tolerance or dependence. In conclusion, decreasing NO production through constitutive nitric oxide synthase may be a mechanism through which cyclosporin A differentially modulates morphine tolerance, dependence and antinociception.
Collapse
Affiliation(s)
- Houman Homayoun
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, PO Box 13145-784, Tehran, Iran
| | | | | | | |
Collapse
|
31
|
Abstract
Cannabinoid receptors were named because they have affinity for the agonist delta9-tetrahydrocannabinol (delta9-THC), a ligand found in organic extracts from Cannabis sativa. The two types of cannabinoid receptors, CB1 and CB2. are G protein coupled receptors that are coupled through the Gi/o family of proteins to signal transduction mechanisms that include inhibition of adenylyl cyclase, activation of mitogen-activated protein kinase, regulation of calcium and potassium channels (CB1 only), and other signal transduction pathways. A class of the eicosanoid ligands are relevant to lipid-mediated cellular signaling because they serve as endogenous agonists for cannabinoid receptors, and are thus referred to as endocannabinoids. Those compounds identified to date include the eicosanoids arachidonoylethanolamide (anandamide), 2-arachidonoylglycerol and 2-arachidonylglyceryl ether (noladin ether). Several excellent reviews on endocannabinoids and their synthesis, metabolism and function have appeared in recent years. This paper will describe the biological activities, pharmacology, and signal transduction mechanisms for the cannabinoid receptors, with particular emphasis on the responses to the eicosanoid ligands.
Collapse
Affiliation(s)
- Allyn C Howlett
- Julius L Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham 27707, USA.
| |
Collapse
|
32
|
Homayoun H, Khavandgar S, Dehpour AR. The involvement of endogenous opioids and nitricoxidergic pathway in the anticonvulsant effects of foot-shock stress in mice. Epilepsy Res 2002; 49:131-42. [PMID: 12049801 DOI: 10.1016/s0920-1211(02)00018-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The involvement of endogenous opioids and nitric oxide (NO) in the anticonvulsant effects of stress against pentylenetetrazole (PTZ)- or electroconvulsive shock-induced seizures was assessed in mice. The prolonged and intermittent foot-shock stress, which induced opioid-mediated analgesia, had significant protective effects against both seizure types which was reversible by naloxone (0.3, 1 or 2 mg/kg), while brief and continuous foot-shock did not alter the seizure susceptibility. Pre-treatment with non-specific nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 1, 2, 5, 10 or 30 mg/kg), but not with specific inducible NOS (iNOS) inhibitor, aminoguanidine (50 or 100 mg/kg), blocked the stress-induced anticonvulsant effects. The lower doses of naloxone (0.3 mg/kg) and L-NAME (2 mg/kg) showed additive effects in blocking the stress-induced anticonvulsant properties. L-arginine at a per se non-effective dose of 20 mg/kg potentiated the stress-induced anticonvulsant properties, an effect which was inhibited by L-NAME but not by aminoguanidine. Furthermore, a low dose of morphine (0.5 mg/kg) showed potentiation with stress in increasing PTZ seizure threshold. This potentiation was reversed by either naloxone or L-NAME at low doses but not by aminoguanidine. Taken together, these results show that NO synthesis, through constitutive but not iNOS, is involved in opioid-dependent stress-induced anticonvulsant effects against electrical and PTZ-induced convulsions.
Collapse
Affiliation(s)
- Houman Homayoun
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran
| | | | | |
Collapse
|
33
|
Reggio PH. Endocannabinoid structure-activity relationships for interaction at the cannabinoid receptors. Prostaglandins Leukot Essent Fatty Acids 2002; 66:143-60. [PMID: 12052032 DOI: 10.1054/plef.2001.0343] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Anandamide (N -arachidonoylethanolamine) was the first ligand to be identified as an endogenous ligand of the G-protein coupled cannabinoid CB1 receptor. Subsequently, two other fatty acid ethanolamides, N -homo- gamma -linolenylethanolamine and N -7,10,13,16-docosatetraenylethanolamine were identified as endogenous cannabinoid ligands. A fatty acid ester, 2-arachidonoylglycerol (2-AG), and a fatty acid ether, 2-arachidonyl glyceryl ether also have been isolated and shown to be endogenous cannabinoid ligands. Recent studies have postulated the existence of carrier-mediated anandamide transport that is essential for termination of the biological effects of anandamide. A membrane bound amidohydrolase (fatty acid amide hydrolase, FAAH), located intracellularly, hydrolyzes and inactivates anandamide and other endogenous cannabinoids such as 2-AG. 2-AG has also been proposed to be an endogenous CB2 ligand. Structure-activity relationships (SARs) for endocannabinoid interaction with the CB receptors are currently emerging in the literature. This review considers cannabinoid receptor SAR developed to date for the endocannabinoids with emphasis upon the conformational implications for endocannabinoid recognition at the cannabinoid receptors.
Collapse
Affiliation(s)
- Patricia H Reggio
- Department of Chemistry, Kennesaw State University, 1000 Chastain Road, Kennesaw, GA 30144, USA.
| |
Collapse
|
34
|
Sugiura T, Kobayashi Y, Oka S, Waku K. Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible physiological significance. Prostaglandins Leukot Essent Fatty Acids 2002; 66:173-92. [PMID: 12052034 DOI: 10.1054/plef.2001.0356] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N -arachidonoylethanolamine (anandamide) was the first endogenous cannabinoid receptor ligand to be discovered. Dual synthetic pathways for anandamide have been proposed. One is the formation from free arachidonic acid and ethanolamine, and the other is the formation from N -arachidonoyl phosphatidylethanolamine (PE) through the action of a phosphodiesterase. These pathways, however, do not appear to be able to generate a large amount of anandamide, at least under physiological conditions. The generation of anandamide from free arachidonic acid and ethanolamine is catalyzed by a degrading enzyme anandamide amidohydrolase/fatty acid amide hydrolase operating in reverse and requires large amounts of substrates. As for the second pathway, arachidonic acids esterified at the 1-position of glycerophospholipids, which are mostly esterified at the 2-position, are utilized for the formation of N -arachidonoyl PE, a stored precursor form of anandamide. In fact, the actual levels of anandamide in various tissues are generally low except in a few cases. 2-Arachidonoylglycerol (2-AG) was the second endogenous cannabinoid receptor ligand to be discovered. 2-AG is a degradation product of arachidonic acid-containing glycerophospholipids such as inositol phospholipids. Several investigators have demonstrated that 2-AG is produced in a variety of tissues and cells upon stimulation. 2-AG acts as a full agonist at the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating and indicates that 2-AG is the most efficacious endogenous natural ligand for the cannabinoid receptors. In this review, we summarize the tissue levels, biosynthesis, degradation and possible physiological significance of two endogenous cannabimimetic molecules, anandamide and 2-AG.
Collapse
Affiliation(s)
- T Sugiura
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Tsukui-gun, Kanagawa 199-0195, Japan.
| | | | | | | |
Collapse
|
35
|
Knauf C, Chuoï MM, Jirou-Najou JL, Mortreux G, Beauvillain JC, Croix D. Involvement of NPY Y2 receptor subtype in the control of the spontaneous NO/GnRH release at the rat median eminence. Neuroreport 2001; 12:3365-9. [PMID: 11711887 DOI: 10.1097/00001756-200110290-00043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of nitric oxide (NO) from vascular endothelium in the control of GnRH release at the median eminence (ME) level is well established. Interactions between NPY receptor/endothelium/nitric oxide are clearly demonstrated. While several studies implicate NPY Y1 receptor in the control of GnRH/LH at the time of the preovulatory LH surge, our results also demonstrate the importance of NPY Y2 receptor in the control of GnRH release via endothelial NO. We conclude that NPY may be one of the elements implicated in the generation of the spontaneous NO/GnRH via Y2 receptor located on endothelium.
Collapse
Affiliation(s)
- C Knauf
- INSERM U422, IFR22, Unité de Neuroendocrinologie et Physiopathologie Neuronale, 1 Place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Kampa M, Hatzoglou A, Notas G, Niniraki M, Kouroumalis E, Castanas E. Opioids are non-competitive inhibitors of nitric oxide synthase in T47D human breast cancer cells. Cell Death Differ 2001; 8:943-52. [PMID: 11526449 DOI: 10.1038/sj.cdd.4400893] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2000] [Revised: 04/09/2001] [Accepted: 04/18/2001] [Indexed: 11/08/2022] Open
Abstract
Opioids and nitric oxide (NO) interact functionally in different systems. NO-generating agents decrease the activity of opioid agonists, prevent opioid tolerance, and are used in opioid withdrawal syndromes. There exist, however, few reports indicating a direct interaction of the two systems. T47D human breast cancer cells in culture express opioid receptors, and opioid agonists inhibit their growth, while they release high amounts of the NO-related molecules NO(2-)/NO(3-)to the culture medium. We have used this system to assay a possible direct interaction of opiergic and nitric oxide systems. Our results show that delta- or mu-acting opioid agonists do not modify the release of NO(2-)/NO(3-). In contrast, kappa-acting opioid agonists (ethylketocyclazocine, and alpha(S1)-casomorphine) decrease the release of NO(2-)/NO(3-), in a time- and dose-dependent manner. The general opioid antagonist diprenorphine (10(-6) M) produce a similar NO(2-)/NO(3-)release inhibition, indicating a possible non-opioid-receptor mediated phenomenon. In addition, ethylketocyclazocine, alpha(S1)-casomorphin and diprenorphine directly inhibit NOS activity: agonists, interact with both calcium-dependent and independent NOS-isoforms, while the antagonist diprenorphine modifies only the activity of the calcium-dependent fraction of the enzyme. Analysis of this interaction revealed that opioids modify the dimeric active form of NOS, through binding to the reductase part of the molecule, acting as non-competitive inhibitors of the enzyme. This interaction opens interesting new possibilities for tumor biology and breast cancer therapy.
Collapse
Affiliation(s)
- M Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, PO Box 1393, Heraklion, GR-71110, Greece
| | | | | | | | | | | |
Collapse
|
37
|
Roy S, Wang JH, Balasubramanian S, Charboneau R, Barke R, Loh HH. Role of hypothalamic-pituitary axis in morphine-induced alteration in thymic cell distribution using mu-opioid receptor knockout mice. J Neuroimmunol 2001; 116:147-55. [PMID: 11438169 DOI: 10.1016/s0165-5728(01)00299-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mu-opioid receptor knockout mice (MORKO), were used to address two questions: (1) if morphine induced decrease in thymic weight and cell distribution is mediated by the mu-opioid receptor and (2) the role of corticosteroids in morphine mediated alteration in thymic cell distribution. Our result show that morphine mediated increase in plasma corticosterone is mediated by the mu-opioid receptor since morphine at doses as high as 25 mg/kg-body weight does not increase plasma corticosterone levels in the MORKO. In addition, we have also shown that morphine treatment results in the differentiation of CD4+CD8+ (double positive cells) to single positive CD4+ cells while dexamethasone treatment results in the deletion of CD4+CD8+ (double positive) cells.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Analgesics, Opioid/pharmacology
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation/drug effects
- Cell Differentiation/immunology
- Corticosterone/blood
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Glucocorticoids/pharmacology
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/immunology
- Mice
- Mice, Knockout
- Morphine/pharmacology
- Organ Size
- Pituitary Gland/drug effects
- Pituitary Gland/immunology
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/immunology
- Thymus Gland/cytology
- Thymus Gland/drug effects
Collapse
Affiliation(s)
- S Roy
- Department of Pharmacology and Surgery, University of Minnesota and Veterans Administration Medical Center, 1 Veterans Drive, 55417, Minneapolis, MN, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Knauf C, Prevot V, Stefano GB, Mortreux G, Beauvillain JC, Croix D. Evidence for a spontaneous nitric oxide release from the rat median eminence: influence on gonadotropin-releasing hormone release. Endocrinology 2001; 142:2343-50. [PMID: 11356681 DOI: 10.1210/endo.142.6.8073] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The involvement of nitric oxide (NO) as a gaseous neurotransmitter in the hypothalamic control of pituitary LH secretion has been demonstrated. NO, as a diffusible signaling gas, has the ability to control and synchronize the activity of the neighboring cells. NO is secreted at the median eminence (ME), the common termination field for the antehypophysiotropic neurons, under the stimulation of other signaling substances. At the ME, NO stimulates GnRH release from neuroendocrine terminals. The present studies were undertaken to determine whether NO is secreted spontaneously from ME fragments ex vivo and whether its secretion is correlated to GnRH release. To accomplish this, female rats were killed at different time points of the day and/or of the estrous cycle. The spontaneous NO release was monitored in real time, with an amperometric probe, during 4 periods of 30 min, from individual ME fragments (for each time point, n = 4). GnRH levels were measured in parallel for each incubation-period by RIA. The results revealed that NO was released in a pulsatile manner from female ME fragments and, unambiguously, that the amplitude of NO secretion varied markedly across the estrous cycle. Indeed, though the NO pulse period (32 +/- 1 min, n = 36) and duration (21 +/- 2 min, n = 36) did not vary significantly across the estrous cycle, the amplitude of this secretion pulse was significantly higher on proestrus (Pro; 39 +/- 3 nM, n = 20), compared with diestrus (16 +/- 1 nM, n = 8) or estrus (23 +/- 3 nM, n = 8, P < 0.05). The GnRH levels in the incubation medium were positively correlated to NO secretion across the estrous cycle (r = 0.86, P < 0.003, n = 9), confirming that NO and GnRH release are coupled. Furthermore, 5 x 10(-7) M L-N(5)-(1-iminoethyl)ornithine (L-NIO), a NO synthase inhibitor, succeeded in inhibiting the strong NO-GnRH secretory coupling and GnRH release on PRO: Because at this concentration, L-NIO selectively inhibits endothelial NO synthase, the results further demonstrate that the major source of NO involved in GnRH release at the ME is endothelial in origin. Additionally, the induction of a massive NO/GnRH release in 15-day ovariectomized rat treated with estradiol benzoate strongly suggested that estradiol is participating in the stimulation of NO release activity between diestrus II and PRO: The present study is the first demonstrating that ME can spontaneously release NO and that NO's rhythm of secretion varies markedly across the estrous cycle. This pulsatile/cyclic ME NO release may constitute the synchronizing link to anatomically scattered GnRH neurons.
Collapse
Affiliation(s)
- C Knauf
- Institut National de la Santé et de la Recherche Médicale U422, Unité de Neuroendocrinologie et Physiopathologie Neuronale, 59045 Lille Cedex, France
| | | | | | | | | | | |
Collapse
|
39
|
Benamar K, Xin L, Geller EB, Adler MW. Effect of central and peripheral administration of a nitric oxide synthase inhibitor on morphine hyperthermia in rats. Brain Res 2001; 894:266-73. [PMID: 11251200 DOI: 10.1016/s0006-8993(01)02025-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of central and peripheral administration of a nitric oxide synthase inhibitor, N-nitro-L-arginine methyl ester (L-NAME), on morphine hyperthermia was studied in male Sprague-Dawley rats. The first series of experiments examined the effect of subcutaneous (s.c.) administration of L-NAME on the hyperthermia induced by morphine given s.c. in doses of 4 and 15 mg/kg. L-NAME, at a s.c. dose of 50 mg/kg, per se, had no influence on body temperature (T(b)). Coadministration of L-NAME (50 mg/kg, s.c.) with the higher dose of morphine (15 mg/kg, s.c.) caused a significant suppression of morphine hyperthermia during the first 30 min and then produced hypothermia. In contrast, s.c. injection of L-NAME (50 mg/kg, s.c.) failed to alter the hyperthermic response induced by the lower dose of morphine (4 mg/kg). In the second series of experiments, we investigated the effect of intracerebroventricular (i.c.v.) administration of L-NAME on the hyperthermia induced by morphine given s.c. L-NAME, itself, given i.c.v. at a dose of 1 mg did not evoke any change in T(b). Intracerebroventricular administration of L-NAME (1 mg) blocked the hyperthermia induced by 15 mg/kg morphine during the first 30 min and induced a slight hypothermia but did not alter the hyperthermia induced by 4 mg/kg morphine. The results indicate that either central or peripheral NO synthesis is required for the production of hyperthermia induced by 15 mg/kg of morphine. However, NO synthesis does not seem to be involved in the hyperthermic process induced by 4 mg/kg of morphine.
Collapse
Affiliation(s)
- K Benamar
- Center for Substance Abuse Research and Department of Pharmacology, Temple University School of Medicine, , Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
40
|
de la Torre JC, Stefano GB. Evidence that Alzheimer's disease is a microvascular disorder: the role of constitutive nitric oxide. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:119-36. [PMID: 11113503 DOI: 10.1016/s0165-0173(00)00043-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Evidence is fast accumulating which indicates that Alzheimer's disease is a vascular disorder with neurodegenerative consequences rather than a neurodegenerative disorder with vascular consequences. It is proposed that two factors need to be present for AD to develop: (1) advanced ageing, (2) presence of a condition that lowers cerebral perfusion, such as a vascular-risk factor. The first factor introduces a normal but potentially insidious process that lowers cerebral blood flow in inverse relation to increased ageing; the second factor adds a crucial burden which further lowers brain perfusion and places vulnerable neurons in a state of high energy compromise leading to a cascade of neuronal metabolic turmoil. Convergence of the two factors above will culminate in a critically attained threshold of cerebral hypoperfusion (CATCH). CATCH is a hemodynamic microcirculatory insufficiency that will destabilize neurons, synapses, neurotransmission and cognitive function, creating in its wake a neurodegenerative state characterized by the formation of senile plaques, neurofibrillary tangles, amyloid angiopathy and in some cases, Lewy bodies. Since any of a considerable number of vascular-related conditions must be present in the ageing individual for cognition to be disturbed, CATCH identifies an important aspect of the heterogeneic disease profile assumed to be present in the AD syndrome. It is proposed that CATCH initiates AD by distorting regional brain capillary structure involving endothelial cell shape changes and impairment of nitric oxide (NO) release which affect signaling between the immune, cardiovascular and nervous systems. Evidence is presented that in many tissues there is a basal level of NO being produced and that the actions of several signaling molecules may initiate increases in basal NO levels. Moreover, these temporary increases in basal NO levels exert inhibitory cellular actions, via cellular conformational changes. Findings indicate that (a) constitutive NO is responsible for a basal or 'tonal' level of NO; (b) this NO keeps particular types of cells in a state of inhibition and (c) activation of these cells occurs through disinhibition. Consequently, tissues not maintaining a basal NO level are more prone to excitatory, immune, vascular and neural influences. Under such circumstances, these tissues cannot be down-regulated to normal basal levels, thus prolonging their excitatory state. Thus, the clinical convergence of advanced ageing in the presence of a chronic, pre-morbid vascular risk factor, can, in time, contribute to an endotheliopathy involving basal NO deficit, to the degree where regional metabolic dysfunction leads to cognitive meltdown and to progressive neurodegeneration characteristic of Alzheimer's disease.
Collapse
Affiliation(s)
- J C de la Torre
- Department of Pathology, University of California, San Diego, 1363 Shinly, Suite 100, Escondido, CA 92026, USA.
| | | |
Collapse
|
41
|
Prevot V, Bouret S, Stefano GB, Beauvillain J. Median eminence nitric oxide signaling. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 34:27-41. [PMID: 11086185 DOI: 10.1016/s0165-0173(00)00035-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is becoming increasingly clear that nitric oxide (NO), an active free radical formed during the conversion of arginine to citrulline by the enzyme NO synthase (NOS), is a critical neurotransmitter and biological mediator of the neuroendocrine axis. Current evidence suggests that NO modulates the activity of both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal axis. Supporting this hypothesis is the finding that the highest expression of neuronal NOS in the brain is found within the hypothalamus in areas where the cell bodies of the neurons from the different neuroendocrine systems are located. In this regard, the influence of neuronal NO on the regulation of the neuroendocrine neural cell body activity has been well-documented whereas little is known about NO signaling that directly modulates neurohormonal release into the pituitary portal vessels from the neuroendocrine terminals within the median eminence, the common termination field of the adenohypophysiotropic systems. Studies in rat suggest that NO is an important factor controlling both gonadotropin-releasing hormone (GnRH) and corticotropin-releasing hormone (CRH) release at the median eminence. The recent use of amperometric NO detection from median eminence fragments coupled to the use of selective NOS inhibitors demonstrated that a major source of NO at the median eminence might be endothelial in origin rather than neuronal. The present article reviews the recent progress in identifying the origin and the role of the NO produced at the median eminence in the control of neurohormonal release. We also discuss the potential implications of the putative involvement of the median eminence endothelial cells in a neurovascular regulatory process for hypothalamic neurohormonal signaling.
Collapse
Affiliation(s)
- V Prevot
- INSERM U 422, IFR 22, Neuroendocrinologie et physiopathologie neuronale, Place de Verdun, 59045 Lille, Cedex, France.
| | | | | | | |
Collapse
|
42
|
Abstract
Anandamide (arachidonylethanolamide) and 2-arachidonoylglycerol mediate many of their actions via either CB(1) or CB(2) cannabinoid receptor subtypes. These agonist-receptor interactions result in activation of G proteins, particularly those of the G(i/o) family. Signal transduction pathways that are regulated by these G proteins include inhibition of adenylyl cyclase, regulation of ion currents (inhibition of voltage-gated L, N and P/Q Ca(2+)-currents; activation of K(+) currents); activation of focal adhesion kinase (FAK), mitogen activated protein kinase (MAPK) and induction of immediate early genes; and stimulation of nitric oxide synthase (NOS). Other effects of anandamide and/or 2-arachidonoylglycerol that are not mediated via cannabinoid receptors include inhibition of L-type Ca(2+) channels, stimulation of VR(1) vanilloid receptors, transient changes in intracellular Ca(2+), and disruption of gap junction function. Cardiovascular regulation by anandamide appears to occur by a variety of receptor-mediated and non-receptor-mediated mechanisms. This review will describe and evaluate each of these signal transduction pathways and mechanisms.
Collapse
Affiliation(s)
- A C Howlett
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| | | |
Collapse
|
43
|
Salzet M, Chopin V, Baert J, Matias I, Malecha J. Theromin, a novel leech thrombin inhibitor. J Biol Chem 2000; 275:30774-80. [PMID: 10837466 DOI: 10.1074/jbc.m000787200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We purified the most potent thrombin inhibitor described to date from the rhynchobdellid leech Theromyzon tessulatum. Designated theromin, it was purified to apparent homogeneity by gel permeation and anion exchange chromatography followed by two reverse-phase steps of high performance liquid chromatography. The primary sequence of theromin (a homodimer of 67 amino acid residues including 16 cysteine residues) was determined by a combination of reduction and s-beta-pyridylethylation, Edman degradation, trypsin enzymatic digestion, and matrix-assisted laser desorption mass spectrometry measurement. Theromin exhibits no sequence homology with any other thrombin inhibitors. Furthermore, theromin significantly diminishes, in a dose-dependent manner, the level of human granulocyte and monocyte activation induced by lipopolysaccharides. In summary, this potent thrombin inhibitor promises to have high biomedical significance.
Collapse
Affiliation(s)
- M Salzet
- Laboratoire d'Endocrinologie des Annélides, Unité Propre de la Recherche Supérieure Associée au CNRS 8017 CNRS, SN3, Université des Sciences et Technologie de Lille, F-59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | |
Collapse
|
44
|
Stefano GB, Goumon Y, Casares F, Cadet P, Fricchione GL, Rialas C, Peter D, Sonetti D, Guarna M, Welters ID, Bianchi E. Endogenous morphine. Trends Neurosci 2000; 23:436-42. [PMID: 10941194 DOI: 10.1016/s0166-2236(00)01611-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It is now well accepted that endogenous morphine is present in animals, both in invertebrates and vertebrates. It is a key signaling molecule that plays an important role in downregulating physiological responses, such as those in the immune system, including immune elements in the CNS. It has been demonstrated that a specific mu-opiate-receptor subtype, mu3, mediates these downregulatory effects through release of NO. This article examines morphine as an endogenous signaling molecule, in terms of its role in neural and immune regulation.
Collapse
Affiliation(s)
- G B Stefano
- Neuroscience Research Institute, State University of New York at Old Westbury, NY 11568, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bouret S, Prevot V, Croix D, Viltart O, Stefano GB, Mitchell V, Beauvillain JC. Mu opioid receptor mRNA expression in neuronal nitric oxide synthase-immunopositive preoptic area neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:46-52. [PMID: 11039728 DOI: 10.1016/s0169-328x(00)00118-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nitric oxide (NO) as well as beta-endorphin are involved in the neuroendocrine control of gonadotropin-releasing hormone (GnRH) secretion. Recently, morphological and microdialysis experiments have suggested that beta-endorphin may exert an inhibitory influence on NO release in the preoptic area of rat hypothalamus. The present study determines if the mu opioid receptor mRNA is expressed in neuronal NO synthase (nNOS)-immunopositive neurons and if this expression varies among the regions of the basal forebrain being examined. We found, through the use of immunohistochemical and in situ hybridization techniques, that the mu opioid receptor mRNA is expressed in a representative subpopulation of nNOS-immunoreactive neurons in the rat preoptic area. Interestingly, the mu opioid receptor mRNA/nNOS-immunoreactive coexpression is predominant in the rostral and median preoptic area, containing most of GnRH cell bodies. These results strongly suggest that beta-endorphin, via an action through mu opioid receptors, may directly participate in the regulation of NO production in the preoptic area. Our results strengthen the hypothesis that beta-endorphin may participate in GnRH neuronal modulation at the cell body level by regulating NO release from the interneurons of the preoptic area that express nNOS.
Collapse
Affiliation(s)
- S Bouret
- INSERM Unite 422, IFR 22, Laboratoire de Neuroendocrinologie et Physiopathologie Neuronale, place de Verdun, Lille, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Laurent V, Salzet B, Verger-Bocquet M, Bernet F, Salzet M. Morphine-like substance in leech ganglia. Evidence and immune modulation. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2354-61. [PMID: 10759861 DOI: 10.1046/j.1432-1327.2000.01239.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Binding experiments followed by measurement of nitric oxide release revealed an opiate alkaloid high affinity receptor with no affinity to opioids, representing a new mu-subtype receptor in the brain of the leech Theromyzon tessulatum. In addition, evidence of morphine-like substances was found in immunocytochemical studies and HPLC coupled to electrochemical detection (500 mV and 0.02 Hz). Based on previous evidence of the involvement of morphine as an immune response inhibitor, we demonstrate that in leech ganglia injection of lipopolysaccharide (LPS; a potent immunostimulatory agent derived from bacteria) provoked an increase in the level of ganglionic morphine-like substances after a prolonged latency period of 24 h (from 2.4 +/- 1.1 pmol per ganglion to 78 +/- 12.3 pmol per ganglion; P < 0.005; LPS injected 1 microg x mL-1); this effect is both concentration- and time-dependent. Finally, we have demonstrated that morphine, after binding to its own receptor, inhibits leech immunocyte activation through adenylate cyclase inhibition and nitric oxide release. This report confirms that morphine is an evolutionarily stable potent immunomodulator.
Collapse
Affiliation(s)
- V Laurent
- Laboratoire d'Endocrinologie des annélides, UPRESA 8017 CNRS, SN3, Université des Sciences et Technologie de Lille, France
| | | | | | | | | |
Collapse
|
47
|
Stefano GB, Goumon Y, Bilfinger TV, Welters ID, Cadet P. Basal nitric oxide limits immune, nervous and cardiovascular excitation: human endothelia express a mu opiate receptor. Prog Neurobiol 2000; 60:513-30. [PMID: 10739087 DOI: 10.1016/s0301-0082(99)00038-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) is a major signaling molecule in the immune, cardiovascular and nervous systems. The synthesizing enzyme, nitric oxide synthase (NOS) occurs in three forms: endothelial (e), neuronal (n) and inducible (i) NOS. The first two are constitutively expressed. We surmise that in many tissues there is a basal level of NO and that the actions of several signaling molecules initiate increases in cNOS-derived NO to enhance momentary basal levels that exerts inhibitory cellular actions, via cellular conformational changes. It is our contention that much of the literature concerning the actions of NO really deal with i-NOS-derived NO. We make the case that cNOS is responsible for a basal or 'tonal' level of NO; that this NO keeps particular types of cells in a state of inhibition and that activation of these cells occurs through disinhibition. Furthermore, naturally occurring signaling molecules such as morphine, anandamide, interleukin-10 and 17-beta-estradiol appear to exert, in part, their beneficial physiological actions, i.e., immune and endothelial down regulation by the stimulation of cNOS. In regard to opiates, we demonstrate the presence of a human endothelial mu opiate receptor by RT-PCR and sequence determination, further substantiating the role of opiates in vascular coupling to NO release. Taken together, cNOS derived NO enhances basal NO actions, i.e., cellular activation state, and these actions are further enhanced by iNOS derived NO.
Collapse
Affiliation(s)
- G B Stefano
- Neuroscience Research Institute, State University of New York at Old Westbury, 11568-0210, USA.
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Stefano GB, Beauvillain JC. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 1999; 94:809-19. [PMID: 10579572 DOI: 10.1016/s0306-4522(99)00383-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Despite intense investigation, the demonstration of morphological plasticity in the external zone of the median eminence concerning the gonadotropin-releasing hormone system has never been reported. In this study, we investigate whether dynamic transformations of the gonadotropin-releasing hormone nerve terminals and/or tanycytes in the external zone of the median eminence of the hypothalamus occurred during the rat estrous cycle, by following individual gonadotropin-releasing hormone-immunoreactive nerve terminals on serial ultrathin sections observed by electron microscopy. Female rats were killed at 16.00 diestrus II (n = 3), i.e. when estrogen levels are basal and gonadotropin-releasing hormone release is low, and at 16.00 proestrus (n = 4), i.e. when estrogen levels peak and the preovulatory gonadotropin-releasing hormone surge occurs. Our results show that, in the median eminence obtained from proestrus rats, 12+/-2% of the gonadotropin-releasing hormone nerve terminals were observed to make physical contact with the parenchymatous basal lamina, i.e. the pericapillary space. In the median eminence obtained from diestrus II rats, no contacts were observed. On proestrus, numerous physical contacts between gonadotropin-releasing hormone nerve terminals and the basal lamina occurred by evagination of the basal lamina and/or by emerging processes from gonadotropin-releasing hormone nerve terminals. The quantification of the evagination of the basal lamina revealed that the basal lamina was at least twofold more tortuous in appearance during proestrus. These results demonstrate for the first time the existence of dynamic plastic changes in the external zone of the median eminence, allowing gonadotropin-releasing hormone nerve terminals to contact the pericapillary space on the day of proestrus, thus facilitating the release of the neurohormone into the pituitary portal blood.
Collapse
Affiliation(s)
- V Prevot
- INSERM U 422, IFR 22, Neuroendocrinologie et physiopathologie neuronale, place de Verdun, Lille, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Sonetti D, Mola L, Casares F, Bianchi E, Guarna M, Stefano GB. Endogenous morphine levels increase in molluscan neural and immune tissues after physical trauma. Brain Res 1999; 835:137-47. [PMID: 10415368 DOI: 10.1016/s0006-8993(99)01534-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to demonstrate by biochemical and immunocytochemical methods the presence of endogenous morphine in nervous and immune tissues of the freshwater snail, Planorbarius corneus. High performance liquid chromatography (HPLC) coupled to electrochemical detection performed on tissues from control snails, revealed that the CNS contains 6.20+/-2.0 pmol/g of the alkaloid, the foot tissue contains a much lower level, 0.30+/-0.03 pmol/g, whilst morphine is not detected in the hemolymph and hepatopancreas. In specimens that were traumatized, we detected a significant rise of the CNS morphine level 24 h later (43.7+/-5.2 pmol/g) and an initial decrease after 48 h (19.3+/-4.6 pmol/g). At the same times, we found the appearance of the opiate in the hemolymph (0.38+/-0.04 pmol/ml and 0.12+/-0.03 pmol/ml) but not in the hepatopancreas. Using indirect immunocytochemistry, a morphine-like molecule was localized to a number of neurons and a type of glial cell in the CNS, to some immunocytes in the hemolymph and to amoebocytes in the foot, as well as to fibers in the aorta wall. Simultaneously to the rise of morphine biochemical level following trauma, morphine-like immunoreactivity (MIR) increased in both intensity and the number of structures responding positively, i.e., neurons and fiber terminals. In another mollusc, the mussel Mytilus galloprovincialis, the same pattern of enhanced MIR was found after trauma. Taken together, the data suggest the presence of a morphinergic signaling in invertebrate neural and immune processes resembling those of classical messenger systems and an involvement in trauma response.
Collapse
Affiliation(s)
- D Sonetti
- Department of Animal Biology, University of Modena, Via Berengario 14, 41100, Modena, Italy.
| | | | | | | | | | | |
Collapse
|