1
|
Li S, Mingoia S, Montégut L, Lambertucci F, Chen H, Dong Y, De Palma FDE, Scuderi SA, Rong Y, Carbonnier V, Martins I, Maiuri MC, Kroemer G. Atlas of expression of acyl CoA binding protein/diazepam binding inhibitor (ACBP/DBI) in human and mouse. Cell Death Dis 2025; 16:134. [PMID: 40011442 PMCID: PMC11865319 DOI: 10.1038/s41419-025-07447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Acyl CoA binding protein encoded by diazepam binding inhibitor (ACBP/DBI) is a tissue hormone that stimulates lipo-anabolic responses and inhibits autophagy, thus contributing to aging and age-related diseases. Protein expression profiling of ACBP/DBI was performed on mouse tissues to identify organs in which this major tissue hormone is expressed. Transcriptomic and proteomic data bases corroborated a high level of human-mouse interspecies conservation of ACBP/DBI expression in different organs. Single-cell RNA-seq data confirmed that ACBP/DBI was strongly expressed by parenchymatous cells from specific human and mouse organs (e.g., kidney, large intestine, liver, lung) as well as by myeloid or glial cells from other organs (e.g., adipose tissue, brain, eye) following a pattern that was conserved among the two species. We identified a panel of 44 mRNAs that are strongly co-expressed with ACBP/DBI mRNA in normal and malignant human and normal mouse tissues. Of note, 22 (50%) of these co-expressed mRNAs encode proteins localized at mitochondria, and mRNAs with metabolism-related functions are strongly overrepresented (66%). Systematic data mining was performed to identify transcription factors that regulate ACBP/DBI expression in human and mouse. Several transcription factors, including growth response 1 (EGR1), E2F Transcription Factor 1 (E2F1, which interacts with retinoblastoma, RB) and transformation-related protein 53 (TRP53, best known as p53), which are endowed with oncosuppressive effects, consistently repress ACBP/DBI expression as well as its co-expressed mRNAs across multiple datasets, suggesting a mechanistic basis for a coregulation network. Furthermore, we identified multiple transcription factors that transactivate ACBP/DBI gene expression together with its coregulation network. Altogether, this study indicates the existence of conserved mechanisms determining the expression of ACBP/DBI in specific cell types of the mammalian organism.
Collapse
Affiliation(s)
- Sijing Li
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Silvia Mingoia
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Pharmacological Sciences, University of Piemonte Orientale, Novara, Italy
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Yanbing Dong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Fatima Domenica Elisa De Palma
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy
| | - Sarah Adriana Scuderi
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Yan Rong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
2
|
Chen H, Moriceau S, Joseph A, Mailliet F, Li S, Tolle V, Duriez P, Dardennes R, Durand S, Carbonnier V, Stoll G, Sauvat A, Lachkar S, Aprahamian F, Alves Costa Silva C, Pan H, Montégut L, Anagnostopoulos G, Lambertucci F, Motiño O, Nogueira-Recalde U, Bourgin M, Mao M, Pan Y, Cerone A, Boedec E, Gouveia ZL, Marmorino F, Cremolini C, Derosa L, Zitvogel L, Kepp O, López-Otín C, Maiuri MC, Perez F, Gorwood P, Ramoz N, Oury F, Martins I, Kroemer G. Acyl-CoA binding protein for the experimental treatment of anorexia. Sci Transl Med 2024; 16:eadl0715. [PMID: 39141698 DOI: 10.1126/scitranslmed.adl0715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/25/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations. We engineered a chemical-genetic system for the secretion of ACBP/DBI through a biotin-activatable, autophagy-independent pathway. In transgenic mice expressing this system in hepatocytes, biotin-induced elevations in plasma ACBP/DBI concentrations prevented anorexia induced by CRS or chemotherapeutic agents including cisplatin, doxorubicin, and paclitaxel. ACBP/DBI reversed the CRS or cisplatin-induced increase in plasma lipocalin-2 concentrations and the hypothalamic activation of anorexigenic melanocortin 4 receptors, for which lipocalin-2 is an agonist. Daily intravenous injections of recombinant ACBP/DBI protein or subcutaneous implantation of osmotic pumps releasing recombinant ACBP/DBI mimicked the orexigenic effects of the chemical-genetic system. In conclusion, the supplementation of extracellular and peripheral ACBP/DBI might constitute a viable strategy for treating anorexia.
Collapse
Affiliation(s)
- Hui Chen
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Stéphanie Moriceau
- Institut Imagine, Platform for Neurobehavioral and Metabolism, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, 3633, 75015 Paris, France
| | - Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Service de Réanimation Médicale, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, 75010 Paris, France
| | - Francois Mailliet
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015 Paris, France
| | - Sijing Li
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Virginie Tolle
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
| | - Philibert Duriez
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Roland Dardennes
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Sylvère Durand
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Allan Sauvat
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Sylvie Lachkar
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Fanny Aprahamian
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Hui Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Uxía Nogueira-Recalde
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Rheumatology Research Group (GIR), Biomedical Research Institute of A Coruña (INIBIC), Professor Novoa Santos Foundation, 15006 A Coruña, Spain
| | - Mélanie Bourgin
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Misha Mao
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, 310016 Hangzhou, Zhejiang, China
| | - Yuhong Pan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, 91400 Paris, France
| | - Alexandra Cerone
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Erwan Boedec
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Biochemistry and Biophysics (B&B) Core Facility, 75014 Paris, France
| | - Zelia L Gouveia
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
| | - Federica Marmorino
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, 94805 Villejuif Cedex, France
- Université Paris-Saclay, Faculté de Médecine, 94800 Le Kremlin-Bicêtre, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Équipe Labellisée-Ligue Nationale contre le Cancer, 94805 Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, 28248 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy
| | - Franck Perez
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, CNRS, 75005 Paris, France
| | - Philip Gorwood
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Nicolas Ramoz
- Université de Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Genetic Vulnerability to Addictive and Psychiatric Disorders Team, 75015 Paris, France
- Université Paris Cité and GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte-Anne, 75014 Paris, France
| | - Franck Oury
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Team 8, F-75015 Paris, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| |
Collapse
|
3
|
Montégut L, Abdellatif M, Motiño O, Madeo F, Martins I, Quesada V, López‐Otín C, Kroemer G. Acyl coenzyme A binding protein (ACBP): An aging- and disease-relevant "autophagy checkpoint". Aging Cell 2023; 22:e13910. [PMID: 37357988 PMCID: PMC10497816 DOI: 10.1111/acel.13910] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/27/2023] Open
Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is a phylogenetically ancient protein present in some eubacteria and the entire eukaryotic radiation. In several eukaryotic phyla, ACBP/DBI transcends its intracellular function in fatty acid metabolism because it can be released into the extracellular space. This ACBP/DBI secretion usually occurs in response to nutrient scarcity through an autophagy-dependent pathway. ACBP/DBI and its peptide fragments then act on a range of distinct receptors that diverge among phyla, namely metabotropic G protein-coupled receptor in yeast (and likely in the mammalian central nervous system), a histidine receptor kinase in slime molds, and ionotropic gamma-aminobutyric acid (GABA)A receptors in mammals. Genetic or antibody-mediated inhibition of ACBP/DBI orthologs interferes with nutrient stress-induced adaptations such as sporulation or increased food intake in multiple species, as it enhances lifespan or healthspan in yeast, plant leaves, nematodes, and multiple mouse models. These lifespan and healthspan-extending effects of ACBP/DBI suppression are coupled to the induction of autophagy. Altogether, it appears that neutralization of extracellular ACBP/DBI results in "autophagy checkpoint inhibition" to unleash the anti-aging potential of autophagy. Of note, in humans, ACBP/DBI levels increase in various tissues, as well as in the plasma, in the context of aging, obesity, uncontrolled infection or cardiovascular, inflammatory, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Faculté de MédecineUniversité de Paris SaclayParisFrance
| | - Mahmoud Abdellatif
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Department of CardiologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Frank Madeo
- BioTechMed‐GrazGrazAustria
- Institute of Molecular Biosciences, NAWI GrazUniversity of GrazGrazAustria
- Field of Excellence BioHealthUniversity of GrazGrazAustria
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
| | - Victor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Carlos López‐Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias (IUOPA)Universidad de OviedoOviedoSpain
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Inserm U1138Université Paris Cité, Sorbonne UniversitéParisFrance
- Metabolomics and Cell Biology PlatformsGustave Roussy InstitutVillejuifFrance
- Institut du Cancer Paris CARPEM, Department of BiologyHôpital Européen Georges Pompidou, AP‐HPParisFrance
| |
Collapse
|
4
|
Briski KP, Napit PR, Alhamyani A, Leprince J, Mahmood AH. Sex-Dimorphic Octadecaneuropeptide (ODN) Regulation of Ventromedial Hypothalamic Nucleus Glucoregulatory Neuron Function and Counterregulatory Hormone Secretion. ASN Neuro 2023; 15:17590914231167230. [PMID: 37194319 PMCID: PMC10196551 DOI: 10.1177/17590914231167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 05/18/2023] Open
Abstract
Central endozepinergic signaling is implicated in glucose homeostasis. Ventromedial hypothalamic nucleus (VMN) metabolic monitoring governs glucose counter-regulation. VMN glucose-stimulatory nitric oxide (NO) and glucose-inhibitory γ-aminobutyric acid (GABA) neurons express the energy gauge 5'-AMP-activated protein kinase (AMPK). Current research addresses the premise that the astrocyte glio-peptide octadecaneuropeptide (ODN) imposes sex-dimorphic control of metabolic sensor activity and neurotransmitter signaling in these neurons. The ODN G-protein coupled-receptor antagonist cyclo(1-8)[DLeu5]OP (LV-1075) was administered intracerebroventricularly (icv) to euglycemic rats of each sex; additional groups were pretreated icv with the ODN isoactive surrogate ODN11-18 (OP) before insulin-induced hypoglycemia. Western blotting of laser-catapult-microdissected VMN NO and GABA neurons showed that hypoglycemia caused OP-reversible augmentation of phospho-, e.g., activated AMPK and nitric oxide synthase (nNOS) expression in rostral (female) or middle (male) VMN segments or ODN-dependent suppression of nNOS in male caudal VMN. OP prevented hypoglycemic down-regulation of glutamate decarboxylase profiles in female rat rostral VMN, without affecting AMPK activity. LV-1075 treatment of male, not female rats elevated plasma glucagon and corticosterone concentrations. Moreover, OP attenuated hypoglycemia-associated augmentation of these hormones in males only. Results identify, for each sex, regional VMN metabolic transmitter signals that are subject to endozepinergic regulation. Directional shifts and gain-or-loss of ODN control during eu- versus hypoglycemia infer that VMN neuron receptivity to or post-receptor processing of this stimulus may be modulated by energy state. In male, counter-regulatory hormone secretion may be governed principally by ODN-sensitive neural pathways, whereas this endocrine outflow may be controlled by parallel, redundant ODN-dependent and -independent mechanisms in female.
Collapse
Affiliation(s)
- Karen P. Briski
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Prabhat R. Napit
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| | - Jérôme Leprince
- Neuronal and Neuroendocrine Differentiation
and Communication Laboratory, Normandy University, INSERM U1239, PRIMACEN, Rouen,
France
| | - A.S.M. Hasan Mahmood
- School of Basic Pharmaceutical and
Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA,
USA
| |
Collapse
|
5
|
Neuropeptidergic control of neurosteroids biosynthesis. Front Neuroendocrinol 2022; 65:100976. [PMID: 34999057 DOI: 10.1016/j.yfrne.2021.100976] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/12/2021] [Accepted: 12/22/2021] [Indexed: 01/14/2023]
Abstract
Neurosteroids are steroids synthesized within the central nervous system either from cholesterol or by metabolic reactions of circulating steroid hormone precursors. It has been suggested that neurosteroids exert pleiotropic activities within the central nervous system, such as organization and activation of the central nervous system and behavioral regulation. It is also increasingly becoming clear that neuropeptides exert pleiotropic activities within the central nervous system, such as modulation of neuronal functions and regulation of behavior, besides traditional neuroendocrinological functions. It was hypothesized that some of the physiological functions of neuropeptides acting within the central nervous system may be through the regulation of neurosteroids biosynthesis. Various neuropeptides reviewed in this study possibly regulate neurosteroids biosynthesis by controlling the activities of enzymes that catalyze the production of neurosteroids. It is now required to thoroughly investigate the neuropeptidergic control mechanisms of neurosteroids biosynthesis to characterize the physiological significance of this new neuroendocrinological phenomenon.
Collapse
|
6
|
Glial Modulation of Energy Balance: The Dorsal Vagal Complex Is No Exception. Int J Mol Sci 2022; 23:ijms23020960. [PMID: 35055143 PMCID: PMC8779587 DOI: 10.3390/ijms23020960] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.
Collapse
|
7
|
Alquier T, Christian-Hinman CA, Alfonso J, Færgeman NJ. From benzodiazepines to fatty acids and beyond: revisiting the role of ACBP/DBI. Trends Endocrinol Metab 2021; 32:890-903. [PMID: 34565656 PMCID: PMC8785413 DOI: 10.1016/j.tem.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/19/2023]
Abstract
Four decades ago Costa and colleagues identified a small, secreted polypeptide in the brain that can displace the benzodiazepine diazepam from the GABAA receptor, and was thus termed diazepam binding inhibitor (DBI). Shortly after, an identical polypeptide was identified in liver by its ability to induce termination of fatty acid synthesis, and was named acyl-CoA binding protein (ACBP). Since then, ACBP/DBI has been studied in parallel without a clear and integrated understanding of its dual roles. The first genetic loss-of-function models have revived the field, allowing targeted approaches to better understand the physiological roles of ACBP/DBI in vivo. We discuss the roles of ACBP/DBI in central and tissue-specific functions in mammals, with an emphasis on metabolism and mechanisms of action.
Collapse
Affiliation(s)
- Thierry Alquier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal Diabetes Research Center, and Departments of Medicine, Pharmacology and Physiology, Biochemistry, and Neurosciences, Université de Montréal, Montreal, QC, Canada.
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, Neuroscience Program, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Julieta Alfonso
- Department of Clinical Neurobiology, University Hospital Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
8
|
Díaz M, Blasco-Roset A, Villarroya J, López-Bermejo A, de Zegher F, Villarroya F, Ibáñez L. Circulating diazepam-binding inhibitor in infancy: Relation to markers of adiposity and metabolic health. Pediatr Obes 2021; 16:e12802. [PMID: 34014038 DOI: 10.1111/ijpo.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/11/2021] [Accepted: 04/26/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Diazepam-binding inhibitor (DBI) controls feeding behaviour and glucose homeostasis. Individuals born small-for-gestational-age (SGA) with excessive postnatal catch-up in weight are at risk for obesity and type 2 diabetes. OBJECTIVE To assess serum concentrations of DBI (0-2 years) in appropriate-for-gestational-age (AGA, n = 70) vs SGA infants (n = 33) with spontaneous catch-up and their relationship with endocrine-metabolic and adiposity markers. METHODS Longitudinal assessments included auxology, fasting glucose, insulin, insulin-like growth factor, high-molecular-weight adiponectin, DBI and body composition (absorptiometry). DBI was measured cross-sectionally in pregnant and non-pregnant women and in 2-day-old newborns. DBI mRNA expression levels were assessed in adult and neonatal tissues. RESULTS Cord blood DBI concentrations were similar in AGA and SGA newborns and about fivefold higher than those in women. Serum DBI levels decreased by age 2 days, were higher in SGA vs AGA infants at age 2 years and associated negatively with markers of adiposity and insulin resistance and positively with high-molecular-weight adiponectin. DBI mRNA expression was lower in placenta than in other tissues. CONCLUSION The increased DBI concentrations at birth are unrelated to prenatal growth. The higher DBI levels in SGA subjects at age 2 years may be related to catch-up growth or represent an adaptive mechanism to promote lipogenesis.
Collapse
Affiliation(s)
- Marta Díaz
- Endocrinology Department, Pediatric Research Institute Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| | - Albert Blasco-Roset
- Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona & Pediatric Research Institute Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Joan Villarroya
- Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona & Pediatric Research Institute Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI) and Dr. Josep Trueta Hospital, Girona, Spain
| | - Francis de Zegher
- Department of Development & Regeneration, University of Leuven, Leuven, Belgium
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona & Pediatric Research Institute Hospital Sant Joan de Déu, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Lourdes Ibáñez
- Endocrinology Department, Pediatric Research Institute Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, Madrid, Spain
| |
Collapse
|
9
|
Astrocyte Gliotransmission in the Regulation of Systemic Metabolism. Metabolites 2021; 11:metabo11110732. [PMID: 34822390 PMCID: PMC8623475 DOI: 10.3390/metabo11110732] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022] Open
Abstract
Normal brain function highly relies on the appropriate functioning of astrocytes. These glial cells are strategically situated between blood vessels and neurons, provide significant substrate support to neuronal demand, and are sensitive to neuronal activity and energy-related molecules. Astrocytes respond to many metabolic conditions and regulate a wide array of physiological processes, including cerebral vascular remodeling, glucose sensing, feeding, and circadian rhythms for the control of systemic metabolism and behavior-related responses. This regulation ultimately elicits counterregulatory mechanisms in order to couple whole-body energy availability with brain function. Therefore, understanding the role of astrocyte crosstalk with neighboring cells via the release of molecules, e.g., gliotransmitters, into the parenchyma in response to metabolic and neuronal cues is of fundamental relevance to elucidate the distinct roles of these glial cells in the neuroendocrine control of metabolism. Here, we review the mechanisms underlying astrocyte-released gliotransmitters that have been reported to be crucial for maintaining homeostatic regulation of systemic metabolism.
Collapse
|
10
|
Genes Encoding Microbial Acyl Coenzyme A Binding Protein/Diazepam-Binding Inhibitor Orthologs Are Rare in the Human Gut Microbiome and Show No Links to Obesity. Appl Environ Microbiol 2021; 87:e0047121. [PMID: 33837018 PMCID: PMC8174751 DOI: 10.1128/aem.00471-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acyl coenzyme A (CoA) binding protein (ACBP), also called diazepam-binding inhibitor (DBI), is a phylogenetically conserved protein that is expressed by all eukaryotic species as well as by some bacteria. Since elevated ACBP/DBI levels play a major role in the inhibition of autophagy, increase in appetite, and enhanced lipid storage that accompany obesity, we wondered whether ACBP/DBI produced by the human microbiome might affect host weight. We found that the genomes of bacterial commensals rarely contain ACBP/DBI homologues, which are rather encoded by genomes of some pathogenic or environmental taxa that were not prevalent in human feces. Exhaustive bioinformatic analyses of 1,899 gut samples from healthy individuals refuted the hypothesis that bacterial ACBP/DBI might affect the body mass index (BMI) in a physiological context. Thus, the physiological regulation of BMI is unlikely to be affected by microbial ACBP/DBI-like proteins. However, at the speculative level, it remains possible that ACBP/DBI produced by potential pathogenic bacteria might enhance their virulence by inhibiting autophagy and hence subverting innate immune responses. IMPORTANCE Acyl coenzyme A (CoA) binding protein (ACBP) can be encoded by several organisms across the domains of life, including microbes, and has shown to play major roles in human metabolic processes. However, little is known about its presence in the human gut microbiome and whether its microbial counterpart could also play a role in human metabolism. In the present study, we found that microbial ACBP/DBI sequences were rarely present in the gut microbiome across multiple metagenomic data sets. Microbes that carried ACBP/DBI in the human gut microbiome included Saccharomyces cerevisiae, Lautropia mirabilis, and Comamonas kerstersii, but these microorganisms were not associated with body mass index, further indicating an unconvincing role for microbial ACBP/DBI in human metabolism.
Collapse
|
11
|
Lebrun B, Barbot M, Tonon MC, Prévot V, Leprince J, Troadec JD. Glial endozepines and energy balance: Old peptides with new tricks. Glia 2020; 69:1079-1093. [PMID: 33105065 DOI: 10.1002/glia.23927] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The contribution of neuroglial interactions to the regulation of energy balance has gained increasing acceptance in recent years. In this context, endozepines, endogenous analogs of benzodiazepine derived from diazepam-binding inhibitor, are now emerging as major players. Produced by glial cells (astrocytes and tanycytes), endozepines have been known for two decades to exert potent anorexigenic effects by acting at the hypothalamic level. However, it is only recently that their modes of action, including the mechanisms by which they modulate energy metabolism, have begun to be elucidated. The data available today are abundant, significant, and sometimes contradictory, revealing a much more complex regulation than initially expected. Several mechanisms of action of endozepines seem to coexist at the central level, particularly in the hypothalamus. The brainstem has also recently emerged as a potential site of action for endozepines. In addition to their central anorexigenic effects, endozepines may also display peripheral effects promoting orexigenic actions, adding to their complexity and raising yet more questions. In this review, we attempt to provide an overview of our current knowledge in this rapidly evolving field and to pinpoint questions that remain unanswered.
Collapse
Affiliation(s)
- Bruno Lebrun
- CNRS 7291, Laboratoire de Neurosciences Cognitives, Aix Marseille University, Marseille, France
| | - Manon Barbot
- CNRS 7291, Laboratoire de Neurosciences Cognitives, Aix Marseille University, Marseille, France
| | - Marie-Christine Tonon
- INSERM U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Vincent Prévot
- University of Lille, INSERM, CHU Lille, Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, European Genomic Institute of Diabetes (EGID), Lille, France
| | - Jérôme Leprince
- INSERM U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Jean-Denis Troadec
- CNRS 7291, Laboratoire de Neurosciences Cognitives, Aix Marseille University, Marseille, France
| |
Collapse
|
12
|
Joseph A, Moriceau S, Sica V, Anagnostopoulos G, Pol J, Martins I, Lafarge A, Maiuri MC, Leboyer M, Loftus J, Bellivier F, Belzeaux R, Berna F, Etain B, Capdevielle D, Courtet P, Dubertret C, Dubreucq J, Thierry DA, Fond G, Gard S, Llorca PM, Mallet J, Misdrahi D, Olié E, Passerieux C, Polosan M, Roux P, Samalin L, Schürhoff F, Schwan R, Magnan C, Oury F, Bravo-San Pedro JM, Kroemer G. Metabolic and psychiatric effects of acyl coenzyme A binding protein (ACBP)/diazepam binding inhibitor (DBI). Cell Death Dis 2020; 11:502. [PMID: 32632162 PMCID: PMC7338362 DOI: 10.1038/s41419-020-2716-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam binding inhibitor (DBI) is a multifunctional protein with an intracellular action (as ACBP), as well as with an extracellular role (as DBI). The plasma levels of soluble ACBP/DBI are elevated in human obesity and reduced in anorexia nervosa. Accumulating evidence indicates that genetic or antibody-mediated neutralization of ACBP/DBI has anorexigenic effects, thus inhibiting food intake and inducing lipo-catabolic reactions in mice. A number of anorexiants have been withdrawn from clinical development because of their side effects including an increase in depression and suicide. For this reason, we investigated the psychiatric impact of ACBP/DBI in mouse models and patient cohorts. Intravenously (i.v.) injected ACBP/DBI protein conserved its orexigenic function when the protein was mutated to abolish acyl coenzyme A binding, but lost its appetite-stimulatory effect in mice bearing a mutation in the γ2 subunit of the γ-aminobutyric acid (GABA) A receptor (GABAAR). ACBP/DBI neutralization by intraperitoneal (i.p.) injection of a specific mAb blunted excessive food intake in starved and leptin-deficient mice, but not in ghrelin-treated animals. Neither i.v. nor i.p. injected anti-ACBP/DBI antibody affected the behavior of mice in the dark–light box and open-field test. In contrast, ACBP/DBI increased immobility in the forced swim test, while anti-ACBP/DBI antibody counteracted this sign of depression. In patients diagnosed with therapy-resistant bipolar disorder or schizophrenia, ACBP/DBI similarly correlated with body mass index (BMI), not with the psychiatric diagnosis. Patients with high levels of ACBP/DBI were at risk of dyslipidemia and this effect was independent from BMI, as indicated by multivariate analysis. In summary, it appears that ACBP/DBI neutralization has no negative impact on mood and that human depression is not associated with alterations in ACBP/DBI concentrations.
Collapse
Affiliation(s)
- Adrien Joseph
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicetre, France
| | - Stéphanie Moriceau
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Descartes-Sorbonne-Paris Cité, Paris, France
| | - Valentina Sica
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), Barcelona, Spain
| | - Gerasimos Anagnostopoulos
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicetre, France
| | - Jonathan Pol
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Antoine Lafarge
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Faculté de Médecine, Université de Paris Saclay, Kremlin Bicetre, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France.,Université Paris Est Créteil, Inserm U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.,AP-HP, HU Henri Mondor, Departement Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Federation Hospitalo-Universitaire de Médecine de Precision (FHU IMPACT), F-94010, Créteil, France.,Fondation FondaMental Créteil, Créteil, France
| | - Josephine Loftus
- Fondation FondaMental, Créteil, France.,Pôle de Psychiatrie, Centre Hospitalier Princesse Grace, Monaco, France
| | - Frank Bellivier
- Fondation FondaMental, Créteil, France.,AP-HP, GH Saint-Louis-Lariboisière-Fernand Widal, Pôle Neurosciences Tête et Cou, INSERM UMRS 1144, University Paris Diderot, Paris, France
| | - Raoul Belzeaux
- Fondation FondaMental, Créteil, France.,Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France.,INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France
| | - Fabrice Berna
- Fondation FondaMental, Créteil, France.,Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Bruno Etain
- Fondation FondaMental, Créteil, France.,AP-HP, GH Saint-Louis-Lariboisière-Fernand Widal, Pôle Neurosciences Tête et Cou, INSERM UMRS 1144, University Paris Diderot, Paris, France
| | - Delphine Capdevielle
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France
| | - Philippe Courtet
- Fondation FondaMental, Créteil, France.,Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France.,PSNREC, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie. Hopital Louis Mourier, Colombes, Inserm U1266, Faculté de Médecine, Université de Paris, Paris, France
| | - Julien Dubreucq
- Fondation FondaMental, Créteil, France.,Centre Référent de Réhabilitation Psychosociale et de Remédiation Cognitive (C3R), CH, Alpes Isère, France
| | - D' Amato Thierry
- Fondation FondaMental, Créteil, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 69678, Bron Cedex, France
| | - Guillaume Fond
- Fondation FondaMental, Créteil, France.,AP-HM, Aix-Marseille University, School of Medicine-La Timone Medical Campus, EA 3279, Marseille, France.,EReSS-Health Service Research and Quality of Life Center, 13005, Marseille, France
| | - Sebastien Gard
- Fondation FondaMental, Créteil, France.,Centre Expert Troubles Bipolaires, Service de Psychiatrie Adulte, Hôpital Charles-Perrens, Bordeaux, France
| | - Pierre-Michel Llorca
- Fondation FondaMental, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Jasmina Mallet
- Fondation FondaMental, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie. Hopital Louis Mourier, Colombes, Inserm U1266, Faculté de Médecine, Université de Paris, Paris, France
| | - David Misdrahi
- Fondation FondaMental, Créteil, France.,Centre Expert Troubles Bipolaires, Service de Psychiatrie Adulte, Hôpital Charles-Perrens, Bordeaux, France
| | - Emilie Olié
- Fondation FondaMental, Créteil, France.,Department of Emergency Psychiatry and Acute Care, Lapeyronie Hospital, CHU Montpellier, Montpellier, France
| | - Christine Passerieux
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Le Chesnay, Université Paris-Saclay, UVSQ, Inserm, CESP, Team "DevPsy", 94807, Villejuif, France
| | - Mircea Polosan
- Fondation FondaMental, Créteil, France.,Université Grenoble Alpes, CHU de Grenoble et des Alpes, Grenoble Institut des Neurosciences (GIN) Inserm U 1216, Grenoble, France
| | - Paul Roux
- Fondation FondaMental, Créteil, France.,Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Le Chesnay, Université Paris-Saclay, UVSQ, Inserm, CESP, Team "DevPsy", 94807, Villejuif, France
| | - Ludovic Samalin
- Fondation FondaMental, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Franck Schürhoff
- Fondation FondaMental, Créteil, France.,Université Paris Est Créteil, Inserm U955, IMRB, Laboratoire Neuro-Psychiatrie translationnelle, F-94010, Créteil, France.,AP-HP, HU Henri Mondor, Departement Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Federation Hospitalo-Universitaire de Médecine de Precision (FHU IMPACT), F-94010, Créteil, France.,Fondation FondaMental Créteil, Créteil, France
| | - Raymond Schwan
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France.,Université de Lorraine, CHRU de Nancy et Pôle de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy, Nancy, France
| | | | | | - Franck Oury
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Descartes-Sorbonne-Paris Cité, Paris, France
| | - José M Bravo-San Pedro
- University Complutense of Madrid. Faculty of Medicine. Department of Physiology, Madrid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France. .,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France. .,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France. .,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China. .,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
13
|
MacDonald AJ, Ellacott KLJ. Astrocytes in the nucleus of the solitary tract: Contributions to neural circuits controlling physiology. Physiol Behav 2020; 223:112982. [PMID: 32535136 PMCID: PMC7378570 DOI: 10.1016/j.physbeh.2020.112982] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
The nucleus of the solitary tract (NTS) is the primary brainstem centre for the integration of physiological information from the periphery transmitted via the vagus nerve. In turn, the NTS feeds into downstream circuits regulating physiological parameters. Astrocytes are glial cells which have key roles in maintaining CNS tissue homeostasis and regulating neuronal communication. Recently an increasing number of studies have implicated astrocytes in the regulation of synaptic transmission and physiology. This review aims to highlight evidence for a role for astrocytes in the functions of the NTS. Astrocytes maintain and modulate NTS synaptic transmission contributing to the control of diverse physiological systems namely cardiovascular, respiratory, glucoregulatory, and gastrointestinal. In addition, it appears these cells may have a role in central control of feeding behaviour. As such these cells are a key component of signal processing and physiological control by the NTS.
Collapse
Affiliation(s)
- Alastair J MacDonald
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Level 4, RILD, Barrack Rd, Exeter EX2 5DW, UK
| | - Kate L J Ellacott
- Institute of Biomedical & Clinical Sciences, University of Exeter Medical School, Level 4, RILD, Barrack Rd, Exeter EX2 5DW, UK.
| |
Collapse
|
14
|
Glial Endozepines Reverse High-Fat Diet-Induced Obesity by Enhancing Hypothalamic Response to Peripheral Leptin. Mol Neurobiol 2020; 57:3307-3333. [DOI: 10.1007/s12035-020-01944-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/13/2020] [Indexed: 12/23/2022]
|
15
|
Tonon MC, Vaudry H, Chuquet J, Guillebaud F, Fan J, Masmoudi-Kouki O, Vaudry D, Lanfray D, Morin F, Prevot V, Papadopoulos V, Troadec JD, Leprince J. Endozepines and their receptors: Structure, functions and pathophysiological significance. Pharmacol Ther 2020; 208:107386. [DOI: 10.1016/j.pharmthera.2019.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
16
|
Bravo-San Pedro JM, Sica V, Kroemer G. The elusive "hunger protein": an appetite-stimulatory factor that is overabundant in human obesity. Mol Cell Oncol 2019; 6:e1667193. [PMID: 31692883 PMCID: PMC6816372 DOI: 10.1080/23723556.2019.1667193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/01/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
Paradoxically, most if not all previously known appetite-stimulatory hormones are downregulated in human obesity, reflecting failing homeostatic circuitries. Recently, we discovered that acyl-coenzyme-A binding protein/diazepam-binding inhibitor (ACBP/DBI) acts as a lipogenic and appetite stimulator, when systemically injected into mice. ACBP/DBI plasma levels are also elevated in obese subjects, supporting the notion that it may represent the elusive "hunger protein" that explains overeating in human obesity.
Collapse
Affiliation(s)
- José Manuel Bravo-San Pedro
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Team “Metabolism, Cancer & Immunity” labellisée par la Ligue contre le Cancer, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Valentina Sica
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Team “Metabolism, Cancer & Immunity” labellisée par la Ligue contre le Cancer, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Guido Kroemer
- INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Team “Metabolism, Cancer & Immunity” labellisée par la Ligue contre le Cancer, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
17
|
Bahdoudi S, Ghouili I, Hmiden M, do Rego JL, Lefranc B, Leprince J, Chuquet J, do Rego JC, Marcher AB, Mandrup S, Vaudry H, Tonon MC, Amri M, Masmoudi-Kouki O, Vaudry D. Neuroprotective effects of the gliopeptide ODN in an in vivo model of Parkinson's disease. Cell Mol Life Sci 2018; 75:2075-2091. [PMID: 29264673 PMCID: PMC11105203 DOI: 10.1007/s00018-017-2727-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 12/28/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopamine (DA) neurons through apoptotic, inflammatory and oxidative stress mechanisms. The octadecaneuropeptide (ODN) is a diazepam-binding inhibitor (DBI)-derived peptide, expressed by astrocytes, which protects neurons against oxidative cell damages and apoptosis in an in vitro model of PD. The present study reveals that a single intracerebroventricular injection of 10 ng ODN 1 h after the last administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) prevented the degeneration of DA neurons induced by the toxin in the substantia nigra pars compacta of mice, 7 days after treatment. ODN-mediated neuroprotection was associated with a reduction of the number of glial fibrillary acidic protein-positive reactive astrocytes and a strong inhibition of the expression of pro-inflammatory genes such as interleukins 1β and 6, and tumor necrosis factor-α. Moreover, ODN blocked the inhibition of the anti-apoptotic gene Bcl-2, and the stimulation of the pro-apoptotic genes Bax and caspase-3, induced by MPTP in the substantia nigra pars compacta. ODN also decreased or even in some cases abolished MPTP-induced oxidative damages, overproduction of reactive oxygen species and accumulation of lipid oxidation products in DA neurons. Furthermore, DBI knockout mice appeared to be more vulnerable than wild-type animals to MPTP neurotoxicity. Taken together, these results show that the gliopeptide ODN exerts a potent neuroprotective effect against MPTP-induced degeneration of nigrostriatal DA neurons in mice, through mechanisms involving downregulation of neuroinflammatory, oxidative and apoptotic processes. ODN may, thus, reduce neuronal damages in PD and other cerebral injuries involving oxidative neurodegeneration.
Collapse
Affiliation(s)
- Seyma Bahdoudi
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Ikram Ghouili
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Mansour Hmiden
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Jean-Luc do Rego
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France
- Behavioral Analysis Platform (SCAC), Normandy University, 76183, Rouen, France
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France
| | - Julien Chuquet
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
| | - Jean-Claude do Rego
- Behavioral Analysis Platform (SCAC), Normandy University, 76183, Rouen, France
| | - Ann-Britt Marcher
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense M, Denmark
| | - Hubert Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France
| | - Marie-Christine Tonon
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09, Laboratory of Functional Neurophysiology and Pathology, 2092, Tunis, Tunisia.
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine (IRIB), Normandy University, UNIROUEN, INSERM, U1239, 76821, Mont-Saint-Aignan, France.
- Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandy University, UNIROUEN, INSERM, 76821, Mont-Saint-Aignan, France.
| |
Collapse
|
18
|
López-Gambero AJ, Martínez F, Salazar K, Cifuentes M, Nualart F. Brain Glucose-Sensing Mechanism and Energy Homeostasis. Mol Neurobiol 2018; 56:769-796. [PMID: 29796992 DOI: 10.1007/s12035-018-1099-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/25/2018] [Indexed: 01/02/2023]
Abstract
The metabolic and energy state of the organism depends largely on the availability of substrates, such as glucose for ATP production, necessary for maintaining physiological functions. Deregulation in glucose levels leads to the appearance of pathological signs that result in failures in the cardiovascular system and various diseases, such as diabetes, obesity, nephropathy, and neuropathy. Particularly, the brain relies on glucose as fuel for the normal development of neuronal activity. Regions adjacent to the cerebral ventricles, such as the hypothalamus and brainstem, exercise central control in energy homeostasis. These centers house nuclei of neurons whose excitatory activity is sensitive to changes in glucose levels. Determining the different detection mechanisms, the phenotype of neurosecretion, and neural connections involving glucose-sensitive neurons is essential to understanding the response to hypoglycemia through modulation of food intake, thermogenesis, and activation of sympathetic and parasympathetic branches, inducing glucagon and epinephrine secretion and other hypothalamic-pituitary axis-dependent counterregulatory hormones, such as glucocorticoids and growth hormone. The aim of this review focuses on integrating the current understanding of various glucose-sensing mechanisms described in the brain, thereby establishing a relationship between neuroanatomy and control of physiological processes involved in both metabolic and energy balance. This will advance the understanding of increasingly prevalent diseases in the modern world, especially diabetes, and emphasize patterns that regulate and stimulate intake, thermogenesis, and the overall synergistic effect of the neuroendocrine system.
Collapse
Affiliation(s)
- A J López-Gambero
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.,Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain
| | - F Martínez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - K Salazar
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - M Cifuentes
- Department of Cell Biology, Genetics and Physiology, University of Malaga, IBIMA, BIONAND, Andalusian Center for Nanomedicine and Biotechnology and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Málaga, Spain.
| | - F Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA BIO BIO, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile. .,Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
19
|
Lanfray D, Richard D. Emerging Signaling Pathway in Arcuate Feeding-Related Neurons: Role of the Acbd7. Front Neurosci 2017; 11:328. [PMID: 28690493 PMCID: PMC5481368 DOI: 10.3389/fnins.2017.00328] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/24/2017] [Indexed: 01/28/2023] Open
Abstract
The understanding of the mechanisms whereby energy balance is regulated is essential to the unraveling of the pathophysiology of obesity. In the last three decades, focus was put on the metabolic role played by the hypothalamic neurons expressing proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART) and the neurons co-localizing agouti-related peptide (AgRP), neuropeptide Y (NPY), and gamma-aminobutyric acid (GABA). These neurons are part of the leptin-melanocortin pathway, whose role is key in energy balance regulation. More recently, the metabolic involvement of further hypothalamic uncharacterized neuron populations has been suggested. In this review, we discuss the potential homeostatic implication of hypothalamic GABAergic neurons that produce Acyl-Coa-binding domain containing protein 7 (ACBD7), precursor of the nonadecaneuropeptide (NDN), which has recently been characterized as a potent anorexigenic neuropeptide capable of relaying the leptin anorectic/thermogenic effect via the melanocortin system.
Collapse
Affiliation(s)
- Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université LavalQuébec, QC, Canada
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université LavalQuébec, QC, Canada
| |
Collapse
|
20
|
Guillebaud F, Girardet C, Abysique A, Gaigé S, Barbouche R, Verneuil J, Jean A, Leprince J, Tonon MC, Dallaporta M, Lebrun B, Troadec JD. Glial Endozepines Inhibit Feeding-Related Autonomic Functions by Acting at the Brainstem Level. Front Neurosci 2017; 11:308. [PMID: 28611581 PMCID: PMC5447764 DOI: 10.3389/fnins.2017.00308] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/16/2017] [Indexed: 01/05/2023] Open
Abstract
Endozepines are endogenous ligands for the benzodiazepine receptors and also target a still unidentified GPCR. The endozepine octadecaneuropeptide (ODN), an endoproteolytic processing product of the diazepam-binding inhibitor (DBI) was recently shown to be involved in food intake control as an anorexigenic factor through ODN-GPCR signaling and mobilization of the melanocortinergic signaling pathway. Within the hypothalamus, the DBI gene is mainly expressed by non-neuronal cells such as ependymocytes, tanycytes, and protoplasmic astrocytes, at levels depending on the nutritional status. Administration of ODN C-terminal octapeptide (OP) in the arcuate nucleus strongly reduces food intake. Up to now, the relevance of extrahypothalamic targets for endozepine signaling-mediated anorexia has been largely ignored. We focused our study on the dorsal vagal complex located in the caudal brainstem. This structure is strongly involved in the homeostatic control of food intake and comprises structural similarities with the hypothalamus. In particular, a circumventricular organ, the area postrema (AP) and a tanycyte-like cells forming barrier between the AP and the adjacent nucleus tractus solitarius (NTS) are present. We show here that DBI is highly expressed by ependymocytes lining the fourth ventricle, tanycytes-like cells, as well as by proteoplasmic astrocytes located in the vicinity of AP/NTS interface. ODN staining observed at the electron microscopic level reveals that ODN-expressing tanycyte-like cells and protoplasmic astrocytes are sometimes found in close apposition to neuronal elements such as dendritic profiles or axon terminals. Intracerebroventricular injection of ODN or OP in the fourth ventricle triggers c-Fos activation in the dorsal vagal complex and strongly reduces food intake. We also show that, similarly to leptin, ODN inhibits the swallowing reflex when microinjected into the swallowing pattern generator located in the NTS. In conclusion, we hypothesized that ODN expressing cells located at the AP/NTS interface could release ODN and modify excitability of NTS neurocircuitries involved in food intake control.
Collapse
Affiliation(s)
- Florent Guillebaud
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Clémence Girardet
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Anne Abysique
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Stéphanie Gaigé
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Rym Barbouche
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Jérémy Verneuil
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - André Jean
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Jérôme Leprince
- Institut National de la Santé et de la Recherche Médicale U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine, University of Rouen NormadieMont-Saint-Aignan, France
| | - Marie-Christine Tonon
- Institut National de la Santé et de la Recherche Médicale U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Institute for Research and Innovation in Biomedicine, University of Rouen NormadieMont-Saint-Aignan, France
| | - Michel Dallaporta
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Bruno Lebrun
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| | - Jean-Denis Troadec
- Laboratoire Physiologie et Physiopathologie du Système Nerveux Somato-Moteur et Neurovégétatif EA 4674, Faculté des Sciences et Techniques de St Jérôme, Université Aix-MarseilleMarseille, France
| |
Collapse
|
21
|
Boussahel A, Ibegbu DM, Lamtahri R, Maucotel J, Chuquet J, Lefranc B, Leprince J, Roldo M, Mével JCL, Gorecki D, Barbu E. Investigations of octylglyceryl dextran-graft-poly(lactic acid) nanoparticles for peptide delivery to the brain. Nanomedicine (Lond) 2017; 12:879-892. [DOI: 10.2217/nnm-2016-0406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Develop modified dextran nanoparticles showing potential to assist with drug permeation across the blood–brain barrier for the delivery of neuropeptides. Methods: Nanoparticles loaded by emulsification with model macromolecular actives were characterized in terms of stability, cytotoxicity and drug-release behavior. Peptide-loaded nanoformulations were tested in an in vivo trout model and in food-deprived mice. Results: Nanoformulations loaded with model peptides showed good stability and appeared nontoxic in low concentration against human brain endothelial cells. They were found to preserve the bioactivity of loaded peptides (angiotensin II) as demonstrated in vivo using a trout model, and to induce a transient reduction of food consumption in mice when loaded with an anorexigenic octaneuropeptide. Conclusion: Octylglyceryl dextran-graft-poly(lactic acid) nanoparticles formulated by emulsification demonstrate potential for peptide delivery.
Collapse
Affiliation(s)
- Asme Boussahel
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| | - Daniel M Ibegbu
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| | - Rhita Lamtahri
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Julie Maucotel
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Julien Chuquet
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Benjamin Lefranc
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal & Neuroendocrine Differentiation & Communication, INSERM U1239, Normandy University, 76000 Rouen, France
| | - Marta Roldo
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| | - Jean-Claude Le Mével
- Neurophysiology Laboratory, LaTIM UMR 1101, University of Brest, 29238 Cedex 3, France
| | - Darek Gorecki
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| | - Eugen Barbu
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT, UK
| |
Collapse
|
22
|
Rémond E, Martin C, Martinez J, Cavelier F. Silicon-Containing Amino Acids: Synthetic Aspects, Conformational Studies, and Applications to Bioactive Peptides. Chem Rev 2016; 116:11654-11684. [DOI: 10.1021/acs.chemrev.6b00122] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Emmanuelle Rémond
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| | - Charlotte Martin
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean Martinez
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| | - Florine Cavelier
- Institut
des Biomolécules
Max Mousseron, Unité Mixte de Recherche 5247 de Centre National
de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Place Eugène
Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
23
|
Chowen JA, Argente-Arizón P, Freire-Regatillo A, Frago LM, Horvath TL, Argente J. The role of astrocytes in the hypothalamic response and adaptation to metabolic signals. Prog Neurobiol 2016; 144:68-87. [PMID: 27000556 DOI: 10.1016/j.pneurobio.2016.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
The hypothalamus is crucial in the regulation of homeostatic functions in mammals, with the disruption of hypothalamic circuits contributing to chronic conditions such as obesity, diabetes mellitus, hypertension, and infertility. Metabolic signals and hormonal inputs drive functional and morphological changes in the hypothalamus in attempt to maintain metabolic homeostasis. However, the dramatic increase in the incidence of obesity and its secondary complications, such as type 2 diabetes, have evidenced the need to better understand how this system functions and how it can go awry. Growing evidence points to a critical role of astrocytes in orchestrating the hypothalamic response to metabolic cues by participating in processes of synaptic transmission, synaptic plasticity and nutrient sensing. These glial cells express receptors for important metabolic signals, such as the anorexigenic hormone leptin, and determine the type and quantity of nutrients reaching their neighboring neurons. Understanding the mechanisms by which astrocytes participate in hypothalamic adaptations to changes in dietary and metabolic signals is fundamental for understanding the neuroendocrine control of metabolism and key in the search for adequate treatments of metabolic diseases.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain.
| | - Pilar Argente-Arizón
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandra Freire-Regatillo
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, CIBER de Obesidad Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Lanfray D, Caron A, Roy MC, Laplante M, Morin F, Leprince J, Tonon MC, Richard D. Involvement of the Acyl-CoA binding domain containing 7 in the control of food intake and energy expenditure in mice. eLife 2016; 5. [PMID: 26880548 PMCID: PMC4821795 DOI: 10.7554/elife.11742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 02/14/2016] [Indexed: 11/28/2022] Open
Abstract
Acyl-CoA binding domain-containing 7 (Acbd7) is a paralog gene of the diazepam-binding inhibitor/Acyl-CoA binding protein in which single nucleotide polymorphism has recently been associated with obesity in humans. In this report, we provide converging evidence indicating that a splice variant isoform of the Acbd7 mRNA is expressed and translated by some POMC and GABAergic-neurons in the hypothalamic arcuate nucleus (ARC). We have demonstrated that the ARC ACBD7 isoform was produced and processed into a bioactive peptide referred to as nonadecaneuropeptide (NDN) in response to catabolic signals. We have characterized NDN as a potent anorexigenic signal acting through an uncharacterized endozepine G protein-coupled receptor and subsequently via the melanocortin system. Our results suggest that ACBD7-producing neurons participate in the hypothalamic leptin signalling pathway. Taken together, these data suggest that ACBD7-producing neurons are involved in the hypothalamic control exerted on food intake and energy expenditure by the leptin-melanocortin pathway. DOI:http://dx.doi.org/10.7554/eLife.11742.001 Obesity is an increasingly common problem worldwide. To treat it effectively, we must understand how the body controls how much food a person consumes and how much energy they expend. The hypothalamus is one region of the brain that plays a critical role in regulating this energy balance. Some of the neurons in the hypothalamus can change their activity when they detect satiety hormones including the leptin, which is produced by fat cells and suppresses appetite. However, it is not clear exactly how the neurons respond to leptin and other energy-related signals. Recent studies have linked the gene that encodes a protein called ACBD7 with obesity, and showed that it is one of the genes that is overexpressed in neurons that are sensitive to leptin. Now, Lanfray et al. have discovered a population of neurons that produce a new variant of the protein in the hypothalamus of mice. When this protein variant matures, it can be cut down to form a small protein-like molecule called NDN. Further experiments showed that leptin stimulates the production of both the new ABCD7 variant and NDN. Lanfray et al. then injected mice that had been denied food for a several hours with NDN. The injected mice ate less than untreated mice, and burn more energy. NDN appears to form part of the signaling pathway through which leptin signals to the hypothalamus to control appetite. In the future, creating mice in which the activity of the gene that encodes ACBD7 can be easily disrupted could help to reveal more about how the hypothalamus helps to control energy balance. DOI:http://dx.doi.org/10.7554/eLife.11742.002
Collapse
Affiliation(s)
- Damien Lanfray
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Alexandre Caron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Marie-Claude Roy
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Fabrice Morin
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Normandy University, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Normandy University, Mont-Saint-Aignan, France
| | - Marie-Christine Tonon
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Santé et de la Recherche Médicale, Mont-Saint-Aignan, France.,Institute for Research and Innovation in Biomedicine, Normandy University, Mont-Saint-Aignan, France
| | - Denis Richard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| |
Collapse
|
25
|
Siejka A, Jankiewicz-Wika J, Stępień H, Fryczak J, Świętosławski J, Komorowski J. Reduced plasma level of diazepam-binding inhibitor (DBI) in patients with morbid obesity. Endocrine 2015; 49:859-62. [PMID: 25561371 PMCID: PMC4512568 DOI: 10.1007/s12020-014-0522-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, ul. Sterlinga 3, 91-425 Lodz, Poland
| | - Joanna Jankiewicz-Wika
- Department of Clinical Endocrinology, Medical University of Lodz, ul. Sterlinga 3, 91-425 Lodz, Poland
| | - Henryk Stępień
- Department of Immunoendocrinology, Medical University of Lodz, ul. Sterlinga 3, 91-425, Lodz, Poland
| | - Jolanta Fryczak
- Department of Immunoendocrinology, Medical University of Lodz, ul. Sterlinga 3, 91-425, Lodz, Poland
| | - Jacek Świętosławski
- Department of Neuroendocrinology, Medical University of Lodz, ul. Sterlinga 3, 91-425 Lodz, Poland
| | - Jan Komorowski
- Department of Clinical Endocrinology, Medical University of Lodz, ul. Sterlinga 3, 91-425 Lodz, Poland
| |
Collapse
|
26
|
Detection, characterization and biological activities of [bisphospho-thr3,9]ODN, an endogenous molecular form of ODN released by astrocytes. Neuroscience 2015; 290:472-84. [PMID: 25639232 DOI: 10.1016/j.neuroscience.2015.01.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/23/2022]
Abstract
Astrocytes synthesize and release endozepines, a family of regulatory neuropeptides, including diazepam-binding inhibitor (DBI) and its processing fragments such as the octadecaneuropeptide (ODN). At the molecular level, ODN interacts with two types of receptors, i.e. it acts as an inverse agonist of the central-type benzodiazepine receptor (CBR), and as an agonist of a G protein-coupled receptor (GPCR). ODN exerts a wide range of biological effects mediated through these two receptors and, in particular, it regulates astrocyte activity through an autocrine/paracrine mechanism involving the metabotropic receptor. More recently, it has been shown that Müller glial cells secrete phosphorylated DBI and that bisphosphorylated ODN ([bisphospho-Thr(3,9)]ODN, bpODN) has a stronger affinity for CBR than ODN. The aim of the present study was thus to investigate whether bpODN is released by mouse cortical astrocytes and to compare its potency to ODN. Using a radioimmunoassay and mass spectrometry analysis we have shown that bpODN as well as ODN were released in cultured astrocyte supernatants. Both bpODN and ODN increased astrocyte calcium event frequency but in a very different range of concentration. Indeed, ODN stimulatory effect decreased at concentrations over 10(-10)M whereas bpODN increased the calcium event frequency at similar doses. In vivo effects of bpODN and ODN were analyzed in two behavioral paradigms involving either the metabotropic receptor (anorexia) or the CBR (anxiety). As previously described, ODN (100ng, icv) induced a significant reduction of food intake. Similar effect was achieved with bpODN but at a 10 times higher dose (1000 ng, icv). Similarly, and contrasting with our hypothesis, bpODN was also 10 times less potent than ODN to induce anxiety-related behavior in the elevated zero maze test. Thus, the present data do not support that phosphorylation of ODN is involved in receptor selectivity but indicate that it rather weakens ODN activity.
Collapse
|
27
|
Rémond E, Martin C, Martinez J, Cavelier F. Silaproline, a Silicon-Containing Proline Surrogate. TOPICS IN HETEROCYCLIC CHEMISTRY 2015. [DOI: 10.1007/7081_2015_177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Clavier T, Tonon MC, Foutel A, Besnier E, Lefevre-Scelles A, Morin F, Gandolfo P, Tuech JJ, Quillard M, Veber B, Dureuil B, Castel H, Compère V. Increased plasma levels of endozepines, endogenous ligands of benzodiazepine receptors, during systemic inflammation: a prospective observational study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:633. [PMID: 25407756 PMCID: PMC4326502 DOI: 10.1186/s13054-014-0633-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022]
Abstract
Introduction Recent work has shown that benzodiazepines interact with the immune system and exhibit anti-inflammatory effects. By using in vitro models, researchers in several studies have shown that the peptidergic endogenous ligands of benzodiazepine receptors, named endozepines, are involved in the immune response. All endozepines identified so far derive from diazepam-binding inhibitor (DBI), which generates several biologically active fragments. The aim of the present study was to measure plasma levels of DBI-like immunoreactivity (DBI-LI) in a rat model of sepsis and in patients with systemic inflammation from septic or non-septic origin. Methods Cecal ligation and puncture (CLP) or sham surgery was performed in rats. Blood samples were taken from animals, patients hospitalized for digestive surgery with inflammatory diseases, and healthy volunteers. Measurements of plasma DBI-related peptides were carried out by radioimmunoassay in animal and human samples. Results In the rats, CLP provoked an increase of plasma DBI-LI (+37%) 6 hours postsurgery. In humans, DBI-LI levels were significantly higher in the systemic inflammation group than in the healthy volunteer group (48.6 (32.7 to 77.7) pg/ml versus 11.1 (5.9 to 35.3) pg/ml, P < 0.001). We found a positive correlation between endozepine levels and Acute Physiology and Chronic Health Evaluation II score (rs = 0.33 (0.026 to 0.58), P < 0.05) and tumor necrosis factor α levels (rs = 0.43 (0.14 to 0.65), P < 0.01). The area under the receiver operating characteristic curve for endozepines was 0.842 (95% CI (0.717 to 0.966), P < 0.0001) for discriminating patients with inflammation from healthy volunteers. Conclusions Endozepines might be involved in the inflammatory response in patients with systemic inflammation.
Collapse
Affiliation(s)
- Thomas Clavier
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Department of Anesthesiology and Critical Care, Rouen University Hospital, Rue de Germont, 76000, Rouen, France.
| | - Marie-Christine Tonon
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Place Emile Blondel, 76130, Mont-Saint-Aignan, France.
| | - Anne Foutel
- Department of Anesthesiology and Critical Care, Rouen University Hospital, Rue de Germont, 76000, Rouen, France.
| | - Emmanuel Besnier
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Department of Anesthesiology and Critical Care, Rouen University Hospital, Rue de Germont, 76000, Rouen, France.
| | - Antoine Lefevre-Scelles
- Department of Anesthesiology and Critical Care, Rouen University Hospital, Rue de Germont, 76000, Rouen, France.
| | - Fabrice Morin
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Place Emile Blondel, 76130, Mont-Saint-Aignan, France.
| | - Pierrick Gandolfo
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Place Emile Blondel, 76130, Mont-Saint-Aignan, France.
| | - Jean-Jacques Tuech
- Department of Digestive Surgery, Rouen University Hospital, Rue de Germont, 76000, Rouen, France.
| | - Muriel Quillard
- Department of Medical Biochemistry, Institute of Clinical Biology, Rouen University Hospital, 76000, Rouen, France.
| | - Benoit Veber
- Department of Anesthesiology and Critical Care, Rouen University Hospital, Rue de Germont, 76000, Rouen, France.
| | - Bertrand Dureuil
- Department of Anesthesiology and Critical Care, Rouen University Hospital, Rue de Germont, 76000, Rouen, France.
| | - Hélène Castel
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Place Emile Blondel, 76130, Mont-Saint-Aignan, France.
| | - Vincent Compère
- Institut National de la Santé et de la Recherche Médicale (Inserm), U982, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Normandy University, Institute for Research and Innovation in Biomedicine (IRIB), Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Rouen University, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Place Emile Blondel, 76130, Mont-Saint-Aignan, France. .,Department of Anesthesiology and Critical Care, Rouen University Hospital, Rue de Germont, 76000, Rouen, France.
| |
Collapse
|
29
|
Buckman LB, Ellacott KLJ. The contribution of hypothalamic macroglia to the regulation of energy homeostasis. Front Syst Neurosci 2014; 8:212. [PMID: 25374514 PMCID: PMC4206078 DOI: 10.3389/fnsys.2014.00212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/07/2014] [Indexed: 11/13/2022] Open
Abstract
The hypothalamus is critical for the regulation of energy homeostasis. Genetic and pharmacologic studies have identified a number of key hypothalamic neuronal circuits that integrate signals controlling food intake and energy expenditure. Recently, studies have begun to emerge demonstrating a role for non-neuronal cell types in the regulation of energy homeostasis. In particular the potential importance of different glial cell types is increasingly being recognized. A number of studies have described changes in the activity of hypothalamic macroglia (principally astrocytes and tanycytes) in response to states of positive and negative energy balance, such as obesity and fasting. This article will review these studies and discuss how these findings are changing our understanding of the cellular mechanisms by which energy homeostasis is regulated.
Collapse
Affiliation(s)
- Laura B Buckman
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center Nashville, TN, USA ; Division of Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Kate L J Ellacott
- Biomedical Neuroscience Research Group, University of Exeter Medical School, Hatherly Laboratories Exeter, UK
| |
Collapse
|
30
|
Lanfray D, Arthaud S, Ouellet J, Compère V, Do Rego JL, Leprince J, Lefranc B, Castel H, Bouchard C, Monge-Roffarello B, Richard D, Pelletier G, Vaudry H, Tonon MC, Morin F. Gliotransmission and brain glucose sensing: critical role of endozepines. Diabetes 2013; 62:801-10. [PMID: 23160530 PMCID: PMC3581199 DOI: 10.2337/db11-0785] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hypothalamic glucose sensing is involved in the control of feeding behavior and peripheral glucose homeostasis, and glial cells are suggested to play an important role in this process. Diazepam-binding inhibitor (DBI) and its processing product the octadecaneuropeptide (ODN), collectively named endozepines, are secreted by astroglia, and ODN is a potent anorexigenic factor. Therefore, we investigated the involvement of endozepines in brain glucose sensing. First, we showed that intracerebroventricular administration of glucose in rats increases DBI expression in hypothalamic glial-like tanycytes. We then demonstrated that glucose stimulates endozepine secretion from hypothalamic explants. Feeding experiments indicate that the anorexigenic effect of central administration of glucose was blunted by coinjection of an ODN antagonist. Conversely, the hyperphagic response elicited by central glucoprivation was suppressed by an ODN agonist. The anorexigenic effects of centrally injected glucose or ODN agonist were suppressed by blockade of the melanocortin-3/4 receptors, suggesting that glucose sensing involves endozepinergic control of the melanocortin pathway. Finally, we found that brain endozepines modulate blood glucose levels, suggesting their involvement in a feedback loop controlling whole-body glucose homeostasis. Collectively, these data indicate that endozepines are a critical relay in brain glucose sensing and potentially new targets in treatment of metabolic disorders.
Collapse
Affiliation(s)
- Damien Lanfray
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Sébastien Arthaud
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5167, University Claude Bernard Lyon 1, Lyon, France
| | - Johanne Ouellet
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University, Quebec, Quebec, Canada
| | - Vincent Compère
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Department of Anaesthesiology and Critical Care, Rouen University Hospital, Rouen, France
| | - Jean-Luc Do Rego
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Hélène Castel
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
| | - Cynthia Bouchard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec, Quebec, Canada
| | - Boris Monge-Roffarello
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec, Quebec, Canada
| | - Denis Richard
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University, Quebec, Quebec, Canada
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University, Quebec, Quebec, Canada
| | - Hubert Vaudry
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Research Center in Molecular Endocrinology, Oncology and Human Genomics, Laval University, Quebec, Quebec, Canada
| | - Marie-Christine Tonon
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Corresponding author: Marie-Christine Tonon, , or Fabrice Morin,
| | - Fabrice Morin
- INSERM U982, DC2N Laboratory of Neuronal and Neuroendocrine Cell Differentiation and Communication, Mont-Saint-Aignan, France
- Institute for Biomedical Research and Innovation, Regional Platform for Cell Imaging (PRIMACEN), Rouen, France
- University of Rouen, Mont-Saint-Aignan, France
- Corresponding author: Marie-Christine Tonon, , or Fabrice Morin,
| |
Collapse
|
31
|
Azuma M, Wada K, Leprince J, Tonon MC, Uchiyama M, Takahashi A, Vaudry H, Matsuda K. The octadecaneuropeptide stimulates somatolactin release from cultured goldfish pituitary cells. J Neuroendocrinol 2013; 25:312-21. [PMID: 23163696 DOI: 10.1111/jne.12005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/24/2012] [Accepted: 11/10/2012] [Indexed: 11/30/2022]
Abstract
The present study aimed to investigate the distribution of the octadecaneuropeptide (ODN) in the goldfish brain and to look for a possible effect of ODN on somatolactin (SL) release from pituitary cells. A discrete population of ODN-immunoreactive neurones was localised in the lateral part of the nucleus lateralis tuberis. These neurones sent projections through the neurohypophyseal tract towards the neurohypophysis, and nerve fibres were seen in the close vicinity of SL-producing cells in the pars intermedia. Incubation of cultured goldfish pituitary cells with graded concentrations of ODN (10(-9) -10(-5 ) m) induced a dose-dependent stimulation of SL-β, but not SL-α, release. ODN-evoked SL release was blocked by the metabotrophic endozepine receptor antagonist cyclo(1-8) [DLeu(5) ]OP but was not affected by the central-type benzodiazepine receptor antagonist flumazenil. ODN-induced SL release was suppressed by treatment with the phospholipase C (PLC) inhibitor U-73122 but not with the protein kinase A (PKA) inhibitor H-89. These results indicate that, in fish, ODN produced by hypothalamic neurones acts as a hypophysiotrophic neuropeptide stimulating SL release. The effect of ODN is mediated through a metabotrophic endozepine receptor positively coupled to the PLC/inositol 1,4,5-trisphosphate/protein kinase C-signalling pathway.
Collapse
Affiliation(s)
- M Azuma
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, thereby enriching directly for the mRNAs expressed in discrete subpopulations of activated cells. We use this approach to identify neurons in the hypothalamus regulated by changes in salt balance or food availability. We show that galanin neurons are activated by fasting and that prodynorphin neurons restrain food intake during scheduled feeding. These studies identify elements of the neural circuit that controls food intake and illustrate how the activity-dependent capture of cell-type-specific transcripts can elucidate the functional organization of a complex tissue.
Collapse
|
33
|
Braga A, Stein AC, Dischkaln Stolz E, Dallegrave E, Buffon A, do Rego JC, Gosmann G, Fialho Viana A, Kuze Rates SM. Repeated administration of an aqueous spray-dried extract of the leaves of Passiflora alata Curtis (Passifloraceae) inhibits body weight gain without altering mice behavior. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:59-66. [PMID: 23107823 DOI: 10.1016/j.jep.2012.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Passiflora alata is a Southern American species that constitutes many traditional remedies as well as phytomedicines used for sedative and anxiolytic purposes in Brazil. However studies on repeated treatment effects are scarce. AIM OF THE STUDY To evaluate behavioral, physiological and biochemical effects of the repeated treatment with an aqueous spray-dried extract of Passiflora alata leaves containing 2.5% (w/v) of flavonoids (PA) in mice. MATERIAL AND METHODS Male adult CF1 mice were treated (p.o.) for 14 days with PA (2.5; 25 or 250 mg/kg). The feeding behavior was evaluated at the beginning (1h after the first administration) and at the end of the treatment (15th day). The body weight gain and food consumption were monitored along the days. On day 15 mice were evaluated on plus maze, spontaneous locomotor activity, catalepsy and barbiturate sleeping time tests. Serum glucose, lipids, ALT and AST enzymes were determined. Liver, kidney, perirenal fat, epididymal and peritoneal fat were analyzed. RESULTS The repeated treatment with the highest dose tested (250 mg/kg) did not alter the mice behavior on open field, elevated plus maze, catalepsy and barbiturate sleeping time tests. Repeated administration of PA 250 decreased mice feeding behavior and weight gain. PA 25 and PA 250 reduced mice relative liver weight and caused mild hepatic hydropic degeneration as well as a decrease in alanine aminotransferase (ALT) serum level. CONCLUSIONS These results indicate that Passiflora alata does not present central cumulative effects and point to the needs of further studies searching for its hepatotoxicity as well as potential anorexigenic.
Collapse
Affiliation(s)
- Andressa Braga
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Neuroendocrine control of feeding behavior and psychomotor activity by pituitary adenylate cyclase-activating polypeptide (PACAP) in vertebrates. Obes Res Clin Pract 2013; 7:e1-7. [DOI: 10.1016/j.orcp.2012.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/16/2012] [Accepted: 10/22/2012] [Indexed: 11/23/2022]
|
35
|
Hamdi Y, Kaddour H, Vaudry D, Bahdoudi S, Douiri S, Leprince J, Castel H, Vaudry H, Tonon MC, Amri M, Masmoudi-Kouki O. The octadecaneuropeptide ODN protects astrocytes against hydrogen peroxide-induced apoptosis via a PKA/MAPK-dependent mechanism. PLoS One 2012; 7:e42498. [PMID: 22927932 PMCID: PMC3424241 DOI: 10.1371/journal.pone.0042498] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/06/2012] [Indexed: 12/18/2022] Open
Abstract
Astrocytes synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN) an endogenous ligand of both central-type benzodiazepine (CBR) and metabotropic receptors. We have recently shown that ODN exerts a protective effect against hydrogen peroxide (H2O2)-induced oxidative stress in astrocytes. The purpose of the present study was to determine the type of receptor and the transduction pathways involved in the protective effect of ODN in cultured rat astrocytes. We have first observed a protective activity of ODN at very low concentrations that was abrogated by the metabotropic ODN receptor antagonist cyclo1–8[DLeu5]OP, but not by the CBR antagonist flumazenil. We have also found that the metabotropic ODN receptor is positively coupled to adenylyl cyclase in astrocytes and that the glioprotective action of ODN upon H2O2-induced astrocyte death is PKA- and MEK-dependent, but PLC/PKC-independent. Downstream of PKA, ODN induced ERK phosphorylation, which in turn activated the expression of the anti-apoptotic gene Bcl-2 and blocked the stimulation by H2O2 of the pro-apoptotic gene Bax. The effect of ODN on the Bax/Bcl-2 balance contributed to abolish the deleterious action of H2O2 on mitochondrial membrane integrity and caspase-3 activation. Finally, the inhibitory effect of ODN on caspase-3 activity was shown to be PKA and MEK-dependent. In conclusion, the present results demonstrate that the potent glioprotective action of ODN against oxidative stress involves the metabotropic ODN receptor coupled to the PKA/ERK-kinase pathway to inhibit caspase-3 activation.
Collapse
Affiliation(s)
- Yosra Hamdi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hadhemi Kaddour
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - David Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Medical Research and Innovation (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Seyma Bahdoudi
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Salma Douiri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Jérôme Leprince
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Medical Research and Innovation (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Helene Castel
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
| | - Hubert Vaudry
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
- International Associated Laboratory Samuel de Champlain, Mont-Saint-Aignan, France
- Regional Platform for Cell Imaging of Haute-Normandie (PRIMACEN), Institute for Medical Research and Innovation (IRIB), University of Rouen, Mont-Saint-Aignan, France
- * E-mail: (MA), (HV)
| | - Marie-Christine Tonon
- Inserm U982, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, University of Rouen, Mont-Saint-Aignan, France
| | - Mohamed Amri
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
- * E-mail: (MA), (HV)
| | - Olfa Masmoudi-Kouki
- Laboratory of Functional Neurophysiology and Pathology, Research Unit UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
36
|
Do Rego JL, Seong JY, Burel D, Leprince J, Vaudry D, Luu-The V, Tonon MC, Tsutsui K, Pelletier G, Vaudry H. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides. Front Endocrinol (Lausanne) 2012; 3:4. [PMID: 22654849 PMCID: PMC3356045 DOI: 10.3389/fendo.2012.00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/05/2012] [Indexed: 12/30/2022] Open
Abstract
The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones, and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones, or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones, or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7α-hydroxypregnenolone (7α-OH-Δ(5)P), while prolactin produced by the adenohypophysis enhances the formation of 7α-OH-Δ(5)P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABA(A) receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocin, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
| | - Jae Young Seong
- Laboratory of G Protein-Coupled Receptors, Graduate School of Medicine, Korea University College of MedicineSeoul, Korea
| | - Delphine Burel
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Jerôme Leprince
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - David Vaudry
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Van Luu-The
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Marie-Christine Tonon
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda UniversityTokyo, Japan
- Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Hubert Vaudry
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
- *Correspondence: Hubert Vaudry, INSERM U982, European Institute for Peptide Research, IFRMP 23, University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| |
Collapse
|
37
|
Kang KS, Yahashi S, Matsuda K. Central and peripheral effects of ghrelin on energy balance, food intake and lipid metabolism in teleost fish. Peptides 2011; 32:2242-7. [PMID: 21601604 DOI: 10.1016/j.peptides.2011.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/24/2011] [Accepted: 05/05/2011] [Indexed: 11/23/2022]
Abstract
Ghrelin was first identified and characterized from rat stomach as an endogenous ligand for the growth hormone secretagogue receptor. Ghrelin and its receptor system are present not only in peripheral tissues such as stomach and intestine, but also in the central nervous system of mammals. Interestingly, administration of ghrelin induces an orexigenic effect and also modifies locomotor activity, suggesting its involvement in feeding control and the regulation of energy balance, in addition to the regulation of growth hormone release. Information about ghrelin in non-mammals, such as teleost fish, has also been increasing, and important data have been obtained. An understanding of the evolutionary background of the energy regulation system and the central and peripheral roles of ghrelin in teleost fish could provide indications as to their roles in mammals, particularly humans. In this review, we overview the central and peripheral effects of ghrelin on energy balance, locomotor activity, and lipid metabolism in teleost fish.
Collapse
Affiliation(s)
- Ki Sung Kang
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | | | | |
Collapse
|
38
|
Hamdi Y, Masmoudi-Kouki O, Kaddour H, Belhadj F, Gandolfo P, Vaudry D, Mokni M, Leprince J, Hachem R, Vaudry H, Tonon MC, Amri M. Protective effect of the octadecaneuropeptide on hydrogen peroxide-induced oxidative stress and cell death in cultured rat astrocytes. J Neurochem 2011; 118:416-28. [DOI: 10.1111/j.1471-4159.2011.07315.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
Kang KS, Yahashi S, Matsuda K. The effects of ghrelin on energy balance and psychomotor activity in a goldfish model: an overview. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2011:171034. [PMID: 21760819 PMCID: PMC3133451 DOI: 10.1155/2011/171034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 03/22/2011] [Indexed: 12/14/2022]
Abstract
The goldfish (Carassius auratus) has a number of merits as a laboratory animal, and we have extensively identified the mechanisms by which ghrelin regulates food intake in this species. For the first time, we have purified and characterized 11 molecular variants of ghrelin that are present in goldfish intestine and shown that 17-residue ghrelin, the predominant form with n-octanoyl modification, is biologically active and implicated in the regulation of food intake as an endogenous orexigenic factor. Ghrelin and its receptor system are present not only in peripheral tissues such as stomach and intestine, but also in the central nervous system. Recent studies have also revealed that a number of neuropeptides are widely distributed in the brain in key areas of emotional regulation, and their role as modulators of behavioral states is being increasingly recognized. Interestingly, administration of ghrelin induces an orexigenic effect and also modifies locomotor activity, suggesting the involvement of ghrelin in feeding control and regulation of energy balance. Information derived from studies of ghrelin has been increasing, and important results have been obtained from both fish and mammals. Here, we present an overview of the effects of ghrelin on energy balance and psychomotor activity in the goldfish as an animal model. The available data provide an insight into evolutionary background of ghrelin's multiple actions on energy homeostasis in vertebrates.
Collapse
Affiliation(s)
- Ki Sung Kang
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Satowa Yahashi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
40
|
Matsuda K, Wada K, Azuma M, Leprince J, Tonon M, Sakashita A, Maruyama K, Uchiyama M, Vaudry H. The octadecaneuropeptide exerts an anxiogenic-like action in goldfish. Neuroscience 2011; 181:100-8. [DOI: 10.1016/j.neuroscience.2011.02.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 11/26/2022]
|
41
|
Matsuda K, Kang KS, Sakashita A, Yahashi S, Vaudry H. Behavioral effect of neuropeptides related to feeding regulation in fish. Ann N Y Acad Sci 2011; 1220:117-26. [DOI: 10.1111/j.1749-6632.2010.05884.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Boeira JM, Fenner R, Betti AH, Provensi G, Lacerda LDA, Barbosa PR, González FHD, Corrêa AMR, Driemeier D, Dall'Alba MP, Pedroso AP, Gosmann G, da Silva J, Rates SMK. Toxicity and genotoxicity evaluation of Passiflora alata Curtis (Passifloraceae). JOURNAL OF ETHNOPHARMACOLOGY 2010; 128:526-532. [PMID: 19799991 DOI: 10.1016/j.jep.2009.09.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 09/15/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
UNLABELLED Passiflora alata is an official species of Brazilian Pharmacopoeia and its aerial parts are used as medicinal plant by local population as well as constitutes many phytomedicines commercialized in Brazil as sedative. AIMS OF STUDY To evaluate the acute and sub-acute toxicity and genotoxicity of an aqueous spray-dried extract (PA) of Passiflora alata (2.6% flavonoids). MATERIALS AND METHODS The acute and the sub-acute toxicity was evaluated in mice and rats, respectively. Behavioural, biochemical, hematological, histological and urine parameters were considered. Genotoxicity was assessed by using micronucleus test performed in peripheral blood and bone marrow cells and comet assay in peripheral blood leukocytes. RESULTS Mice deaths were not observed up to 4800 mg/kg, p.o., single dose. Rats treated with aqueous extract at dose of 300 mg/kg, p.o., for 14 days did not present biochemical, hematological or histopathological significant alterations when compared to control group. However, these rats showed signs of irritability and did not show weight gain. In addition, mice acutely treated with extract 150, 300 and 600 mg/kg, p.o., presented DNA damage determined by comet assay in peripheral blood cells 3h after treatment. The effect of lower doses (12.5, 25 and 50mg/kg, p.o.) was evaluated at 3, 6 and 24h after treating. Only PA 50mg/kg (p.o.) induced significant damage at 3 and 6h. The maximum damage induction was observed at 6h. When the animals received PA 12.5, 25 or 50mg/kg/day during 3 days (i.e., 72h treatment) DNA damage (comet and micronucleus tests) increased significantly in a dose-dependent manner. CONCLUSION In conclusion Passiflora alata presented genotoxic effect and deserves further toxicity evaluation in order to guarantee its safety for human use.
Collapse
Affiliation(s)
- Jane M Boeira
- Laboratório de Genética, Departamento de Ciências da Saúde, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS CEP 90700-000, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The Anorexigenic Action of the Octadecaneuropeptide (ODN) in Goldfish is Mediated Through the MC4R- and Subsequently the CRH Receptor-Signaling Pathways. J Mol Neurosci 2010; 42:74-9. [DOI: 10.1007/s12031-010-9346-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 02/23/2010] [Indexed: 10/19/2022]
|
44
|
Matsuda K, Kojima K, Shimakura SI, Takahashi A. Regulation of food intake by melanin-concentrating hormone in goldfish. Peptides 2009; 30:2060-5. [PMID: 19836661 DOI: 10.1016/j.peptides.2009.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 01/24/2023]
Abstract
Melanin-concentrating hormone (MCH), originally discovered in the teleost pituitary, is a hypothalamic neuropeptide involved in the regulation of body color in fish. Although MCH is also present in the mammalian brain, it has no evident function in providing pigmentation. Instead, this peptide is now recognized to be one of the key neuropeptides that act as appetite enhancers in mammals such as rodents and primates. Although there has been little information about the central action of MCH on appetite in fish, recent studies have indicated that, in goldfish, MCH acts as an anorexigenic neuropeptide, modulating the alpha-melanocyte-stimulating hormone signaling pathway through neuronal interaction. These observations indicate that there may be major differences in the mode of action of MCH between fish and mammals. This paper reviews what is currently known about the regulation of food intake by MCH in fish, especially the goldfish.
Collapse
|
45
|
Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30:259-301. [PMID: 19505496 DOI: 10.1016/j.yfrne.2009.05.006] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/12/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
Neuroactive steroids synthesized in neuronal tissue, referred to as neurosteroids, are implicated in proliferation, differentiation, activity and survival of nerve cells. Neurosteroids are also involved in the control of a number of behavioral, neuroendocrine and metabolic processes such as regulation of food intake, locomotor activity, sexual activity, aggressiveness, anxiety, depression, body temperature and blood pressure. In this article, we summarize the current knowledge regarding the existence, neuroanatomical distribution and biological activity of the enzymes responsible for the biosynthesis of neurosteroids in the brain of vertebrates, and we review the neuronal mechanisms that control the activity of these enzymes. The observation that the activity of key steroidogenic enzymes is finely tuned by various neurotransmitters and neuropeptides strongly suggests that some of the central effects of these neuromodulators may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 413, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Matsuda K. Recent Advances in the Regulation of Feeding Behavior by Neuropeptides in Fish. Ann N Y Acad Sci 2009; 1163:241-50. [DOI: 10.1111/j.1749-6632.2008.03619.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Shimakura SI, Kojima K, Nakamachi T, Kageyama H, Uchiyama M, Shioda S, Takahashi A, Matsuda K. Neuronal interaction between melanin-concentrating hormone- and alpha-melanocyte-stimulating hormone-containing neurons in the goldfish hypothalamus. Peptides 2008; 29:1432-40. [PMID: 18513831 DOI: 10.1016/j.peptides.2008.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 04/05/2008] [Accepted: 04/08/2008] [Indexed: 11/22/2022]
Abstract
Intracerebroventricular (ICV) administration of melanin-concentrating hormone (MCH) inhibits food intake in goldfish, unlike in rodents, suggesting that its anorexigenic action is mediated by alpha-melanocyte-stimulating hormone (alpha-MSH) but not corticotropin-releasing hormone. This led us to investigate whether MCH-containing neurons in the goldfish brain have direct inputs to alpha-MSH-containing neurons, using a confocal laser scanning microscope, and to examine whether the anorexigenic action of MCH is also mediated by other anorexigenic neuropeptides, such as cholecystokinin (CCK) and pituitary adenylate cyclase-activating polypeptide (PACAP), using their receptor antagonists. MCH- and alpha-MSH-like immunoreactivities were distributed throughout the brain, especially in the diencephalon. MCH-containing nerve fibers or endings lay in close apposition to alpha-MSH-containing neurons in the hypothalamus in the posterior part of the nucleus lateralis tuberis (NLTp). The inhibitory effect of ICV-injected MCH on food intake was not affected by treatment with a CCK A/CCK B receptor antagonist, proglumide, or a PACAP receptor (PAC(1) receptor) antagonist, PACAP((6-38)). ICV administration of MCH at a dose sufficient to inhibit food consumption also did not influence expression of the mRNAs encoding CCK and PACAP. These results strongly suggest that MCH-containing neurons provide direct input to alpha-MSH-containing neurons in the NLTp of goldfish, and that MCH plays a crucial role in the regulation of feeding behavior as an anorexigenic neuropeptide via the alpha-MSH (melanocortin 4 receptor)-signaling pathway.
Collapse
Affiliation(s)
- Sei-Ichi Shimakura
- Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Matsuda K, Wada K, Miura T, Maruyama K, Shimakura S, Uchiyama M, Leprince J, Tonon M, Vaudry H. Effect of the diazepam-binding inhibitor-derived peptide, octadecaneuropeptide, on food intake in goldfish. Neuroscience 2007; 150:425-32. [DOI: 10.1016/j.neuroscience.2007.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 09/02/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
49
|
Matsuda K, Maruyama K. Regulation of feeding behavior by pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) in vertebrates. Peptides 2007; 28:1761-6. [PMID: 17466413 DOI: 10.1016/j.peptides.2007.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/09/2007] [Accepted: 03/19/2007] [Indexed: 12/12/2022]
Abstract
The hypothalamic region of the brain in vertebrates is a center that plays an important role in feeding regulation. Many kinds of hypothalamic neuropeptides or peripheral transmitters, such as orexin, neuropeptide Y, Agouti-related peptide, melanin-concentrating hormone, proopiomelanocortin-derived peptides, galanin, galanin-like peptide, ghrelin, corticotropin releasing hormone, cholecystokinin, cocaine amphetamine-related transcript peptides and leptin, have been implicated in the regulation of feeding behavior, psychomotor activity and energy homeostasis in rodents. Recent studies have also examined the effects of these neuropeptides or factors on food intake in non-mammalian vertebrates, especially chick and goldfish, and the role of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) in feeding behavior, locomotor activity or psychomotor activity in vertebrates. This article gives an overview of the regulation of feeding behavior and related physiology by PACAP and VIP in vertebrates in order to clarify the appetite-regulating system mediated by the two peptides.
Collapse
Affiliation(s)
- Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan.
| | | |
Collapse
|
50
|
do Rego JC, Orta MH, Leprince J, Tonon MC, Vaudry H, Costentin J. Pharmacological characterization of the receptor mediating the anorexigenic action of the octadecaneuropeptide: evidence for an endozepinergic tone regulating food intake. Neuropsychopharmacology 2007; 32:1641-8. [PMID: 17151595 DOI: 10.1038/sj.npp.1301280] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptides of the endozepine family, including diazepam-binding inhibitor, the triakontatetraneuropeptide, and the octadecaneuropeptide (ODN), act through three types of receptors, that is, central-type benzodiazepine receptors (CBR), peripheral-type (mitochondrial) benzodiazepine receptors (PBR) and a metabotropic receptor positively coupled to phospholipase C via a pertussis toxin-sensitive G protein. We have previously reported that ODN exerts a potent anorexigenic effect in rat and we have found that the action of ODN is not affected by the mixed CBR/PBR agonist diazepam. In the present report, we have tested the possible involvement of the metabotropic receptor in the anorexigenic activity of ODN. Intracerebroventricular administration of the C-terminal octapeptide (OP) and its head-to-tail cyclic analog cyclo(1-8)OP (cOP) at a dose of 100 ng mimicked the inhibitory effect of ODN on food intake in food-deprived mice. The specific CBR antagonist flumazenil and the PBR antagonist PK11195 did not prevent the effect of ODN, OP, and cOP on food consumption. In contrast, the selective metabotropic endozepine receptor antagonist cyclo(1-8)[DLeu(5)]OP (100-1000 ng; cDLOP) suppressed the anorexigenic effect of ODN, OP, and cOP. At the highest concentration tested (1000 ng), cDLOP provoked by itself a significant increase in food intake. Taken together, the present results indicate that the anorexigenic effect of ODN and OP is mediated through activation of the metabotropic receptor recently characterized in astrocytes. The data also suggest that endogenous ODN, acting via this receptor, exerts an inhibitory tone on feeding behavior.
Collapse
Affiliation(s)
- Jean-Claude do Rego
- CNRS FRE 2735, Laboratory of Experimental Neuropsychopharmacology, European Institute for Peptide Research IFRMP 23, Faculty of Medicine and Pharmacy, University of Rouen, Rouen Cedex, France.
| | | | | | | | | | | |
Collapse
|