1
|
Han H, Ro DH, Han HS, Won S. Overall compilation of adverse effects of non-steroidal anti-inflammatory drugs: a hypothesis-free systematic investigation using a nationwide cohort study. Front Pharmacol 2025; 16:1539328. [PMID: 40242446 PMCID: PMC12001242 DOI: 10.3389/fphar.2025.1539328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Background Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for osteoarthritis (OA), despite various adverse effects (AEs). Previous studies were often limited by small sample sizes, a focus on only predefined outcomes, and an imbalanced research coverage across NSAID subtypes. These factors can cause confirmation or heterogeneity bias, and in clinical practice, focusing on only well-known AEs may lead to the overlooking of other potential AEs. To address this, we conducted a hypothesis-free screening of AEs within a large, single cohort. Methods Using a nationwide South Korean cohort, we selected 888,909 newly diagnosed OA patients with health screening data between 2010 and 2014. The first three characters of ICD codes were considered as potential AEs and their effects were evaluated. To reduce reverse-causation bias, we first used chi-square and Poisson tests to identify significant indications, and excluded the corresponding ICD codes. Time-dependent survival analysis was conducted, defining NSAID users as patients with any annual medication possession ratio (MPR) ≥ 0.1. Additionally, a self-controlled case series analysis was conducted, defining the risk period as up to 6 months after NSAID intake. Further, we assessed the association between five NSAID subtypes (aceclofenac, meloxicam, loxoprofen, celecoxib, and naproxen) and AEs, and compared their adjusted hazard ratios (aHRs) with each other. Results We confirmed previously reported AEs (e.g., anemia, cerebrovascular and cardiorenal diseases). The risk of nephrotoxicity varied significantly by NSAID type, with loxoprofen (aHR = 3.95 [95% CI, 1.56-10.00]), celecoxib (aHR = 2.44 [95% CI, 1.68-3.53]), and naproxen (aHR = 4.7 [95% CI, 2.16-10.24]) showing statistically comparable risks, all of which were significantly higher than that of meloxicam (aHR = 1.22 [95% CI, 0.68-2.19]). Conclusion Our findings enhance the understanding of NSAID safety profiles by identifying dose-response and duration-time AEs. They also contribute to better diagnosis and management of AEs while providing valuable guidelines for both patients and clinicians.
Collapse
Affiliation(s)
- Hyein Han
- Department of Public Health Sciences, Seoul National University, Seoul, Republic of Korea
| | - Du Hyun Ro
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- CONNECTEVE Co., Ltd, Seoul, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Soo Han
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungho Won
- Department of Public Health Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
- RexSoft Inc., Seoul, Republic of Korea
| |
Collapse
|
2
|
Alhassani RY, Bagadood RM, Balubaid RN, Barno HI, Alahmadi MO, Ayoub NA. Drug Therapies Affecting Renal Function: An Overview. Cureus 2021; 13:e19924. [PMID: 34976524 PMCID: PMC8712249 DOI: 10.7759/cureus.19924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Undesirable side effects of medication are inevitable. Due to the role of the kidneys in clearance and filtration, the renal system faces a unique situation when it comes to the side effects of drugs. It has an important role for different classes of drugs to be excreted, and drugs are a key factor for this system to be at risk. Medications in articles were divided into classes using the standard set by the Saudi Pharmaceutical Journal. Many drug classes cause renal insults. The top six classes were pain killers, antibiotics, proton pump inhibitors, antidiabetics, antihyperlipidemics, and agents for erectile dysfunction. Renal insults caused by these agents could vary in severity. Some drugs could cause nephrotoxicity from one dose, while others may only need continuous monitoring. Different populations also operate under different rules, as some people need dose adjustments while others who are medically free of major illnesses do not. A variety of unfavorable outcomes for the kidney could take place, such as acute kidney injury, chronic kidney disease, and end-stage renal disease, and unfortunately, some of these issues could lead to the need for renal replacement therapies. The outcome of this review paper will help multidisciplinary physicians to understand the renal side effects of the most used drug classes in the Kingdom of Saudi Arabia, their destructive mechanisms, and most importantly, the clinical presentations of renal dysfunction in relation to each class. Emphasizing these adverse effects will prevent future unfavorable outcomes, especially in commonly used drugs that are frequently prescribed for different age groups. Moreover, some of these drugs are considered to be over-the-counter medications, which makes them a serious problem that needs to be handled cautiously.
Collapse
|
3
|
COX-2-derived PGE 2 triggers hyperplastic renin expression and hyperreninemia in aldosterone synthase-deficient mice. Pflugers Arch 2018; 470:1127-1137. [PMID: 29455241 PMCID: PMC6013527 DOI: 10.1007/s00424-018-2118-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 11/25/2022]
Abstract
Pharmacological inhibition or genetic loss of function defects of the renin angiotensin aldosterone system (RAAS) causes compensatory renin cell hyperplasia and hyperreninemia. The triggers for the compensatory stimulation of renin synthesis and secretion in this situation may be multimodal. Since cyclooxygenase-2 (COX-2) expression in the macula densa is frequently increased in states of a defective RAAS, we have investigated a potential role of COX-2 and its derived prostaglandins for renin expression and secretion in aldosterone synthase-deficient mice (AS−/−) as a model for a genetic defect of the RAAS. In comparison with wild-type mice (WT), AS−/− mice had 9-fold and 30-fold increases of renin mRNA and of plasma renin concentrations (PRC), respectively. Renin immunoreactivity in the kidney cortex of AS−/− mice was 10-fold higher than in WT. Macula densa COX-2 expression was 5-fold increased in AS−/− kidneys relative to WT kidneys. Treatment of AS−/− mice with the COX-2 inhibitor SC-236 for 1 week lowered both renal renin mRNA and PRC by 70%. Hyperplastic renin cells in AS−/− kidneys were found to express the prostaglandin E2 receptors EP2 and EP4. Global deletion of EP2 receptors did not alter renin mRNA nor PRC values in AS−/− mice. Renin cell-specific inducible deletion of the EP4 receptor lowered renin mRNA and PRC by 25% in AS−/− mice. Renin cell-specific inducible deletion of the EP4 receptor in combination with global deletion of the EP2 receptor lowered renin mRNA and PRC by 70–75% in AS−/− mice. Lineage tracing of renin-expressing cells revealed that deletion of EP2 and EP4 leads to a preferential downregulation of perivascular renin expression. Our findings suggest that increased macula densa COX-2 activity in AS−/− mice triggers perivascular renin expression and secretion via prostaglandin E2.
Collapse
|
4
|
Walker C, Biasucci LM. Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited. Postgrad Med 2017; 130:55-71. [DOI: 10.1080/00325481.2018.1412799] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chris Walker
- Global Product Director, Pfizer, Walton Oaks, UK
| | | |
Collapse
|
5
|
Pelligand L, Suemanotham N, King JN, Seewald W, Syme H, Smith K, Lees P, Elliott J. Effect of Cyclooxygenase(COX)-1 and COX-2 inhibition on furosemide-induced renal responses and isoform immunolocalization in the healthy cat kidney. BMC Vet Res 2015; 11:296. [PMID: 26634699 PMCID: PMC4669647 DOI: 10.1186/s12917-015-0598-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022] Open
Abstract
Background The role of cyclooxygenase(COX)-1 and COX-2 in the saluretic and renin-angiotensin responses to loop diuretics in the cat is unknown. We propose in vivo characterisation of isoform roles in a furosemide model by administering non-steroidal anti-inflammatory drugs (NSAIDs) with differing selectivity profiles: robenacoxib (COX-2 selective) and ketoprofen (COX-1 selective). Results In this four period crossover study, we compared the effect of four treatments: placebo, robenacoxib once or twice daily and ketoprofen once daily concomitantly with furosemide in seven healthy cats. For each period, urine and blood samples were collected at baseline and within 48 h of treatment starting. Plasma renin activity (PRA), plasma and urinary aldosterone concentrations, glomerular filtration rate (GFR) and 24 h urinary volumes, electrolytes and eicosanoids (PGE2, 6-keto-PGF1α, TxB2), renal injury biomarker excretions [N-acetyl-beta-D-glucosaminidase (NAG) and Gamma-Glutamyltransferase] were measured. Urine volume (24 h) and urinary sodium, chloride and calcium excretions increased from baseline with all treatments. Plasma creatinine increased with all treatments except placebo, whereas GFR was significantly decreased from baseline only with ketoprofen. PRA increased significantly with placebo and once daily robenacoxib and the increase was significantly higher with placebo compared to ketoprofen (10.5 ± 4.4 vs 4.9 ± 5.0 ng ml−1 h−1). Urinary aldosterone excretion increased with all treatments but this increase was inhibited by 75 % with ketoprofen and 65 % with once daily robenacoxib compared to placebo. Urinary PGE2 excretion decreased with all treatments and excretion was significantly lower with ketoprofen compared to placebo. Urinary TxB2 excretion was significantly increased from baseline only with placebo. NAG increased from baseline with all treatments. Immunohistochemistry on post-mortem renal specimens, obtained from a different group of cats that died naturally of non-renal causes, suggested constitutive COX-1 and COX-2 co-localization in many renal structures including the macula densa (MD). Conclusions These data suggest that both COX-1 and COX-2 could generate the signal from the MD to the renin secreting cells in cats exposed to furosemide. Co-localization of COX isoenzymes in MD cells supports the functional data reported here. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0598-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Pelligand
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK. .,Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - N Suemanotham
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand.
| | - J N King
- Novartis Animal Health Inc., Clinical Development, Basel, Switzerland.
| | - W Seewald
- Novartis Animal Health Inc., Clinical Development, Basel, Switzerland.
| | - H Syme
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - K Smith
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Hertfordshire, UK.
| | - P Lees
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| | - J Elliott
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
6
|
Nørregaard R, Kwon TH, Frøkiær J. Physiology and pathophysiology of cyclooxygenase-2 and prostaglandin E2 in the kidney. Kidney Res Clin Pract 2015; 34:194-200. [PMID: 26779421 PMCID: PMC4688592 DOI: 10.1016/j.krcp.2015.10.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023] Open
Abstract
The cyclooxygenase (COX) enzyme system is the major pathway catalyzing the conversion of arachidonic acid into prostaglandins (PGs). PGs are lipid mediators implicated in a variety of physiological and pathophysiological processes in the kidney, including renal hemodynamics, body water and sodium balance, and the inflammatory injury characteristic in multiple renal diseases. Since the beginning of 1990s, it has been confirmed that COX exists in 2 isoforms, referred to as COX-1 and COX-2. Even though the 2 enzymes are similar in size and structure, COX-1 and COX-2 are regulated by different systems and have different functional roles. This review summarizes the current data on renal expression of the 2 COX isoforms and highlights mainly the role of COX-2 and PGE2 in several physiological and pathophysiological processes in the kidney.
Collapse
Affiliation(s)
- Rikke Nørregaard
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Korea
| | - Jørgen Frøkiær
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Ghosh R, Alajbegovic A, Gomes AV. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:536962. [PMID: 26457127 PMCID: PMC4592725 DOI: 10.1155/2015/536962] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/24/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Azra Alajbegovic
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Abstract
In the mammalian kidney, prostaglandins (PGs) are important mediators of physiologic processes, including modulation of vascular tone and salt and water. PGs arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of AA in the kidney. COX are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by PG and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. PGs and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. COX metabolites have been shown to exert important physiologic functions in maintenance of renal blood flow, mediation of renin release and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also seen in a variety of inflammatory renal injuries, and COX metabolites may serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- George M. O'Brien Kidney and Urologic Diseases Center and Division of Nephrology, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA.
| | | |
Collapse
|
9
|
Salvemini D, Kim SF, Mollace V. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. Am J Physiol Regul Integr Comp Physiol 2013; 304:R473-87. [PMID: 23389111 DOI: 10.1152/ajpregu.00355.2012] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The nitric oxide (NO) and cyclooxygenase (COX) pathways share a number of similarities. Nitric oxide is the mediator generated from the NO synthase (NOS) pathway, and COX converts arachidonic acid to prostaglandins, prostacyclin, and thromboxane A(2). Two major forms of NOS and COX have been identified to date. The constitutive isoforms critically regulate several physiological states. The inducible isoforms are overexpressed during inflammation in a variety of cells, producing large amounts of NO and prostaglandins, which may underlie pathological processes. The cross-talk between the COX and NOS pathways was initially reported by Salvemini and colleagues in 1993, when they demonstrated in a series of in vitro and in vivo studies that NO activates the COX enzymes to produce increased amounts of prostaglandins. Those studies led to the concept that COX enzymes represent important endogenous "receptor" targets for amplifying or modulating the multifaceted roles of NO in physiology and pathology. Since then, numerous studies have furthered our mechanistic understanding of these interactions in pathophysiological settings and delineated potential clinical outcomes. In addition, emerging evidence suggests that the canonical nitroxidative species (NO, superoxide, and/or peroxynitrite) modulate biosynthesis of prostaglandins through non-COX-related pathways. This article provides a comprehensive state-of-the art overview in this area.
Collapse
Affiliation(s)
- Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
10
|
Smith FG, Wade AW, Lewis ML, Qi W. Cyclooxygenase (COX) Inhibitors and the Newborn Kidney. Pharmaceuticals (Basel) 2012; 5:1160-76. [PMID: 24281306 PMCID: PMC3816666 DOI: 10.3390/ph5111160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/28/2012] [Accepted: 10/15/2012] [Indexed: 01/01/2023] Open
Abstract
This review summarizes our current understanding of the role of cyclo-oxygenase inhibitors (COXI) in influencing the structural development as well as the function of the developing kidney. COXI administered either during pregnancy or after birth can influence kidney development including nephronogenesis, and can decrease renal perfusion and ultrafiltration potentially leading to acute kidney injury in the newborn period. To date, which COX isoform (COX-1 or COX-2) plays a more important role in during fetal development and influences kidney function early in life is not known, though evidence points to a predominant role for COX-2. Clinical implications of the use of COXI in pregnancy and in the newborn infant are also evaluated herein, with specific reference to the potential effects of COXI on nephronogenesis as well as newborn kidney function.
Collapse
Affiliation(s)
- Francine G Smith
- Department of Physiology and Pharmacology, University of Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | |
Collapse
|
11
|
Swarup A, Sachdeva N, Schumacher HR. Dosing of antirheumatic drugs in renal disease and dialysis. J Clin Rheumatol 2012; 10:190-204. [PMID: 17043508 DOI: 10.1097/01.rhu.0000135555.83088.a2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many patients with rheumatic diseases have their management complicated by renal problems. Renal failure modifies the metabolism of many drugs, especially by retention. Questions often arise about the effects of renal failure on the handling of drugs commonly used in rheumatology. For which drugs must we be especially concerned about increased toxicity? Patients on chronic dialysis may also need a variety of drugs for rheumatic disease. How are our drugs dialyzed, and which of these can be safety used and how best to use them?Decisions about dosing of rheumatic drugs are often required for the patients with chronic renal insufficiency or on long-term dialysis, although many drugs have not been formally studied in these settings. Patients with renal insufficiency are excluded from most drug trials. Data for some of these drugs have to be extrapolated based on the information available about the pharmacokinetics of the drug.This review addresses dosing of commonly used drugs in rheumatology in patients with chronic renal insufficiency or failure. It is compiled from a MEDLINE search of papers dealing with renal handling of antirheumatic drugs and suggestions for dose adjustments for these drugs. Drugs reviewed include commonly used disease-modifying antirheumatic drugs (DMARDS), drugs used for treatment of gout, commonly used nonsteroidal antnflammatory drugs (NSAIDS) and the newer COX-2 inhibitors.
Collapse
Affiliation(s)
- Areena Swarup
- From * Arizona Arthritis and Rheumatology Associates, Paradise Valley, Arizona; †Wall Street Internal Medicine, Louisville, Kentucky; and the ‡University of Pennsylvania School of Medicine, Division of Rheumatology, Philadelphia, Pennsylvania; and Arthritis Research, Department of Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
12
|
|
13
|
Cyclooxygenase-2 and kidney failure. Prostaglandins Other Lipid Mediat 2011; 98:86-90. [PMID: 22119250 DOI: 10.1016/j.prostaglandins.2011.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 01/11/2023]
Abstract
Cyclooxygenase (COX)-dependent prostaglandins are necessary for normal kidney function. These prostaglandins are associated with inflammation, maintenance of sodium and water homeostasis, control of renin release, renal vasodilation, vasoconstriction attenuation, and prenatal renal development. COX-2 expression is regulated by the renin-angiotensin system, glucocorticoids or mineralcorticoids, and aldosterone, supporting a role for COX-2 in kidney function. Indeed, COX-2 mRNA and protein levels as well as enzyme activity are increased, along with PGE2, during kidney failure. In addition, changes in COX-2 expression are associated with increased blood pressure, urinary volume, sodium and protein and decreased urinary osmolarity. Intrarenal mechanisms such as angiotensin II (Ang II) production, increased sodium delivery, glomerular hypertension, and renal tubular inflammation have been suggested to be responsible for the increase in COX-2 expression. Although, specific COX-2 pharmacological inhibition has been related to the prevention of kidney damage, clinical studies have reported that COX-2 inhibition may cause side effects such as edema or a modest elevation in blood pressure and could possibly interfere with antihypertensive drugs and increase the risk of cardiovascular complications. Thus, administration of COX-2 inhibitors requires caution, especially in the presence of underlying cardiovascular disease.
Collapse
|
14
|
Kommareddy M, McAllister RM, Ganjam VK, Turk JR, Laughlin MH. Upregulation of cyclooxygenase-2 expression in porcine macula densa with chronic nitric oxide synthase inhibition. Vet Pathol 2011; 48:1125-33. [PMID: 21160023 PMCID: PMC3286115 DOI: 10.1177/0300985810391109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to investigate the effects of chronic inhibition of nitric oxide synthase (NOS) on cyclooxygenase-2 (COX-2) expression in the macula densa (MD) of swine, as well as the effects on expression of related proteins. Adult female Yucatan swine were given either tap water (control, n = 6) or water with N (G)-nitro-L-arginine methyl ester (L-NAME, 100 mg/liter, n = 5) for a minimum of 30 days. Duplicate samples of kidney were fixed or snap frozen. There was a significant (P = .0082) upregulation of COX-2 mRNA expression in the MD of L-NAME, as well as an apparent increase in COX-2 protein. Plasma renin activity also increased with L-NAME treatment (control, 0.34 ± 0.08 ng/ml; L-NAME, 1.26 ± 0.03 ng/ml; P = .00000003). There were no differences between groups in expression of either inducible NOS or renin protein or in serum electrolyte concentrations. In conclusion, with chronic inhibition of NOS, COX-2 in MD is upregulated, perhaps to compensate for loss of nitric oxide. Increases in COX-2 products may counteract renal arteriolar constriction and sustain renin release.
Collapse
Affiliation(s)
- M Kommareddy
- Department of Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
15
|
Wang H, Garvin JL, D'Ambrosio MA, Falck JR, Leung P, Liu R, Ren Y, Carretero OA. Heme oxygenase metabolites inhibit tubuloglomerular feedback in vivo. Am J Physiol Heart Circ Physiol 2011; 300:H1320-6. [PMID: 21239629 DOI: 10.1152/ajpheart.01118.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tubuloglomerular feedback (TGF) is a renal autoregulatory mechanism that constricts the afferent arteriole in response to increases in distal NaCl. Heme oxygenases (HO-1 and HO-2) release carbon monoxide (CO) and biliverdin, which may help control renal function. We showed in vitro that HO products inhibit TGF; however, we do not know whether this also occurs in vivo or the mechanism(s) involved. We hypothesized that in vivo HO-1 and HO-2 in the nephron inhibit TGF via release of CO and biliverdin. We first performed laser capture microdissection followed by real-time PCR and found that both HO-1 and HO-2 are expressed in the macula densa. We next performed micropuncture experiments in vivo on individual rat nephrons, adding different compounds to the perfusate, and found that an HO inhibitor, stannous mesoporphyrin (SnMP), potentiated TGF (P < 0.05, SnMP vs. control). The CO-releasing molecule (CORM)-3 partially inhibited TGF at 50 μmol/l (P < 0.01, CORM-3 vs. control) and blocked it completely at higher doses. A soluble guanylyl cyclase (sGC) inhibitor, LY83583, blocked the inhibitory effect of CORM-3 on TGF. Biliverdin also partially inhibited TGF (P < 0.01, biliverdin vs. control), most likely attributable to decreased superoxide (O(2)(-)) because biliverdin was rendered ineffective by tempol, a O(2)(-) dismutase mimetic. We concluded that HO-1 and HO-2 in the nephron inhibit TGF by releasing CO and biliverdin. The inhibitory effect of CO on TGF is mediated by the sGC/cGMP signaling pathway, whereas biliverdin probably acts by reducing O(2)(-).
Collapse
Affiliation(s)
- Hong Wang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Barkin RL, Beckerman M, Blum SL, Clark FM, Koh EK, Wu DS. Should Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) be Prescribed to the Older Adult? Drugs Aging 2010; 27:775-89. [DOI: 10.2165/11539430-000000000-00000] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Yesilot S, Ozer MK, Bayram D, Oncu M, Karabacak HI, Cicek E. Effects of aspirin and nimesulide on tissue damage in diabetic rats. Cytokine 2010; 52:163-7. [PMID: 20732820 DOI: 10.1016/j.cyto.2010.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 06/17/2010] [Accepted: 07/07/2010] [Indexed: 12/18/2022]
Abstract
This study was designed to compare the effect of Aspirin (AS) and Nimesulide (NM) on renal failure and vascular disorder in streptozotocin (STZ)-induced diabetic rats. Rats were divided into four groups; control, diabetic rats, diabetic rats plus AS and diabetic rats plus NM, which are COX inhibitors. The renal and aorta tissues morphology were investigated by light microscopy. Trunk blood was also obtained to determine plasma lipid peroxidation product malondialdehyde (MDA) and plasma activity of antioxidant enzymes. MDA levels were increased in the diabetic rats when compared to the control group. AS and NM administration caused a significant decrease in MDA production. Morphological damage in diabetic rats was severe in the kidney and in the aorta tissue. Treatment of AS reduced these damages, but NM did not exert positive effect on these damages in diabetic rats. As a result, although both AS and NM corrected lipid peroxidation parameters such as MDA via their antioxidant properties, only AS ameliorated pathological alteration in tissues. These findings indicate that there may be another mechanism in beneficial effect of AS in diabetic rats.
Collapse
Affiliation(s)
- Sukriye Yesilot
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | | | | | | | | | | |
Collapse
|
18
|
Hörl WH. Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals (Basel) 2010; 3:2291-2321. [PMID: 27713354 PMCID: PMC4036662 DOI: 10.3390/ph3072291] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 12/20/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the isoenzymes COX-1 and COX-2 of cyclooxygenase (COX). Renal side effects (e.g., kidney function, fluid and urinary electrolyte excretion) vary with the extent of COX-2-COX-1 selectivity and the administered dose of these compounds. While young healthy subjects will rarely experience adverse renal effects with the use of NSAIDs, elderly patients and those with co-morbibity (e.g., congestive heart failure, liver cirrhosis or chronic kidney disease) and drug combinations (e.g., renin-angiotensin blockers, diuretics plus NSAIDs) may develop acute renal failure. This review summarizes our present knowledge how traditional NSAIDs and selective COX-2 inhibitors may affect the kidney under various experimental and clinical conditions, and how these drugs may influence renal inflammation, water transport, sodium and potassium balance and how renal dysfunction or hypertension may result.
Collapse
Affiliation(s)
- Walter H Hörl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
19
|
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of Kidney Renin. Physiol Rev 2010; 90:607-73. [PMID: 20393195 DOI: 10.1152/physrev.00011.2009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protease renin is the key enzyme of the renin-angiotensin-aldosterone cascade, which is relevant under both physiological and pathophysiological settings. The kidney is the only organ capable of releasing enzymatically active renin. Although the characteristic juxtaglomerular position is the best known site of renin generation, renin-producing cells in the kidney can vary in number and localization. (Pro)renin gene transcription in these cells is controlled by a number of transcription factors, among which CREB is the best characterized. Pro-renin is stored in vesicles, activated to renin, and then released upon demand. The release of renin is under the control of the cAMP (stimulatory) and Ca2+(inhibitory) signaling pathways. Meanwhile, a great number of intrarenally generated or systemically acting factors have been identified that control the renin secretion directly at the level of renin-producing cells, by activating either of the signaling pathways mentioned above. The broad spectrum of biological actions of (pro)renin is mediated by receptors for (pro)renin, angiotensin II and angiotensin-( 1 – 7 ).
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Klaus Höcherl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Vladimir Todorov
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
20
|
Goodman LA, Brown SA, Torres BT, Reynolds LR, Budsberg SC. Effects of meloxicam on plasma iohexol clearance as a marker of glomerular filtration rate in conscious healthy cats. Am J Vet Res 2009; 70:826-30. [DOI: 10.2460/ajvr.70.7.826] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Calin A. Celecoxib and ankylosing spondylitis. Expert Rev Clin Immunol 2008; 4:339-49. [PMID: 20476924 DOI: 10.1586/1744666x.4.3.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is now over 100 years since the arrival of aspirin and, from the mid-20th Century onwards, we have seen numerous attempts at providing society with safer and more efficacious nonsteroidal drugs. Ironically, while aspirin went from strength to strength with an ever-increasing pharmaceutical profile, new nonsteroidal anti-inflammatory drugs arrived and disappeared with rapid succession. Finally, there appears to have been a breakthrough with the development of the coxibs but concern has recently developed because of potential toxic cardiovascular reactions. Although originally studied in rheumatoid arthritis and degenerative arthropathy, the coxibs have now been investigated in ankylosing spondylitis and efficacy appears to be favorable and, to date, there is little evidence of toxicity, although problems in the nonspondylarthropathic arena may spill over into the seronegative spondylarthritides.
Collapse
Affiliation(s)
- Andrei Calin
- The Coach House, Linden Gardens, Bath, BA1 2YB, UK.
| |
Collapse
|
22
|
Aneja A, Farkouh ME. Review: Adverse cardiovascular effects of NSAIDs: driven by blood pressure, or edema? Ther Adv Cardiovasc Dis 2008; 2:53-66. [DOI: 10.1177/1753944707088184] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The non-selective non-steroidal anti-inflammatory drugs (nsNSAIDs) and cyclooxygenase-2 (COX-2) inhibitors are commonly utilized agents for musculoskeletal conditions. The harmful cardiorenal effects of some nsNSAIDs are well described and thought to be related to inhibition of prostanoid synthesis. Since the non-specific inhibition of both cyclooxygenase enzymes was associated with a higher incidence of gastrointestinal side effects, the selective targeting of the COX-2 enzymes with the COX-2 inhibitors promised and delivered a lower incidence of gastrointestinal side effects. However, the COX-2 inhibitors have not been found to be bereft of cardiorenal side effects. Indeed, some of these agents lead to increased blood pressure, an excessive risk of congestive heart failure and pro-thrombotic effects, especially in high risk populations. These deletrious effects, however, may not be class-specific and possibly related to pharmacokinetics, enzyme specificity and endothelium effects. This article also reviews the body of literature linking the nsNSAIDs and COX-2 inhibitors with important adverse cardiorenal effects and their putative mechanisms.
Collapse
|
23
|
Jaimes EA, Zhou MS, Pearse DD, Puzis L, Raij L. Upregulation of cortical COX-2 in salt-sensitive hypertension: role of angiotensin II and reactive oxygen species. Am J Physiol Renal Physiol 2008; 294:F385-92. [DOI: 10.1152/ajprenal.00302.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Salt-sensitive (SS) hypertension is a vascular diathesis characterized by reduced cardiovascular and renal nitric oxide bioavailability and local upregulation of ANG II. We have demonstrated that rats infused with ANG II manifest increased cortical cyclooxygenase (COX)-2 expression and activity via NADPH oxidase-derived reactive oxygen species (ROS). In the present studies we used Dahl salt-sensitive (DS) rats to test the hypothesis that hypertensive SS rats have increased cortical COX-2 upregulation, which is mediated by ANG II and ROS. DS rats were placed on either a normal-salt diet (0.5% NaCl) or a high-salt diet (4% NaCl) for 6 wk and treated with either the ANG II type 1 (AT1) receptor blocker candesartan (Can, 10 mg·kg−1·day−1) or the SOD mimetic tempol (1 mmol/l). Hypertensive SS rats had a twofold increase in the cortical expression of COX-2 as assessed by Western blot. These changes in COX-2 expression were accompanied by a 10-fold increase in COX-2 mRNA expression and a 2-fold increase in the urinary excretion of PGE2. Treatment with either the AT1receptor blocker Can or the SOD mimetic tempol did not reduce blood pressure but resulted in significant reductions in the cortical expression of COX-2 and the urinary excretion of PGE2. In conclusion, we have demonstrated that local activation of the renin-angiotensin system, via increased ROS generation, mediates COX-2 upregulation in hypertensive SS rats. These studies unveil novel mechanistic pathways that may play a role in the pathogenesis of hypertensive renal injury.
Collapse
|
24
|
Jo YI, Cheng H, Wang S, Moeckel GW, Harris RC. Puromycin induces reversible proteinuric injury in transgenic mice expressing cyclooxygenase-2 in podocytes. Nephron Clin Pract 2007; 107:e87-94. [PMID: 17890881 DOI: 10.1159/000108653] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 05/25/2007] [Indexed: 01/11/2023] Open
Abstract
Previous studies from our own group and others have demonstrated that cyclooxygenase-2 (COX-2) inhibitors could reduce proteinuria in some experimental models of progressive renal disease. To investigate a possible role of COX-2 in podocytes during the course of self-limited glomerular injury, we administered puromycin nucleoside (PAN) on day 1 (15 mg/100 g BW) and day 3 (30 mg/100 g BW) to wild-type and transgenic mice with podocyte-specific COX-2 expression driven by a nephrin promoter. An additional group received both PAN and the COX-2-specific inhibitor, SC58236 (6 mg/l in drinking water). There was no significant difference in the albumin (microg)/creatinine (mg) ratio between wild-type (26.3 +/- 4.2, n = 8) and transgenic (28.9 +/- 2.3, n = 8) mice under baseline conditions. PAN induced significant albuminuria only in the transgenic mice with a peak at day 3: 72.1 +/- 8.9 microg/mg creatinine (n = 12, p < 0.05, compared with basal level), which remitted by day 10 (37.4 +/- 4.4 microg/mg, n = 7, p < 0.05, compared with day 3). Electron microscopy demonstrated that PAN caused 56.7 +/- 4.2% foot process effacement in transgenic mice compared with 38.8 +/- 4.1% in wild type at day 3. PAN increased immunoreactive COX-2 in glomeruli from transgenic mice (day 3: 1.47 +/- 0.08 fold; day 10: 1.25 +/- 0.16 fold, n = 5-9, p < 0.05 compared with basal level), which was restricted to podocytes. Real time PCR indicated that endogenous COX-2 mRNA increased (2.6 +/- 0.1 fold of wild-type control at day 3 and 2.2 +/- 0.2 at day 10, n = 4, p < 0.05), while the nephrin-driven COX-2 mRNA was unchanged. Nephrin mRNA and protein expression were decreased by PAN in the transgenic mice. The COX-2-specific inhibitor, SC58236, reduced foot process effacement in transgenic mice administered PAN to 21.7 +/- 5.2% and significantly reduced the albuminuria at day 3 (42.2 +/- 3.8, n = 13, p < 0.05 compared with untreated) without significantly altering COX-2 expression. In summary, in transgenic mice with podocyte COX-2 overexpression, PAN increased albuminuria and induced foot process fusion. Thus, increased COX-2 expression increased podocyte susceptibility to further injury.
Collapse
Affiliation(s)
- Young-Il Jo
- Division of Nephrology, George M. O'Brien Kidney and Urologic Diseases Center, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tenn 37232, USA
| | | | | | | | | |
Collapse
|
25
|
Zidar N, Dolenc-Strazar Z, Jeruc J, Jerse M, Balazic J, Gartner U, Jermol U, Zupanc T, Stajer D. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the normal human heart and in myocardial infarction. Cardiovasc Pathol 2007; 16:300-304. [PMID: 17868881 DOI: 10.1016/j.carpath.2007.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Cyclooxygenase is a key enzyme in prostanoid synthesis. It exists in two isoforms: cyclooxygenase-1 (COX-1), which is constitutively expressed in cells and tissues maintaining normal homeostasis, and cyclooxygenase-2 (COX-2), which is normally not present in most cells, but can be induced by various stimuli. Little is known about the significance of COX isoforms in the normal human heart and in myocardial infarction (MI). Thus, we aimed to investigate the immunohistochemical expression of COX-1 and COX-2 in the normal human heart and in MI. METHODS Our study included autopsy samples of heart tissue from 15 healthy individuals who died in accidents, and from 40 patients with MI who died few hours to a month after the onset of symptoms. Immunohistochemistry was performed by a sensitive peroxidase-streptavidin method on formalin fixed, paraffin-embedded tissue, using monoclonal antibodies against COX-1 and COX-2. RESULTS In normal hearts, COX-1 was found in endothelial and smooth muscle cells of blood vessels and in endothelial cells of the endocardium. In MI, it was expressed in inflammatory cells, as well as in myofibroblasts and capillaries of granulation and fibrous tissue. COX-2 was either not present or it was present in occasional myocytes in the normal hearts. In MI, its expression was induced in cardiomyocytes as well as in interstitial inflammatory cells, and in capillaries and myofibroblasts in granulation tissue. CONCLUSIONS Our results suggest that COX-1 is associated with normal homeostasis in the heart, whereas COX-2 probably mediates inflammatory reaction in MI. It appears that both COX-1 and COX-2 are associated with the healing processes and scar formation after MI.
Collapse
Affiliation(s)
- Nina Zidar
- Institute of Pathology, Medical Faculty, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cuzzocrea S, Salvemini D. Molecular mechanisms involved in the reciprocal regulation of cyclooxygenase and nitric oxide synthase enzymes. Kidney Int 2007; 71:290-7. [PMID: 17200681 DOI: 10.1038/sj.ki.5002058] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The nitric oxide (NO) and cyclooxygenase (COX) pathways share a number of similarities. NO is the mediator generated from the NO synthase (NOS) pathway and COX converts arachidonic acid to prostaglandins (PGs), prostacyclin, and thromboxane A2. Two major forms of NOS and COX have been identified to date. The constitutive isoforms of these enzymes play an important role in the regulation of several physiological states. On the other hand, in an inflammatory setting, the inducible isoforms of these enzymes are induced in a variety of cells resulting in the production of large amounts NO and PGs, which play pathological roles in several disease states. An important link between the NOS and COX pathways was made by our group when we demonstrated that NO activates the COX enzymes, an event leading to overt production of PGs, suggesting that COX enzymes represent important endogenous 'receptor' targets for modulating the multifaceted roles of NO. More importantly, mechanistic studies of how NO activates the COX enzymes have been undertaken and additional pathways through which NO modulates PG production unraveled. The purpose of this article is to cover the advances, which have occurred over the years and in particular to summarize experimental data that outline how the discovery that NO modulates PG production has impacted and extended our understanding of these two systems in physiopathological events.
Collapse
Affiliation(s)
- S Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy
| | | |
Collapse
|
27
|
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used for the treatment of pain and inflammation. Nonselective NSAIDs inhibit both cyclooxygenase (COX)-1 and COX-2. Nephrotoxicity of nonselective NSAIDs has been well documented. The effects of selective COX-2 inhibitors on renal function and blood pressure are attracting increasing attention. In the kidney, COX-2 is constitutively expressed and is highly regulated in response to alterations in intravascular volume. COX-2 metabolites have been implicated in the mediation of renin release, regulation of sodium excretion, and maintenance of renal blood flow. Similar to nonselective NSAIDs, inhibition of COX-2 may cause edema and modest elevations in blood pressure in a minority of subjects. COX-2 inhibitors may also exacerbate preexisting hypertension or interfere with other antihypertensive drugs. Occasional acute renal failure has also been reported. Caution should be taken when COX-2 inhibitors are prescribed, especially in high-risk patients (including elderly patients and patients with volume depletion).
Collapse
Affiliation(s)
- Raymond C Harris
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
28
|
Knights KM, Tsoutsikos P, Miners JO. Novel mechanisms of nonsteroidal anti-inflammatory drug-induced renal toxicity. Expert Opin Drug Metab Toxicol 2006; 1:399-408. [PMID: 16863452 DOI: 10.1517/17425255.1.3.399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The exact mechanism(s) of NSAID-induced nephrotoxicity remains unclear, but most theories centre on the initial inhibition of COX and the subsequent perturbation of the numerous actions of COX in the kidney. Since the nineteenth century no NSAIDs have been developed that are devoid of renal adverse effects, including the COX-2 selective inhibitors. Formation of renal eicosanoids from arachidonic acid is significantly increased in the presence of various stimuli, and metabolic degradation of arachidonic acid and its biologically active metabolites is crucial to the maintenance of renal homeostatic mechanisms. An important family of enzymes that function in this capacity are the uridine 5'-diphosphate glucuronosyltransferases (UGTs) that variously metabolise arachidonic acid and its metabolites. This review focuses on arachidonic acid and its biologically active metabolites and their respective fates subsequent to COX inhibition by NSAIDs. The common involvement of UGT in the metabolism of arachidonic acid, eicosanoids and NSAIDs is discussed in the context of novel mechanisms of NSAID-induced nephrotoxicity.
Collapse
Affiliation(s)
- Kathleen M Knights
- Flinders University and Flinders Medical Centre, Department of Clinical Pharmacology, Bedford Park, Adelaide 5042, Australia.
| | | | | |
Collapse
|
29
|
Abstract
Arachidonic acid metabolites are vital for the proper control of renal haemodynamics and, when not properly controlled, can contribute to renal vascular injury and end-stage renal disease. Three major enzymatic pathways, COX (cyclo-oxygenase), CYP450 (cytochrome P450) and LOX (lipoxygenase), are responsible for the metabolism of arachidonic acid metabolites to bioactive eicosanoids. These eicosanoids can dilate or constrict the renal vasculature and maintain vascular resistance in the face of changing vasoactive hormones. Renal vascular generation of eicosanoids is altered in pathophysiological conditions such as hypertension, diabetes, metabolic syndrome and acute renal failure. Experimental evidence supports the concept that altered eicosanoid metabolism contributes to renal haemodynamic alterations and the development and progression of nephropathy. The possible beneficial renal vascular actions of enzymatic inhibitors, eicosanoid analogues and receptor antagonists have been examined in hypertension, diabetes and metabolic syndrome. This review highlights the roles of renal vascular eicosanoids in the pathogenesis of nephropathy and therapeutic targets for renal disease related to hypertension, diabetes, metabolic syndrome and acute renal failure.
Collapse
Affiliation(s)
- John D Imig
- Vascular Biology Center, Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
30
|
Hermann M, Lüscher TF. Are there differences in the renal effects of selective cyclo-oxygenase 2 inhibitors? ACTA ACUST UNITED AC 2006; 2:174-5. [PMID: 16932417 DOI: 10.1038/ncpneph0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 11/01/2005] [Indexed: 01/17/2023]
Affiliation(s)
- Matthias Hermann
- Department of Cardiology, University Hospital Zurich, Ramistrasse 100, CH-8091 Zurich, Switzerland
| | | |
Collapse
|
31
|
Hoffmann U, Banas B, Krüger B, Pietrzyk M, Obed A, Segerer S, Kammerl M, Rümmele P, Riegger GAJ, Krämer BK. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human renal allograft rejection - a prospective study. Transpl Int 2006; 19:203-12. [PMID: 16441769 DOI: 10.1111/j.1432-2277.2005.00261.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclooxygenases (COX) are known to be involved in inflammatory kidney diseases. However, there are no data available about the expression of COX-1 and only preliminary reports about the expression of COX-2 in biopsies of patients undergoing acute renal allograft rejection. We conducted this prospective study to analyze the expression, distribution, and cellular localization of COX-1 and -2 and thus to elucidate the role of COX in human kidney transplantation. One hundred forty-four biopsies were included from patients without rejection and unaltered morphology (n = 60), with acute interstitial rejection (n = 7), with acute vascular rejection (n = 21), with chronic allograft nephropathy (n = 16), without rejection but with various other lesions (n = 40). COX-1 and -2 expression was localized in each biopsy by immunohistochemistry. We found a highly significant up-regulation of COX-1 in vessels and in infiltrating interstitial cells of patients with acute allograft rejection compared with biopsies with well-preserved tissue. Also, COX-2 expression was significantly elevated in infiltrating interstitial cells of biopsies with acute rejection. This is the first prospective study demonstrating a significant induction of both COX-1 and -2 in human allograft biopsies with acute rejection after renal transplantation.
Collapse
Affiliation(s)
- Ute Hoffmann
- Klinik und Poliklinik für Innere Medizin II, University of Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hétu PO, Riendeau D. Cyclo-oxygenase-2 contributes to constitutive prostanoid production in rat kidney and brain. Biochem J 2006; 391:561-6. [PMID: 16008526 PMCID: PMC1276956 DOI: 10.1042/bj20050451] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cyclo-oxygenases (COXs) catalyse the synthesis of PGH2 (prostaglandin H2), which serves as the common substrate for the production of PGE2, PGD2, PGF(2alpha), prostacyclin (or PGI2) and TXs (thromboxanes). While COX-1 is the major isoform responsible for prostanoid synthesis in healthy tissues, little information is available on the contribution of constitutive COX-2 to the various prostanoid synthetic pathways under non-inflammatory conditions. To evaluate further the role of COX-2 in prostanoid biosynthesis, rats were acutely treated with the selective COX-1 inhibitor SC-560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole] or the selective COX-2 inhibitors MF tricyclic [3-(3,4-difluorophenyl)-4-(4-(methylsulphonyl)phenyl)-2-(5H)-furanone] and DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2-(5H)-furanone]. Selected tissues were then processed for a complete analysis of their prostanoid content by liquid chromatography MS. Whereas the treatment with SC-560 caused a 60-70% inhibition in the total prostanoid content of most tissues examined, a significant decrease (35-50%) in total prostanoid content following selective COX-2 inhibition was solely detected for kidney and brain tissues. Analysis of the individual prostanoids reveals significant inhibition of 6-oxo-PGF(1alpha), PGE2, PGD2, PGF(2alpha) and TXB2 in the kidney and inhibition of all these prostanoids with the exception of PGD2 in the forebrain. These results demonstrate that constitutively expressed COX-2 contributes to the production of prostanoids in kidney and brain for each of the PGE2, PGI2 and TXB2 pathways under non-inflammatory conditions. Approaches to modulate inflammation through specific inhibition of terminal synthases, such as mPGES-1 (microsomal PGE2 synthase-1), thus have the potential to differ from COX-2 inhibitors and non-selective non-steroidal anti-inflammatory drugs with regard to effects on constitutive prostanoid synthesis and on renal function.
Collapse
Affiliation(s)
- Pierre-Olivier Hétu
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, 16711 Trans-Canada Highway, Kirkland, QC, Canada H9H 3L1
| | - Denis Riendeau
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, 16711 Trans-Canada Highway, Kirkland, QC, Canada H9H 3L1
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Abstract
Nonsteroidal anti-inflammatory drugs represent the most commonly used medications for the treatment of pain and inflammation, but numerous well-described side effects can limit their use. Cyclooxygenase-2 (COX-2) inhibitors were initially touted as a therapeutic strategy to avoid not only the gastrointestinal but also the renal and cardiovascular side effects of nonspecific nonsteroidal anti-inflammatory drugs. However, in the kidney, COX-2 is constitutively expressed and is highly regulated in response to alterations in intravascular volume. COX-2 metabolites have been implicated in mediation of renin release, regulation of sodium excretion, and maintenance of renal blood flow. This review summarizes the current state of knowledge about both renal and cardiovascular side effects that are attributed to COX-2 selective inhibitors.
Collapse
Affiliation(s)
- Raymond C Harris
- Division of Nephrology, S3322 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
34
|
Stichtenoth DO, Marhauer V, Tsikas D, Gutzki FM, Frölich JC. Effects of specific COX-2-inhibition on renin release and renal and systemic prostanoid synthesis in healthy volunteers. Kidney Int 2005; 68:2197-207. [PMID: 16221219 DOI: 10.1111/j.1523-1755.2005.00676.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The renin-angiotensin system plays a critical role in cardiovascular function, but little is known about the effects of specific cyclooxygenase 2 (COX-2) inhibition on this system in healthy humans under physiologic conditions. METHODS Twenty-one healthy female volunteers received, in a randomized, double-blind, crossover study, celecoxib 200 mg twice a day, indomethacin 50 mg three times a day, or placebo for 4 days and a single dose, each, on day 5. On day 5 of each treatment, the following parameters were assessed with subjects in an upright position before and after administration of 20 mg furosemide intravenously: plasma renin activity (PRA), plasma aldosterone, serum and urine electrolytes, and creatinine. Index metabolites of prostanoids were analyzed by gas chromatography-tandem mass spectrometry in 24-hour urine on day 4 and in 2-hour urines before and after furosemide administration. RESULTS Baseline and furosemide-stimulated PRA were reduced to a similar degree by celecoxib and indomethacin. Plasma aldosterone and urinary excretion of potassium showed changes consistent with the alteration of PRA. Urinary excretion rates of prostaglandin E(2), (PGE(2)), 7alpha-hydroxy-5, 11-diketotetranor-prosta-1,16-dioic acid (PGE-M), and 2,3-dinor-thromboxane B(2) (TxB(2)) were not reduced by celecoxib, whereas indomethacin led to a decrease of 40%, 45%, and 80%, respectively. Both active treatments inhibited urinary excretion of 2,3-dinor-6-keto-PGF(1alpha) and 6-keto-PGF(1alpha) by 60% and 40%, respectively. CONCLUSION Renin-release in healthy humans with normal salt intake is COX-2 dependent. While COX-1 is critical for renal and systemic PGE(2) production, renal prostacyclin synthesis is apparently COX-2 dependent. Finally, the previously demonstrated shift of the thromboxane-prostacyclin balance toward prothrombotic thromboxane by specific COX-2 inhibition is confirmed.
Collapse
Affiliation(s)
- Dirk O Stichtenoth
- Institute of Clinical Pharmacology, Medizinische Hochschule Hannover, Germany.
| | | | | | | | | |
Collapse
|
35
|
Bergh MS, Budsberg SC. The Coxib NSAIDs: Potential Clinical and Pharmacologic Importance in Veterinary Medicine. J Vet Intern Med 2005. [DOI: 10.1111/j.1939-1676.2005.tb02741.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
36
|
Rangel EB, Moura LA, Franco MF, Pacheco-Silva A. Up-regulation of cyclooxygenase-2 during acute human renal allograft rejection. Clin Transplant 2005; 19:543-50. [PMID: 16008603 DOI: 10.1111/j.1399-0012.2005.00386.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cyclooxygenases-1 and -2 (COX-1 and COX-2) are important in renal physiology and in many abnormal states. However, there is poor information about them during renal allograft rejection. The purpose of this study was to analyze cyclooxygenases expression in renal tissue allograft during acute rejection. METHODS COX-1 and COX-2 transcripts and proteins were analyzed by semi-quantitative RT-PCR and immunohistochemistry in samples from human renal allografts obtained from nephrectomy because of irreversible acute rejection. RESULTS In samples with acute rejection, we detected higher expression of COX-2 mRNA in comparison with COX-1 (p < 0.001) being COX-2 expression not different from COX-1 in samples from renal allografts without acute rejection. COX-1 and COX-2 localization was in accordance with data described in literature, however COX-2 protein was higher in interstitial cells in the group with rejection than in the group without rejection (p = 0.04). In addition, in samples with acute rejection COX-2 immunoreactivity was more prominent in podocytes (p < 0.001), in proximal tubules (p < 0.001), in collecting duct cells (p = 0.003) and in interstitial cells (p < 0.001) when compared with COX-1. CONCLUSIONS Our data show that there is an increased production of COX-2 during acute renal rejection.
Collapse
Affiliation(s)
- Erika B Rangel
- Division of Nephrology, Hopsital do Rim e Hipertensão and Universidade Federal de São Paulo, Brazil
| | | | | | | |
Collapse
|
37
|
Krotz F, Schiele TM, Klauss V, Sohn HY. Selective COX-2 inhibitors and risk of myocardial infarction. J Vasc Res 2005; 42:312-24. [PMID: 15976506 DOI: 10.1159/000086459] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 04/08/2005] [Indexed: 12/31/2022] Open
Abstract
Selective inhibitors of cyclooxygenase-2 (COX-2, 'coxibs') are highly effective anti-inflammatory and analgesic drugs that exert their action by preventing the formation of prostanoids. Recently some coxibs, which were designed to exploit the advantageous effects of non-steroidal anti-inflammatory drugs while evading their side effects, have been reported to increase the risk of myo cardial infarction and atherothrombotic events. This has led to the withdrawal of rofecoxib from global markets, and warnings have been issued by drug authorities about similar events during the use of celecoxib or valdecoxib/parecoxib, bringing about questions of an inherent atherothrombotic risk of all coxibs and consequences that should be drawn by health care professionals. These questions need to be addressed in light of the known effects of selective inhibition of COX-2 on the cardiovascular system. Although COX-2, in contrast to the cyclooxygenase-1 (COX-1) isoform, is regarded as an inducible enzyme that only has a role in pathophysiological processes like pain and inflammation, experimental and clinical studies have shown that COX-2 is constitutively expressed in tissues like the kidney or vascular endothelium, where it executes important physiological functions. COX-2-dependent formation of prostanoids not only results in the mediation of pain or inflammatory signals but also in the maintenance of vascular integrity. Especially prostacyclin (PGI(2)), which exerts vasodilatory and antiplatelet properties, is formed to a significant extent by COX-2, and its levels are reduced to less than half of normal when COX-2 is inhibited. This review outlines the rationale for the development of selective COX-2 inhibitors and the pathophysiological consequences of selective inhibition of COX-2 with special regard to vasoactive prostaglandins. It describes coxibs that are current ly available, evaluates the current knowledge on the risk of atherothrombotic events associated with their intake and critically discusses the consequences that should be drawn from these insights.
Collapse
Affiliation(s)
- Florian Krotz
- Institute of Cardiology, Medical Polyclinic, Ludwig Maximilians University, Munich, Germany.
| | | | | | | |
Collapse
|
38
|
Mollace V, Muscoli C, Masini E, Cuzzocrea S, Salvemini D. Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Pharmacol Rev 2005; 57:217-52. [PMID: 15914468 DOI: 10.1124/pr.57.2.1] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biosynthesis and release of nitric oxide (NO) and prostaglandins (PGs) share a number of similarities. Two major forms of nitric-oxide synthase (NOS) and cyclooxygenase (COX) enzymes have been identified to date. Under normal circumstances, the constitutive isoforms of these enzymes (constitutive NOS and COX-1) are found in virtually all organs. Their presence accounts for the regulation of several important physiological effects (e.g. antiplatelet activity, vasodilation, and cytoprotection). On the other hand, in inflammatory setting, the inducible isoforms of these enzymes (inducible NOS and COX-2) are detected in a variety of cells, resulting in the production of large amounts of proinflammatory and cytotoxic NO and PGs. The release of NO and PGs by the inducible isoforms of NOS and COX has been associated with the pathological roles of these mediators in disease states as evidenced by the use of selective inhibitors. An important link between the NOS and COX pathways was made in 1993 by Salvemini and coworkers when they demonstrated that the enhanced release of PGs, which follows inflammatory mechanisms, was nearly entirely driven by NO. Such studies raised the possibility that COX enzymes represent important endogenous "receptor" targets for modulating the multifaceted roles of NO. Since then, numerous papers have been published extending the observation across various cellular systems and animal models of disease. Furthermore, other studies have highlighted the importance of such interaction in physiology as well as in the mechanism of action of drugs such as organic nitrates. More importantly, mechanistic studies of how NO switches on/off the PG/COX pathway have been undertaken and additional pathways through which NO modulates prostaglandin production unraveled. On the other hand, NO donors conjugated with COX inhibitors have recently found new interest in the understanding of NO/COX reciprocal interaction and potential clinical use. The purpose of this article is to cover the advances which have occurred over the years, and in particular, to summarize experimental data that outline how the discovery that NO modulates prostaglandin production has impacted and extended our understanding of these two systems in physiopathological events.
Collapse
Affiliation(s)
- Vincenzo Mollace
- Faculty of Pharmacy, University of Catanzaro Magna Graecia, Roccelletta di Borgia, Catanazaro, Italy
| | | | | | | | | |
Collapse
|
39
|
Melk A, Schmidt BMW, Takeuchi O, Sawitzki B, Rayner DC, Halloran PF. Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney Int 2004; 65:510-20. [PMID: 14717921 DOI: 10.1111/j.1523-1755.2004.00438.x] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Somatic cells in vitro have a finite life expectancy before entering a state of senescence. If this state has an in vivo counterpart, it could contribute to organ aging. We have previously shown that human kidney cortex displays telomere shortening with age. In the present study, we evaluated the relationship between renal age in humans and a number of phenomena associated with cellular senescence in vitro. METHODS Human kidney specimens were obtained at 8 weeks to 88 years of age and were assessed for changes related to aging. RESULTS We found that human kidneys expressed relatively constant levels of mRNAs for genes potentially related to senescence. Among the candidate genes surveyed, the cell cycle regulator p16INK4a emerged with the strongest association with renal aging for both mRNA and protein expression. Proliferation as measured by Ki-67 expression was inversely correlated with p16INK4a expression, compatible with a role for p16INK4a as an irreversible cell cycle inhibitor. Cyclooxygenase 1 and 2 (COX-1 and COX-2) mRNA expression was elevated in older kidneys, associated with increased protein expression. Comparison of gene expression with age-related histologic changes revealed that glomerulosclerosis correlated with p16INK4a and p53, whereas interstitial fibrosis and tubular atrophy were associated with p16INK4a, p53, COX-1, transforming growth factor-beta 1 (TGF-beta 1), and heat shock protein A5 (HSPA5). CONCLUSION We conclude that some changes observed in cellular senescence in vitro do occur in human kidney with age, particularly in the renal cortex, in some cases correlating with histologic features. P16INK4a emerged with the most consistent correlations with age and histologic changes and inversely correlated with cell replication.
Collapse
Affiliation(s)
- Anette Melk
- Division of Nephrology and Immunology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
In the kidney, cyclooxygenase-2 (COX-2) is expressed in the macula densa/cTALH and medullary interstitial cells. The macula densa is involved in regulating afferent arteriolar tone and renin release by sensing alterations in luminal chloride via changes in the rate of Na(+)/K(+)/2Cl(-) cotransport, and administration of non-specific cyclooxygenase inhibitors will blunt increases in renin release mediated by macula densa sensing of decreases in luminal NaCl. High renin states [salt deficiency, angiotensin converting enzyme (ACE) inhibitors or angiotensin receptor blockers, diuretic administration or experimental renovascular hypertension] are associated with increased macula densa/cTALH COX-2 expression. Furthermore, there is evidence that angiotensin II and/or aldosterone may inhibit COX-2 expression. In AT1 receptor knockout mice, COX-2 expression is increased similar to increases with ACE inhibitors or AT1 receptor blockers. Direct administration of angiotensin II inhibits macula densa COX-2 expression. Previous studies demonstrated that alterations in intraluminal chloride concentration are the signal for macula densa regulation of tubuloglomerular feedback and renin secretion, with high chloride stimulating tubuloglomerular feedback and low chloride stimulating renin release. When cultured cTALH or macula densa cells were incubated in media with selective substitution of chloride ions, COX-2 expression and prostaglandin production were significantly increased. A variety of studies have indicated a role for COX-2 in the macula densa mediation of renin release. In isolated perfused glomerular preparations, renin release induced by macula densa perfusion with a low chloride solution was inhibited by a COX-2 inhibitor but not a COX-1 inhibitor. In vivo studies in rats indicated that increased renin release in response to low-salt diet, ACE inhibitor, loop diuretics or aortic coarctation could be inhibited by administration of COX-2-selective inhibitors. In mice with genetic deletion of COX-2, ACE inhibitors or low-salt diet failed to increase renal renin expression, although renin significantly increased in wild type mice. In contrast, in COX-1 null mice there were no significant differences in either the basal or ACE inhibitor-stimulated level of renal renin activity from plasma or renal tissue compared with wild type mice. In summary, there is increasing evidence that COX-2 expression in the macula densa and surrounding cortical thick ascending limb cells is regulated by angiotensin II and is a modulator of renal renin production. These interactions of COX-2 derived prostaglandins and the renin-angiotensin system may underlie physiological and pathophysiological regulation of renal function.
Collapse
Affiliation(s)
- R C Harris
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | |
Collapse
|
41
|
Barkin RL, Buvanendran A. Focus on the COX-1 and COX-2 agents: renal events of nonsteroidal and anti-inflammatory drugs-NSAIDs. Am J Ther 2004; 11:124-9. [PMID: 14999364 DOI: 10.1097/00045391-200403000-00007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article will focus upon some of the cautions used in the process of prescribing NSAIDs with a focus upon renal events, pharmacokinetics of COX-2 agents, and phytopharmaceuticals that present co-prescribing hematologic challenges. Prescribing any pharmacotherapeutic agent presents the clinician with the cognitive challenge between providing a therapeutic balance weighing potential benefits to be achieved through prescribing against the potential liabilities of pharmacokinetic and pharmacodynamic iatrogenic events, and drug interactions. The following information is presented as a brief overview of the familiar arachidonic acid cascade followed by the renal events reported with non-COX-2-specific NSAIDs. The pharmacokinetics of the three currently available COX-2 NSAIDs are presented. Patient-specific risk assessments for renal function/dysfunction should be considered prior to or concurrent with initiation of any NSAID therapy coupled with periodic renal monitoring during treatment of those with patient risk factors. Phytopharmaceuticals, supplements, and over-the-counter agents should be discussed with the patient following patient disclosure of use and not omitted by the patient during presentation of their medication consumption with utilization history to their respective healthcare professionals.
Collapse
Affiliation(s)
- Robert L Barkin
- Rush Medical College, Faculty: Anesthesiology, Family Medicine, Pharmacology, Psychiatry, Rush Presbyterian St. Lukes Medical Center, Chicago, IL 60010, USA
| | | |
Collapse
|
42
|
Sellers RS, Senese PB, Khan KN. Interspecies Differences in the Nephrotoxic Response to Cyclooxygenase Inhibition. Drug Chem Toxicol 2004; 27:111-22. [PMID: 15198071 DOI: 10.1081/dct-120030726] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In contrast to cyclooxygenase-1 (COX-1), the basal expression of renal cyclooxygenase-2 (COX-2) varies among species. High basal levels of COX-2 in the renal cortex and papilla in dogs compared with monkeys suggest that COX-2 inhibition may lead to distinct nephrotoxic responses. In this study, we compared the renal effects of COX inhibition between dogs and cynomolgus monkeys (n = 6/group) following the administration of naproxen sodium, a non-selective COX-1/COX-2 inhibitor. Dogs and monkeys were treated with 50 or 150 mg/kg/day naproxen sodium, respectively, for 2 to 6 weeks. Naproxen doses used in this study resulted in equivalent inhibition of COX activity in both species as measured by reductions in urinary prostaglandin E2 (PGE2) and 6-keto-PGF1-alpha levels. There was prominent reduction in renal blood flow (43%) and urinary sodium excretion (62%) in dogs but no alterations in renal blood flow and only minimal change (19%) in urinary sodium excretion in monkeys. The canine but not monkey kidney showed prominent COX-2 expression in the macula densa, thick ascending limb of Henle and papillary interstitial cells by immunohistochemistry. After treatment, the canine but not monkey kidneys had mild to moderate renal tubular atrophy and interstitial fibrosis and renal papillary necrosis. Obstructive nephropathy secondary to intra-tubular drug accumulation was seen in monkeys but not in dogs. Collectively, these data demonstrate species differences in the renal response to COX inhibition. The nature of functional and morphologic changes suggests a more prominent role of COX-2 in renal hemodynamics and natriuresis in dogs than in monkeys.
Collapse
Affiliation(s)
- Rani S Sellers
- Purdue Pharma, 444 Saw Mill River Road, Ardsley, NY 10502, USA.
| | | | | |
Collapse
|
43
|
Adegboyega PA, Ololade O. Immunohistochemical Expression of Cyclooxygenase-2 in Normal Kidneys. Appl Immunohistochem Mol Morphol 2004; 12:71-4. [PMID: 15163023 DOI: 10.1097/00129039-200403000-00013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclooxygenase (COX)-2, the recently described inducible form ofcyclooxygenase, has been shown to be responsible for the inflammatory and tumorigenic effects of prostaglandins; hence the development and expanding clinical use of COX-2 selective inhibitors termed super aspirins. These pharmacologic agents block COX-2 without abrogating the desired physiologic roles of the constitutively expressed isoform COX-1. Therefore, they are now used in place of nonselective COX inhibitors in patients who require prolonged use of nonsteroidal anti-inflammatory agents. However, there are sporadic reports of COX-2-related nephrotoxicity, and the mechanism of this adverse reaction is not known. Also, the pattern of in situ expression of COX-2 in the human kidney is not known. We therefore studied the immunohistochemical expression of COX-2 in normal kidneys obtained from 53 consecutive total nephrectomy specimens. COX-2 immunohistochemistry was performed using affinity purified polyclonal murine antibody and avidin-biotin detection method with citrate antigen retrieval. Also, to localize COX-2 expression to specific cell types, double immunolabeling was performed using avidin-biotin (for COX-2 detection) and alkaline phosphatase (for detection of alpha-smooth muscle actin or factor VIII related antigen). In the cortex, COX-2 was found to be constitutively expressed in the endothelial cells of arteries, arterioles, and glomeruli in all 53 kidneys. COX-2 expression was also found in the cortical thick ascending limb of the loop of Henle (medullary rays and macula densa) in 50 of 53 cases. In the medulla, COX-2 expression was detected in the endothelial lining of the vasa recta in 52 cases and in the collecting ducts in 5 cases. These data show significant constitutive expression of COX-2 in normal kidney and underscore the need for caution in the use of COX-2 selective inhibitors, especially on a long-term basis.
Collapse
Affiliation(s)
- Patrick A Adegboyega
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0588, USA.
| | | |
Collapse
|
44
|
Abstract
Selective cyclooxygenase (COX)-2 inhibitors that are in widespread clinical use were developed to avoid side effects of conventional NSAIDs, including gastrointestinal and renal toxicity. However, COX-2 is constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. COX-2 metabolites have been implicated in maintenance of renal blood flow, mediation of renin release, and regulation of sodium excretion. COX-2 inhibition may transiently decrease urine sodium excretion in some subjects and induce mild to moderate elevation of blood pressure. Furthermore, in conditions of relative intravascular volume depletion and/or renal hypoperfusion, interference with COX-2 activity can have deleterious effects on maintenance of renal blood flow and glomerular filtration rate. In addition to physiological regulation of COX-2 expression in the kidney, increased renal cortical COX-2 expression is seen in experimental models associated with altered renal hemodynamics and progressive renal injury (decreased renal mass, poorly controlled diabetes), and long-term treatment with selective COX-2 inhibitors ameliorates functional and structural renal damage in these conditions.
Collapse
Affiliation(s)
- Hui-Fang Cheng
- Division of Nephrology, S 3322 MCN, Vanderbilt University School of Medicine, Nashville, TN 37232-2372, USA
| | | |
Collapse
|
45
|
Weber A, Ni J, Ling KHJ, Acheampong A, Tang-Liu DDS, Burk R, Cravatt BF, Woodward D. Formation of prostamides from anandamide in FAAH knockout mice analyzed by HPLC with tandem mass spectrometry. J Lipid Res 2004; 45:757-63. [PMID: 14729864 DOI: 10.1194/jlr.m300475-jlr200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the formation of PGF(2alpha) 1-ethanolamide, PGE(2) 1-ethanolamide, and PGD(2) 1-ethanolamide (prostamides F(2alpha), E(2), and D(2), respectively) in liver, lung, kidney, and small intestine after a single intravenous bolus administration of 50 mg/kg of anandamide to normal and fatty acid amide hydrolase knockout (FAAH -/-) male mice. One group of three normal mice was not dosed (naïve) while another group of three normal mice received a bolus intravenous injection of 50 mg/kg of anandamide. Three FAAH -/- mice also received an intravenous injection of 50 mg/kg of anandamide. After 30 min, the lung, liver, kidney, and small intestine were harvested and processed by liquid-liquid extraction. The concentrations of prostamide F(2alpha), prostamide E(2), prostamide D(2), and anandamide were determined by HPLC-tandem mass spectrometry. Prostamide F(2alpha) was detected in tissues in FAAH -/- mice after administration of anandamide. Concentrations of anandamide, prostamide E(2), and prostamide D(2) in liver, kidney, lung, and small intestine were much higher in the anandamide-treated FAAH -/- mice than those of the anandamide-treated control mice. This report demonstrates that prostamides, including prostamide F(2alpha), were formed in vivo from anandamide, potentially by the cyclooxygenase-2 pathway when the competing FAAH pathway is lacking.
Collapse
Affiliation(s)
- Allan Weber
- Department of Pharmacokinetics and Drug Metabolism, Allergan, Inc., 2525 Dupont Drive, P.O. Box 19534, Irvine, CA 92623, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Solari V, Piotrowska AP, Cascio S, Unemoto K, Chertin B, Puri P. Cyclooxygenase-2 Up-Regulation in Reflux Nephropathy. J Urol 2003; 170:1624-7. [PMID: 14501677 DOI: 10.1097/01.ju.0000085810.37816.65] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Reflux nephropathy (RN) is a major cause of end stage renal failure in children and hypertension is a frequent complication. Cyclooxygenase-2 (COX-2) is an enzyme responsible for the prostaglandin synthesis. It has been shown that COX-2 up-regulates renin production leading to renovascular hypertension. We investigate COX-2 expression in the kidneys of children with RN. MATERIALS AND METHODS Kidney specimens from 12 patients 2 to 13 years old with severe RN secondary to primary high grade vesicoureteral reflux obtained at the time of nephrectomy and 5 controls were examined. Single labeled immunohistochemistry was performed with 2 COX-2 antibodies using light and confocal microscopy. Quantification of COX-2 was determined by Western blotting analysis. COX-2 gene expression was evaluated by real-time quantitative reverse transcription polymerase chain reaction. RESULTS There was a strong COX-2 immunoreactivity in the proximal tubules and tubulointerstitial space in the RN samples compared to controls. Immunoreactive COX-2 protein expression was markedly increased in RN samples compared to controls. Real-time reverse transcription polymerase chain reaction showed a significant increase in COX-2 mRNA expression in the RN samples compared to controls (p <0.05). CONCLUSIONS Over expression of COX-2 in reflux nephropathy suggests that COX-2 may be involved in the pathogenesis of tubulointerstitial damage associated with severe reflux nephropathy.
Collapse
MESH Headings
- Blotting, Western
- Child
- Child, Preschool
- Cyclooxygenase 2
- Female
- Gene Expression Regulation, Enzymologic
- Humans
- Hypertension, Renal/genetics
- Hypertension, Renal/pathology
- Infant
- Isoenzymes/genetics
- Kidney Failure, Chronic/genetics
- Kidney Failure, Chronic/pathology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Male
- Membrane Proteins
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/pathology
- Prostaglandin-Endoperoxide Synthases/genetics
- Reference Values
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation/genetics
- Vesico-Ureteral Reflux/genetics
- Vesico-Ureteral Reflux/pathology
Collapse
Affiliation(s)
- Valeria Solari
- Children's Research Centre, Our Lady's Hospital for Sick Children and University College, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
47
|
Wagner C, Vitzthum H, Castrop H, Schumacher K, Bucher M, Albertin S, Coffman TM, Arendshorst WJ, Kurtz A. Differential regulation of renin and Cox-2 expression in the renal cortex of C57Bl/6 mice. Pflugers Arch 2003; 447:214-22. [PMID: 14504926 DOI: 10.1007/s00424-003-1157-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Accepted: 07/21/2003] [Indexed: 12/13/2022]
Abstract
Based on the controversy about the relevance of cyclooxygenase-2 (Cox-2)-derived prostanoids from the macula densa for the control of the renin system, this study aimed to determine the interrelation between Cox-2 and renin expression in the mouse kidney. In control mice renin mRNA was readily detectable whilst renocortical Cox-2 mRNA abundance was at the detection limit of the RNase protection assay and no specific signals for Cox-2 were obtained by in situ hybridization or Western blot analysis. Experimental maneuvers such as low-salt diet, treatment with loop diuretics or angiotensin I converting enzyme inhibitors clearly increased renin mRNA abundance up to sevenfold, but under none of these conditions renocortical Cox-2 mRNA levels were significantly changed. Moreover, the strong stimulation of renin expression by angiotensin I-converting enzyme inhibition was not changed by the cyclooxygenase inhibitor ibuprofen, which in turn clearly lowered tissue prostanoid content. Our data suggest a marked divergence of renin and Cox-2 expression in the kidney cortex of C57Bl/6 mice with no clear evidence for a role of Cox-2-derived prostanoids from the macula densa in the regulation of renin expression.
Collapse
Affiliation(s)
- Charlotte Wagner
- Department of Physiology, University of Regensburg, 93040 Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Hausknecht B, Voelkl S, Riess R, Gauer S, Goppelt-Struebe M. Expression of cyclooxygenase-2 in biopsies obtained from human transplanted kidneys undergoing rejection. Transplantation 2003; 76:109-14. [PMID: 12865795 DOI: 10.1097/01.tp.0000069235.95557.93] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The inducible cyclooxygenase (COX)-2 is a target of immunosuppressive drugs routinely administered to patients after transplantation. This study investigates a potential involvement of COX-2 in transplant rejection. Therefore, we examined the expression of COX-2 in biopsies obtained for diagnostic purposes. METHODS COX-2 was detected by immunohistochemistry and in situ hybridization. Congruent staining was obtained by both methods: in specimens of a kidney explanted as the result of vascular rejection, tubular epithelial cells and endothelial cells stained positively for COX-2. Furthermore, in appendiceal specimens obtained at surgery, epithelial cells of the crypts, interstitial cells, and mesothelial cells were positive by both methods, affirming the specificity of the antibody. RESULTS Compared with healthy control subjects, intensive staining of COX-2 was observed in most of the 28 biopsies obtained from patients diagnosed with vascular rejection combined with cellular interstitial rejection and tubulitis. Glomeruli and the macula densa area were essentially negative compared with prominent staining in cortical and medullary epithelial cells of the tubuli. Staining was distinct with individual positive cells in the tubular cross sections. Few arteries expressed COX-2 in intimal cells. Less prominent expression of COX-2 was detected in the biopsies of six kidneys obtained from patients diagnosed with acute tubular necrosis. CONCLUSION This is the first report to show the up-regulation of COX-2 in human transplanted kidneys, despite ongoing immunosuppressive treatment. It remains to be established whether the up-regulation of COX-2 is part of the rejection process or has to be considered implicated in renal preservative mechanisms.
Collapse
Affiliation(s)
- Birgit Hausknecht
- 1 Medizinische Klinik IV, Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
50
|
Câmpean V, Theilig F, Paliege A, Breyer M, Bachmann S. Key enzymes for renal prostaglandin synthesis: site-specific expression in rodent kidney (rat, mouse). Am J Physiol Renal Physiol 2003; 285:F19-32. [PMID: 12657565 DOI: 10.1152/ajprenal.00443.2002] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostanoids derived from endogenous cylooxygenase (COX)-mediated arachidonic acid metabolism play important roles in the maintenance of renal blood flow and salt and water homeostasis. The relative importance of COX-1 and COX-2 isoforms is under active investigation. We have performed a comprehensive histochemical analysis by comparing rat and mouse kidneys for cellular and subcellular localization of COX-1 and -2 and microsomal-type PGE synthase (PGES), the rate-limiting biosynthetic enzyme in PGE2 synthesis. A choice of different sera was compared, and the results were confirmed by antigen-retrieval techniques, in situ hybridization, RT-PCR, and the use of COX knockout mice. In the glomerulus, significant COX-1 expression was detected in a subset of mesangial cells. Along the renal tubule, the known COX-2 expression in cTAL and macula densa was paralleled by PGES staining. In the terminal distal convoluted tubule, connecting tubule, and cortical and medullary collecting ducts, a significant COX-1 signal was colocalized with PGES; COX-2 was not found in these sites. Intercalated cells were generally negative. Cortical fibroblasts were COX-1 and PGES positive in mice, whereas in rats only PGES could be reliably detected. Lipid-laden interstitial cells of the inner medulla were COX-1, -2, and PGES positive. Vascular smooth muscle cells were not stained. The present data support prominent functions of renal prostanoids, predominantly PGE2, by defining expression sites of the key enzymes for their biosynthesis in the rat and mouse. Results define the renal cell types involved in prostaglandin autacoid functions within spatially restricted sites such as the juxtaglomerular apparatus, mesangium, distal convolutions and collecting duct, and in compartments of the renal interstitium.
Collapse
Affiliation(s)
- Valentina Câmpean
- Anatomisches Institut, Charité, Humboldt Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|