1
|
Tang S, An X, Sun W, Zhang Y, Yang C, Kang X, Sun Y, Jiang L, Zhao X, Gao Q, Ji H, Lian F. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1336123. [PMID: 38419958 PMCID: PMC10899692 DOI: 10.3389/fendo.2024.1336123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuedong An
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cunqing Yang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Gao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Arthur P, Kalvala AK, Surapaneni SK, Singh MS. Applications of Cannabinoids in Neuropathic Pain: An Updated Review. Crit Rev Ther Drug Carrier Syst 2024; 41:1-33. [PMID: 37824417 PMCID: PMC11228808 DOI: 10.1615/critrevtherdrugcarriersyst.2022038592] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neuropathic pain is experienced due to injury to the nerves, underlying disease conditions or toxicity induced by chemotherapeutics. Multiple factors can contribute to neuropathic pain such as central nervous system (CNS)-related autoimmune and metabolic disorders, nerve injury, multiple sclerosis and diabetes. Hence, development of pharmacological interventions to reduce the drawbacks of existing chemotherapeutics and counter neuropathic pain is an urgent unmet clinical need. Cannabinoid treatment has been reported to be beneficial for several disease conditions including neuropathic pain. Cannabinoids act by inhibiting the release of neurotransmitters from presynaptic nerve endings, modulating the excitation of postsynaptic neurons, activating descending inhibitory pain pathways, reducing neural inflammation and oxidative stress and also correcting autophagy defects. This review provides insights on the various preclinical and clinical therapeutic applications of cannabidiol (CBD), cannabigerol (CBG), and cannabinol (CBN) in various diseases and the ongoing clinical trials for the treatment of chronic and acute pain with cannabinoids. Pharmacological and genetic experimental strategies have well demonstrated the potential neuroprotective effects of cannabinoids and also elaborated their mechanism of action for the therapy of neuropathic pain.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| | - Mandip Sachdeva Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA
| |
Collapse
|
3
|
Izadi M, Javanbakht M, Sarafzadeh A, Einollahi B, Futuhi F, Vahedi Z, Zhao S, Jonaidi-Jafari N, Hosseini MS, Nejad JH, Naeimi E, Saadat SH, Ghaleh HEG, Fazel M, Einollahi Z, Cegolon L. Efficacy of ozone therapy on visual evoked potentials in diabetic patients. Diabetol Metab Syndr 2023; 15:140. [PMID: 37365632 PMCID: PMC10291751 DOI: 10.1186/s13098-023-01114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The involvement of the central nervous system is a frequent yet underestimated complication of diabetes mellitus. Visual evoked potentials (VEP) are a simple, sensitive, and noninvasive method for detecting early alterations in central optic pathways. The objective of this paralleled randomized controlled trial was to evaluate the impact of ozone therapy on visual pathways in diabetic patients. METHODS Sixty patients with type 2 diabetes visiting clinics of Baqiyatallah university in Tehran (Iran) hospital were randomly assigned to two experimental groups: Group 1 (N = 30) undergoing a cycle of 20 sessions of systemic oxygen-ozone therapy in addition to standard therapy for metabolic control; Group 2 (N = 30)-serving as control-receiving only standard therapy against diabetes. The primary study endpoints were two VEP parameters; P100 wave latency and P100 amplitude at 3 months. Moreover, HbA1c levels were measured before the start of treatment and three months later as secondary study endpoint. RESULTS All 60 patients completed the clinical trial. P100 latency significantly reduced at 3 months since baseline. No correlation was found between repeated measures of P100 wave latency and HbA1c (Pearson's r = 0.169, p = 0.291). There was no significant difference between baseline values and repeated measures of P100 wave amplitude over time in either group. No adverse effects were recorded. CONCLUSIONS Ozone therapy improved the conduction of impulses in optic pathways of diabetic patients. The improved glycemic control following ozone therpay may not fully explain the reduction of P100 wave latency though; other mechanistic effects of ozone may be involved.
Collapse
Affiliation(s)
- Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Sarafzadeh
- Department of Biostatistics, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farzaneh Futuhi
- Nephrology Department, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Vahedi
- Department of Pediatrics, School of Medicine, Hazrat-E Ali. Asghar Pediatrics Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | | | - Mahboobeh Sadat Hosseini
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Hosseini Nejad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Effat Naeimi
- Endocrinology and Metabolism Department, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Saadat
- Behavioral Sciences Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | - Zahra Einollahi
- Nephrology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, Trieste, Italy
- Occupational Medicine Unit, University Health Agency Giuliano-ISontina (ASUGI), Trieste, Italy
| |
Collapse
|
4
|
Vieira WF, Malange KF, de Magalhães SF, Lemes JBP, Dos Santos GG, Nishijima CM, de Oliveira ALR, da Cruz-Höfling MA, Tambeli CH, Parada CA. Anti-hyperalgesic effects of photobiomodulation therapy (904 nm) on streptozotocin-induced diabetic neuropathy imply MAPK pathway and calcium dynamics modulation. Sci Rep 2022; 12:16730. [PMID: 36202956 PMCID: PMC9537322 DOI: 10.1038/s41598-022-19947-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022] Open
Abstract
Several recent studies have established the efficacy of photobiomodulation therapy (PBMT) in painful clinical conditions. Diabetic neuropathy (DN) can be related to activating mitogen-activated protein kinases (MAPK), such as p38, in the peripheral nerve. MAPK pathway is activated in response to extracellular stimuli, including interleukins TNF-α and IL-1β. We verified the pain relief potential of PBMT in streptozotocin (STZ)-induced diabetic neuropathic rats and its influence on the MAPK pathway regulation and calcium (Ca2+) dynamics. We then observed that PBMT applied to the L4-L5 dorsal root ganglion (DRG) region reduced the intensity of hyperalgesia, decreased TNF-α and IL-1β levels, and p38-MAPK mRNA expression in DRG of diabetic neuropathic rats. DN induced the activation of phosphorylated p38 (p-38) MAPK co-localized with TRPV1+ neurons; PBMT partially prevented p-38 activation. DN was related to an increase of p38-MAPK expression due to proinflammatory interleukins, and the PBMT (904 nm) treatment counteracted this condition. Also, the sensitization of DRG neurons by the hyperglycemic condition demonstrated during the Ca2+ dynamics was reduced by PBMT, contributing to its anti-hyperalgesic effects.
Collapse
Affiliation(s)
- Willians Fernando Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Kauê Franco Malange
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Silviane Fernandes de Magalhães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Júlia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Gilson Gonçalves Dos Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Catarine Massucato Nishijima
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Alexandre Leite Rodrigues de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Carl von Linnaeus n/n, Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-864, Brazil.
| |
Collapse
|
5
|
Garg SS, Gupta J. Polyol pathway and redox balance in diabetes. Pharmacol Res 2022; 182:106326. [PMID: 35752357 DOI: 10.1016/j.phrs.2022.106326] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Diabetes is a major public health disease that is globally approaching epidemic proportions. One of the major causes of type 2 diabetes is either a defect in insulin secretion or insulin action which is usually caused by a combination of genetic and environmental factors. Not only these factors but others such as deregulation of various pathways, and oxidative stress are also known to trigger the redox imbalance in diabetics. Increasing evidences suggest that there are tight interactions between the development of diabetes and redox imbalance. An alternate pathway of glucose metabolism, the polyol pathway, becomes active in patients with diabetes that disturbs the balance between NADH and NAD+ . The occurrence of such redox imbalance supports other pathways that lead to oxidative damage to DNA, lipids, and proteins and consequently to oxidative stress which further ascend diabetes and its complications. However, the precise mechanism through which oxidative stress regulates diabetes progression remains to be elucidated. The understanding of how antioxidants and oxidants are controlled and impact the generation of oxidative stress and progression of diabetes is essential. The main focus of this review is to provide an overview of redox imbalance caused by oxidative stress through the polyol pathway. Understanding the pathological role of oxidative stress in diabetes will help to design potential therapeutic strategies against diabetes.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
6
|
Pathak R, Sachan N, Chandra P. Mechanistic approach towards diabetic neuropathy screening techniques and future challenges: A review. Biomed Pharmacother 2022; 150:113025. [PMID: 35658222 DOI: 10.1016/j.biopha.2022.113025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetic neuropathy, also called peripheral diabetic neuropathy (PDN), is among the most significant diabetes health consequences, alongside diabetic nephropathy, diabetic cardiomyopathy and diabetic retinopathy. Diabetic neuropathy is the existence of signs and indications of peripheral nerve damage in patients with diabetes after other causes have been governed out. Diabetic neuropathy is a painful and severe complication of diabetes that affects roughly 20% of people. The development of diabetic neuropathy is regulated by blood arteries that nourish the peripheral nerves and metabolic problems such as increased stimulation of polyol pathway, loss of myo-inositol and enhanced non-enzymatic glycation. It's divided into four types based on where neurons are most affected: autonomic, peripheral, proximal, and focal, with each kind presenting different symptoms like numbing, gastrointestinal disorders, and heart concerns. Pharmacotherapy for neuropathic pain is complex and for many patients, effective treatment is lacking; as a result, scientific proof recommendations are crucial. As a result, the current demand is to give the most vital medications or combinations of drugs that work directly on the nerves to help diabetic neuropathy patients feel less pain without causing any adverse effects. In diabetic neuropathy research, animal models are ubiquitous, with rats and mice being the most typically chosen for various reasons. This review covers the epidemiology, clinical features, pathology, clinical symptom, mechanism of diabetic neuropathy development, diagnosis, screening models of animals, diabetic neuropathy pharmacotherapy.
Collapse
Affiliation(s)
- Rashmi Pathak
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput Delhi Road (NH-24), Moradabad, UP 244102, India
| | - Neetu Sachan
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput Delhi Road (NH-24), Moradabad, UP 244102, India
| | - Phool Chandra
- School of Pharmaceutical Sciences, IFTM University, Lodhipur Rajput Delhi Road (NH-24), Moradabad, UP 244102, India.
| |
Collapse
|
7
|
Chitra L, Penislusshiyan S, Soundariya M, Logeswari S, Rajesh RV, Palvannan T. Anti-acetylcholinesterase activity of Corallocarpus epigaeus tuber: In vitro kinetics, in silico docking and molecular dynamics analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Hall BE, Macdonald E, Cassidy M, Yun S, Sapio MR, Ray P, Doty M, Nara P, Burton MD, Shiers S, Ray-Chaudhury A, Mannes AJ, Price TJ, Iadarola MJ, Kulkarni AB. Transcriptomic analysis of human sensory neurons in painful diabetic neuropathy reveals inflammation and neuronal loss. Sci Rep 2022; 12:4729. [PMID: 35304484 PMCID: PMC8933403 DOI: 10.1038/s41598-022-08100-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/25/2022] [Indexed: 01/02/2023] Open
Abstract
Pathological sensations caused by peripheral painful neuropathy occurring in Type 2 diabetes mellitus (T2DM) are often described as 'sharp' and 'burning' and are commonly spontaneous in origin. Proposed etiologies implicate dysfunction of nociceptive sensory neurons in dorsal root ganglia (DRG) induced by generation of reactive oxygen species, microvascular defects, and ongoing axonal degeneration and regeneration. To investigate the molecular mechanisms contributing to diabetic pain, DRGs were acquired postmortem from patients who had been experiencing painful diabetic peripheral neuropathy (DPN) and subjected to transcriptome analyses to identify genes contributing to pathological processes and neuropathic pain. DPN occurs in distal extremities resulting in the characteristic "glove and stocking" pattern. Accordingly, the L4 and L5 DRGs, which contain the perikarya of primary afferent neurons innervating the foot, were analyzed from five DPN patients and compared with seven controls. Transcriptome analyses identified 844 differentially expressed genes. We observed increases in levels of inflammation-associated transcripts from macrophages in DPN patients that may contribute to pain hypersensitivity and, conversely, there were frequent decreases in neuronally-related genes. The elevated inflammatory gene profile and the accompanying downregulation of multiple neuronal genes provide new insights into intraganglionic pathology and mechanisms causing neuropathic pain in DPN patients with T2DM.
Collapse
Affiliation(s)
- Bradford E Hall
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Emma Macdonald
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
- Present Affiliation: NIH Graduate Partnerships Program, Brown University, Providence, RI, 02912, USA
| | - Margaret Cassidy
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Sijung Yun
- Yotta Biomed, LLC, Bethesda, MD, 20814, USA
| | - Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pradipta Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Megan Doty
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA
| | - Pranavi Nara
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Group, School of Behavior and Brain Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, Disorders and Stroke, National Institute of Neurological, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Room 130, Bethesda, MD, 20892, USA.
| |
Collapse
|
9
|
Influence of intermittent fasting on prediabetes-induced neuropathy: Insights on a novel mechanistic pathway. Metabol Open 2022; 14:100175. [PMID: 35402890 PMCID: PMC8991399 DOI: 10.1016/j.metop.2022.100175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Aims Peripheral neuropathy (PN) is correlated with obesity and metabolic syndrome. Intermittent fasting (IF) has been described as the cornerstone in the management of obesity; however, its role in prediabetic complications is not well elucidated. Cytochromes P450 Monooxygenases (CYP450) are major sources of Reactive Oxygen Species (ROS) that orchestrate the onset and development of diabetic complications. One of the CYP-metabolites, Expoxyecosatetraenoic Acids (EETs), are considered to be negative regulators of ROS production. In this study, we elucidated the role of IF on ROS production and investigated its influence on prediabetes-induced PN. Methods C57/BL6 control mice, prediabetic, prediabetic that underwent alternate day fasting with different diet composition, and prediabetic mice treated with EET-metabolizing sEH-inhibitor, AUDA. Body mass composition, metabolic, behavioral, and molecular tests were performed. Results High-fat diet (HFD) led to an increase in NADPH-induced ROS production; that was due to an alteration in the epoxygenase pathway assessed by the decrease in CYP1a1/1a2 expression. IF reinstated the homeostatic levels of EETs in HFD-fed mice. Moreover, treatment with AUDA mimicked the beneficial effect observed with IF. Conclusion IF and EETs bioavailability have a protective role in prediabetes-induced PN, suggesting a novel interventional strategy in the management of prediabetes and its associated complications.
Collapse
|
10
|
Zhang BY, Yin P, Hu Y, Szydzik C, Khan MW, Xu K, Thurgood P, Mahmood N, Dekiwadia C, Afrin S, Yang Y, Ma Q, McConville CF, Khoshmanesh K, Mitchell A, Hu B, Baratchi S, Ou JZ. Highly accurate and label-free discrimination of single cancer cell using a plasmonic oxide-based nanoprobe. Biosens Bioelectron 2022; 198:113814. [PMID: 34823964 DOI: 10.1016/j.bios.2021.113814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 12/24/2022]
Abstract
The detection of cancer cells at the single-cell level enables many novel functionalities such as next-generation cancer prognosis and accurate cellular analysis. While surface-enhanced Raman spectroscopy (SERS) has been widely considered as an effective tool in a low-cost and label-free manner, however, it is challenging to discriminate single cancer cells with an accuracy above 90% mainly due to the poor biocompatibility of the noble-metal-based SERS agents. Here, we report a dual-functional nanoprobe based on dopant-driven plasmonic oxides, demonstrating a maximum accuracy above 90% in distinguishing single THP-1 cell from peripheral blood mononuclear cell (PBMC) and human embryonic kidney (HEK) 293 from human macrophage cell line U937 based on their SERS patterns. Furthermore, this nanoprobe can be triggered by the bio-redox response from individual cells towards stimuli, empowering another complementary colorimetric cell detection, approximately achieving the unity discrimination accuracy at a single-cell level. Our strategy could potentially enable the future accurate and low-cost detection of cancer cells from mixed cell samples.
Collapse
Affiliation(s)
- Bao Yue Zhang
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| | - Pengju Yin
- School of Mathematics and Physics, Hebei University of Engineering, Handan, 056038, China; School of Life Science and Technology, Xidian University, Xi'an, 710126, China
| | - Yihong Hu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Crispin Szydzik
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; The Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, 3004, Australia
| | - Muhammad Waqas Khan
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; Manufacturing, CSIRO, Clayton, Victoria, 3168, Australia
| | - Kai Xu
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nasir Mahmood
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility (RMMF), RMIT University, Melbourne, 3001, Australia
| | - Sanjida Afrin
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Yunyi Yang
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122 Australia
| | - Qijie Ma
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chris F McConville
- Institute for Frontier Materials (IFM), Deakin University, Waurn Ponds, VIC, 3216, Australia
| | | | - Arnan Mitchell
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Bo Hu
- School of Life Science and Technology, Xidian University, Xi'an, 710126, China
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083 Australia; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
11
|
Raghav A, Singh M, Jeong GB, Giri R, Agarwal S, Kala S. New horizons of biomaterials in treatment of nerve damage in diabetes mellitus: A translational prospective review. Front Endocrinol (Lausanne) 2022; 13:1036220. [PMID: 36387914 PMCID: PMC9647066 DOI: 10.3389/fendo.2022.1036220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Peripheral nerve injury is a serious concern that leads to loss of neuronal communication that impairs the quality of life and, in adverse conditions, causes permanent disability. The limited availability of autografts with associated demerits shifts the paradigm of researchers to use biomaterials as an alternative treatment approach to recover nerve damage. PURPOSE The purpose of this study is to explore the role of biomaterials in translational treatment approaches in diabetic neuropathy. STUDY DESIGN The present study is a prospective review study. METHODS Published literature on the role of biomaterials in therapeutics was searched for. RESULTS Biomaterials can be implemented with desired characteristics to overcome the problem of nerve regeneration. Biomaterials can be further exploited in the treatment of nerve damage especially associated with PDN. These can be modified, customized, and engineered as scaffolds with the potential of mimicking the extracellular matrix of nerve tissue along with axonal regeneration. Due to their beneficial biological deeds, they can expedite tissue repair and serve as carriers of cellular and pharmacological treatments. Therefore, the emerging research area of biomaterials-mediated treatment of nerve damage provides opportunities to explore them as translational biomedical treatment approaches. CONCLUSIONS Pre-clinical and clinical trials in this direction are needed to establish the effective role of several biomaterials in the treatment of other human diseases.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- *Correspondence: Alok Raghav,
| | - Manish Singh
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Department of Neurosurgery, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea
| | - Richa Giri
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Kamlapat Singhania (KPS) Institute of Medicine, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Saurabh Agarwal
- Multidisciplinary Research Unit, Department of Health Research, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
- Kamlapat Singhania (KPS) Institute of Medicine, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| | - Sanjay Kala
- Department of Surgery, Ganesh Shankar Vidyarthi Memorial (GSVM) Medical College, Kanpur, India
| |
Collapse
|
12
|
Jamal Gilani S, Nasser Bin-Jumah M, Al-Abbasi FA, Shahid Nadeem M, Afzal M, Sayyed N, Kazmi I. Fustin ameliorates hyperglycemia in streptozotocin induced type-2 diabetes via modulating glutathione/Superoxide dismutase/Catalase expressions, suppress lipid peroxidation and regulates histopathological changes. Saudi J Biol Sci 2021; 28:6963-6971. [PMID: 34866996 PMCID: PMC8626260 DOI: 10.1016/j.sjbs.2021.07.070] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
Streptozotocin (STZ) 60 mg/kg, i.p.-induced diabetes in rat’s results into hyperglycemia, impaired oxidative stress, lipid profile, insulin levels and changes in body weight. Treatment with antihyperglycemics and antioxidants are accounted to produce favorable effect in this paradigm. Fustin, a flavonoid derived from Rhus verniciflua, extract of Rhus verniciflua reported to exhibit anti-hyperglycemic, antioxidant, anti-microbial, anti-arthritic effects, anti-obesity effects, antiplatelet effects and anti-cancer effects. However, no evidence is existing on effect of fustin on STZ-induction diabetes. Thus, we evaluated its effects against diabetes in STZ-induced rodents. Blood glucose, Insulin, lipid peroxidation (MDA), superoxide dismutase (SOD), catalase activity (CAT), glutathione (GSH) and lipid profile levels was assessed. After 30 days diabetes induction rodents showed a severe increased blood sugar level, MDA, high density lipid and decreased cholestrol, triglyceride, GSH, SOD, CAT, respectively. Oppositely, treatment with fustin (50–100 mg/kg/p.o., two times daily, 30 days) enhanced blood glucose, lipid profile levels Insulin. Meanwhile, reduced MDA and enhanced GSH, SOD, and CAT in diabetic rats. Glibenclamide 5 mg/kg/p.o. also enhanced diabetes-induced complications and decreased oxidative stress. Further histopathology of pancreas confirms the protective effect fustin in STZ-induction diabetes in animals. In conclusion, the study revealed treatments with fustin avoid the changes in body weight, blood glucose, lipid profile and oxidative stress. As a results of these finding may lead to the growth of a choice of medicine for hyperglycemic in the future.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah 72341, Saudi Arabia
| | - Nadeem Sayyed
- Clinical Research Department, Meril Life Sciences Pvt. Ltd., India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Corresponding author.
| |
Collapse
|
13
|
Kamdi SP, Raval A, Nakhate KT. Effect of apple peel extract on diabetes-induced peripheral neuropathy and wound injury. J Diabetes Metab Disord 2021; 20:119-130. [PMID: 34222062 PMCID: PMC8212242 DOI: 10.1007/s40200-020-00719-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/07/2020] [Accepted: 12/28/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Diabetic peripheral neuropathy (DPN) affects up to 50 % diabetic patients. Moreover, uncontrolled diabetes associated with impaired wound healing. The present study was aimed at exploring the effect of apple peel extract (APE) on type 2 diabetes (T2D)-induced DPN and delayed wound healing. METHODS In adult male Sprague-Dawley rats on high-fat diet, a single low dose streptozotocin (STZ, 35 mg/kg) was administered via intraperitoneal route to induce T2D. Plantar test using Hargreaves apparatus was used to evaluate the DPN. Six different groups of rats were treated orally with saline (naïve control and DPN control), APE (100, 200 and 400 mg/kg) and gabapentin (30 mg/kg) daily for 7 consecutive days and thermal paw withdrawal latency (PWL) was measured. To elucidate the underlying antioxidant effect of APE, the catalase (CAT), glutathione (GSH) and malonaldehyde (MDA) levels were measured. To evaluate the wound healing potential of APE, excision ischemic open wound model was used. Six different groups of rats were applied with 2 % gum acacia (naïve control and diabetic control), 1 % silver sulfadiazine (SSD) cream and APE cream (5, 10 and 20 %) twice daily for 28 days. Dry connective tissue parameters like hydroxyproline and hexosamine were also measured to further confirm the wound healing activity. RESULTS Diabetes produced thermal hyperalgesia in rats with a significant decrease in PWL as compared to naive controls indicating induction of DPN. APE and gabapentin significantly improved PWL in diabetic animals. Biochemical analysis revealed a significant improvement in oxidative stress parameters such as catalase, GSH and MDA. Wound closure was significantly more after day 15 of topical application of APE and SSD as compared to control group. APE significantly increased hydroxyproline and hexosamine levels as compared to standard cream. Moreover, histopathology revealed that, topical application of APE cream showed an enhanced healing process. CONCLUSIONS On the basis of the findings, we conclude that APE has a potential to be used as a therapeutic intervention for the management of DPN and delayed wound healing in the diabetic condition.
Collapse
Affiliation(s)
- Sandesh P. Kamdi
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, P.B-12 Pacific Hills, Airport Road, Debari, Udaipur, Rajasthan 313024 India
| | - Amit Raval
- Faculty of Pharmacy, Pacific Academy of Higher Education and Research University, P.B-12 Pacific Hills, Airport Road, Debari, Udaipur, Rajasthan 313024 India
| | - Kartik T. Nakhate
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh 490024 India
| |
Collapse
|
14
|
Ola MS. Does Hyperglycemia Cause Oxidative Stress in the Diabetic Rat Retina? Cells 2021; 10:794. [PMID: 33918273 PMCID: PMC8067231 DOI: 10.3390/cells10040794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetes, being a metabolic disease dysregulates a large number of metabolites and factors. However, among those altered metabolites, hyperglycemia is considered as the major factor to cause an increase in oxidative stress that initiates the pathophysiology of retinal damage leading to diabetic retinopathy. Diabetes-induced oxidative stress in the diabetic retina and its damaging effects are well known, but still, the exact source and the mechanism of hyperglycemia-induced reactive oxygen species (ROS) generation especially through mitochondria remains uncertain. In this study, we analyzed precisely the generation of ROS and the antioxidant capacity of enzymes in a real-time situation under ex vivo and in vivo conditions in the control and streptozotocin-induced diabetic rat retinas. We also measured the rate of flux through the citric acid cycle by determining the oxidation of glucose to CO2 and glutamate, under ex vivo conditions in the control and diabetic retinas. Measurements of H2O2 clearance from the ex vivo control and diabetic retinas indicated that activities of mitochondrial antioxidant enzymes are intact in the diabetic retina. Short-term hyperglycemia seems to influence a decrease in ROS generation in the diabetic retina compared to controls, which is also correlated with a decreased oxidation rate of glucose in the diabetic retina. However, an increase in the formation of ROS was observed in the diabetic retinas compared to controls under in vivo conditions. Thus, our results suggest of diabetes/hyperglycemia-induced non-mitochondrial sources may serve as major sources of ROS generation in the diabetic retina as opposed to widely believed hyperglycemia-induced mitochondrial sources of excess ROS. Therefore, hyperglycemia per se may not cause an increase in oxidative stress, especially through mitochondria to damage the retina as in the case of diabetic retinopathy.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, 2B10, Building 5, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
15
|
Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics (Basel) 2021; 11:diagnostics11020165. [PMID: 33498918 PMCID: PMC7911433 DOI: 10.3390/diagnostics11020165] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of both type 1 and 2 diabetes. As a result, neuropathic pain, diabetic foot ulcers and lower-limb amputations impact drastically on quality of life, contributing to the individual, societal, financial and healthcare burden of diabetes. DPN is diagnosed at a late, often pre-ulcerative stage due to a lack of early systematic screening and the endorsement of monofilament testing which identifies advanced neuropathy only. Compared to the success of the diabetic eye and kidney screening programmes there is clearly an unmet need for an objective reliable biomarker for the detection of early DPN. This article critically appraises research and clinical methods for the diagnosis or screening of early DPN. In brief, functional measures are subjective and are difficult to implement due to technical complexity. Moreover, skin biopsy is invasive, expensive and lacks diagnostic laboratory capacity. Indeed, point-of-care nerve conduction tests are convenient and easy to implement however questions are raised regarding their suitability for use in screening due to the lack of small nerve fibre evaluation. Corneal confocal microscopy (CCM) is a rapid, non-invasive, and reproducible technique to quantify small nerve fibre damage and repair which can be conducted alongside retinopathy screening. CCM identifies early sub-clinical DPN, predicts the development and allows staging of DPN severity. Automated quantification of CCM with AI has enabled enhanced unbiased quantification of small nerve fibres and potentially early diagnosis of DPN. Improved screening tools will prevent and reduce the burden of foot ulceration and amputations with the primary aim of reducing the prevalence of this common microvascular complication.
Collapse
|
16
|
Li Y, Bouza M, Wu C, Guo H, Huang D, Doron G, Temenoff JS, Stecenko AA, Wang ZL, Fernández FM. Sub-nanoliter metabolomics via mass spectrometry to characterize volume-limited samples. Nat Commun 2020; 11:5625. [PMID: 33159052 PMCID: PMC7648103 DOI: 10.1038/s41467-020-19444-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023] Open
Abstract
The human metabolome provides a window into the mechanisms and biomarkers of various diseases. However, because of limited availability, many sample types are still difficult to study by metabolomic analyses. Here, we present a mass spectrometry (MS)-based metabolomics strategy that only consumes sub-nanoliter sample volumes. The approach consists of combining a customized metabolomics workflow with a pulsed MS ion generation method, known as triboelectric nanogenerator inductive nanoelectrospray ionization (TENGi nanoESI) MS. Samples tested with this approach include exhaled breath condensate collected from cystic fibrosis patients as well as in vitro-cultured human mesenchymal stromal cells. Both test samples are only available in minimum amounts. Experiments show that picoliter-volume spray pulses suffice to generate high-quality spectral fingerprints, which increase the information density produced per unit sample volume. This TENGi nanoESI strategy has the potential to fill in the gap in metabolomics where liquid chromatography-MS-based analyses cannot be applied. Our method opens up avenues for future investigations into understanding metabolic changes caused by diseases or external stimuli.
Collapse
Affiliation(s)
- Yafeng Li
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marcos Bouza
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Changsheng Wu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hengyu Guo
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Danning Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gilad Doron
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Johnna S Temenoff
- W.H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Arlene A Stecenko
- Emory + Children's Center for Cystic Fibrosis and Airways Disease Research and Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Zhong Lin Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
17
|
Vieira WF, Malange KF, de Magalhães SF, dos Santos GG, de Oliveira ALR, da Cruz-Höfling MA, Parada CA. Gait analysis correlates mechanical hyperalgesia in a model of streptozotocin-induced diabetic neuropathy: A CatWalk dynamic motor function study. Neurosci Lett 2020; 736:135253. [DOI: 10.1016/j.neulet.2020.135253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/14/2020] [Indexed: 01/03/2023]
|
18
|
Meligi NM, Ismail SA, Tawfik NS. Protective effects of honey and bee venom against lipopolysaccharide and carbon tetrachloride-induced hepatoxicity and lipid peroxidation in rats. Toxicol Res (Camb) 2020; 9:693-705. [PMID: 33178430 PMCID: PMC7640919 DOI: 10.1093/toxres/tfaa077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 09/09/2020] [Indexed: 11/12/2022] Open
Abstract
In the present study, the protective effects of honey and bee venom (BV) either independently or in combination against lipopolysaccharide (LPS) and carbon tetrachloride (CCl4)-induced hepatoxicity, lipid peroxidation, and hematological alterations in male albino rats were investigated. In addition, histopathological alterations of hepatic tissues induced by LPS/CCL4 were recorded. Sixty-four of male albino rats of average weight 120-150 g were included in this study. Rats were divided into eight equal groups of eight. The obtained results demonstrated that treatment with LPS/CCl4 caused an increase in the levels of alpha-fetoprotein, which was accompanied by changes in the hepatic function biomarkers that characterized by the increased levels of transaminases (AST, ALT). The results showed oxidative stress as assigned by the increase in lipid peroxide. Meantime detraction in the antioxidants, including glutathione peroxidase was observed. Interruptions in biochemical parameters accompanied by disturbances in hematological parameters and liver histopathology were resulted due to exposure to LPS/CCl4. This study showed the use of honey and BV provided a protective effect on hepatotoxicity induced by LPS/CCl4. This might have been occurred through the reduction of hepatic transaminases and the "Alpha-fetoprotein" in serum and the equilibration of the antioxidation system, thereby, inhibiting the reactive oxygen species accumulation. Honey and BV administration reestablish disturbed hematological parameters and liver histopathology persuaded by LPS/CCl4. More interesting, we demonstrated that using a combination of the honey and BV showed promising enhancement in their protective effects over the use of just one of the two reagents.
Collapse
Affiliation(s)
- Noha M Meligi
- Zoology Department, Faculty of Science, Minia University 61519, Minia, Egypt
| | - Suzan Alaa Ismail
- Zoology Department, Faculty of Science, Minia University 61519, Minia, Egypt
| | - Nagy S Tawfik
- Zoology Department, Faculty of Science, Minia University 61519, Minia, Egypt
| |
Collapse
|
19
|
Anti-diabetic activity of crude polysaccharide and rhamnose-enriched polysaccharide from G. lithophila on Streptozotocin (STZ)-induced in Wistar rats. Sci Rep 2020; 10:556. [PMID: 31953455 PMCID: PMC6969100 DOI: 10.1038/s41598-020-57486-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/15/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to elucidate the anti-diabetic effects of the crude polysaccharide and rhamnose-enriched polysaccharide derived from G. lithophila on streptozotocin (STZ)-induced diabetic Wistar rats. Treatment with crude polysaccharide and rhamnose-enriched polysaccharide showed increases in body weight and pancreatic insulin levels and a decrease in blood glucose levels compared with control diabetic rats. The blood concentrations of total cholesterol (TC), triglycerides (TGs), low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL) decreased, and high-density lipoprotein (HDL) increased both in the crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels increased, and malondialdehyde (MDA) levels decreased in the livers, kidneys and pancreases of crude polysaccharide- and rhamnose-enriched polysaccharide-treated rats. Immunohistological examination further confirmed that restoration of the normal cellular size of the islets of Langerhans and the rebirth of β-cells were found to be greater in the body region than in the head and tail regions of the pancreas. The crude polysaccharide- and rhamnose-enriched polysaccharide-treated diabetic rats showed normal blood glucose levels and insulin production, and reversed cholesterol levels and enzymatic actions. Therefore, rhamnose-enriched polysaccharide from G. lithophila acts as a potent anti-diabetic agent to treat diabetes and can lead to the development of an alternative medicine for diabetes in the future.
Collapse
|
20
|
Alzheimer's Disease and Diabetes: Insulin Signaling as the Bridge Linking Two Pathologies. Mol Neurobiol 2020; 57:1966-1977. [PMID: 31900863 DOI: 10.1007/s12035-019-01858-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Alzheimer's (or Alzheimer) disease (AD) is the most prevalent subset of dementia, affecting elderly populations worldwide. The cumulative costs of the AD care are rapidly accelerating as the average lifespan increases. Onset and risk factors for AD and AD-like dementias have been largely unknown until recently. Studies show that chronic type II diabetes mellitus (DM) is closely associated with neurodegeneration, especially AD. Type II DM is characterized by the cells' inability to take up insulin, as well as chronic hyperglycemia. In the central nervous system, insulin has crucial regulatory roles, while chronic hyperglycemia leads to formation and accumulation of advanced glycation end products (AGEs). AGEs are the major contributor to insulin resistance in diabetic cells, due to their regulatory role on sirtuin expression. Insulin activity in the central nervous system is known to interact with key proteins affected in neurodegenerative conditions, such as amyloid-β precursor protein (AβPP or APP), huntingtin-associated protein-1 (HAP1), Abelson helper integration site-1 (AHI1 or Jouberin), kinesin, and tau. Sirtuins have been theorized to be the mechanism for insulin resistance, and have been found to be affected in neurodegenerative conditions as well. There are hints that all these neuronal proteins may be closely related, although the mechanisms remain unclear. This review will gather existing research on these proteins and highlight the link between neurodegenerative conditions and diabetes mellitus.
Collapse
|
21
|
Grotle AK, Stone AJ. Exaggerated exercise pressor reflex in type 2 diabetes: Potential role of oxidative stress. Auton Neurosci 2019; 222:102591. [PMID: 31669797 PMCID: PMC6858935 DOI: 10.1016/j.autneu.2019.102591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) leads to exaggerated cardiovascular responses to exercise, in part due to an exaggerated exercise pressor reflex. Accumulating data suggest excessive oxidative stress contributes to an exaggerated exercise pressor reflex in cardiovascular-related diseases. Excessive oxidative stress is also a primary underlying mechanism for the development and progression of T2DM. However, whether oxidative stress plays a role in mediating the exaggerated exercise pressor reflex in T2DM is not known. Therefore, this review explores the potential role of oxidative stress leading to increased activation of the afferent arm of the exercise pressor reflex. Several lines of evidence support direct and indirect effects of oxidative stress on the exercise pressor reflex. For example, intramuscular ROS may directly and indirectly (by attenuating contracting muscle blood flow) increase group III and IV afferent activity. Oxidative stress is a primary underlying mechanism for the development of neuropathic pain, which in turn is associated with increased group III and IV afferent activity. These are the same type of afferents that evoke muscle pain and the exercise pressor reflex. Furthermore, oxidative stress-induced release of inflammatory mediators may modulate afferent activity. Collectively, these alterations may result in a positive feedback loop that further amplifies the exercise pressor reflex. An exaggerated reflex increases the risk of adverse cardiovascular events. Thus, identifying the contribution of oxidative stress could provide a potential therapeutic target to reduce this risk in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
22
|
Polyphenols of marine red macroalga Symphyocladia latiuscula ameliorate diabetic peripheral neuropathy in experimental animals. Heliyon 2019; 5:e01781. [PMID: 31193485 PMCID: PMC6529741 DOI: 10.1016/j.heliyon.2019.e01781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/24/2019] [Accepted: 05/17/2019] [Indexed: 12/29/2022] Open
Abstract
Aims Chronic hyperglycaemia activates the polyol pathway of glucose metabolism thereby stimulating the activation aldose reductase enzyme that in turn initiates a cascade of deleterious events, eventually, leading to nerve damage or neuropathy. Marine macroalgae and their isolated chemical constituents have been found to possess potential antidiabetic activity and have proved beneficial in the treatment of diabetes. In this study the neuroprotective effect of polyphenols isolated from the red macroalga Symphyocladia latiuscula was evaluated in experimental diabetic peripheral neuropathy. Main methods The polyphenolic fraction from Symphyocladia latiuscula was isolated. Diabetic peripheral neuropathy (DPN) was induced in animals by intraperitoneal injection of streptozotocin (45 mg/kg, b. w) and maintained for 6 weeks followed by treatment with SLPP or epalrestat. Nerve Conduction Velocity (NCV) and Compound Muscle Action Potential (CMAP) were measured using a non-invasive method followed by muscular grip strength test. Sciatic nerve aldose reductase activity, sorbitol accumulation, Na+K+-ATPase activity, production of pro-inflammatory cytokines and expression of AR and PKC were assessed. Key findings The Symphyocladia latiuscula polyphenols (SLPP) were found to inhibit aldose reductase activity as well as their expression in diabetic animals thereby improving the NCV, CMAP and muscle grip strength. Improvements in the sciatic nerve Na+K+-ATPase activity and intraneural accumulation of sorbitol, an index of aldose reductase overactivity, were evident with SLPP treatment. The production of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) and expression of protein kinase C (PKC) were also diminished. Significance The data suggest that the polyphenols of Symphyocladia latiuscula have neuroprotective potential against experimental DPN.
Collapse
|
23
|
Repetto EM, Wiszniewski M, Bonelli AL, Vecino CV, Martinez Calejman C, Arias P, Cymeryng CB. Impaired HPA axis function in diabetes involves adrenal apoptosis and phagocytosis. Endocrine 2019; 63:602-614. [PMID: 30242601 DOI: 10.1007/s12020-018-1755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/08/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the present study was to analyze the involvement of oxidative stress and inflammation in the modulation of glucocorticoid production in the adrenal cortex of diabetic rats. METHODS Male Wistar rats were treated with or without streptozotocin (STZ, an insulinopenic model of diabetes) and either α-lipoic (90 mg/kg ip.), α-tocopherol (200 mg/kg po.) or with STZ and supplemented with insulin (STZ + INS: 2.5U/day) for 4 weeks. Oxidative/nitrosative stress parameters and antioxidant enzymes were determined in adrenocortical tissues. Apoptosis and macrophage activation were evaluated by immunohistochemistry (TUNEL and ED1+). Basal and ACTH-stimulated corticosterone production were assessed by RIA and plasma ACTH levels were determined by an immunometric assay. RESULTS Diabetic rats showed a diminished response to exogenous ACTH stimulation along with higher basal corticosterone and lower plasma ACTH levels. In the adrenal cortex we determined an increase in the levels of lipoperoxides, S-nitrosothiols, nitric oxide synthase activity and nitro-tyrosine modified proteins while catalase activity and heme oxygenase-1 expression levels were also elevated. Antioxidant treatments were effective in the prevention of these effects, and in the increase in the number of apoptotic and phagocytic (ED1+) cells detected in diabetic rats. No changes were observed in the STZ + INS group. CONCLUSIONS Generation of oxidative/nitrosative stress in the adrenal cortex of diabetic rats leads to the induction of apoptosis and the activation of adrenocortical macrophages and is associated with an elevated basal corticosteronemia and the loss of the functional capacity of the gland.
Collapse
Affiliation(s)
- Esteban M Repetto
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Morena Wiszniewski
- Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana L Bonelli
- Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carolina V Vecino
- Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Martinez Calejman
- Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Arias
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cora B Cymeryng
- Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Laboratorio de Endocrinología Molecular (LEM), Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Yaribeygi H, Atkin SL, Sahebkar A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol 2019; 234:1300-1312. [PMID: 30146696 DOI: 10.1002/jcp.27164] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
The prevalence of diabetes is growing worldwide with an increasing morbidity and mortality associated with the development of diabetes complications. Free radical production is a normal biological process that is strictly controlled and has been shown to be important in normal cellular homeostasis, and in the bodies response to pathogens. However, there are several mechanisms leading to excessive free radical production that overcome the normal protective quenching mechanisms. Studies have shown that many of the diabetes complications result from excessive free radical generation and oxidative stress, and it has been shown that chronic hyperglycemia is a potent inducer for free radical production, generated through several pathways and triggering multiple molecular mechanisms. An understanding of these processes may help us to improving our preventive or therapeutic strategies. In this review, the major molecular pathways involved in free radical generation induced by hyperglycemia are described.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Zis P, McHugh PC, Manca M, Sarrigiannis PG, Rao DG, Hadjivassiliou M. Increased Oxidative Stress as a Risk Factor in Chronic Idiopathic Axonal Polyneuropathy. J Mol Neurosci 2018; 66:547-551. [PMID: 30350254 PMCID: PMC6267393 DOI: 10.1007/s12031-018-1200-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/17/2018] [Indexed: 01/04/2023]
Abstract
Chronic idiopathic axonal polyneuropathy (CIAP) is a disorder with insidious onset and slow progression, where no etiology is identified despite appropriate investigations. We aimed to investigate the role of oxidative stress as a risk factor for the pathogenesis of CIAP. Sera of patients with CIAP were tested for protein carbonyl (PC) and 8-hydroxydeoxyguanosine (8H). As a control group, we recruited patients with gluten neuropathy. Twenty-one patients with CIAP and 21 controls were recruited. The two groups did not differ significantly regarding demographics or clinical characteristics (i.e., neuropathy type or disease severity). After adjusting for gender, having CIAP was positively correlated with both the 8H titer (standardized beta coefficient 0.349, p = 0.013) and the PC titer (standardized beta coefficient 0.469, p = 0.001). Oxidative stress appears to be increased in CIAP and might have a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Panagiotis Zis
- Academic Department of Neurosciences, Royal Hallamshire Hospital, Glossop Rd, Sheffield, South Yorkshire, S10 2JF, UK.
| | - Patrick C McHugh
- Centre for Biomarker Research and Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | - Maurizio Manca
- Centre for Biomarker Research and Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | | | - Dasappaiah Ganesh Rao
- Academic Department of Neurosciences, Royal Hallamshire Hospital, Glossop Rd, Sheffield, South Yorkshire, S10 2JF, UK
| | - Marios Hadjivassiliou
- Academic Department of Neurosciences, Royal Hallamshire Hospital, Glossop Rd, Sheffield, South Yorkshire, S10 2JF, UK
| |
Collapse
|
26
|
Namazi Sarvestani N, Saberi Firouzi S, Falak R, Karimi MY, Davoodzadeh Gholami M, Rangbar A, Hosseini A. Phosphodiesterase 4 and 7 inhibitors produce protective effects against high glucose-induced neurotoxicity in PC12 cells via modulation of the oxidative stress, apoptosis and inflammation pathways. Metab Brain Dis 2018; 33:1293-1306. [PMID: 29713919 DOI: 10.1007/s11011-018-0241-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/13/2018] [Indexed: 12/13/2022]
Abstract
Diabetic neuropathy (DN) is the most common diabetic complication. It is estimated diabetic population will increase to 592 million by the year 2035. This is while at least 50-60% of all diabetic patients will suffer from neuropathy in their lifetime. Oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation are crucial pathways in development and progression of DN. Since there is also no selective and effective therapeutic agent to prevent or treat high glucose (HG)-induced neuronal cell injury, it is crucial to explore tools by which one can reduce factors related to these pathways. Phosphodiesterase 4 and 7 (PDE 4 and 7) regulate oxidative damage, neurodegenaration, and inflammatory responses through modulation of cyclic adenosine monophosphate (cAMP) level, and thus can be as important drug targets for regulating DN. The aim of this study was to evaluate the protective effects of inhibitors of PDE 4 and 7, named rolipram and BRL5048, on HG-induced neurotoxicity in PC12 cells as an in vitro cellular model for DN and determine the possible mechanisms for theirs effects. We report that the PC12 cells pre-treatment with rolipram (2 μM) and/or BRL5048 (0.2 μM) for 60 min and then exposing the cells to HG (4.5 g/L for 72 h) or normal glucose (NG) (1 g/L for 72 h) condition show: (1) significant attenuation in ROS, MDA and TNF-a levels, Bax/Bcl-2 ratio, expression of caspase 3 and UCP2 proteins; (2) significant increase in viability, GSH/GSSG ratio, MMP and ATP levels. All these data together led us to propose PDE 4 and 7 inhibitors, and specifically, rolipram and BRL5048, as potential drugs candidate to be further studied for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Nazanin Namazi Sarvestani
- Department of Animal Biology, School of Biology, Department of Science, University of Tehran, Tehran, Iran
| | - Saeedeh Saberi Firouzi
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Akram Rangbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Jiang DQ, Xu LC, Jiang LL, Li MX, Wang Y. Fasudil combined with methylcobalamin or lipoic acid can improve the nerve conduction velocity in patients with diabetic peripheral neuropathy: A meta-analysis. Medicine (Baltimore) 2018; 97:e11390. [PMID: 29979431 PMCID: PMC6076121 DOI: 10.1097/md.0000000000011390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Fasudil (F) plus methylcobalamin (M) or lipoic acid (L) treatment has been suggested as a therapeutic approach for diabetic peripheral neuropathy (DPN) in numerous studies. However, the effect of the combined use still remains dubious. OBJECTIVE The aim of this report was to evaluate the efficacy of F plus M or L (F + M or F + L) for the treatment of DPN compared with that of M or L monotherapy, respectively, in order to provide the basis and reference for clinical rational drug use. METHODS Randomized controlled trials (RCTs) of F for DPN published up to September 2017 were searched. Relative risk (RR), mean difference (MD), and 95% confidence interval (CI) were calculated and heterogeneity was assessed with the I test. Sensitivity analyses were also performed. The outcomes measured were as follows: the clinical efficacy, median motor nerve conduction velocities (NCVs) (MNCVs), median sensory NCV (SNCV), peroneal MNCV, peroneal SNCV, and adverse effects. RESULTS Thirteen RCTs with 1148 participants were included. Clinical efficacy of F + M combination therapy was significantly better than M monotherapy (8 trials; RR 1.26, 95% CI 1.17-1.35, P < .00001, I = 0%), the efficacy of F + L combination therapy was also obviously better than L monotherapy (4 trials; RR 1.27, 95% CI 1.16-1.39, P < .00001, I = 0%). Compared with monotherapy, the pooled effects of combination therapy on NCV were (MD 6.69, 95% CI 4.74-8.64, P < .00001, I = 92%) for median MNCV, (MD 6.71, 95% CI 1.77-11.65, P = .008, I = 99%) for median SNCV, (MD 4.18, 95% CI 2.37-5.99, P < .00001, I = 94%) for peroneal MNCV, (MD 5.89, 95% CI 3.57-8.20, P < .00001, I = 95%) for peroneal SNCV. Furthermore, there were no serious adverse events associated with drug intervention. CONCLUSION Combination therapy with F plus M or L was superior to M or L monotherapy for improvement of neuropathic symptoms and NCVs in DPN patients, respectively. Moreover, no serious adverse events occur in combination therapy.
Collapse
Affiliation(s)
- De-Qi Jiang
- College of Biology and Pharmacy, Yulin Normal University
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin
| | - Lan-Cheng Xu
- College of Biology and Pharmacy, Yulin Normal University
| | - Li-Lin Jiang
- College of Biology and Pharmacy, Yulin Normal University
| | - Ming-Xing Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou
| | - Yong Wang
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
R(+)-Thioctic Acid Effects on Oxidative Stress and Peripheral Neuropathy in Type II Diabetic Patients: Preliminary Results by Electron Paramagnetic Resonance and Electroneurography. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1767265. [PMID: 29849866 PMCID: PMC5914101 DOI: 10.1155/2018/1767265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 12/27/2017] [Indexed: 12/15/2022]
Abstract
Objectives Diabetic neuropathy is the most common complication of diabetes. The idea of alterations in energy metabolism in diabetes is emerging. The biogenic antioxidant R(+)-thioctic acid has been successfully used in the treatment of diabetic polyneuropathic (DPN) patients. Methods The effects of R(+)-thioctic acid (1 tablet, 1.6 g) administration were evaluated in 12 DPN patients at baseline and at 15, 30, 60, and 120 administration days throughout the assessment of oxidative stress (OxS); ROS production rate by electron paramagnetic resonance (EPR) technique; and oxidative damage biomarkers (thiobarbituric acid reactive substances (TBARS) and protein carbonyls (PC)), electroneurography (ENG) and visual analogue scale. Results Supplementation induced significant changes (p < 0.05) at 30 and 60 days. ROS production rate up to -16%; TBARS (-31%), PC (-38%), and TAC up to +48%. Motor nerve conduction velocity in SPE and ulnar nerves (+22% and +16%) and sensor conduction velocity in sural and median nerves (+22% and +5%). Patients reported a general wellness sensation improvement (+35%) at 30 days: lower limb pain sensation (-40%) and upper limbs (-23%). Conclusion The results strongly indicate that an increased antioxidant capacity plays an important role in OxS, nerve conduction velocity, pain, and general wellness improvement. Nevertheless, the effects of the antioxidant compound were found positive up to 60 days. Then, a hormesis effect was observed. Novelty of the research would be a challenge for investigators to carefully address issues, including dose range factors, appropriate administration time, and targeting population to counteract possible "boomerang effects." The great number of monitored parameters would firmly stress these conclusions.
Collapse
|
29
|
Shoaib A, Dixit RK, Badruddeen, Rahman MA, Bagga P, Kaleem S, Siddiqui S, Arshad M, Siddiqui HH. Cure of human diabetic neuropathy by HPLC validated bark extract of Onosma echioides L. root. Nat Prod Res 2018; 33:2699-2703. [DOI: 10.1080/14786419.2018.1460838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Ambreen Shoaib
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Department of Pharmacology, Integral University, Lucknow, India
| | - Rakesh Kumar Dixit
- Department of Pharmacology, King George Medical University, Lucknow, India
| | - Badruddeen
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Department of Pharmacology, Integral University, Lucknow, India
| | - Md. Azizur Rahman
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Department of Pharmacology, Integral University, Lucknow, India
| | - Paramdeep Bagga
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Department of Pharmacology, Integral University, Lucknow, India
| | - Sarjeel Kaleem
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Department of Pharmacology, Integral University, Lucknow, India
| | - Sahabjada Siddiqui
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Lucknow, India
- Molecular Endocrinology Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Md. Arshad
- Molecular Endocrinology Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - Hefazat Hussain Siddiqui
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Department of Pharmacology, Integral University, Lucknow, India
| |
Collapse
|
30
|
Saberi Firouzi S, Namazi Sarvestani N, Bakhtiarian A, Ghazi Khansari M, Karimi MY, Ranjbar A, Safa M, Hosseini A. Sildenafil protective effects on high glucose-induced neurotoxicity in PC12 cells: the role of oxidative stress, apoptosis, and inflammation pathways in an in vitro cellular model for diabetic neuropathy. Neurol Res 2018; 40:624-636. [PMID: 29623781 DOI: 10.1080/01616412.2018.1458813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objectives Diabetic neuropathy (DN) induces lifetime disability and there is currently no effective therapy to treat or to minimize patients suffering, so it is thereby imperative to develop therapeutic strategies for this disease. Since oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation are crucial mechanisms in development and progression of DN, it is important to explore tools by which one can reduce factors related to these pathways. Herein, the understandings of the sildenafil neuroprotective effect through increase of cGMP level and the mediation of oxidative stress, apoptosis, and inflammation pathways on neurotoxicity induced by high glucose (HG) in PC12 cells as an in vitro cellular model for DN were investigated. Methods We reported that the PC12 cells pre-treatment with sildenafil (0.008 μM) for 60 min and then exposing the cells to HG (25 mM for 72 h) or normal glucose (NG) (5 mM for 72 h) condition, show: Results (1) significant attenuation in reactive oxygen species, MDA and TNF-a levels, Bax/Bcl-2 ratio, expression of caspase 3 and UCP2 proteins; (2) significant increase in viability, GSH/GSSG ratio, mitochondrial membrane potential, and ATP levels. Conclusion All these data together led us to propose neuroprotective effect of sildenafil is probably through its antioxidant, antiapoptotic, and anti-inflammatory activities. Of course, further studies are required to explain the underlying mechanism of the sildenafil effects.
Collapse
Affiliation(s)
- Saeedeh Saberi Firouzi
- a Faculty of Medicine, Department of Pharmacology , Tehran University of Medical Sciences , Tehran , Iran
| | - Nazanin Namazi Sarvestani
- b Department of Animal Biology, School of Biology, Department of Science , University of Tehran , Tehran , Iran
| | - Azam Bakhtiarian
- a Faculty of Medicine, Department of Pharmacology , Tehran University of Medical Sciences , Tehran , Iran
| | - Mahmoud Ghazi Khansari
- a Faculty of Medicine, Department of Pharmacology , Tehran University of Medical Sciences , Tehran , Iran
| | | | - Akram Ranjbar
- d Department of Toxicology and Pharmacology, School of Pharmacy , Hamadan University of Medical Sciences , Hamadan , Iran
| | - Majid Safa
- e Faculty of Allied Medicine, Cellular and Molecular Research Center and Department of Hematology and blood banking , Iran University of Medical Sciences , Tehran , Iran
| | - Asieh Hosseini
- c Razi Drug Research Center , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
31
|
Abdel-Wahhab KG, Daoud EM, El Gendy A, Mourad HH, Mannaa FA, Saber MM. Efficiencies of Low-Level Laser Therapy (LLLT) and Gabapentin in the Management of Peripheral Neuropathy: Diabetic Neuropathy. Appl Biochem Biotechnol 2018. [PMID: 29527628 DOI: 10.1007/s12010-018-2729-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diabetic neuropathy (DN) is the highly occurred complication of diabetes mellitus; it has been defined as an event of peripheral nerve dysfunction characterized by pain, allodynia, hyperalgesia, and paraesthesia. The current study was conducted to evaluate the efficacy of low-level laser therapy (LLLT) in the management of neuropathy in diabetic rats. The used animals were divided into the following groups: negative control, streptozotocin-induced diabetic rats, and diabetic rats with peripheral neuropathy (DNP) and DNP treated with gabapentin or with LLLT. Behavioral tests were carried out through hotplate test for the determination of pain sensations and the Morris water maze test for spatial reference memory evaluation. Blood samples were collected at the end of treatment for biochemical determinations. In the current study, the latency of hind-paw lick decreased significantly when DNP are treated with gabapentin or LLLT. The Morris water maze test showed that LLLT treatment improved memory that deteriorated in DNP more than gabapentin do. The results of the biochemical study revealed that LLLT could not affect the level of beta-endorphin that decreased in DNP but significantly decreased S100B that rose in DNP. PGE2 and cytokines IL-1β, IL-10, and TNF-α showed significant increase in DNP compared with control group. The gabapentin administration or LLLT application significantly reversed the levels of the mentioned markers towards the normal values of the controls. Levels of serum MDA and nitric oxide increased significantly in the DNP but rGSH showed significant decrease. These markers were improved significantly when the DNP were treated with gabapentin or LLLT. The treatment with gabapentin or LLLT significantly decreased the raised level in total cholesterol in DNP but could not decrease the elevated level of triglycerides, while LDL cholesterol decreased significantly in DNP treated with gabapentin but not affected by LLLT. Values of serum alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), urea, and creatinine increased significantly in the DPN and diabetic rats without peripheral neuropathy (PN) compared with control group. The treatment of DNP with gabapentin induced significant increases in ALAT and ASAT activities but LLLT treatment induced significant decreases in ALAT and ASAT activities as compared with DNP group. Neither gabapentin nor LLLT could improve the elevated levels of serum urea and creatinine in the DNP. It could be concluded that LLLT is more safe and effective than gabapentin in the management of neuropathy in diabetic rats.
Collapse
Affiliation(s)
- Khaled G Abdel-Wahhab
- Medical Physiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Eitedal M Daoud
- Complementary Medicine Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Aliaa El Gendy
- Complementary Medicine Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hagar H Mourad
- Medical Physiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Fathia A Mannaa
- Medical Physiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Maha M Saber
- Complementary Medicine Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
32
|
Kiasalari Z, Rahmani T, Mahmoudi N, Baluchnejadmojarad T, Roghani M. Diosgenin ameliorates development of neuropathic pain in diabetic rats: Involvement of oxidative stress and inflammation. Biomed Pharmacother 2017; 86:654-661. [DOI: 10.1016/j.biopha.2016.12.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/29/2016] [Accepted: 12/16/2016] [Indexed: 12/31/2022] Open
|
33
|
Rayegan S, Dehpour AR, Sharifi AM. Studying neuroprotective effect of Atorvastatin as a small molecule drug on high glucose-induced neurotoxicity in undifferentiated PC12 cells: role of NADPH oxidase. Metab Brain Dis 2017; 32:41-49. [PMID: 27476541 PMCID: PMC7102122 DOI: 10.1007/s11011-016-9883-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
Overproduction of reactive oxygen species (ROS) by NADPH oxidase (NOX) activation has been considered the essential mechanism induced by hyperglycemia in various tissues. However, there is no comprehensive study on the role of NOXs in high glucose (HG)-induced toxic effect in neural tissues. Recently, a therapeutic strategy in oxidative related pathologies has been introduced by blocking the undesirable actions of NOX enzymes by small molecules. The protective roles of Statins in ameliorating oxidative stress by NOX inhibition have been shown in some tissues except neural. We hypothesized then, that different NOXs may have role in HG-induced neural cell injury. Furthermore, we postulate that Atorvastatin as a small molecule may modulate this NOXs activity to protect neural cells. Undifferentiated PC12 cells were treated with HG (140 mM/24 h) in the presence and absence of Atorvastatin (1 μM/96 h). The cell viability was measured by MTT assay and the gene and protein expressions profile of NOX (1-4) were determined by RT-PCR and western blotting, respectively. Levels of ROS and malondialdehyde (MDA) were also evaluated. Gene and protein expression levels of NOX (1-4) and consequently ROS and MDA levels were elevated in HG-treated PC12 cells. Atorvastatin could significantly decrease HG-induced NOXs, ROS and MDA elevation and improve impaired cell viability. It can be concluded that HG could elevate NOXs activity, ROS and MDA levels in neural tissues and Atorvastatin as a small molecule NOX inhibitor drug may prevent and delay diabetic complications, particularly neuropathy.
Collapse
Affiliation(s)
- Samira Rayegan
- Razi Drug Research Center and Dept. of Pharmacology, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center and Dept. of Pharmacology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Tissue engineering group, Department of Orthopedics surgery, Faculty of Medicine, University of Malaya, Kuala lumpur, Malaysia.
| |
Collapse
|
34
|
Electrospun Nanofibers Loaded with Quercetin Promote the Recovery of Focal Entrapment Neuropathy in a Rat Model of Streptozotocin-Induced Diabetes. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2017493. [PMID: 28251151 PMCID: PMC5304310 DOI: 10.1155/2017/2017493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/29/2016] [Indexed: 11/17/2022]
Abstract
In this study, quercetin-loaded zein-based nanofibers were developed using electrospinning technique. The therapeutic effect of these quercetin-loaded nanofibers on neuropathy in streptozotocin- (STZ-) induced diabetes in rats was assessed. Diabetic condition was induced in male Wistar rats by STZ, after which a crush injury of the right sciatic nerve was performed to induce mononeuropathy. Functional recovery was assessed using walking track analysis, measurements of foot withdrawal reflex, nerve conduction velocity, and morphological analysis. The oxidative stress status and the ratio of phosphorylated extracellular recognition kinase (pERK)/extracellular recognition kinase (ERK) expression in the nerve lesion were also assessed in order to elucidate the potential mechanisms involved. Results showed that quercetin-loaded zein-based nanofibers slightly enhanced functional recovery from neuropathy in STZ-diabetic rats. The potential mechanism might partially involve improvements in oxidative stress status and the ratio of pERK/ERK expression in the nerve lesion.
Collapse
|
35
|
He F, Peng Y, Yang Z, Ge Z, Tian Y, Ma T, Li H. Activated ClC-2 Inhibits p-Akt to Repress Myelination in GDM Newborn Rats. Int J Biol Sci 2017; 13:179-188. [PMID: 28255270 PMCID: PMC5332872 DOI: 10.7150/ijbs.17716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
This study aims to investigate the effect and mechanism of type 2 voltage-gated chloride channel (ClC-2) on myelin development of newborn rats' cerebral white matter with gestational diabetes mellitus (GDM). In this study, GDM model was induced in late pregnant rat model. The alteration of ClC-2 expression in various developmental stages of cerebral white matter with/without being exposed to high glucose was analyzed using RT-PCR, active oxygen detection, TUNEL staining, Western Blot as well as immuno-histochemical staining. Our results showed that ClC-2 mRNA and protein expressions in GDM group were significantly increased in white matter of fetal rats after E18 stage, and elevated the level of TNF-α and iNOS in white matter at P0 and P3 stage of newborn rats. Meanwhile, In GDM group, reactive oxygen species (ROS) levels of the white matter at E18, P0, and P3 stage were significantly higher than control group. Furthermore, the expression level of myelin transcription factor Olig2 at P0 stage and CNPase at P3 stage were strikingly lower than that of the control group. In GDM group, ClC-2 expression in the corpus callosum (CC) and cingulate gyrus (CG) regains, and TUNEL positive cell number were increased at P0 and P3 stage. However, PDGFα positive cell number at P0 stage and CNPase expression at P3 stage were significantly decreased. Caspase-3 was also increased in those white matter regions in GDM group, but p-Akt expression was inhibited. While DIDS (a chloride channel blocker) can reverse these changes. In conclusion, ClC-2 and caspase-3 were induced by GDM, which resulted in apoptosis and myelination inhibition. The effect was caused by repressing PI3K-Akt signaling pathway. Application of ClC-2 inhibitor DIDS showed protective effects on cerebral white matter damage stimulated by high glucose concentration.
Collapse
Affiliation(s)
- Feixiang He
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China.; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yuchen Peng
- Battalion 4 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zilu Ge
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yanping Tian
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Teng Ma
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongli Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| |
Collapse
|
36
|
Chai HJ, Kiew LV, Chin Y, Norazit A, Mohd Noor S, Lo YL, Looi CY, Lau YS, Lim TM, Wong WF, Abdullah NA, Abdul Sattar MZ, Johns EJ, Chik Z, Chung LY. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats. Int J Nanomedicine 2017; 12:577-591. [PMID: 28144140 PMCID: PMC5245978 DOI: 10.2147/ijn.s111284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. EXPERIMENTAL APPROACH 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). RESULTS In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. CONCLUSION/IMPLICATIONS The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoke-Lin Lo
- Department of Pharmacy, Faculty of Medicine, University of Malaya
- School of Pharmacy, International Medical University, Kuala Lumpur
| | | | | | - Tuck-Meng Lim
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar
| | - Won-Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur
| | | | | | - Edward J Johns
- Department of Physiology, University College Cork, Cork, Republic of Ireland
| | | | - Lip-Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya
| |
Collapse
|
37
|
SUMO-specific protease 1 protects neurons from apoptotic death during transient brain ischemia/reperfusion. Cell Death Dis 2016; 7:e2484. [PMID: 27882949 PMCID: PMC5260881 DOI: 10.1038/cddis.2016.290] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/06/2023]
Abstract
SUMO-specific protease 1 (SENP1) deconjugates SUMO from modified proteins. Although post-ischemic activation of SUMO conjugation was suggested to be neuroprotective against ischemia/reperfusion (I/R) injury, the function of SENP1 in this process remained unclear. Here we show that transient middle cerebral artery occlusion in mice followed by 6, 12 and 24 h reperfusion significantly enhanced SENP1 levels in the affected brain area, independent of transcription. Consistent with the increase in SENP1, the levels of SUMO1-conjugated proteins were decreased by I/R in cortical neurons of control littermate mice, but unchanged in that of animals with conditional ablation of SENP1 gene from adult principal neurons, the SENP1flox/flox:CamKIIα-Cre (SENP1 cKO) mice. The SENP1 cKO mice exhibited a significant increase in infarct volume in the cerebral cortex and more severe motor impairment in response to I/R as compared with the control littermates. Cortical neurons from I/R-injured SENP1 cKO mice became more apoptotic than that from control littermates, as indicated by both TUNEL staining and caspase-3 activation. Overexpression of SENP1 in somatosensory cortices of adult wild-type (WT) mice suppressed I/R-induced neuronal apoptosis. We conclude that SENP1 plays a neuroprotective role in I/R injury by inhibiting apoptosis through decreasing SUMO1 conjugation. These findings reveal a novel mechanism of neuroprotection by protein desumoylation, which may help develop new therapies for mitigating brain injury associated with ischemic stroke.
Collapse
|
38
|
Yang L, Wu L, Du S, Hu Y, Fan Y, Ma J. 1,25(OH)2D3 inhibits high glucose-induced apoptosis and ROS production in human peritoneal mesothelial cells via the MAPK/P38 pathway. Mol Med Rep 2016; 14:839-44. [PMID: 27220355 DOI: 10.3892/mmr.2016.5323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 04/26/2016] [Indexed: 11/06/2022] Open
Abstract
The regulation of cell proliferation, differentiation and immunomodulation are affected by 1,25(OH)2D3. However, its function during apoptosis and oxidative stress in human peritoneal mesothelial cells (HPMCs) remains unknown. The aim of the present study was to investigate whether the regulation of apoptosis and oxidative stress have therapeutic relevance in peritoneal dialysis (PD) therapy. The present study investigated the effects of 1,25(OH)2D3 on high glucose (HG)-induced apoptosis and reactive oxygen species (ROS) production in HPMCs, and examined the underlying molecular mechanisms. Flow cytometry and western blotting were performed to detect cell apoptosis, 2,7-dichlorofluorescein diacetate was used to measure reactive oxygen species production and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to measure cell viability. The results of the present study demonstrated that exposure to HG increased apoptosis and ROS production in HPMCs, whereas pretreatment with 1,25(OH)2D3 significantly inhibited HG‑induced apoptosis and ROS production. Further analysis revealed that 1,25(OH)2D3 facilitated cell survival via the MAPK/P38 pathway. The results of the present study indicate that 1,25(OH)2D3 inhibits apoptosis and ROS production in HG‑induced HPMCs via inhibition of the MAPK/P38 pathway.
Collapse
Affiliation(s)
- Lina Yang
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lan Wu
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuyan Du
- Central Laboratory, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ye Hu
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Fan
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jianfei Ma
- Department of Nephrology, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
39
|
Yagihashi S. Glucotoxic Mechanisms and Related Therapeutic Approaches. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 127:121-49. [PMID: 27133148 DOI: 10.1016/bs.irn.2016.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropathy is the earliest and commonest complication of diabetes. With increasing duration of diabetes, frequency and severity of neuropathy are worsened. Long-term hyperglycemia is therefore implicated in the development of this disorder. Nerve tissues require glucose energy to function and survive. Upon excessive glucose entry into the peripheral nerve, the glycolytic pathway and collateral glucose-utilizing pathways are overactivated and initiate adverse effects on nerve tissues. During hyperglycemia, flux through the polyol pathway, formation of advanced glycation end-products, production of free radicals, flux into the glucosamine pathway, and protein kinase C activity are all enhanced to negatively influence nerve function and structure. Suppression of these aberrant metabolic pathways has succeeded in prevention and inhibition of the development of neuropathy in animal models with diabetes. Satisfactory results were not attained, however, in patients with diabetes and further clinical trials are required. In this review, the author summarizes the hitherto proposed theories on the pathogenesis of diabetic neuropathy related to glucose metabolism and future prospects for the effective treatment of neuropathy.
Collapse
Affiliation(s)
- S Yagihashi
- Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| |
Collapse
|
40
|
Roy V, Chenkual L, Gurusubramanian G. Mallotus roxburghianus modulates antioxidant responses in pancreas of diabetic rats. Acta Histochem 2016; 118:152-63. [PMID: 26764087 DOI: 10.1016/j.acthis.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/20/2022]
Abstract
Mallotus roxburghianus has long been used by Mizo tribal people for the treatment of diabetes. Scientific validation at known doses may provide information about its safety and efficacy. Methanolic leaf extract of M. roxburghianus (MRME 100 and 400mg/kg) was tested in comparison with normal and alloxan diabetic rats for 28 days p.o. in terms of body and pancreatic weight, blood glucose level, antioxidant enzymes, expression of visfatin and PCNA, histopathology and histomorphometric measurements of pancreas. The results were evaluated statistically using ANOVA, correlation and regression and Principal component analysis (PCO). MRME (100 and 400mg/kg) treatment significantly (p<0.0001) decreased the body weight, blood glucose level, improved the mass and size of pancreas, elevated the levels of antioxidant enzymes and up regulate the expression of visfatin and PCNA. PCO analysis was good to fitness and prediction distinguishes the therapeutic effects of M. roxburghianus from the alloxan induced diabetic rats. MRME has significant role in protecting animals from alloxan-induced diabetic oxidative stress in pancreas and exhibited promising antihyperglycaemic and antioxidant activities along with significant reversal of disturbed antioxidant status and lipid peroxidative damage. Pancreatic architecture and physiology under diabetic oxidative stress have been significantly modulated by MRME and validated as a drug candidate for antidiabetic treatment. M. roxburghianus treatment restores the antioxidant enzyme system and rejuvenates the islets mass in alloxanized rat by accelerating visfatin and PCNA expression in pancreatic tissue.
Collapse
|
41
|
Effect of genistein on the cerebellar cortex of adult male albino rats with streptozotocin-induced diabetes mellitus. ACTA ACUST UNITED AC 2015. [DOI: 10.1097/01.ehx.0000473710.76297.3b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev 2015; 21:11-23. [DOI: 10.1007/s10741-015-9515-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Merecz A, Markiewicz L, Sliwinska A, Kosmalski M, Kasznicki J, Drzewoski J, Majsterek I. Analysis of oxidative DNA damage and its repair in Polish patients with diabetes mellitus type 2: Role in pathogenesis of diabetic neuropathy. Adv Med Sci 2015; 60:220-30. [PMID: 25932787 DOI: 10.1016/j.advms.2015.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Distal symmetric polyneuropathy (DSPN) is common complication of type 2 diabetes (T2DM). In this work we investigated the role of oxidative damage in connection with particular polymorphisms of DNA repair genes and their repair capacity. MATERIAL/METHODS Materials constitute the peripheral blood of patients with T2DM with and without DSPN and control subjects without disturbance of the carbohydrate fraction. The study of gene polymorphisms which products take part in base excision repair (BER) pathway: 726 Val/Ala adenosine diphosphate ribosyl transferase (ADPRT), 324 His/Glu MutYhomolog (MUTYH) and 148 Asp/Glu human apurinic/apyrimidinic endonuclease (APE) was carried out using restriction fragment length polymorphism polymerase chain reaction (PCR-RFLP) method. The study of DNA damage induced by hydrogen peroxide and the efficiency of their repair was carried out using comet assay. RESULTS None of the 3 polymorphisms were associated with the risk of DSPN. However, in group of patients together with T2DM and T2DM/DSPN 726 Ala ADPRT allele was significantly susceptible to increased risk of T2DM (OR=1.59; 95% CI: 1.08-2.36). Investigation of DNA damage and repair revealed that T2DM patients have decreased ability to DNA repair. This capacity even drops down in the group of T2DM/DSPN patients compared to subjects with diabetes alone. ADPRT and APE polymorphisms were significantly associated with higher DNA damages (P<0.05) in heterozygous and mutant homozygous in correlation to homozygous wild type, but for MUTYH polymorphism relation was not confirmed. CONCLUSIONS Pathogenesis of T2DM and development of DSPN may be related to oxidative stress connected with BER gene polymorphisms.
Collapse
Affiliation(s)
- Anna Merecz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland.
| | - Lukasz Markiewicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Sliwinska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Marcin Kosmalski
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jacek Kasznicki
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Jozef Drzewoski
- Department of Internal Medicine, Diabetology and Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Gül M, Bayat N, Çetin A, Kepekçi RA, Şimşek Y, Kayhan B, Turhan U, Otlu A. Histopathological, Ultrastructural and Apoptotic Changes in Diabetic Rat Placenta. Balkan Med J 2015; 32:296-302. [PMID: 26185719 DOI: 10.5152/balkanmedj.2015.15290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 01/13/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The exchange of substances between mother and fetus via the placenta plays a vital role during development. A number of developmental disorders in the fetus and placenta are observed during diabetic pregnancies. Diabetes, together with placental apoptosis, can lead to developmental and functional disorders. AIMS Histological, ultrastructural and apoptotic changes were investigated in the placenta of streptozotocin (STZ) induced diabetic rats. STUDY DESIGN Animal experimentation. METHODS In this study, a total of 12 female Wistar Albino rats (control (n=6) and diabetic (n=6)) were used. Rats in the diabetic group, following the administration of a single dose of STZ, showed blood glucose levels higher than 200 mg/dL after 72 hours. When pregnancy was detected after the rats were bred, two pieces of placenta and the fetuses were collected on the 20(th) day of pregnancy by cesarean incision under ketamine/ xylazine anesthesia from in four rats from the control and diabetic groups. Placenta tissues were processed for light microscopy and transmission electron microscopy (TEM). Hematoxylin-eosin (HE) and periodic acid Schiff-diastase (PAS-D) staining for light microscopic and caspase-3 staining for immunohistochemical investigations were performed for each placenta. Electron microscopy was performed on thin sections contrasted with uranyl acetate and lead nitrate. RESULTS Weight gain in the placenta and fetuses of diabetic rats and thinning of the decidual layer, thickening of the hemal membrane, apoptotic bodies, congestion in intervillous spaces, increased PAS-D staining in decidual cells and caspase-3 immunoreactivity were observed in the diabetic group. After the ultrastructural examination, the apoptotic appearance of the nuclei of trophoblastic cells, edema and intracytoplasmic vacuolization, glycogen accumulation, dilation of the endoplasmic reticulum and myelin figures were observed. In addition, capillary basement membrane thickening, capillary endothelial cells chromatin condensation in the nucleus and corrugation of the nucleus were found. CONCLUSION Diabetes causes histomorphometric, ultrastructural and apoptotic changes in rat placenta.
Collapse
Affiliation(s)
- Mehmet Gül
- Department of Histology and Embriyology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Nuray Bayat
- Department of Histology and Embriyology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Aslı Çetin
- Department of Histology and Embriyology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Remziye Aysun Kepekçi
- Department of Biology, Gaziantep University Faculty of Arts and Science, Gaziantep, Turkey
| | - Yavuz Şimşek
- Department of Obstetrics and Gynecology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Başak Kayhan
- Department of Medical Biology and Genetics, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Uğur Turhan
- Department of Obstetrics and Gynecology, İnönü University Faculty of Medicine, Malatya, Turkey
| | - Ali Otlu
- Department of Histology and Embriyology, İnönü University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
45
|
Yang XW, Liu FQ, Guo JJ, Yao WJ, Li QQ, Liu TH, Xu LP. Antioxidation and anti-inflammatory activity of Tang Bi Kang in rats with diabetic peripheral neuropathy. Altern Ther Health Med 2015; 15:66. [PMID: 25887432 PMCID: PMC4417275 DOI: 10.1186/s12906-015-0600-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/09/2015] [Indexed: 01/22/2023]
Abstract
Background Tang Bi Kang (TBK) is a traditional Chinese medicine granule. It has been shown to have effects on nerve conduction velocity deficits, blood-related factors and oxidative stress. This study was undertaken to evaluate proposed antioxidative and anti-inflammatory activity of Tang Bi Kang in rats with diabetic peripheral neuropathy (DPN). Methods DPN was induced in male Wistar rats by intraperitoneal administration of streptozocin (STZ) (60 mg/kg.b.w) for 8 weeks. Fasting blood glucose (FBG) levels were measured in the blood obtained by clipping the tails of the rats. Tail-flick tests were conducted with a tail-flick analgesic meter. Motor and sensory nerve conduction velocities (MNCV and SNCV) of sciatic nerve were measured directly at two sites using a Functional Experiment System. Oxidative stress makers such as malondialdehyde (MDA), superoxide-dismutase (SOD) and glutathione peroxidase (GSH-Px), inflammatory cytokines such as interleukin (IL)-6, and tumour necrosis factor (TNF)-α were estimated. The statistical analysis of results was carried out using Student t-test and one-way analysis of variance (ANOVA), followed by least-significant difference post hoc with SPSS. Results The administration of TBK for 4 weeks in DPN rats resulted in a significant decrease in FBG levels compared to untreated DPN rats. There was a significant increase in MNCV and SNCV in the DPN rats compared to untreated DPN rats. Serum level of MDA was significantly reduced while the activities of SOD and GSH-pX were significantly increased in the TBK treated DPN rats. TBK prevented DPN-induced increase in the serum levels of IL-6 and TNF-α. Conclusion The results of this study demonstrate that the therapeutic effect of TBK on DPN rats may be associated with the antioxidative and anti-inflammatory responses.
Collapse
|
46
|
Sanada LS, Tavares MR, Sato KL, Ferreira RDS, Neubern MCM, Castania JA, Salgado HC, Fazan VPS. Association of chronic diabetes and hypertension in sural nerve morphometry: an experimental study. Diabetol Metab Syndr 2015; 7:9. [PMID: 25717348 PMCID: PMC4339238 DOI: 10.1186/s13098-015-0005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prospective studies have shown incidence rates of hypertension in diabetes mellitus to be three times that of subjects without diabetes mellitus. The reverse also applies, with the incidence of diabetes two to three times higher in patients with hypertension. Despite this common clinical association, the contribution of each isolated entity in the development of a neuropathy is still not well understood. The aims of the present study were to investigate the presence of peripheral neuropathy in spontaneously hypertensive rats (SHR) and SHR with chronically induced diabetes, using a morphological and morphometric study of the sural nerves. METHODS Female SHR and normotensive Wistar rats (WR), 8 weeks old, received a single intravenous injection of streptozotocin (STZ) through the tail vein. Controls from both strains received vehicle. Twelve weeks after the injection, sural nerves were dissected and prepared for light microscopy. Morphometry of sural nerve fascicles and myelinated fibers was performed with the aid of computer software. RESULTS The sural nerve myelinated fibers were highly affected by experimental diabetes in normotensive rats, causing mainly the reduction of the fiber size. Hypertensive rats showed characteristics of small fiber neuropathy and a severe reduction of the number and density or Schwann cells. The association between diabetes and hypertension caused an increase on the average size of the myelinated fibers, pointing to a small fiber loss, associated to axonal atrophy. CONCLUSIONS Our study gives morphological support to the existence of a neuropathy due to hypertension, which is among one of the most common risk factors for diabetic neuropathy. The association between the two neuropathies showed to be a complex alteration, involving and including both, large and small fibers neuropathy. Hypertension caused, indeed, an exacerbation of the alterations already observed in experimental models of diabetic neuropathy.
Collapse
Affiliation(s)
- Luciana Sayuri Sanada
- />Department of Neuroscience and Behavioral Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | | | - Karina Laurenti Sato
- />Departament of Physical Therapy, Federal University of Sergipe, Aracaju, SE Brazil
| | - Renata da Silva Ferreira
- />Department of Neuroscience and Behavioral Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Milena Cardoso Maia Neubern
- />Department of Neuroscience and Behavioral Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Jaci Ayrton Castania
- />Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Helio Cesar Salgado
- />Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Valéria Paula Sassoli Fazan
- />Department of Neuroscience and Behavioral Neurosciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
- />Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, USP, Av. Bandeirantes 3900, Ribeirão Preto, SP Brazil
| |
Collapse
|
47
|
Aminzadeh A, Dehpour AR, Safa M, Mirzamohammadi S, Sharifi AM. Investigating the protective effect of lithium against high glucose-induced neurotoxicity in PC12 cells: involvements of ROS, JNK and P38 MAPKs, and apoptotic mitochondria pathway. Cell Mol Neurobiol 2014; 34:1143-50. [PMID: 25073869 PMCID: PMC11488919 DOI: 10.1007/s10571-014-0089-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/15/2014] [Indexed: 12/30/2022]
Abstract
Hyperglycemia that occurs under the diabetic condition is a major cause of diabetic complications such as diabetic neuropathy, one of the most common diabetes-related complications. It is well known that hyperglycemia could result in generation of reactive oxygen species (ROS). Over production of ROS recommended as an important mediator for apoptotic signaling pathway as well as a key early event in the development of diabetic neuropathy. Recently, many studies have indicated that lithium has robust neuroprotective effect in relation to several neurodegenerative diseases. The present study aimed to examine effects of lithium on high glucose (HG)-induced neurotoxicity and to determine some of the underlying molecular mechanisms involved in this response in PC12 cells as a neuronal culture model for diabetic neuropathy. PC12 cells were pretreated with different concentrations of lithium for 7 days, exposed to HG for 24 h. Cell viability was measured by MTT assay. ROS and lipid peroxidation levels as well as superoxide dismutase activity were measured. In order to examine the underlying molecular mechanisms, the expressions of Bax, Bcl-2, Caspase-3, total and phosphorylated JNK and P38 MAPK were also analyzed by Western blotting. The present results indicated that pretreatment with 1 mM lithium has protected PC12 cells against HG-induced apoptotic cell death. It could reduce ROS generation, Bax/Bcl-2 ratio, Caspase-3 activation, and JNK and P38 MAPK phosphorylation. It may be concluded that in HG condition, lithium pretreatment could prevent mitochondrial apoptosis as well as JNK and P38 MAPK pathway in PC12 cells.
Collapse
Affiliation(s)
- A. Aminzadeh
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. R. Dehpour
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - M. Safa
- Department of Hematology, School of Allied Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - S. Mirzamohammadi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A. M. Sharifi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Stavniichuk R, Shevalye H, Lupachyk S, Obrosov A, Groves JT, Obrosova IG, Yorek MA. Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev 2014; 30:669-78. [PMID: 24687457 PMCID: PMC4177961 DOI: 10.1002/dmrr.2549] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/04/2014] [Accepted: 03/25/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Peroxynitrite, a product of the reaction of superoxide with nitric oxide, causes oxidative stress with concomitant inactivation of enzymes, poly(ADP-ribosylation), mitochondrial dysfunction and impaired stress signalling, as well as protein nitration. In this study, we sought to determine the effect of preventing protein nitration or increasing peroxynitrite decomposition on diabetic neuropathy in mice after an extended period of untreated diabetes. METHODS C57Bl6/J male control and diabetic mice were treated with the peroxynitrite decomposition catalyst Fe(III) tetramesitylporphyrin octasulfonate (FeTMPS, 10 mg/kg/day) or protein nitration inhibitor (-)-epicatechin gallate (20 mg/kg/day) for 4 weeks, after an initial 28 weeks of hyperglycaemia. RESULTS Untreated diabetic mice developed motor and sensory nerve conduction velocity deficits, thermal and mechanical hypoalgesia, tactile allodynia and loss of intraepidermal nerve fibres. Both FeTMPS and epicatechin gallate partially corrected sensory nerve conduction slowing and small sensory nerve fibre dysfunction without alleviation of hyperglycaemia. Correction of motor nerve conduction deficit and increase in intraepidermal nerve fibre density were found with FeTMPS treatment only. CONCLUSIONS Peroxynitrite injury and protein nitration are implicated in the development of diabetic peripheral neuropathy. The findings indicate that both structural and functional changes of chronic diabetic peripheral neuropathy can be reversed and provide rationale for the development of a new generation of antioxidants and peroxynitrite decomposition catalysts for treatment of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - Hanna Shevalye
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - Sergey Lupachyk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - Alexander Obrosov
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, NJ, 08544
| | - Irina G. Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 70808
| | - Mark A. Yorek
- Department of Veterans Affairs Iowa City Health Care System and Department of Internal Medicine, University of Iowa, Iowa City, IA, 52246
| |
Collapse
|
49
|
Becker M, Benromano T, Shahar A, Nevo Z, Pick CG. Changes in the basal membrane of dorsal root ganglia Schwann cells explain the biphasic pattern of the peripheral neuropathy in streptozotocin-induced diabetic rats. J Mol Neurosci 2014; 54:704-13. [PMID: 25260693 DOI: 10.1007/s12031-014-0424-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Peripheral neuropathy is one of the main complications of diabetes mellitus. The current study demonstrated the bimodal pattern of diabetic peripheral neuropathy found in the behavioral study of pain perception in parallel to the histopathological findings in dorsal root ganglia (DRGs) neurons and satellite Schwann cell basement membranes. A gradual decrease in heparan sulfate content, with a reciprocal increase in deposited laminin in the basement membranes of dorsal root ganglia Schwann cells, was shown in streptozotocin-treated rats. In addition, the characteristic biphasic pain profiles were demonstrated in diabetic rats, as shown by hypersensitivity at the third week and hyposensitivity at the tenth week post-streptozotocin injection, accompanied by a continuous decrease in the sciatic nerve conduction velocity. It appears that these basal membrane abnormalities in content of heparan sulfate and laminin, noticed in diabetic rats, may underline the primary damage in dorsal ganglion sensory neurons, simultaneously with the bimodal painful profile in diabetic peripheral neuropathy, simulating the scenario of filtration rate in diabetic kidney.
Collapse
Affiliation(s)
- Maria Becker
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, University of Tel Aviv, Tel Aviv, 69978, Israel
| | | | | | | | | |
Collapse
|
50
|
Role of red grape polyphenols as antidiabetic agents. Integr Med Res 2014; 3:119-125. [PMID: 28664087 PMCID: PMC5481737 DOI: 10.1016/j.imr.2014.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 11/22/2022] Open
Abstract
The worldwide incidence of diabetes mellitus has reached alarming proportions. Persistent hyperglycemia due to impaired insulin activity and/or insulin resistance inversely affects the retina, cerebrovascular system, kidney, peripheral limbs, and other parts of the body, which leads to life-threatening complications. The causal role of oxidative stress in the development and progression of diabetic complications has been emphasized. Polyphenols present in natural products have gained much attention in recent decades in preventive studies against diabetes-associated pathologies. In the present review, we provide a comparative update on the role of quercetin, myricetin, and resveratrol—the major polyphenols present in red grapes—in intervening with diabetic complications, and a brief highlight on the molecular mechanisms underlying oxidative stress mediated hyperglycemia.
Collapse
|