1
|
Frazer L, Chu T, Shaw P, Boufford C, Naief LT, Ednie M, Ritzert L, Green CP, Good M, Peters D. Detection of an intestinal cell DNA methylation signature in blood samples from neonates with necrotizing enterocolitis. Epigenomics 2025; 17:235-245. [PMID: 39894787 PMCID: PMC11853613 DOI: 10.1080/17501911.2025.2459552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is an often fatal intestinal injury that primarily affects preterm infants for which screening tools are lacking. We performed a pilot analysis of DNA methylation in peripheral blood samples from preterm infants with and without NEC to identify potential NEC biomarkers. METHODS Peripheral blood samples were collected from infants at NEC diagnosis (n = 15) or from preterm controls (n = 13). Targeted genome-wide analysis was performed to identify DNA methylation differences between cases and controls. RESULTS Broad differences between NEC cases and controls were identified in distinct genomic elements. Differences between surgical NEC cases and controls were frequently associated with inflammation. Deconvolution analysis to identify cell type-specific DNA signatures revealed increases in ileal, vascular endothelial, and cardiomyocyte cell type proportions and decreases in colonic and neuronal cell type proportions in blood from NEC cases relative to controls. CONCLUSIONS We identified marked differences in DNA methylation of peripheral blood samples from preterm infants with and without NEC. Increased ileal cell-specific methylation signatures in the blood of infants with NEC relative to controls, with a marked increase seen in surgical cases, provides rationale for further analysis of intestinal DNA methylation signatures as biomarkers of NEC.
Collapse
Affiliation(s)
- Lauren Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianjiao Chu
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricia Shaw
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camille Boufford
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lucas Tavares Naief
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michaela Ednie
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laken Ritzert
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlin P. Green
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Peters
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Ye M, Xu G, Zhang L, Kong Z, Qiu Z. Meta Analysis of Methylenetetrahydrofolate Reductase (MTHFR) C677T polymorphism and its association with folate and colorectal cancer. BMC Cancer 2025; 25:169. [PMID: 39875876 PMCID: PMC11776141 DOI: 10.1186/s12885-025-13546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND DNA hypomethylation and uracil misincorporation into DNA, both of which have a very important correlation with colorectal carcinogenesis. Folate plays a crucial role in DNA synthesis, acting as a coenzyme in one-carbon metabolism, which involves the synthesis of purines, pyrimidines, and methyl groups. MTHFR, a key enzyme in folate metabolism, has been widely studied in relation to neural tube defects and hypertension, but its role in colorectal cancer remains underexplored. Therefore, understanding the role of folate and MTHFR genes in colorectal cancer may be helpful for potential preventive or therapeutic interventions. In this meta-analysis, the effects of MTHFR genotype and folate intake on colorectal cancer incidence were analyzed. METHODS We searched PubMed,Embase, Web of Science, and CNKI database to identify relevant studies up to January 2024. We included a series of studies on the association of MTHFR C677T genotype and folate intake with colorectal cancer incidence. The meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P). It included 100 studies (39702 cases and 55718 controls),that investigated the association between the MTHFR C677T polymorphism and colorectal cancer (CRC). Additionally, the analysis incorporated further stratification by ethnic population and geographical region. Furthermore, Six of the studies which clarified high amount of folate might be a protective factor for CRC in all three MTHFR C677T genotype, especially in TT genotype. RESULTS MTHFR 677TT genotype was negatively associated with CRC incidence compared with CC genotype (OR = 0.89; 95% CI: 0.85-0.93; P < 0.00001; Z = 5.17). MTHFR 677CT genotype was not significantly associated with colorectal cancer incidence (OR = 1.00; 95% CI: 0.98,1.03). A negative correlation between TT genotype and CRC was observed in ethnics of Asians (OR = 0.83, 95% CI: 0.76, 0.91), Caucasians (OR = 0.93, 95% CI: 0.88, 0.99) and the region of USA (OR = 0.77, 95% CI: 0.71, 0.85), Asia (OR = 0.93, 95% CI: 0.86, 1.00) and Europe (OR = 0.93, 95% CI:0.87, 1.00),but not in Indian (TT: OR = 1.67, 95% CI: 1.06, 2.63; CT: OR = 1.31, 95% CI: 1.00, 1.73)). Amount folate intakes might reduce the morbidity of CRC for people in MTHFR 677TT genotype (OR = 0.68; 95% CI: 0.48,0.96; P = 0.03). CONCLUSION The analysis showed that the incidence of colorectal cancer was reduced among individuals with TT genotype. The individuals with TT genotype and amount folate intake may collectively improve the incidence of colorectal cancer. While the MTHFR 677TT genotype is associated with a reduced risk of CRC, especially in certain populations, these findings should be interpreted with caution due to the limitations of retrospective studies.
Collapse
Affiliation(s)
- Meng Ye
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524023, P.R. China
| | - Guojie Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P.R. China
| | - Liming Zhang
- The First Clinical Medical College, Guangdong Medical University, Zhanjiang, 524023, P.R. China
| | - Zhihui Kong
- Department of Laboratory Medicine, Jingshan People's Hospital, Jingshan, 431800, P.R. China.
| | - Zhenhua Qiu
- Department of Laboratory Medicine, Affiliated Gaozhou People's Hospital, Guangdong Medical University, Maoming, 525200, P.R. China.
| |
Collapse
|
3
|
Zhou RH, Li L, Ou QJ, Wang YF, Fang YJ, Zhang CX. CYP24A1 DNA Methylation in Colorectal Cancer as Potential Prognostic and Predictive Markers. Biomolecules 2025; 15:104. [PMID: 39858498 PMCID: PMC11763947 DOI: 10.3390/biom15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The DNA methylation of CYP24A1 can regulate its gene expression and may play a role in the occurrence and progression of colorectal cancer (CRC). However, the association between CYP24A1 DNA methylation and the prognosis of CRC patients has not yet been reported. In this study, differential methylation analysis was conducted in both blood and tissue cohorts, and differential expression analysis was performed in the tissue cohort with in vitro validation. GO and KEGG enrichment analyses were performed on CYP24A1-related genes. A correlation between CYP24A1 promoter methylation and its gene expression was explored. Kaplan-Meier survival and Cox regression analyses were performed to investigate the impact of CYP24A1 DNA methylation on the prognosis of CRC patients. Prognostic risk scores were constructed for survival prediction. Immune infiltration analysis was also conducted. Our results showed that the hypermethylation of cg02712555 in tumor tissues (hazard ratio, 0.48; 95% confidence interval, 0.24-0.94; p = 0.032) and CpG site 41 in peripheral leukocytes (HR, 0.35; 95%CI, 0.14-0.84; p = 0.019) were both associated with decreased overall mortality in CRC patients. Prognostic risk scores showed robust predictive capabilities of these two CpG loci for the prognosis of CRC patients. CYP24A1 hypermethylation was positively correlated with infiltration levels of activated CD4 + T cells, activated CD8 + T cells, activated B cells, activated dendritic cells, and macrophages. Taken together, our findings indicate that the methylation levels of specific CpG sites within the CYP24A1 promoter region in blood leukocytes and tumors are potential prognostic and predictive markers for overall survival in CRC patients.
Collapse
Affiliation(s)
- Ru-Hua Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-H.Z.); (L.L.); (Y.-F.W.)
| | - Lei Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-H.Z.); (L.L.); (Y.-F.W.)
| | - Qing-Jian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Yi-Fan Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-H.Z.); (L.L.); (Y.-F.W.)
| | - Yu-Jing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-H.Z.); (L.L.); (Y.-F.W.)
| |
Collapse
|
4
|
Frazer LC, Yamaguchi Y, Singh DK, Akopyants NS, Good M. DNA methylation in necrotizing enterocolitis. Expert Rev Mol Med 2024; 26:e16. [PMID: 38557638 PMCID: PMC11140546 DOI: 10.1017/erm.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Epigenetic modifications, such as DNA methylation, are enzymatically regulated processes that directly impact gene expression patterns. In early life, they are central to developmental programming and have also been implicated in regulating inflammatory responses. Research into the role of epigenetics in neonatal health is limited, but there is a growing body of literature related to the role of DNA methylation patterns and diseases of prematurity, such as the intestinal disease necrotizing enterocolitis (NEC). NEC is a severe intestinal inflammatory disease, but the key factors that precede disease development remain to be determined. This knowledge gap has led to a failure to design effective targeted therapies and identify specific biomarkers of disease. Recent literature has identified altered DNA methylation patterns in the stool and intestinal tissue of neonates with NEC. These findings provide the foundation for a new avenue in NEC research. In this review, we will provide a general overview of DNA methylation and then specifically discuss the recent literature related to methylation patterns in neonates with NEC. We will also discuss how DNA methylation is used as a biomarker for other disease states and how, with further research, methylation patterns may serve as potential biomarkers for NEC.
Collapse
Affiliation(s)
- Lauren C. Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yukihiro Yamaguchi
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Natalia S. Akopyants
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Gilmore N, Loh KP, Liposits G, Arora SP, Vertino P, Janelsins M. Epigenetic and inflammatory markers in older adults with cancer: A Young International Society of Geriatric Oncology narrative review. J Geriatr Oncol 2024; 15:101655. [PMID: 37931584 PMCID: PMC10841884 DOI: 10.1016/j.jgo.2023.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
The number of adults aged ≥ 65 years with cancer is rapidly increasing. Older adults with cancer are susceptible to treatment-related acute and chronic adverse events, resulting in loss of independence, reduction in physical function, and decreased quality of life. Nevertheless, evidence-based interventions to prevent or treat acute and chronic adverse events in older adults with cancer are limited. Several promising blood-based biomarkers related to inflammation and epigenetic modifications are available to identify older adults with cancer who are at increased risk of accelerated aging and physical, functional, and cognitive impairments caused by the cancer and its treatment. Inflammatory changes and epigenetic modifications can be reversible and targeted by lifestyle changes and interventions. Here we discuss ways in which changes in inflammatory and epigenetic pathways influence the aging process and how these pathways can be targeted by interventions aimed at reducing inflammation and aging-associated biological markers. As the number of older adults with cancer entering survivorship continues to increase, it is becoming progressively more important to understand ways in which the benefit from treatment can be enhanced while reducing the effects of accelerated aging.
Collapse
Affiliation(s)
- Nikesha Gilmore
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester Medical Center, Rochester, NY, USA; James P Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| | - Kah Poh Loh
- James P Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA; Division of Hematology/Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gabor Liposits
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense, Denmark; Department of Oncology, Regional Hospital Gødstrup, Herning, Denmark.
| | - Sukeshi Patel Arora
- Division of Hematology/Oncology, Department of Medicine, Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA.
| | - Paula Vertino
- James P Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
| | - Michelle Janelsins
- Department of Surgery, Division of Supportive Care in Cancer, University of Rochester Medical Center, Rochester, NY, USA; James P Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
6
|
Chang WCL, Ghosh J, Cooper HS, Vanderveer L, Schultz B, Zhou Y, Harvey KN, Kaunga E, Devarajan K, Li Y, Jelinek J, Fragoso MF, Sapienza C, Clapper ML. Folic Acid Supplementation Promotes Hypomethylation in Both the Inflamed Colonic Mucosa and Colitis-Associated Dysplasia. Cancers (Basel) 2023; 15:2949. [PMID: 37296911 PMCID: PMC10252136 DOI: 10.3390/cancers15112949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE The purpose of this study was to assess the effect of folic acid (FA) supplementation on colitis-associated colorectal cancer (CRC) using the azoxymethane/dextran sulfate sodium (AOM/DSS) model. METHODS Mice were fed a chow containing 2 mg/kg FA at baseline and randomized after the first DSS treatment to receive 0, 2, or 8 mg/kg FA chow for 16 weeks. Colon tissue was collected for histopathological evaluation, genome-wide methylation analyses (Digital Restriction Enzyme Assay of Methylation), and gene expression profiling (RNA-Seq). RESULTS A dose-dependent increase in the multiplicity of colonic dysplasias was observed, with the multiplicity of total and polypoid dysplasias higher (64% and 225%, respectively) in the 8 mg FA vs. the 0 mg FA group (p < 0.001). Polypoid dysplasias were hypomethylated, as compared to the non-neoplastic colonic mucosa (p < 0.05), irrespective of FA treatment. The colonic mucosa of the 8 mg FA group was markedly hypomethylated as compared to the 0 mg FA group. Differential methylation of genes involved in Wnt/β-catenin and MAPK signaling resulted in corresponding alterations in gene expression within the colonic mucosa. CONCLUSIONS High-dose FA created an altered epigenetic field effect within the non-neoplastic colonic mucosa. The observed decrease in site-specific DNA methylation altered oncogenic pathways and promoted colitis-associated CRC.
Collapse
Affiliation(s)
- Wen-Chi L. Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (J.G.); (B.S.)
| | - Harry S. Cooper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
- Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Lisa Vanderveer
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Bryant Schultz
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (J.G.); (B.S.)
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Kristen N. Harvey
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Esther Kaunga
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Yuesheng Li
- DNA Sequencing and Genomic Core Facility, National Heart, Lung, and Blood Institute, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jaroslav Jelinek
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (J.G.); (B.S.)
| | - Mariana F. Fragoso
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| | - Carmen Sapienza
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, 3500 N. Broad Street, Philadelphia, PA 19140, USA; (J.G.); (B.S.)
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA (L.V.); (E.K.)
| |
Collapse
|
7
|
Chávez-Hidalgo LP, Martín-Fernández-de-Labastida S, M de Pancorbo M, Arroyo-Izaga M. Influence of methyl donor nutrients as epigenetic regulators in colorectal cancer: A systematic review of observational studies. World J Gastroenterol 2023; 29:1219-1234. [PMID: 36926668 PMCID: PMC10011952 DOI: 10.3748/wjg.v29.i7.1219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/26/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Dietary methyl donors might influence DNA methylation during carcinogenesis of colorectal cancer (CRC). However, whether the influence of methyl donor intake is modified by polymorphisms in such epigenetic regulators is still unclear.
AIM To improve the current understanding of the molecular basis of CRC.
METHODS A literature search in the Medline database, Reference Citation Analysis (https://www.referencecitationanalysis.com/), and manual reference screening were performed to identify observational studies published from inception to May 2022.
RESULTS A total of fourteen case-control studies and five cohort studies were identified. These studies included information on dietary methyl donors, dietary components that potentially modulate the bioavailability of methyl groups, genetic variants of methyl metabolizing enzymes, and/or markers of CpG island methylator phenotype and/or microsatellite instability, and their possible interactions on CRC risk.
CONCLUSION Several studies have suggested interactions between methylenetetrahydrofolate reductase polymorphisms, methyl donor nutrients (such as folate) and alcohol on CRC risk. Moreover, vitamin B6, niacin, and alcohol may affect CRC risk through not only genetic but also epigenetic regulation. Identification of specific mechanisms in these interactions associated with CRC may assist in developing targeted prevention strategies for individuals at the highest risk of developing CRC.
Collapse
Affiliation(s)
- Lourdes Pilar Chávez-Hidalgo
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| | - Silvia Martín-Fernández-de-Labastida
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| | - Marian M de Pancorbo
- Department of Z. and Cellular Biology A., University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
- BIOMICs Research Group, MICROFLUIDICs and BIOMICs Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| | - Marta Arroyo-Izaga
- Department of Pharmacy and Food Sciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
- BIOMICs Research Group, MICROFLUIDICs and BIOMICs Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Araba/Álava, Spain
| |
Collapse
|
8
|
Young O, Ngo N, Lin L, Stanbery L, Creeden JF, Hamouda D, Nemunaitis J. Folate Receptor as a Biomarker and Therapeutic Target in Solid Tumors. Curr Probl Cancer 2023; 47:100917. [PMID: 36508886 DOI: 10.1016/j.currproblcancer.2022.100917] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022]
Abstract
Folate is a B vitamin necessary for basic biological functions, including rapid cell turnover occurring in cancer cell proliferation. Though the role of folate as a causative versus protective agent in carcinogenesis is debated, several studies have indicated that the folate receptor (FR), notably subtype folate receptor alpha (FRα), could be a viable biomarker for diagnosis, progression, and prognosis. Several cancers, including gastrointestinal, gynecological, breast, lung, and squamous cell head and neck cancers overexpress FR and are currently under investigation to correlate receptor status to disease state. Traditional chemotherapies have included antifolate medications, such as methotrexate and pemetrexed, which generate anticancer activity during the synthesis phase of the cell cycle. Increasingly, the repertoire of pharmacotherapies is expanding to include FR as a target, with a heterogenous pool of directed therapies. Here we discuss the FR, expression and effect in cancer biology, and relevant pharmacologic inhibitors.
Collapse
Affiliation(s)
- Olivia Young
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Nealie Ngo
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | | - Justin Fortune Creeden
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
9
|
B Vitamins and Their Roles in Gut Health. Microorganisms 2022; 10:microorganisms10061168. [PMID: 35744686 PMCID: PMC9227236 DOI: 10.3390/microorganisms10061168] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
B vitamins act as coenzymes in a myriad of cellular reactions. These include energy production, methyl donor generation, neurotransmitter synthesis, and immune functions. Due to the ubiquitous roles of these vitamins, their deficiencies significantly affect the host’s metabolism. Recently, novel roles of B vitamins in the homeostasis of gut microbial ecology and intestinal health continue to be unravelled. This review focuses on the functional roles and biosynthesis of B vitamins and how these vitamins influence the growth and proliferation of the gut microbiota. We have identified the gut bacteria that can produce vitamins, and their biosynthetic mechanisms are presented. The effects of B vitamin deficiencies on intestinal morphology, inflammation, and its effects on intestinal disorders are also discussed.
Collapse
|
10
|
Szigeti KA, Kalmár A, Galamb O, Valcz G, Barták BK, Nagy ZB, Zsigrai S, Felletár I, V Patai Á, Micsik T, Papp M, Márkus E, Tulassay Z, Igaz P, Takács I, Molnár B. Global DNA hypomethylation of colorectal tumours detected in tissue and liquid biopsies may be related to decreased methyl-donor content. BMC Cancer 2022; 22:605. [PMID: 35655145 PMCID: PMC9164347 DOI: 10.1186/s12885-022-09659-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypomethylation of long interspersed nuclear element 1 (LINE-1) is characteristic of various cancer types, including colorectal cancer (CRC). Malfunction of several factors or alteration of methyl-donor molecules' (folic acid and S-adenosylmethionine) availability can contribute to DNA methylation changes. Detection of epigenetic alterations in liquid biopsies can assist in the early recognition of CRC. Following the investigations of a Hungarian colon tissue sample set, our goal was to examine the LINE-1 methylation of blood samples along the colorectal adenoma-carcinoma sequence and in inflammatory bowel disease. Moreover, we aimed to explore the possible underlying mechanisms of global DNA hypomethylation formation on a multi-level aspect. METHODS LINE-1 methylation of colon tissue (n = 183) and plasma (n = 48) samples of healthy controls and patients with colorectal tumours were examined with bisulfite pyrosequencing. To investigate mRNA expression, microarray analysis results were reanalysed in silico (n = 60). Immunohistochemistry staining was used to validate DNA methyltransferases (DNMTs) and folate receptor beta (FOLR2) expression along with the determination of methyl-donor molecules' in situ level (n = 40). RESULTS Significantly decreased LINE-1 methylation level was observed in line with cancer progression both in tissue (adenoma: 72.7 ± 4.8%, and CRC: 69.7 ± 7.6% vs. normal: 77.5 ± 1.7%, p ≤ 0.01) and liquid biopsies (adenoma: 80.0 ± 1.7%, and CRC: 79.8 ± 1.3% vs. normal: 82.0 ± 2.0%, p ≤ 0.01). However, no significant changes were recognized in inflammatory bowel disease cases. According to in silico analysis of microarray data, altered mRNA levels of several DNA methylation-related enzymes were detected in tumours vs. healthy biopsies, namely one-carbon metabolism-related genes-which met our analysing criteria-showed upregulation, while FOLR2 was downregulated. Using immunohistochemistry, DNMTs, and FOLR2 expression were confirmed. Moreover, significantly diminished folic acid and S-adenosylmethionine levels were observed in parallel with decreasing 5-methylcytosine staining in tumours compared to normal adjacent to tumour tissues (p ≤ 0.05). CONCLUSION Our results suggest that LINE-1 hypomethylation may have a distinguishing value in precancerous stages compared to healthy samples in liquid biopsies. Furthermore, the reduction of global DNA methylation level could be linked to reduced methyl-donor availability with the contribution of decreased FOLR2 expression.
Collapse
Affiliation(s)
- Krisztina A Szigeti
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary.
| | - Alexandra Kalmár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
| | - Orsolya Galamb
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
| | - Gábor Valcz
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
| | - Barbara K Barták
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Zsófia B Nagy
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Sára Zsigrai
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Ildikó Felletár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Árpád V Patai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082, Budapest, Hungary
- Interdisciplinary Gastroenterology (IGA) Working Group, Semmelweis University, 1082, Budapest, Hungary
| | - Tamás Micsik
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085, Budapest, Hungary
| | - Márton Papp
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, 1078, Budapest, Hungary
| | - Eszter Márkus
- Department of Anaesthesia and Intensive Care, Pest County Flor Ferenc Hospital, 2143, Kistarcsa, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
- Department of Internal Medicine and Hematology, Faculty of Medicine, Semmelweis University, 1088, Budapest, Hungary
| | - Peter Igaz
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
- Department of Endocrinology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - István Takács
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
| | - Béla Molnár
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, 1083, Budapest, Hungary
- Molecular Medicine Research Group, Eötvös Loránd Research Network, 1083, Budapest, Hungary
| |
Collapse
|
11
|
Barrero MJ, Cejas P, Long HW, Ramirez de Molina A. Nutritional Epigenetics in Cancer. Adv Nutr 2022; 13:1748-1761. [PMID: 35421212 PMCID: PMC9526851 DOI: 10.1093/advances/nmac039] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 01/28/2023] Open
Abstract
Alterations in the epigenome are well known to affect cancer development and progression. Epigenetics is highly influenced by the environment, including diet, which is a source of metabolic substrates that influence the synthesis of cofactors or substrates for chromatin and RNA modifying enzymes. In addition, plants are a common source of bioactives that can directly modify the activity of these enzymes. Here, we review and discuss the impact of diet on epigenetic mechanisms, including chromatin and RNA regulation, and its potential implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,Translational Oncology Laboratory, Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
12
|
A Liquid Biopsy-Based Approach for Monitoring Treatment Response in Post-Operative Colorectal Cancer Patients. Int J Mol Sci 2022; 23:ijms23073774. [PMID: 35409133 PMCID: PMC8998310 DOI: 10.3390/ijms23073774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Monitoring the therapeutic response of colorectal cancer (CRC) patients is crucial to determine treatment strategies; therefore, we constructed a liquid biopsy-based approach for tracking tumor dynamics in non-metastatic (nmCRC) and metastatic (mCRC) patients (n = 55). Serial blood collections were performed during chemotherapy for measuring the amount and the global methylation pattern of cell-free DNA (cfDNA), the promoter methylation of SFRP2 and SDC2 genes, and the plasma homocysteine level. The average cfDNA amount was higher (p < 0.05) in nmCRC patients with recurrent cancer (30.4 ± 17.6 ng) and mCRC patients with progressive disease (PD) (44.3 ± 34.5 ng) compared to individuals with remission (13.2 ± 10.0 ng) or stable disease (12.5 ± 3.4 ng). More than 10% elevation of cfDNA from first to last sample collection was detected in all recurrent cases and 92% of PD patients, while a decrease was observed in most patients with remission. Global methylation level changes indicated a decline (75.5 ± 3.4% vs. 68.2 ± 8.4%), while the promoter methylation of SFRP2 and SDC2 and homocysteine level (10.9 ± 3.4 µmol/L vs. 13.7 ± 4.3 µmol/L) presented an increase in PD patients. In contrast, we found exact opposite changes in remission cases. Our study offers a more precise blood-based approach to monitor the treatment response to different chemotherapies than the currently used markers.
Collapse
|
13
|
Koklesova L, Mazurakova A, Samec M, Biringer K, Samuel SM, Büsselberg D, Kubatka P, Golubnitschaja O. Homocysteine metabolism as the target for predictive medical approach, disease prevention, prognosis, and treatments tailored to the person. EPMA J 2021; 12:477-505. [PMID: 34786033 PMCID: PMC8581606 DOI: 10.1007/s13167-021-00263-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Homocysteine (Hcy) metabolism is crucial for regulating methionine availability, protein homeostasis, and DNA-methylation presenting, therefore, key pathways in post-genomic and epigenetic regulation mechanisms. Consequently, impaired Hcy metabolism leading to elevated concentrations of Hcy in the blood plasma (hyperhomocysteinemia) is linked to the overproduction of free radicals, induced oxidative stress, mitochondrial impairments, systemic inflammation and increased risks of eye disorders, coronary artery diseases, atherosclerosis, myocardial infarction, ischemic stroke, thrombotic events, cancer development and progression, osteoporosis, neurodegenerative disorders, pregnancy complications, delayed healing processes, and poor COVID-19 outcomes, among others. This review focuses on the homocysteine metabolism impairments relevant for various pathological conditions. Innovative strategies in the framework of 3P medicine consider Hcy metabolic pathways as the specific target for in vitro diagnostics, predictive medical approaches, cost-effective preventive measures, and optimized treatments tailored to the individualized patient profiles in primary, secondary, and tertiary care.
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Marek Samec
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
14
|
Qian Y, Wang H, Zhang Y, Wang JW, Fan YC, Gao S, Wang K. Hypermethylation of Cyclin D2 Predicts Poor Prognosis of Hepatitis B Virus-Associated Hepatocellular Carcinoma after Hepatectomy. TOHOKU J EXP MED 2021; 254:233-243. [PMID: 34334537 DOI: 10.1620/tjem.254.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Prognosis of patients with hepatocellular carcinoma remains poor because of progression of hepatocellular carcinoma and high recurrence rates. Cyclin D2 (CCND2) plays a vital role in regulating the cell cycle; indeed, aberrant methylation of CCND2 is involved in the development of hepatocellular carcinoma. Therefore, we aimed to investigate levels of CCND2 methylation in patients with hepatitis B virus (HBV)-associated hepatocellular carcinoma and to evaluate its prognostic significance after hepatectomy. In total, 257 subjects were enrolled (166 hepatocellular carcinoma patients undergoing surgical resection, 61 chronic hepatitis B (CHB) patients, and 30 healthy controls). CCND2 methylation in peripheral blood mononuclear cells was measured quantitatively using MethyLight. We found that CCND2 methylation levels in patients with HBV-associated hepatocellular carcinoma were significantly higher than in CHB patients (P < 0.001) or healthy controls (P < 0.001). Within the hepatocellular carcinoma group, CCND2 methylation levels were higher in patients with portal vein invasion, early tumor recurrence, TNM III/IV stage, and tumor size ≥ 5 cm (P < 0.05). Furthermore, higher levels of CCND2 methylation were associated with worse overall survival and disease-free survival (P = 0.005 and P < 0.001, respectively). Multivariate analysis identified CCND2 methylation as an independent prognostic factor for early tumor recurrence (P = 0.021), overall survival (P = 0.022), and disease-free survival (P < 0.001) in hepatocellular carcinoma patients after resection. In conclusion, hypermethylation of CCND2 may have clinical utility for predicting a high risk of poor prognosis and early tumor recurrence in patients with HBV-associated hepatocellular carcinoma after hepatectomy.
Collapse
Affiliation(s)
- Yu Qian
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - He Wang
- Department of Hepatopathy, Qingdao Sixth People's Hospital
| | - Ying Zhang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| | - Kai Wang
- Department of Hepatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Institute of Hepatology, Shandong University
| |
Collapse
|
15
|
Bai Y, Drokow EK, Waqas Ahmed HA, Song J, Akpabla GS, Kumah MA, Agyekum EB, Neku EA, Sun K. The relationship between methionine synthase rs1805087 polymorphism and hematological cancers risk. Future Oncol 2020; 16:2219-2233. [PMID: 32722923 DOI: 10.2217/fon-2020-0627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The relationship between hematological cancer susceptibility and methionine synthase MTR A2756G (rs1805087) polymorphism is inconclusive based on data from past studies. Hence, this updated meta-analysis was conducted to investigate the relationship between methionine synthase reductase (MTR) rs1805087 polymorphism and hematological cancers. Method: We searched EMBASE, Google Scholar, Ovid and PubMed databases for possible relevant articles up to December 31, 2019. Results: The overall pooled outcome of our analysis showed lack of association between the risk of hematological malignancies and MTR A2756G polymorphism under the allele model (G vs A: odds ratio = 1.001, 95% CI: 0.944-1.061; p = 0.983), recessive model (GG vs GA + AA: odds ratio = 1.050, 95% CI: 0.942-1.170; p = 0.382). Conclusion: The findings in this study demonstrate a lack of relationship between hematological cancers and MTR A2756G.
Collapse
Affiliation(s)
- Yanliang Bai
- Department of Haematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China.,Department of Haematology, Henan University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, Henan, PR China
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | - Hafiz Abdul Waqas Ahmed
- Department of Haematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | - Juanjuan Song
- Department of Haematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China
| | - Gloria Selorm Akpabla
- Department of Internal Medicine, Tianjin Medical University, 300070, Tianjin, PR China
| | - Maame Awoyoe Kumah
- Department of Internal Medicine, University of Ghana Medical School, KB 77 Korle Bu-Accra, Ghana
| | | | - Enyonam Adjoa Neku
- School of Pharmacy, Zhengzhou University, 450001, Zhengzhou, Henan, PR China
| | - Kai Sun
- Department of Haematology, Zhengzhou University People's Hospital & Henan Provincial People's Hospital Henan, 450003, Zhengzhou, PR China.,Department of Haematology, Henan University People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, 450003, Henan, PR China
| |
Collapse
|
16
|
Wielsøe M, Tarantini L, Bollati V, Long M, Bonefeld‐Jørgensen EC. DNA methylation level in blood and relations to breast cancer, risk factors and environmental exposure in Greenlandic Inuit women. Basic Clin Pharmacol Toxicol 2020; 127:338-350. [PMID: 32352194 PMCID: PMC7540549 DOI: 10.1111/bcpt.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023]
Abstract
Several studies have found aberrant DNA methylation levels in breast cancer cases, but factors influencing DNA methylation patterns and the mechanisms are not well understood. This case-control study evaluated blood methylation level of two repetitive elements and selected breast cancer-related genes in relation to breast cancer risk, and the associations with serum level of persistent organic pollutants (POPs) and breast cancer risk factors in Greenlandic Inuit. DNA methylation was determined using bisulphite pyrosequencing in blood from 74 breast cancer cases and 80 controls. Using first tertile as reference, the following was observed. Positive associations for ATM in second tertile (OR: 2.33, 95% CI: 1.04; 5.23) and ESR2 in third tertile (OR: 2.22, 95% CI: 0.97; 5.05) suggest an increased breast cancer risk with high DNA methylation. LINE-1 methylation was lower in cases than controls. In third tertile (OR: 0.42, 95% CI: 0.18; 0.98), associations suggest in accordance with the literature an increased risk of breast cancer with LINE-1 hypomethylation. Among controls, significant associations between methylation levels and serum level of POPs and breast cancer risk factors (age, body mass index, cotinine level) were found. Thus, breast cancer risk factors and POPs may alter the risk through changes in methylation levels; further studies are needed to elucidate the mechanisms.
Collapse
Affiliation(s)
- Maria Wielsøe
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Letizia Tarantini
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Valentina Bollati
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Manhai Long
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Eva Cecilie Bonefeld‐Jørgensen
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
- Greenland Center for Health ResearchUniversity of GreenlandNuukGreenland
| |
Collapse
|
17
|
Lyon P, Strippoli V, Fang B, Cimmino L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020; 12:E2867. [PMID: 32961717 PMCID: PMC7551072 DOI: 10.3390/nu12092867] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamins B9 (folate) and B12 are essential water-soluble vitamins that play a crucial role in the maintenance of one-carbon metabolism: a set of interconnected biochemical pathways driven by folate and methionine to generate methyl groups for use in DNA synthesis, amino acid homeostasis, antioxidant generation, and epigenetic regulation. Dietary deficiencies in B9 and B12, or genetic polymorphisms that influence the activity of enzymes involved in the folate or methionine cycles, are known to cause developmental defects, impair cognitive function, or block normal blood production. Nutritional deficiencies have historically been treated with dietary supplementation or high-dose parenteral administration that can reverse symptoms in the majority of cases. Elevated levels of these vitamins have more recently been shown to correlate with immune dysfunction, cancer, and increased mortality. Therapies that specifically target one-carbon metabolism are therefore currently being explored for the treatment of immune disorders and cancer. In this review, we will highlight recent studies aimed at elucidating the role of folate, B12, and methionine in one-carbon metabolism during normal cellular processes and in the context of disease progression.
Collapse
Affiliation(s)
- Peter Lyon
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Victoria Strippoli
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Byron Fang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (P.L.); (V.S.); (B.F.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
18
|
Gogna P, King WD. The relationship between colorectal cancer risk factors and LINE-1 DNA methylation in healthy colon tissue. Epigenomics 2020; 12:1087-1093. [PMID: 32790479 DOI: 10.2217/epi-2019-0340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: LINE-1 DNA methylation is a modifiable epigenetic process linked to colorectal cancer (CRC). However, studies of methylation in the tissue of interest are limited. This research examines associations between CRC risk factors and LINE-1 DNA methylation in healthy colon tissue. Materials & methods: LINE-1 methylation was measured in colon tissue samples from 317 patients undergoing a screening colonoscopy. Associations were examined with established CRC risk factors including alcohol consumption, smoking, BMI, NSAIDs, physical activity and fruit and vegetable consumption. Results: All studied risk factors were not related to LINE-1 DNA methylation in this population. Conclusion: The observed results may reflect that the effect of this set of established risk factors is not mediated through LINE-1 DNA methylation in the healthy colon.
Collapse
Affiliation(s)
- Priyanka Gogna
- Department of Public Health Sciences, Queen's University, Kingston K7K 3N6, Ontario, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston K7K 3N6, Ontario, Canada
| |
Collapse
|
19
|
Hadizadeh H, Salehi M, Bozorgnia AR, Ahmadkhaniha HR. Lower folate levels in methamphetamine-induced psychosis: A cross-sectional study. Drug Alcohol Depend 2020; 207:107682. [PMID: 31841749 DOI: 10.1016/j.drugalcdep.2019.107682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Folate deficiency is shown to be associated with schizophrenia. Folate profile in patients with psychosis due to stimulant use has not been investigated. We aim to determine whether there is an association between serum folate level and the presence of psychosis in patients with methamphetamine (METH) use disorder. METHODS Forty patients diagnosed with METH-use disorder were included in this cross-sectional study. Serum folate levels were measured using enzyme immunoassay technique and compared between psychotic and non-psychotic subgroups (N = 25 and 15, respectively). We designed a logistic regression model to measure the extent of any association and also to adjust for potential confounders. RESULTS We detected lower serum folate level in the psychotics [3.4 (IQR = 5.3)] compared to non-psychotic METH users [8.9 (IQR = 2.5)], p = 0.01. The model demonstrated that every 1-unit increase in serum folate decreases the odds of presence of psychosis by 27% (R2 = 53.5%, CI 12-64%, p = 0.006). The observed difference was not associated with the duration of METH use, patient's age at first METH use, or concurrent use of other substances. CONCLUSIONS Our findings suggest that low folate level in psychotic METH users does not correlate with previously established risk factors for meth-induced psychosis such as duration of use, age of onset of using, and poly-drug use. We assume that low folate levels may play a crucial role in the pathophysiology of psychosis.
Collapse
Affiliation(s)
- Hasti Hadizadeh
- Research Center for Addiction and Risky Behaviors (ReCARB), Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Research, Nikan Health Researchers Institute (NHRI), Tehran, Iran
| | - Masoud Salehi
- Research Center for Addiction and Risky Behaviors (ReCARB), Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Research, Nikan Health Researchers Institute (NHRI), Tehran, Iran
| | - Amir Reza Bozorgnia
- Research Center for Addiction and Risky Behaviors (ReCARB), Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Ahmadkhaniha
- Research Center for Addiction and Risky Behaviors (ReCARB), Department of Psychiatry, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Amenyah SD, Hughes CF, Ward M, Rosborough S, Deane J, Thursby SJ, Walsh CP, Kok DE, Strain JJ, McNulty H, Lees-Murdock DJ. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults—a systematic review and meta-analysis. Nutr Rev 2020; 78:647-666. [DOI: 10.1093/nutrit/nuz094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Context
Aberrant DNA methylation is linked to various diseases. The supply of methyl groups for methylation reactions is mediated by S-adenosylmethionine, which depends on the availability of folate and related B vitamins.
Objectives
To investigate the influence of key nutrients involved in 1-carbon metabolism on DNA methylation in adults.
Data sources
Systematic literature searches were conducted in the Cochrane Library, Medline, Embase, Cumulative Index to Nursing and Allied Health Literature Plus, Scopus, and Web of Science databases. Studies that met the inclusion criteria and were published in English were included.
Data extraction
The first author, study design, sample size, population characteristics, type and duration of intervention, tissue type or cells analyzed, molecular techniques, and DNA methylation outcomes.
Data synthesis
A meta-analysis of randomized, controlled trials (RCTs) was conducted to investigate the effect of 1-carbon metabolism nutrients on global DNA methylation. Functional analysis and visualization were performed using BioVenn software.
Results
From a total of 2620 papers screened by title, 53 studies met the inclusion criteria. Qualitative analysis indicated significant associations between 1-carbon metabolism nutrients and DNA methylation. In meta-analysis of RCTs stratified by method of laboratory analysis, supplementation with folic acid alone or in combination with vitamin B12 significantly increased global DNA methylation in studies using liquid chromatography–mass spectrometry, which had markedly lower heterogeneity (n = 3; Z = 3.31; P = 0.0009; I2 = 0%) in comparison to other methods. Functional analysis highlighted a subset of 12 differentially methylated regions that were significantly related to folate and vitamin B12 biomarkers.
Conclusion
This study supports significant associations between 1-carbon metabolism nutrients and DNA methylation. However, standardization of DNA methylation techniques is recommended to reduce heterogeneity and facilitate comparison across studies.
Systematic Review registration
PROSPERO registration number: CRD42018091898.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Catherine F Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Samuel Rosborough
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Jennifer Deane
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Sara-Jayne Thursby
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Colum P Walsh
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | | |
Collapse
|
21
|
Low folate status, and MTHFR 677C > T and MTR 2756A > G polymorphisms associated with colorectal cancer risk in Thais: a case-control study. Nutr Res 2019; 72:80-91. [DOI: 10.1016/j.nutres.2019.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
|
22
|
Pasha HA, Rezk NA, Riad MA. Circulating Cell Free Nuclear DNA, Mitochondrial DNA and Global DNA Methylation: Potential Noninvasive Biomarkers for Breast Cancer Diagnosis. Cancer Invest 2019; 37:432-439. [PMID: 31516038 DOI: 10.1080/07357907.2019.1663864] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eighty seven women with benign breast lesion, 120 patients with breast cancer (BC) and one hundred controls were included in the study. Quantification of mtDNA and nDNA was done by qPCR. Global DNA methylation was measured using ELISA. Circulating cell-free nDNA and mtDNA were significantly elevated in BC and benign breast lesions patients. Global methylation was significantly low in BC patients. Combining the studied parameters in one panel, nDNA/mtDNA/hypomethylation, improved their sensitivity in detecting BC to reach 92.5%. Circulating cell-free nDNA, mtDNA and global DNA hypomethylation can be used as diagnostic and prognostic markers for BC.
Collapse
Affiliation(s)
- Heba A Pasha
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| | - Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| | - Mohamed A Riad
- Surgery Department, Faculty of Medicine, Zagazig University , Zagazig , Egypt
| |
Collapse
|
23
|
Association of Folate and Vitamins Involved in the 1-Carbon Cycle with Polymorphisms in the Methylenetetrahydrofolate Reductase Gene (MTHFR) and Global DNA Methylation in Patients with Colorectal Cancer. Nutrients 2019; 11:nu11061368. [PMID: 31216671 PMCID: PMC6627304 DOI: 10.3390/nu11061368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Folate, vitamin B2, vitamin B6, vitamin B12, choline, and betaine are nutrients involved in the 1-carbon cycle that can alter the levels of DNA methylation and influence genesis and/or tumor progression. Thus, the objective of this study was to evaluate the association of folate and vitamins involved in the 1-carbon cycle and MTHFR polymorphisms in global DNA methylation in patients with colorectal cancer gene. The study included 189 patients with colorectal adenocarcinoma answering a clinical evaluation questionnaire and the Food Frequency Questionnaire (FFQ) validated for patients with colon and rectal cancer. Blood samples were collected for evaluation of MTHFR gene polymorphisms in global DNA methylation in blood and in tumor. The values for serum folate were positively correlated with the equivalent total dietary folate (total DFE) (rho = 0.51, p = 0.03) and global DNA methylation (rho = 0.20, p = 0.03). Individuals aged over 61 years (p = 0.01) in clinicopathological staging III and IV (p = 0.01) and with + heterozygous mutated homozygous genotypes for the MTHFR A1298C gene had higher levels of global DNA methylation (p = 0.04). The association between dietary intake of folate, serum folate, and tumor stage were predictive of global DNA methylation in patients’ blood. The levels of serum folate, the dietary folate and the status of DNA methylation can influence clinicopathological staging.
Collapse
|
24
|
Alam I, Ali F, Zeb F, Almajwal A, Fatima S, Wu X. Relationship of nutrigenomics and aging: Involvement of DNA methylation. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
Genetic impact of methylenetetrahydrofolate reductase (MTHFR) polymorphism on the susceptibility to colorectal polyps: a meta-analysis. BMC MEDICAL GENETICS 2019; 20:94. [PMID: 31146742 PMCID: PMC6543585 DOI: 10.1186/s12881-019-0822-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/09/2019] [Indexed: 12/31/2022]
Abstract
Background There are several studies with inconsistent conclusions regarding the association between the rs1801133 and rs1801131 polymorphisms within the MTHFR (methylenetetrahydrofolate reductase) gene and colorectal polyp risk. This discrepancy led us to assess the genetic impact of the two polymorphisms on the susceptibility to colorectal polyps. Methods A meta-analysis was carried out for quantitative synthesis. According to the inclusion/exclusion criteria, we retrieved, screened and selected all published articles related to colorectal polyps and the MTHFR rs1801133 and rs1801131 polymorphisms. The P value of association test, RRs (risk ratios) and 95% CIs (confidence intervals) were mainly produced. Results A total of twenty-three case-control studies were included from twenty-two eligible articles. Pooling the results of both rs1801133 and rs1801131 polymorphisms in the overall population suggested a nonsignificant association between colorectal polyp cases and controls, in that all P values in the test of association were larger than 0.05. Nevertheless, pooling results in the “UK” subgroup of rs1801131, comprising five studies (1257 cases/1407 controls), indicated an elevated risk in colorectal polyp cases in comparison with controls, under the genetic models of CC vs. AA (P = 0.032, RR = 1.27, 95% CIs = 1.02, 1.57) and CC vs. AA+AC (P = 0.036, RR = 1.27, 95% CIs = 1.02, 1.60). Conclusion The C/C genotype of MTHFR rs1801131 is more likely to be a genetic risk factor for colorectal polyps in the UK region, although this finding should be verified with a larger sample size. Electronic supplementary material The online version of this article (10.1186/s12881-019-0822-y) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients 2019; 11:nu11030608. [PMID: 30871166 PMCID: PMC6471069 DOI: 10.3390/nu11030608] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is an epigenetic mechanism that is essential for regulating gene transcription. However, aberrant DNA methylation, which is a nearly universal finding in cancer, can result in disturbed gene expression. DNA methylation is modified by environmental factors such as diet that may modify cancer risk and tumor behavior. Abnormal DNA methylation has been observed in several cancers such as colon, stomach, cervical, prostate, and breast cancers. These alterations in DNA methylation may play a critical role in cancer development and progression. Dietary nutrient intake and bioactive food components are essential environmental factors that may influence DNA methylation either by directly inhibiting enzymes that catalyze DNA methylation or by changing the availability of substrates required for those enzymatic reactions such as the availability and utilization of methyl groups. In this review, we focused on nutrients that act as methyl donors or methylation co-factors and presented intriguing evidence for the role of these bioactive food components in altering DNA methylation patterns in cancer. Such a role is likely to have a mechanistic impact on the process of carcinogenesis and offer possible therapeutic potentials.
Collapse
|
27
|
Mc Auley MT, Mooney KM, Salcedo-Sora JE. Computational modelling folate metabolism and DNA methylation: implications for understanding health and ageing. Brief Bioinform 2019; 19:303-317. [PMID: 28007697 DOI: 10.1093/bib/bbw116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/12/2022] Open
Abstract
Dietary folates have a key role to play in health, as deficiencies in the intake of these B vitamins have been implicated in a wide variety of clinical conditions. The reason for this is folates function as single carbon donors in the synthesis of methionine and nucleotides. Moreover, folates have a vital role to play in the epigenetics of mammalian cells by supplying methyl groups for DNA methylation reactions. Intriguingly, a growing body of experimental evidence suggests that DNA methylation status could be a central modulator of the ageing process. This has important health implications because the methylation status of the human genome could be used to infer age-related disease risk. Thus, it is imperative we further our understanding of the processes which underpin DNA methylation and how these intersect with folate metabolism and ageing. The biochemical and molecular mechanisms, which underpin these processes, are complex. However, computational modelling offers an ideal framework for handling this complexity. A number of computational models have been assembled over the years, but to date, no model has represented the full scope of the interaction between the folate cycle and the reactions, which governs the DNA methylation cycle. In this review, we will discuss several of the models, which have been developed to represent these systems. In addition, we will present a rationale for developing a combined model of folate metabolism and the DNA methylation cycle.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Department of Chemical Engineering, Thornton Science Park, University of Chester, UK
| | - Kathleen M Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire, UK
| | | |
Collapse
|
28
|
Asante I, Pei H, Zhou E, Liu S, Chui D, Yoo E, Conti DV, Louie SG. Exploratory metabolomic study to identify blood-based biomarkers as a potential screen for colorectal cancer. Mol Omics 2019; 15:21-29. [PMID: 30515501 PMCID: PMC6413524 DOI: 10.1039/c8mo00158h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION colorectal cancer (CRC) continues to be difficult to diagnose due to the lack of reliable and predictive biomarkers. OBJECTIVE to identify blood-based biomarkers that can be used to distinguish CRC cases from controls. METHODS a workflow for untargeted followed by targeted metabolic profiling was conducted on the plasma samples of 26 CRC cases and ten healthy volunteers (controls) using liquid chromatography-mass spectrometry (LCMS). The data acquired in the untargeted scan was processed and analyzed using MarkerView™ software. The significantly different ions that distinguish CRC cases from the controls were identified using a mass-based human metabolome search. The result was further used to inform the targeted scan workflow. RESULTS the untargeted scan yielded putative biomarkers some of which were related to the folate-dependent one-carbon metabolism (FOCM). Analysis of the targeted scan found the plasma levels of nine FOCM metabolites to be significantly different between cases and controls. The classification models of the cases and controls, in both the targeted and untargeted approaches, each yielded a 97.2% success rate after cross-validation. CONCLUSION we have identified plasma metabolites with screening potential to discriminate between CRC cases and controls.
Collapse
Affiliation(s)
- Isaac Asante
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Methionine synthase A2756G polymorphism influences pediatric acute lymphoblastic leukemia risk: a meta-analysis. Biosci Rep 2019; 39:BSR20181770. [PMID: 30559146 PMCID: PMC6331679 DOI: 10.1042/bsr20181770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
Plenty of studies have investigated the effect of methionine synthase (MTR) A2756G polymorphism on risk of developing pediatric acute lymphoblastic leukemia (ALL), but the available results were inconsistent. Therefore, a meta-analysis was conducted to derive a more precise estimation of the association between MTR A2756G polymorphism and genetic susceptibility to pediatric ALL. The PubMed, Embase, Google Scholar, Web of Science, ScienceDirect, Wanfang Databases and China National Knowledge Infrastructure were systematically searched to identify all the previous published studies exploring the relationship between MTR A2756G polymorphism and pediatric ALL risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were applied to evaluate the strength of association. Sensitivity analysis and publication bias were also systematically assessed. This meta-analysis finally included ten available studies with 3224 ALL cases and 4077 matched controls. The results showed that there was significant association between MTR A2756G polymorphism and risk of pediatric ALL in overall population (AG vs. AA: OR = 1.13, 95%CI = 1.02-1.26, P = 0.02; AG+GG vs. AA: OR = 1.13, 95%CI = 1.02-1.25, P = 0.01; G allele vs. A allele: OR = 1.10, 95%CI = 1.01-1.20, P = 0.03). In the stratification analyses by ethnicity, quality score and control source, significant association was found in Caucasians, population-based designed studies and studies assigned as high quality. In conclusion, this meta-analysis suggests that MTR A2756G polymorphism may influence the development risk of pediatric ALL in Caucasians. Future large scale and well-designed studies are required to validate our findings.
Collapse
|
30
|
Homocysteine and Digestive Tract Cancer Risk: A Dose-Response Meta-Analysis. JOURNAL OF ONCOLOGY 2018; 2018:3720684. [PMID: 30662463 PMCID: PMC6312580 DOI: 10.1155/2018/3720684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 10/14/2018] [Accepted: 11/11/2018] [Indexed: 12/14/2022]
Abstract
Background Homocysteine, a key component in one-carbon metabolism, is of great importance in remethylation. Many epidemiologic studies have assessed the association between homocysteine and risk of digestive tract cancer, but the results are inconsistent. Objective The objective of our meta-analysis is to assess the association between homocysteine and digestive tract cancer risk. Methods Comprehensive searches were performed on the PubMed, Embase, Cochrane, and Web of Science databases up to September 25, 2018, to identify relevant studies. Thirteen studies were included in the meta-analysis. Odds ratios (ORs) and their corresponding 95% confidence intervals (95% CIs) were used to estimate the strength of the relationship between homocysteine and the risk of digestive tract cancer. Results The pooled OR of digestive tract cancer risk for patients with the highest categories of blood homocysteine levels versus the lowest categories was 1.27 (95% CI, 1.15, 1.39) with no significant heterogeneity observed (P = 0.798, I 2 = 0.0%). Moreover, the dose-response analysis revealed that each 5μmol/L increase in homocysteine increased the incidence of digestive tract cancer by 7%. Conclusion Generally, our results indicated that elevated homocysteine was associated with higher risk of digestive tract cancer. That is, homocysteine concentration may be a potential biomarker for occurrence of digestive tract cancer.
Collapse
|
31
|
Zhang RN, Pan Q, Zheng RD, Mi YQ, Shen F, Zhou D, Chen GY, Zhu CY, Fan JG. Genome-wide analysis of DNA methylation in human peripheral leukocytes identifies potential biomarkers of nonalcoholic fatty liver disease. Int J Mol Med 2018; 42:443-452. [PMID: 29568887 DOI: 10.3892/ijmm.2018.3583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/12/2018] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to uncover the role of leukocytic DNA methylation in the evaluation of nonalcoholic fatty liver disease (NAFLD). Patients with biopsy-proven NAFLD (n=35) and normal controls (n=30) were recruited from Chinese Han population. Their DNA methylation in peripheral leukocytes was subjected to genome-wide profiling. The association between differential methylation of CpG sites and NAFLD was further investigated on the basis of histopathological classification, bioinformatics, and pyrosequencing. A panel of 863 differentially methylated CpG sites dominated by global hypomethylation, characterized the NAFLD patients. Hypomethylated CpG sites of Acyl-CoA synthetase long-chain family member 4 (ACSL4) (cg15536552) and carnitine palmitoyltransferase 1C (CPT1C) (cg21604803) associated with the increased risk of NAFLD [cg15536552, odds ratio (OR): 11.44, 95% confidence interval (CI): 1.04‑125.37, P=0.046; cg21604803, OR: 6.57, 95% CI: 1.02-42.15, P=0.047] at cut-off β-values of <3.36 (ACSL4 cg15536552) and <3.54 (CPT1C cg21604803), respectively, after the adjustment of age, sex, body mass index (BMI) and homeostasis model assessment of insulin resistant (HOMA-IR). Their methylation levels also served as biomarkers of NAFLD (ACSL4 cg15536552, AUC: 0.80, 95% CI: 0.62-0.98, P=0.009; CPT1C cg21604803, AUC: 0.78, 95% CI: 0.65-0.91, P=0.001). Pathologically, lowered methylation level (β-values <3.26) of ACSL4 (cg15536552) conferred susceptibility to nonalcoholic steatohepatitis (NASH). Taken together, genome-wide hypomethylation of peripheral leukocytes may differentiate NAFLD patients from normal controls. The leukocytic hypomethylated ACSL4 (cg15536552) was suggested to be a biomarker for the pathological characteristics of NAFLD.
Collapse
Affiliation(s)
- Rui-Nan Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Rui-Dan Zheng
- Diagnosis and Treatment Center for Liver Diseases, Zhengxing Hospital, Zhangzhou, Fujian 363000, P.R. China
| | - Yu-Qiang Mi
- Department of Infective Diseases, Tianjin Infectious Disease Hospital, Tianjin 300192, P.R. China
| | - Feng Shen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Da Zhou
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Guang-Yu Chen
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Chan-Yan Zhu
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
32
|
Shiao SPK, Lie A, Yu CH. Meta-analysis of homocysteine-related factors on the risk of colorectal cancer. Oncotarget 2018; 9:25681-25697. [PMID: 29876016 PMCID: PMC5986656 DOI: 10.18632/oncotarget.25355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023] Open
Abstract
The major objective of this meta-analysis was to examine the association between homocysteine and related measurements with the risk of colorectal cancer (CRC) and adenomatous polyps (AP). Many studies presented an association between methyltetrahydrofolate reductase (MTHFR) gene polymorphisms and risk of CRC. Yet, there have been variances on what homocysteine-related and dietary factors play on the risk of CRC or AP, in association with folate-related one carbon metabolism pathways. We pooled analyses to examine comprehensively all homocysteine related factors including blood tests measurements, dietary, and lifestyle factors for their associations with the risk of CRC and AP. We located 86 articles published from 1995 to 2017. The results revealed that elevated homocysteine levels and decreased vitamin B12 levels in the blood were associated with increased risks of CRC and AP, with case-control studies having greater significant effect sizes compared to that of cohort-control studies. Decreased methionine and vitamin B6 levels in the blood increased the risk of CRC. MTHFR 677 TT and CT polymorphisms were interacting with elevated homocysteine levels to increase the risk of CRC. Decreased dietary fiber, methionine, vitamin B9 or folate, and vitamin B6 intakes were associated with increased risks of CRC; whereas, increased dietary B12 intake, alcohol intake, and smoking were associated with increased risk of CRC. Further studies can be conducted to examine the mechanistic differences of blood levels of homocysteine-related and dietary factors, including different types of dietary fiber, for their effects on decreasing the homocysteine toxicity to prevent CRC.
Collapse
Affiliation(s)
- S Pamela K Shiao
- College of Nursing and Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Amanda Lie
- Citrus Valley Health Partners, Foothill Presbyterian Hospital, Glendora, CA, USA
| | | |
Collapse
|
33
|
Asante I, Pei H, Zhou E, Liu S, Chui D, Yoo E, Louie SG. Simultaneous quantitation of folates, flavins and B 6 metabolites in human plasma by LC-MS/MS assay: Applications in colorectal cancer. J Pharm Biomed Anal 2018; 158:66-73. [PMID: 29860180 DOI: 10.1016/j.jpba.2018.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 01/15/2023]
Abstract
An analytical method using electrospray ionization and high- performance liquid chromatography/tandem mass spectrometry (LC/ESI-MS/MS) was developed to quantify the vitamin B metabolites found in the folate one-carbon metabolism, using 50 μL of human plasma. Analytes in plasma were extracted using protein precipitation after being stabilized in 1% ascorbic acid. The analytes were separated using a Kinetex 2.6 μm Pentafluorophenyl (2.1 × 30 mm) column utilizing a gradient mobile phase system of 0.1% formic acid in water and 100% acetonitrile in a 13.2 min run. The MS detector run using a positive multiple reaction monitoring with parameters optimized for each analyte's ion pair. The assay was selective and linear for all analytes at defined dynamic ranges. The recoveries were generally above 80% except for the folate metabolites whose recoveries dipped possibly due to the drying process. The inter-day precision (%coefficient of variation) and accuracy (%calculated concentration of the nominal concentrations) for six replicates of all quality control samples were ≤14% and within 12.2%, respectively. The lower limit of quantification ranged from 0.2 to 3.9 nM. No significant instability was observed after repeated freezing and thawing or in processed samples. The LC-MS/MS assay was found applicable for sensitive, accurate and precise quantitation of vitamin B metabolites in plasma of healthy volunteers and colorectal cancer patients.
Collapse
Affiliation(s)
- Isaac Asante
- University of Southern California, Los Angeles, CA, United States.
| | - Hua Pei
- University of Southern California, Los Angeles, CA, United States
| | - Eugene Zhou
- University of Southern California, Los Angeles, CA, United States
| | - Siyu Liu
- University of Southern California, Los Angeles, CA, United States
| | - Darryl Chui
- University of Southern California, Los Angeles, CA, United States
| | | | - Stan G Louie
- University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
34
|
Obeid R, Hübner U, Bodis M, Graeber S, Geisel J. Effect of adding B-vitamins to vitamin D and calcium supplementation on CpG methylation of epigenetic aging markers. Nutr Metab Cardiovasc Dis 2018; 28:411-417. [PMID: 29395637 DOI: 10.1016/j.numecd.2017.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIM B-vitamins may influence DNA methylation. We studied the effects of vitamin D + Ca + B versus D + Ca on epigenetic age markers and biological age. METHODS AND RESULTS Participants (mean ± SD of age = 68.4 ± 10.1 years) were randomized to receive 1200 IE vitamin D3 plus 800 mg Ca-carbonate alone (n = 31) or with 0.5 mg B9, 50 mg B6, and 0.5 mg B12 (n = 32). The CpG methylation of 3 genes (ASPA, ITGA2B, and PDE4C) and the changes in methylation were compared between the groups after 1 year. The changes of ASPA methylation from baseline were higher in the D + Ca + B than in the D + Ca group (1.40 ± 4.02 vs. -0.96 ± 5.12, respectively; p = 0.046, adjusted for age, sex, and baseline methylation). The changes in PDE4C from baseline were slightly higher in the D + Ca + B group (1.95 ± 3.57 vs. 0.22 ± 3.57; adjusted p = 0.062). Methylation of ITGA2B and its changes from baseline were not different between the intervention groups. Sex-adjusted odds ratio of accelerated aging (chronological age < biological age at 1 year) was 5.26 (95% confidence interval 1.51-18.28) in the D + Ca + B compared with the D + Ca group. Accelerated aging in both groups was associated with younger age. In the D + Ca + B group, it was additionally associated with lower baseline homocysteine. CONCLUSIONS Vitamin D + Ca + B and D + Ca differentially affected epigenetic age markers, although the effect size appeared to be small after 1 year. B-vitamins effect in young subjects with low homocysteine requires further investigation. ClinicalTrials.gov ID: NCT02586181.
Collapse
Affiliation(s)
- R Obeid
- Saarland University Hospital, Department of Clinical Chemistry and Laboratory Medicine, Building 57, D-66421, Homburg/Saar, Germany; Aarhus Institute of Advanced Studies, Aarhus University, DK-8000, Aarhus, Denmark.
| | - U Hübner
- Saarland University Hospital, Department of Clinical Chemistry and Laboratory Medicine, Building 57, D-66421, Homburg/Saar, Germany
| | - M Bodis
- Saarland University Hospital, Department of Clinical Chemistry and Laboratory Medicine, Building 57, D-66421, Homburg/Saar, Germany
| | - S Graeber
- Saarland University, Institute of Medical Biometry, Epidemiology and Medical Informatics, Building 86, D-66421, Homburg/Saar, Germany
| | - J Geisel
- Saarland University Hospital, Department of Clinical Chemistry and Laboratory Medicine, Building 57, D-66421, Homburg/Saar, Germany
| |
Collapse
|
35
|
Abstract
The ageing trajectory is plastic and can be slowed down by lifestyle factors, including good nutrition, adequate physical activity and avoidance of smoking. In humans, plant-based diets such as the Mediterranean dietary pattern are associated with healthier ageing and lower risk of age-related disease, whereas obesity accelerates ageing and increases the likelihood of most common complex diseases including CVD, T2D, dementia, musculoskeletal diseases and several cancers. As yet, there is only weak evidence in humans about the molecular mechanisms through which dietary factors modulate ageing but evidence from cell systems and animal models suggest that it is probable that better dietary choices influence all 9 hallmarks of ageing. It seems likely that better eating patterns retard ageing in at least two ways including (i) by reducing pervasive damaging processes such as inflammation, oxidative stress/redox changes and metabolic stress and (ii) by enhancing cellular capacities for damage management and repair. From a societal perspective, there is an urgent imperative to discover, and to implement, cost-effective lifestyle (especially dietary) interventions which enable each of us to age well, i.e. to remain physically and socially active and independent and to minimise the period towards the end of life when individuals suffer from frailty and multi-morbidity.
Collapse
Affiliation(s)
- Fiona C Malcomson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
36
|
Passador J, Toffoli LV, Fernandes KB, Neves-Souza RD, Pelosi GG, Gomes MV. Dietary Ingestion of Calories and Micronutrients Modulates the DNA Methylation Profile of Leukocytes from Older Individuals. J Nutr Health Aging 2018; 22:1281-1285. [PMID: 30498838 DOI: 10.1007/s12603-018-1085-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Several lines of evidence from the last decade support the connection between nutrition and epigenetic mechanisms. In the present study we evaluated the impact of the daily dietary intake of calories and the micronutrients vitamin A, D, B1, B2, B5, C, E, copper, calcium, phosphorus, iron, iodine, selenium, manganese, potassium and sodium on the global DNA methylation profile of blood cells from older individuals. RESEARCH METHODS AND PROCEDURES The study enrolled 126 physically independent elderly of both sexes (60 men and 66 women). For the molecular analysis, DNA samples were extracted from leukocytes and global DNA methylation was evaluated using a high throughput Elisa-based method. Correlations between global DNA methylation and the daily intake of calorie or micronutrients were evaluated using Prism5 GraphPad Software. RESULTS A statistically significant correlation was observed between global DNA methylation and the daily caloric value (p=0.019, r=-0.21), and the intake of vitamin A (p=0.03, r=-0.18), Vitamin E (p=0.027, r=-0.20) and copper (p=0.04, r=-0.18). No correlation was observed between global DNA methylation and the daily intake of vitamin D, B1, B2, B5, C, calcium, phosphorus, iron, iodine, selenium, manganese and potassium (p>0.05). CONCLUSION Our data demonstrate that the daily intake of calories or the micronutrients vitamin A, vitamin E and copper can potentially modulate the global DNA methylation profile of leukocytes in older adults and corroborate the notion of nutritional influences on epigenetic mechanisms.
Collapse
Affiliation(s)
- J Passador
- Gislaine Garcia Pelosi, Departamento de Ciências Fisiológicas, CCB-UEL, Campus Universitário, Rod Celso Garcia Cid, Km 380, CEP 86055-900, Londrina, Paraná, Brazil. Phone.: +55 43 3371 4201; fax: +55 43 3371 4467, E-mail address:
| | | | | | | | | | | |
Collapse
|
37
|
Xu L, Qin Z, Wang F, Si S, Li L, Lin P, Han X, Cai X, Yang H, Gu Y. Methylenetetrahydrofolate reductase C677T polymorphism and colorectal cancer susceptibility: a meta-analysis. Biosci Rep 2017; 37:BSR20170917. [PMID: 29089462 PMCID: PMC5719002 DOI: 10.1042/bsr20170917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/13/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
The association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and colorectal cancer (CRC) susceptibility has been researched in numerous studies. However, the results of these studies were controversial. Therefore, the objective of this meta-analysis was to offer a more convincible conclusion about such association with more included studies. Eligible studies published till May 1, 2017 were searched from PubMed, Embase, Web of Science, and CNKI database about such association. Pooled odds ratios (ORs) together with 95% confidence intervals (CIs) were calculated to evaluate such association. And the Begg's funnel plot and Egger's test were applied to assess the publication bias. This meta-analysis contained 37049 cases and 52444 controls from 87 publications with 91 eligible case-control studies. Because of lack of data for a particular genotype in several studies, all the included studies were analysed barely in the dominant model. Originally, there was no association between MTHFR C677T polymorphism and CRC susceptibility (OR =0.99, 95% CI =0.94-1.05). After excluding 13 studies according to their heterogeneity and publication bias, rs1801133 polymorphism was found to reduce the risks of CRC significantly (OR =0.96, 95% CI =0.94-0.99). In the subgroup analysis of ethnicity, there was a significant association in Asians (OR =0.94, 95% CI =0.89-1.00). Furthermore, when stratified by the source of controls and genotyping methods, the positive results were observed in population-based control group (OR =0.97, 95% CI =0.93-1.00) and PCR-restriction fragment length polymorphism (PCR-RFLP) method (OR =0.95, 95% CI =0.91-0.99. The results of the meta-analysis suggested that MTHFR C677T polymorphism was associated with CRC susceptibility, especially in Asian population.
Collapse
Affiliation(s)
- Lingyan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhiqiang Qin
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuhui Si
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lele Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peinan Lin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiao Han
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- State Key Laboratory of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
38
|
Grelus A, Nica DV, Miklos I, Belengeanu V, Ioiart I, Popescu C. Clinical Significance of Measuring Global Hydroxymethylation of White Blood Cell DNA in Prostate Cancer: Comparison to PSA in a Pilot Exploratory Study. Int J Mol Sci 2017; 18:ijms18112465. [PMID: 29156615 PMCID: PMC5713431 DOI: 10.3390/ijms18112465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/16/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
This is the first study investigating the clinical relevance of 5-hydroxymethylcytosine (5hmC) in genomic DNA from white blood cells (WBC) in the context of prostate cancer (PCa) and other prostate pathologies. Using an enzyme-linked immunosorbent assay, we identified significantly different distributions of patients with low and elevated 5hmC content in WBC DNA across controls and patients with prostate cancer (PCa), atypical small acinar proliferation (ASAP), and benign prostatic hyperplasia (BPH). The measured values were within the normal range for most PCa patients, while the latter category was predominant for ASAP. We observed a wider heterogeneity in 5hmC content in all of the prostate pathologies analyzed when compared to the healthy age-matched controls. When compared to blood levels of prostate-specific antigen (PSA), this 5hmC-based biomarker had a lower performance in PCa detection than the use of a PSA cut-off of 2.5 nanograms per milliliter (ng/mL). Above this threshold, however, it delineated almost three quarters of PCa patients from controls and patients with other prostate pathologies. Overall, genome-wide 5hmC content of WBC DNA appears to be applicable for detecting non-cancerous prostate diseases, rather than PCa. Our results also suggest a potential clinical usefulness of complementing PSA as a PCa marker by the addition of a set of hydroxymethylation markers in the blood, but further studies are necessary to confirm these findings.
Collapse
Affiliation(s)
- Alin Grelus
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Arad County Emergency Clinical Hospital, Str. Andreny Karoly nr. 2-4, 310037 Arad, Romania.
| | - Dragos V Nica
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
| | - Imola Miklos
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Arad County Emergency Clinical Hospital, Str. Andreny Karoly nr. 2-4, 310037 Arad, Romania.
| | - Valerica Belengeanu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
| | - Ioan Ioiart
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Arad County Emergency Clinical Hospital, Str. Andreny Karoly nr. 2-4, 310037 Arad, Romania.
| | - Cristina Popescu
- Institute of Life Sciences, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
- Faculty of Pharmacy, "Vasile Goldis" Western University of Arad, Str. Liviu Rebreanu 86, 310045 Arad, Romania.
| |
Collapse
|
39
|
Bach M, Savini C, Krufczik M, Cremer C, Rösl F, Hausmann M. Super-Resolution Localization Microscopy of γ-H2AX and Heterochromatin after Folate Deficiency. Int J Mol Sci 2017; 18:ijms18081726. [PMID: 28786938 PMCID: PMC5578116 DOI: 10.3390/ijms18081726] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/08/2023] Open
Abstract
Folate is an essential water-soluble vitamin in food and nutrition supplements. As a one-carbon source, it is involved in many central regulatory processes, such as DNA, RNA, and protein methylation as well as DNA synthesis and repair. Deficiency in folate is considered to be associated with an increased incidence of several malignancies, including cervical cancer that is etiologically linked to an infection with “high-risk” human papilloma viruses (HPV). However, it is still not known how a recommended increase in dietary folate after its deprivation affects the physiological status of cells. To study the impact of folate depletion and its subsequent reconstitution in single cells, we used quantitative chromatin conformation measurements obtained by super-resolution fluorescence microscopy, i.e., single molecule localization microscopy (SMLM). As a read-out, we examined the levels and the (re)positioning of γ-H2AX tags and histone H3K9me3 heterochromatin tags after immunostaining in three-dimensional (3D)-conserved cell nuclei. As model, we used HPV16 positive immortalized human keratinocytes that were cultivated under normal, folate deficient, and reconstituted conditions for different periods of time. The results were compared to cells continuously cultivated in standard folate medium. After 13 weeks in low folate, an increase in the phosphorylation of the histone H2AX was noted, indicative of an accumulation of DNA double strand breaks. DNA repair activity represented by the formation of those γ-H2AX clusters was maintained during the following 15 weeks of examination. However, the clustered arrangements of tags appeared to relax in a time-dependent manner. Parallel to the repair activity, the chromatin methylation activity increased as detected by H3K9me3 tags. The progress of DNA double strand repair was accompanied by a reduction of the detected nucleosome density around the γ-H2AX clusters, suggesting a shift from hetero- to euchromatin to allow access to the repair machinery. In conclusion, these data demonstrated a folate-dependent repair activity and chromatin re-organization on the SMLM nanoscale level. This offers new opportunities to further investigate folate-induced chromatin re-organization and the associated mechanisms.
Collapse
Affiliation(s)
- Margund Bach
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, Heidelberg 69120, Germany.
| | - Claudia Savini
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Matthias Krufczik
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, Heidelberg 69120, Germany.
| | - Christoph Cremer
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, Heidelberg 69120, Germany.
- Institute for Molecular Biology, Ackermannweg 4, Mainz 55128, Germany.
| | - Frank Rösl
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, Heidelberg 69120, Germany.
| |
Collapse
|
40
|
Shen J, Song R, Gong Y, Zhao H. Global DNA hypomethylation in leukocytes associated with glioma risk. Oncotarget 2017; 8:63223-63231. [PMID: 28968983 PMCID: PMC5609915 DOI: 10.18632/oncotarget.18739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 05/21/2017] [Indexed: 11/25/2022] Open
Abstract
Global DNA hypomethylation in leukocytes has been associated with increased risk for a variety of cancers. However, the role of leukocyte global DNA hypomethylation in glioma development, if any, is largely unknown. To define this role, we performed a case-control study with 390 glioma patients and 390 controls with no known cancer. Levels of 5-methylcytosine (5-mC%), a marker for global DNA methylation, were measured in leukocyte DNA. Overall, median levels of 5-mC% were significantly lower in glioma cases than in controls (3.45 vs 3.82, P=0.001). Levels of 5-mC% differed significantly by age and sex among controls and by tumor subtype and grade among glioma cases. In multivariate analysis, lower levels of 5-mC% were associated with a 1.31-fold increased risk of glioma (odds ratio = 1.31, 95% confidence interval = 1.10-1.41). A significant dose-response trend was observed in quartile analysis (P=0.001). In an analysis further stratified by clinical characteristics at baseline, the association between lower levels of 5-mC% and glioma risk was evident only among younger participants (age <52 years), women, and those with aggressive tumor characteristics, such as glioblastoma subtype, high tumor grade (grade III or IV), and absence of IDH1 mutation. Our findings indicate that global DNA hypomethylation in leukocytes may contribute to the development of glioma and that the association is affected by age, sex, and tumor aggressiveness.
Collapse
Affiliation(s)
- Jie Shen
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Renduo Song
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hua Zhao
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Durso DF, Bacalini MG, Sala C, Pirazzini C, Marasco E, Bonafé M, do Valle ÍF, Gentilini D, Castellani G, Faria AMC, Franceschi C, Garagnani P, Nardini C. Acceleration of leukocytes' epigenetic age as an early tumor and sex-specific marker of breast and colorectal cancer. Oncotarget 2017; 8:23237-23245. [PMID: 28423572 PMCID: PMC5410300 DOI: 10.18632/oncotarget.15573] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/12/2017] [Indexed: 01/12/2023] Open
Abstract
Changes in blood epigenetic age have been associated with several pathological conditions and have recently been described to anticipate cancer development. In this work, we analyze a publicly available leukocytes methylation dataset to evaluate the relation between DNA methylation age and the prospective development of specific types of cancer. We calculated DNA methylation age acceleration using five state-of-the-art estimators (three multi-site: Horvath, Hannum, Weidner; and two CpG specific: ELOV2 and FHL2) in a cohort including 845 subjects from the EPIC-Italy project and we compared 424 samples that remained cancer-free over the approximately ten years of follow-up with 235 and 166 subjects who developed breast and colorectal cancer, respectively. We show that the epigenetic age estimated from blood DNA methylation data is statistically significantly associated to future breast and male colorectal cancer development. These results are corroborated by survival analysis that shows significant association between age acceleration and cancer incidence suggesting that the chance of developing age-related diseases may be predicted by circulating epigenetic markers, with a dependence upon tumor type, sex and age estimator. These are encouraging results towards the non-invasive and perspective usage of epigenetic biomarkers.
Collapse
Affiliation(s)
- Danielle Fernandes Durso
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- National Counsel of Technological and Scientific Development (CNPq), Ministry of Science Technology and Innovation (MCTI), Brasilia, Brazil
| | | | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Massimiliano Bonafé
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | | | - Davide Gentilini
- Istituto Auxologico Italiano IRCCS, Cusano Milanino, Milan, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Ana Maria Caetano Faria
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna, Italy
- Applied Biomedical Research Center, S. Orsola-Malpighi Polyclinic, Bologna, Italy
- Interdepartmental Center “L. Galvani”, University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Christine Nardini
- Personal Genomics S.r.l., Verona, Italy
- CNR IAC “Mauro Picone”, Rome, Italy
| |
Collapse
|
42
|
Alexander M, Burch JB, Steck SE, Chen CF, Hurley TG, Cavicchia P, Shivappa N, Guess J, Zhang H, Youngstedt SD, Creek KE, Lloyd S, Jones K, Hébert JR. Case-control study of candidate gene methylation and adenomatous polyp formation. Int J Colorectal Dis 2017; 32:183-192. [PMID: 27771773 PMCID: PMC5288296 DOI: 10.1007/s00384-016-2688-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the most common and preventable forms of cancer but remains the second leading cause of cancer-related death. Colorectal adenomas are precursor lesions that develop in 70-90 % of CRC cases. Identification of peripheral biomarkers for adenomas would help to enhance screening efforts. This exploratory study examined the methylation status of 20 candidate markers in peripheral blood leukocytes and their association with adenoma formation. METHODS Patients recruited from a local endoscopy clinic provided informed consent and completed an interview to ascertain demographic, lifestyle, and adenoma risk factors. Cases were individuals with a histopathologically confirmed adenoma, and controls included patients with a normal colonoscopy or those with histopathological findings not requiring heightened surveillance (normal biopsy, hyperplastic polyp). Methylation-specific polymerase chain reaction was used to characterize candidate gene promoter methylation. Odds ratios (ORs) and 95 % confidence intervals (95% CIs) were calculated using unconditional multivariable logistic regression to test the hypothesis that candidate gene methylation differed between cases and controls, after adjustment for confounders. RESULTS Complete data were available for 107 participants; 36 % had adenomas (men 40 %, women 31 %). Hypomethylation of the MINT1 locus (OR 5.3, 95% CI 1.0-28.2) and the PER1 (OR 2.9, 95% CI 1.1-7.7) and PER3 (OR 11.6, 95% CI 1.6-78.5) clock gene promoters was more common among adenoma cases. While specificity was moderate to high for the three markers (71-97 %), sensitivity was relatively low (18-45 %). CONCLUSION Follow-up of these epigenetic markers is suggested to further evaluate their utility for adenoma screening or surveillance.
Collapse
Affiliation(s)
- M Alexander
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J B Burch
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA.
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA.
- William Jennings Bryant Dorn Department of Veterans Affairs Medical Center, Columbia, SC, USA.
| | - S E Steck
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - C-F Chen
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - T G Hurley
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
| | - P Cavicchia
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Division of Community Health Promotion, Florida Department of Health, Tallahassee, FL, USA
| | - N Shivappa
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - J Guess
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
| | - H Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - S D Youngstedt
- College of Nursing and Health Innovation, College of Health Solutions, Arizona State University and Phoenix VA Health Care System, Phoenix, AZ, USA
| | - K E Creek
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - S Lloyd
- South Carolina Medical Endoscopy Center, and Department of Family Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - K Jones
- Center for Molecular Studies, Greenwood Genetic Center, Greenwood, SC, USA
| | - J R Hébert
- South Carolina Statewide Cancer Prevention and Control Program, University of South Carolina, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 915 Greene St, Room 228, Columbia, SC, 29209, USA
- Department of Family and Preventive Medicine, School of Medicine, University of South Carolin, Columbia, SC, USA
| |
Collapse
|
43
|
Shen J, Song R, Wan J, Huff C, Fang S, Lee JE, Zhao H. Global methylation of blood leukocyte DNA and risk of melanoma. Int J Cancer 2017; 140:1503-1509. [PMID: 28006848 DOI: 10.1002/ijc.30577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/10/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Global DNA methylation, possibly influenced by lifestyle and environmental factors, has been suggested to play an active role in carcinogenesis. However, its role in melanoma has rarely been explored. The aims of this study were to evaluate the relationship between melanoma risk and levels of 5-methylcytosine (5-mC), a marker for global DNA methylation, in blood leukocyte DNA, and to determine whether this 5-mC level is influenced by pigmentation and sun exposure. This case-control study included 540 melanoma cases and 540 healthy controls. Overall, melanoma cases had significantly lower levels of 5-mC% than healthy controls (median: 3.24 vs. 3.91, p < 0.001). The significant difference between two groups did not differ by pigmentation or sun exposure. Among healthy controls, however, those who had fair skin color (p = 0.041) or light or no tanning after prolonged sun exposure (p = 0.031) or used a sunlamp (p = 0.028) had lower levels of 5-mC% than their counterparts. In addition, those with an intermediate or high phenotypic index, an indicator of cutaneous cancer susceptibility, had 2.58-fold greater likelihood of having a low level of 5-mC% [odds ratio (OR): 2.58; 95% confidence interval (CI): 1.72, 3.96] than those with a low phenotypic index. Lower levels of 5-mC% were associated with a 1.25-fold greater risk of melanoma (OR: 1.25; 95% CI: 1.08, 1.37). A significant dose-response relationship was observed in quartile analysis (p = 0.001). Our results suggest that global hypomethylation in blood leukocyte DNA is associated with increased risk of melanoma and that the level of methylation is influenced by pigmentation and sun exposure.
Collapse
Affiliation(s)
- Jie Shen
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Renduo Song
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jie Wan
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Chad Huff
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Shenying Fang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Jeffrey E Lee
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| | - Hua Zhao
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030
| |
Collapse
|
44
|
Davis CD, Uthus EO. DNA Methylation, Cancer Susceptibility, and Nutrient Interactions. Exp Biol Med (Maywood) 2016; 229:988-95. [PMID: 15522834 DOI: 10.1177/153537020422901002] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism of transcriptional control. DNA methylation plays an essential role in maintaining cellular function, and changes in methylation patterns may contribute to the development of cancer. Aberrant methylation of DNA (global hypomethylation accompanied by region-specific hypermethylation) is frequently found in tumor cells. Global hypomethylation can result in chromosome instability, and hypermethylation has been associated with the inaction of tumor suppressor genes. Preclinical and clinical studies suggest that part of the cancer-protective effects associated with several bioactive food components may relate to DNA methylation patterns. Dietary factors that are involved in one-carbon metabolism provide the most compelling data for the interaction of nutrients and DNA methylation because they influence the supply of methyl groups, and therefore the biochemical pathways of methylation processes. These nutrients include folate, vitamin B12, vitamin B6, methionine, and choline. However, looking at individual nutrients may be too simplistic. Dietary methyl (folate, choline, and methionine) deficiency in combination causes decreased tissue S-adenosylmethionine, global DNA hypomethylation, hepatic steatosis, cirrhosis, and ultimately hepatic tumorigenesis in rodents in the absence of carcinogen treatment. Other dietary components such as vitamin B12, alcohol, and selenium may modify the response to inadequate dietary folate.
Collapse
Affiliation(s)
- Cindy D Davis
- Nutritional Sciences Research Group, Division of Cancer Prevention, National Cancer Institute, 6130 Executive Boulevard, Suite 3159, Rockville, MD 20892-7328, USA.
| | | |
Collapse
|
45
|
Kabe Y, Yamamoto T, Kajimura M, Sugiura Y, Koike I, Ohmura M, Nakamura T, Tokumoto Y, Tsugawa H, Handa H, Kobayashi T, Suematsu M. Cystathionine β-synthase and PGRMC1 as CO sensors. Free Radic Biol Med 2016; 99:333-344. [PMID: 27565814 DOI: 10.1016/j.freeradbiomed.2016.08.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/21/2016] [Accepted: 08/23/2016] [Indexed: 11/30/2022]
Abstract
Heme oxygenase (HO) is a mono-oxygenase utilizing heme and molecular oxygen (O2) as substrates to generate biliverdin-IXα and carbon monoxide (CO). HO-1 is inducible under stress conditions, while HO-2 is constitutive. A balance between heme and CO was shown to regulate cell death and survival in many experimental models. However, direct molecular targets to which CO binds to regulate cellular functions remained to be fully examined. We have revealed novel roles of CO-responsive proteins, cystathionine β-synthase (CBS) and progesterone receptor membrane component 1 (PGRMC1), in regulating cellular functions. CBS possesses a prosthetic heme that allows CO binding to inhibit the enzyme activity and to regulate H2S generation and/or protein arginine methylation. On the other hand, in response to heme accumulation in cells, PGRMC1 forms a stable dimer through stacking interactions of two protruding heme molecules. Heme-mediated PGRMC1 dimerization is necessary to interact with EGF receptor and cytochromes P450 that determine cell proliferation and xenobiotic metabolism. Furthermore, CO interferes with PGRMC1 dimerization by dissociating the heme stacking, and thus results in modulation of cell responses. This article reviews the intriguing functions of these two proteins in response to inducible and constitutive levels of CO with their pathophysiological implications.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 160-8582, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mayumi Kajimura
- Department of Biology, Keio University School of Medicine, Yokohama 223-8521, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mitsuyo Ohmura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 160-8582, Japan
| | - Takashi Nakamura
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasuhito Tokumoto
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Admission Center, Saitama Medical University, Moroyama 350-0495, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo 160-8582, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
46
|
Joyce BT, Gao T, Zheng Y, Liu L, Zhang W, Dai Q, Shrubsole MJ, Hibler EA, Cristofanilli M, Zhang H, Yang H, Vokonas P, Cantone L, Schwartz J, Baccarelli A, Hou L. Prospective changes in global DNA methylation and cancer incidence and mortality. Br J Cancer 2016; 115:465-72. [PMID: 27351216 PMCID: PMC4985350 DOI: 10.1038/bjc.2016.205] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Methylation of repetitive elements Alu and LINE-1 in humans is considered a surrogate for global DNA methylation. Previous studies of blood-measured Alu/LINE-1 and cancer risk are inconsistent. METHODS We studied 1259 prospective methylation measurements from blood drawn 1-4 times from 583 participants from 1999 to 2012. We used Cox regression to evaluate time-dependent methylation as a biomarker for cancer risk and mortality, and linear regression to compare mean differences in methylation over time by cancer status and analyse associations between rate of methylation change and cancer. RESULTS Time-dependent LINE-1 methylation was associated with prostate cancer incidence (HR: 1.38, 95% CI: 1.01-1.88) and all-cancer mortality (HR: 1.41, 95% CI: 1.03-1.92). The first measurement of Alu methylation (HR: 1.39, 95% CI: 1.08-1.79) was associated with all-cancer mortality. Participants who ultimately developed cancer had lower mean LINE-1 methylation than cancer-free participants 10+ years pre-diagnosis (P<0.01). Rate of Alu methylation change was associated with all-cancer incidence (HR: 3.62, 95% CI: 1.09-12.10). CONCLUSIONS Our results add longitudinal data on blood Alu and LINE-1 methylation and cancer, and potentially contribute to their use as early-detection biomarkers. Future larger studies are needed and should account for the interval between blood sample collection and cancer diagnosis.
Collapse
Affiliation(s)
- Brian T Joyce
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.,Division of Epidemiology/Biostatistics, School of Public Health, University of Illinois-Chicago, 1603 W. Taylor Street, Chicago, IL 60612, USA
| | - Tao Gao
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.,Institute for Public Health and Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Lei Liu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Qi Dai
- Vanderbilt University Medical Center, 2525 West End Avenue, Suite 319, Nashville, TN 37203, USA
| | - Martha J Shrubsole
- Vanderbilt University Medical Center, 2525 West End Avenue, Suite 319, Nashville, TN 37203, USA
| | - Elizabeth A Hibler
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Massimo Cristofanilli
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, 676 N. St Clair Street, 8th Floor, Chicago, IL 60611, USA
| | - Hu Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA
| | - Hushan Yang
- Department of Medical Oncology, Division of Population Science, Sidney Kimmel Cancer Center, Thomas Jefferson University, 834 Chestnut Street, Suite 314, Philadelphia, PA 19107, USA
| | - Pantel Vokonas
- VA Normative Aging Study, VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA.,Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Laura Cantone
- Molecular Epidemiology and Environmental Epigenetics Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, San Barnaba 8, Milan 20122, Italy
| | - Joel Schwartz
- Department of Environmental Health, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Andrea Baccarelli
- Department of Environmental Health, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N. Lake Shore Drive, Suite 1400, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Olson Pavilion 8350, Chicago, IL 60611, USA
| |
Collapse
|
47
|
Ho V, Ashbury JE, Taylor S, Vanner S, King WD. Genetic and epigenetic variation in the DNMT3B and MTHFR genes and colorectal adenoma risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:261-8. [PMID: 27062459 DOI: 10.1002/em.22010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Polymorphisms in DNMT3B and MTHFR have been implicated in cancer etiology; however, it is increasingly clear that gene-specific DNA methylation also affects gene expression. A cross-sectional study (N = 272) investigated the main and joint effects of polymorphisms and DNA methylation in DNMT3B and MTHFR on colorectal adenoma risk. Polymorphisms examined included DNMT3B c.-6-1045G > T, and MTHFR c.665C > T and c.1286A > C. DNA methylation of 66 and 28 CpG sites in DNMT3B and MTHFR, respectively, was quantified in blood leukocytes using Sequenom EpiTYPER®. DNA methylation was conceptualized using two approaches: (1) average methylation and (2) unsupervised principal component analysis to identify variables that represented methylation around the transcription start site and the gene coding area of both genes. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) associated with the main and joint effects of polymorphisms and DNA methylation. DNA methyltransferase 3B (DNMT3B) TT versus GG/GT genotypes was associated with increased colorectal adenoma risk (OR = 2.12; 95% CI: 1.03-4.34). In addition, increasing DNA methylation in the gene-coding area of DNMT3B was associated with higher risk of colorectal adenomas (OR = 1.34; 95% CI: 1.01-1.79 per SD). In joint effect analyses, synergistic effects were observed among those with both the DNMT3B TT genotype and higher DNMT3B methylation levels compared to those with GT/GG genotypes and lower methylation levels (OR = 4.19; 95% CI: 1.45-12.13 for average methylation; OR = 4.26; 95%CI: 1.31-13.87 for methylation in the transcription start site). This research provides novel evidence that genetic and epigenetic variations contribute to colorectal adenoma risk, precursor to the majority of colorectal cancer (CRC).
Collapse
Affiliation(s)
- Vikki Ho
- University of Montreal Hospital Research Centre (CRCHUM), Tour Saint-Antoine, Montréal, Québec, Canada
| | - Janet E Ashbury
- Department of Public Health Sciences, Second Floor Carruthers Hall, Queen's University, Kingston, Ontario, Canada
| | - Sherryl Taylor
- Department of Medical Genetics, Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen Vanner
- Gastrointestinal Diseases Research Unit (GIDRU), Queen's University, Kingston General Hospital, Kingston, Ontario, Canada
| | - Will D King
- Department of Public Health Sciences, Second Floor Carruthers Hall, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
48
|
Suematsu M, Nakamura T, Tokumoto Y, Yamamoto T, Kajimura M, Kabe Y. CO-CBS-H2S Axis: From Vascular Mediator to Cancer Regulator. Microcirculation 2016; 23:183-90. [DOI: 10.1111/micc.12253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Makoto Suematsu
- Department of Biochemistry; Keio University School of Medicine; Japan Science and Technology Agency; ERATO Suematsu Gas Biology Project; Tokyo Japan
| | - Takashi Nakamura
- Department of Biochemistry; Keio University School of Medicine; Japan Science and Technology Agency; ERATO Suematsu Gas Biology Project; Tokyo Japan
| | - Yasuhito Tokumoto
- Department of Biochemistry; Keio University School of Medicine; Japan Science and Technology Agency; ERATO Suematsu Gas Biology Project; Tokyo Japan
| | - Takehiro Yamamoto
- Department of Biochemistry; Keio University School of Medicine; Japan Science and Technology Agency; ERATO Suematsu Gas Biology Project; Tokyo Japan
| | - Mayumi Kajimura
- Department of Biochemistry; Keio University School of Medicine; Japan Science and Technology Agency; ERATO Suematsu Gas Biology Project; Tokyo Japan
| | - Yasuaki Kabe
- Department of Biochemistry; Keio University School of Medicine; Japan Science and Technology Agency; ERATO Suematsu Gas Biology Project; Tokyo Japan
| |
Collapse
|
49
|
Mendoza-Pérez J, Gu J, Herrera LA, Tannir NM, Matin SF, Karam JA, Huang M, Chang DW, Wood CG, Wu X. Genomic DNA Hypomethylation and Risk of Renal Cell Carcinoma: A Case-Control Study. Clin Cancer Res 2015; 22:2074-82. [PMID: 26655847 DOI: 10.1158/1078-0432.ccr-15-0977] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/22/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Genomic DNA hypomethylation is a hallmark of most cancer genomes, promoting genomic instability and cell transformation. In the present study, we sought to determine whether global DNA methylation in peripheral blood is associated with risk of renal cell carcinoma (RCC). EXPERIMENTAL DESIGN A retrospective case-control study consisting of 889 RCC cases and an equal number of age, gender, and ethnicity-matched controls was applied. Global DNA methylation was measured as 5-mC% content. Logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) for the association between DNA methylation level and the risk of RCC. RESULTS The median 5-mC% was significantly lower in cases than in healthy controls (P< 0.001). In multivariate logistic regression analysis, individuals in the lowest tertile (T1) of 5-mC% had higher risk of RCC with OR of 1.40 (95% CI, 1.06-1.84), compared with individuals in the highest tertile (T3;Pfor trend= 0.02). When stratified by RCC risk factors, associations between hypomethylation and increased RCC risk appeared to be stronger among males (OR, 1.61;Pfor trend= 0.01), younger age (OR, 1.47;Pfor trend= 0.03), never smokers (OR, 1.55;Pfor trend= 0.02), family history of other cancer (OR, 1.64;Pfor trend= 1.22E-03), and late stage (OR, 2.06,Pfor trend= 4.98E-04). Additionally, we observed significant interaction between gender and 5-mC% in elevating RCC risk (Pfor interaction= 0.03). CONCLUSIONS Our findings suggest an association between global DNA hypomethylation and RCC risk. To establish global DNA hypomethylation as a risk factor for RCC, future prospective studies are warranted. This study may provide further understanding of the etiology of RCC tumorigenesis.
Collapse
Affiliation(s)
- Julia Mendoza-Pérez
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Surena F Matin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jose A Karam
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David W Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher G Wood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
50
|
Methionine synthase A2756G variation is associated with the risk of retinoblastoma in Iranian children. Cancer Epidemiol 2015; 39:1023-5. [PMID: 26595280 DOI: 10.1016/j.canep.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/25/2015] [Accepted: 11/05/2015] [Indexed: 12/19/2022]
Abstract
Association of epigenetic modifications with cancer has been widely studied. Gene-specific hypermethylation and global DNA hypomethylation are the most frequently observed patterns in great number of tumors. The methionine synthase (MTR) gene plays key role in maintaining adequate intracellular folate, methionine and normal homocysteine concentrations and, its polymorphism have been associated with the risk of retinoblastoma and other neoplasms. We evaluated the association of MTR A2756G polymorphism with the risk of retinoblastoma in an Iranian population. Totally, 150 retinoblastoma patients and 300 individuals with no family history of cancer as control were included in this study. Genotyping of the A2756G polymorphism was performed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using the restriction enzymes HaeIII. Our results showed that the "G" was the minor allele with a frequency of 31.7% and 20.3% in both retinoblastoma and control groups, respectively. The frequency of the 2756GG genotype (P=0.023) and 2756G allele (P=0.0001) were significantly higher in the patients than control group, respectively. Individual with the 2756GG genotype had a 2.99 fold increased risk for retinoblastoma. According to our results, the MTR A2756G polymorphism was associated with the risk of retinoblastoma in Iranian patients.
Collapse
|