1
|
Glazer I, Simões N, Eleftherianos I, Ramakrishnan J, Ment D, Toubarro D, Mallick S. Entomopathogenic nematodes: Survival, virulence and immunity. J Invertebr Pathol 2025; 212:108363. [PMID: 40412605 DOI: 10.1016/j.jip.2025.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
As entomopathogenic nematodes (EPNs) are used as biological control agents, their survival and persistence are crucial to ensure success in application against insect pests. The survival of Heterorhabditis and Steinernema species is dependent on abiotic and biotic factors in the environment. Abiotic stress environments such as desiccation, temperature, and ultraviolet radiation (UV) severely impact their performance on field. EPNs produce and secrete effector molecules during the early stages of infection to interfere with the molecular mechanisms that control the insect innate immune function. Also, EPN effectors facilitate the subsequent release and spread of their symbiotic bacteria within the host. Hence, a comprehensive understanding of the underlying survival and virulence mechanisms enabling protection against environmental conditions and insect host immune responses is imperative to realistically enhance their performance on field. Thus, identifying key players regulating EPN survival, virulence and immunity could invariably contribute towards developing more robust, reliable solutions and application strategies including genetic tools and formulation technologies.
Collapse
Affiliation(s)
- Itamar Glazer
- Institute of Plant Protection, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Nelson Simões
- Biotechnology Centre of Azores (CBA), Faculty of Sciences and Technology, University of the Azores, Açores 9500-321 Ponta Delgada, Portugal
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC, United States.
| | - Jayashree Ramakrishnan
- Institute of Plant Protection, ARO, The Volcani Center, Rishon LeZion, Israel; The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, Rehovot, Israel
| | - Dana Ment
- Institute of Plant Protection, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Duarte Toubarro
- Biotechnology Centre of Azores (CBA), Faculty of Sciences and Technology, University of the Azores, Açores 9500-321 Ponta Delgada, Portugal
| | - Sreeradha Mallick
- Infection and Innate Immunity Lab, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
2
|
Wen Z, Yan S, Amujilata, Feng J, Chen C, Xu Y, Lu M, Xu L, Song X, Li X, Yan R. Characterization of the trehalase function of Haemonchus contortus and its immunomodulatory effect on host PBMCs. Int J Biol Macromol 2025; 309:143102. [PMID: 40222538 DOI: 10.1016/j.ijbiomac.2025.143102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Trehalase can hydrolyze trehalose and is the first key enzyme in the chitin synthesis pathway of arthropods. However, little is known about the function of trehalase in Haemonchus contortus (HcTre). In this study, the purified recombinant HcTre protein (rHcTre) was obtained by prokaryotic expression technology, and it was proved that rHcTre protein has trehalase activity. Western blot results verified that HcTre protein belongs to the excretory/secretory proteins of H. contortus, and rHcTre protein can be recognized by goat serum infected with H. contortus. Moreover, Western blot results demonstrated the expression of the HcTre gene in various developmental stages of H. contortus, with the highest level observed during the egg stage. Meanwhile, the immunofluorescence results revealed a widespread distribution of HcTre protein in adult worms. Interestingly, we found that rat serum against rHcTre protein inhibited the development of larvae by blocking the activity of trehalase. Furthermore, the results showed that rHcTre protein significantly inhibited the proliferation and promoted the apoptosis of goat PBMCs in a dose-dependent manner. This study is expected to further understand the immune escape mechanism of H. contortus and provide new drug targets and vaccine candidate molecules for the prevention and control of the disease.
Collapse
Affiliation(s)
- Zhaohai Wen
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Shuping Yan
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Amujilata
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiajun Feng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Cheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yongde Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
3
|
Chen L, Wan S, Shen Q, Zhao K, He Y, Xie Y, Tao S, Zheng S, Zhang Y, Wang S, Tang B, Li Y. Effect of Cd-Zn compound contamination on the physiological response of broad bean and aphids. Front Physiol 2025; 16:1533241. [PMID: 39973902 PMCID: PMC11835991 DOI: 10.3389/fphys.2025.1533241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025] Open
Abstract
Introduction The heavy metal elements cadmium (Cd) and zinc (Zn) often coexist in nature, making the environmental media more prone to compound pollution. However, research on the toxic effect of the Cd-Zn combination is still lacking, and the underlying toxic mechanisms remain unclear. Methods Therefore, in this experiment, we established four treatment groups with different ratios of Cd-Zn compound stress for the broad bean, Vicia faba L., and aphids, Megoura crassicauda, to explore the growth and physiological adaptation mechanisms under different levels of mixed heavy metal stress. Results By measuring the germination rate, seedling height, and chlorophyll content of broad beans, we found that Cd-Zn-mixed stress has a synergistic inhibitory effect on the growth and development of broad beans. Cd and Zn can be transferred through the food chain, while broad beans can resist complex stress by regulating the content of total soluble sugars and photosynthetic pigments in the body, as well as accumulating proline. In addition, in the first generation of adult aphids, treatment with Cd (12.5 mg/kg) + Zn (100 mg/kg) significantly affected the expression of trehalase (TRE) and trehalose-6-phosphate synthase (TPS) genes and influenced the carbohydrate content and trehalase activity in the aphids. Discussion The number of offspring produced by the second-generation aphids was significantly reduced under mixed heavy metal treatment, but it was not caused by changes in the vitellogenin (Vg) content. These related results provide new avenues for further exploration of plant responses to mixed heavy metal stress, pest control, and management of heavy metal pollution.
Collapse
Affiliation(s)
- Liya Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Sijing Wan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qintian Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Keting Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanlan He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yexin Xie
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shiyu Tao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shuchang Zheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yi Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shigui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yan Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Goulding D, Tolley C, Mkandawire TT, Doyle SR, Hart E, Airs PM, Grencis RK, Berriman M, Duque-Correa MA. Hatching of whipworm eggs induced by bacterial contact is serine-protease dependent. PLoS Pathog 2025; 21:e1012502. [PMID: 39869639 PMCID: PMC11819529 DOI: 10.1371/journal.ppat.1012502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/12/2025] [Accepted: 12/29/2024] [Indexed: 01/29/2025] Open
Abstract
Whipworms (Trichuris spp) are ubiquitous parasites of humans and domestic and wild mammals that cause chronic disease, considerably impacting human and animal health. Egg hatching is a critical phase in the whipworm life cycle that marks the initiation of infection, with newly hatched larvae rapidly migrating to and invading host intestinal epithelial cells. Hatching is triggered by the host microbiota; however, the physical and chemical interactions between bacteria and whipworm eggs, as well as the bacterial and larval responses that result in the disintegration of the polar plug and larval eclosion, are not completely understood. Here, we examined hatching in the murine whipworm, Trichuris muris, and investigated the role of specific bacterial and larval structures and molecules in this process. Using scanning and transmission electron microscopy, we characterised the physical interactions of both fimbriated (Escherichia coli, Salmonella typhimurium and Pseudomonas aeruginosa) and non-fimbriated (Staphylococcus aureus) bacteria with the egg polar plugs during the induction/initiation stage, and visualised the effects of structural changes in the polar plugs, leading to larval eclosion. Further, we found that protease inhibitors blocked whipworm hatching induced by both fimbriated and non-fimbriated bacteria in a dose-dependent manner, suggesting the partial involvement of bacterial enzymes in this process. In addition, we identified the minimal egg developmental timing required for whipworm hatching, and transcriptomic analysis of T. muris eggs through embryonation revealed the specific upregulation of serine proteases (S01A family) in fully embryonated eggs containing 'hatch-ready' L1 larvae. Finally, we demonstrated that inhibition of serine proteases with the serine-protease inhibitor Pefabloc ablated T. muris egg hatching induced by bacteria. Collectively, our findings unravel the temporal and physicochemical bacterial-egg interactions leading to whipworm hatching and indicate serine proteases of both bacterial and larval origin mediate these processes.
Collapse
Affiliation(s)
- David Goulding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charlotte Tolley
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Stephen R. Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Emily Hart
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Paul M. Airs
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Richard K. Grencis
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Centre for Cell Matrix Research and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | |
Collapse
|
5
|
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, Zhai Y. Insulin Signaling Pathway Mediates FoxO-Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int J Mol Sci 2024; 25:10441. [PMID: 39408770 PMCID: PMC11482478 DOI: 10.3390/ijms251910441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The agricultural pest Drosophila suzukii exhibits a strong preference for feeding on fresh fruits, demonstrating high adaptability to sugary environments. Meanwhile, high sugar levels stimulate insulin secretion, thereby regulating the steady state of sugar metabolism. Understanding the mechanisms related to sugar metabolism in D. suzukii is crucial due to its adaptation to these specific environmental conditions. The insulin signaling pathway is an evolutionarily conserved phosphorylation cascade with significant roles in development and metabolism. We observed that the activation of the insulin signaling pathway inhibited FoxO activity and downregulated the expression of Pepck, thereby activating glycolysis and reducing glucose levels. By contrast, inhibiting insulin signaling increased the FoxO activity and upregulated the expression of Pepck, which activated gluconeogenesis and led to increased glucose levels. Our findings demonstrated the crucial role of the insulin signaling pathway in mediating glucose metabolism through the FoxO-Pepck axis, which supports the ecological adaptation of D. suzukii to high-sugar niches, thereby providing insights into its metabolic control and suggesting potential strategies for pest management. Elucidating these molecular processes is important for understanding metabolic regulation and ecological specialization in D. suzukii.
Collapse
Affiliation(s)
- Shuting Zang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
6
|
Seki S, Yano M, Higashiya M, Oikawa T, Yamazaki W, Yoshizaki G. Vitrification of medaka whole testis with a trehalose-containing solution and production of medaka individuals derived from the vitrified cells. Cryobiology 2024; 116:104936. [PMID: 38942069 DOI: 10.1016/j.cryobiol.2024.104936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
The cryopreservation of teleost eggs and embryos remains challenging, and there are no previous reports that demonstrate successful cryopreservation in medaka (Oryzias latipes). We have reported egg and sperm production, followed by the generation of donor-derived offspring by transplanting vitrified whole testes-derived testicular cells into surrogate fish. The vitrification solutions contained ethylene glycol, sucrose, and ficoll. In this study, we replaced sucrose with trehalose in the vitrification solution and medaka whole testes were vitrified with the solution. The post-vitrification survival (72.8 ± 3.5 %) was markedly improved compared with that achieved using the sucrose-containing solution (44.7 ± 4.2 %). Moreover, we demonstrated the production of eggs, sperm, and donor-derived offspring from testicular cells transplanted into surrogate recipients. The phenotype of donor-derived offspring was identical to that of transplanted testicular cells. These findings suggest that trehalose is effective for the vitrification of medaka whole testis and can be considered an effective and reliable method for the long-term preservation of their genetic resources.
Collapse
Affiliation(s)
- Shinsuke Seki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan.
| | - Megumi Yano
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Misako Higashiya
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Takanori Oikawa
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Wataru Yamazaki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Goro Yoshizaki
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan; Institute for Reproductive Biotechnology for Aquatic Species (IRBAS), Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
7
|
Abumuslem M, Toktay H, Sadder MT, Dababat AA, Salem NM, AL-Banna L. Morphological and Biochemical Changes in the Mediterranean Cereal Cyst Nematode ( Heterodera latipons) during Diapause. Pathogens 2024; 13:656. [PMID: 39204256 PMCID: PMC11357521 DOI: 10.3390/pathogens13080656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
The cereal cyst nematode (Heterodera latipons) is becoming an economically important species in global cereal production as it is being identified in many new cereal cultivated areas and causes significant losses. Consequently, understanding its biology becomes crucial for researchers in identifying its vulnerabilities and implementing effective control measures. In the current study, different morphological and biochemical changes of H. latipons cysts containing eggs with infective juveniles from a barley field in Jordan were studied during the summer of 2021, at two sample dates. The first, at the harvest of the cereal crop (June 2021), when the infective second-stage juveniles (J2s) were initiating diapause, and the second, before planting the sequent cereal crop (late October 2021), when the J2s were ending diapause. The studied population was characterized morphologically and molecularly, showing 98.4% molecular similarity to both JOD from Jordan and Syrian "300" isolates of H. latipons. The obtained results and observations revealed that there were dramatic changes in all the investigated features of the cysts and eggs they contained. Morphological changes such as cyst color, sub-crystalline layer, and thickness of the rigid eggshell wall were observed. A slight change in the emergence time of J2s from cysts was observed without any difference in the number of emerged J2s. The results of biochemical changes showed that the total contents of carbohydrates, glycogen, trehalose, glycerol, and protein were higher in cysts collected in October when compared to those cysts collected in June. The SDS-PAGE pattern indicated the presence of a protein with the size of ca. 100 kDa in both sampling dates, whereas another protein (ca. 20 kDa) was present only in the cysts of October. Furthermore, the expression of trehalase (tre) gene was detected only in H. latipons collected in October. The outcomes of this study provide new helpful information that elucidates diapause in H. latipons and may be used for the implementation of new management strategies of cyst nematodes.
Collapse
Affiliation(s)
- Motasem Abumuslem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (M.A.); (N.M.S.)
| | - Halil Toktay
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde 51240, Türkiye;
| | - Monther T. Sadder
- Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan;
| | - Abdelfattah A. Dababat
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (M.A.); (N.M.S.)
- International Maize and Wheat Improvement Centre (CIMMYT), Ankara 06000, Türkiye
| | - Nida’ M. Salem
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (M.A.); (N.M.S.)
| | - Luma AL-Banna
- Department of Plant Protection, School of Agriculture, The University of Jordan, Amman 11942, Jordan; (M.A.); (N.M.S.)
| |
Collapse
|
8
|
Chen Y, Jin B, Yu J, Wu L, Wang Y, Tang B, Chen H. The nematode Caenorhabditis elegans enhances tolerance to landfill leachate stress by increasing trehalose synthesis. PeerJ 2024; 12:e17332. [PMID: 38799059 PMCID: PMC11127639 DOI: 10.7717/peerj.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
The burgeoning issue of landfill leachate, exacerbated by urbanization, necessitates evaluating its biological impact, traditionally overshadowed by physical and chemical assessments. This study harnesses Caenorhabditis elegans, a model organism, to elucidate the physiological toxicity of landfill leachate subjected to different treatment processes: nanofiltration reverse osmosis tail water (NFRO), membrane bioreactor (MBR), and raw leachate (RAW). Our investigation focuses on the modulation of sugar metabolism, particularly trehalose-a disaccharide serving dual functions as an energy source and an anti-adversity molecule in invertebrates. Upon exposure, C. elegans showcased a 60-70% reduction in glucose and glycogen levels alongside a significant trehalose increase, highlighting an adaptive response to environmental stress by augmenting trehalose synthesis. Notably, trehalose-related genes in the NFRO group were up-regulated, contrasting with the MBR and RAW groups, where trehalose synthesis genes outpaced decomposition genes by 20-30 times. These findings suggest that C. elegans predominantly counters landfill leachate-induced stress through trehalose accumulation. This research not only provides insights into the differential impact of leachate treatment methods on C. elegans but also proposes a molecular framework for assessing the environmental repercussions of landfill leachate, contributing to the development of novel strategies for pollution mitigation and environmental preservation.
Collapse
Affiliation(s)
- Yuru Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Binsong Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jie Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liangwei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yingying Wang
- National Wetland Museum of China, Hangzhou, Zhejiang, China
| | - Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Huili Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Xue D, Yang Y, Fang L, Wang S, Wu Y. Trehalose 6-phosphate synthase gene rdtps1 contributes to thermal acclimation in Rhyzopertha dominica. BMC Genomics 2024; 25:172. [PMID: 38350857 PMCID: PMC10863172 DOI: 10.1186/s12864-024-10028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The lesser grain borer (Rhyzopertha dominica), a worldwide primary pest of stored grain, causes serious economic losses and threatens stored food safety. R. dominica can respond to changes in temperature, especially the adaptability to heat. In this study, transcriptome analysis of R. dominica exposed to different temperatures was performed to elucidate differences in gene expression and the underling molecular mechanism. RESULTS Isoform-sequencing generated 17,721,200 raw reads and yielded 20,416 full-length transcripts. A total of 18,880 (92.48%) transcripts were annotated. We extracted RNA from R. dominica reared at 5 °C (cold stress), 15 °C (cold stress), 27 °C (ambient temperature) and 40 °C (heat stress) for RNA-seq. Compared to those of control insects reared at 27 °C, 119, 342, and 875 differentially expressed genes (DEGs) were identified at 5 °C, 15 °C, and 40 °C, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that pathways associated with "fatty acid metabolism", "fatty acid biosynthesis", "AMPK signaling pathway", "neuroactive ligand receptor interaction", and "longevity regulating pathway-multiple species" were significantly enriched. The functional annotation revealed that the genes encoding heat shock proteins (HSPs), fatty acid synthase (FAS), phospholipases (PLA), trehalose transporter (TPST), trehalose 6-phosphate synthase (TPS), and vitellogenin (Vg) were most likely involved in temperature regulation, which was also validated by RT-qPCR. Seven candidate genes (rdhsp1, rdfas1, rdpla1, rdtpst1, rdtps1, rdvg1, and rdP450) were silenced in the RNA interference (RNAi) assay. RNAi of each candidate gene suggested that inhibiting rdtps1 expression significantly decreased the trehalose level and survival rate of R. dominica at 40 °C. CONCLUSIONS These results indicated that trehalose contributes to the high temperature resistance of R. dominica. Our study elucidates the molecular mechanisms underlying heat tolerance and provides a potential target for the pest management in R. dominica.
Collapse
Affiliation(s)
- Dingrong Xue
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
| | - Yan Yang
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
- Henan Collaborative Innovation Center for Grain Storage Security, School of Food and Strategic Reserves, Henan University of Technology, 450001, Zhengzhou, China
| | - Liwei Fang
- Department of Microbiology and Immunology, University of Illinois Chicago, 60612, Chicago, USA
| | - Shibo Wang
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Yi Wu
- National Engineering Research Center of Grain Storage and Logistics, Academy of National Food and Strategic Reserves Administration, No. 11 Baiwanzhuang Street, Xicheng District, 100037, Beijing, China.
| |
Collapse
|
10
|
Maushe D, Ogi V, Divakaran K, Verdecia Mogena AM, Himmighofen PA, Machado RAR, Towbin BD, Ehlers RU, Molina C, Parisod C, Maud Robert CA. Stress tolerance in entomopathogenic nematodes: Engineering superior nematodes for precision agriculture. J Invertebr Pathol 2023:107953. [PMID: 37336478 DOI: 10.1016/j.jip.2023.107953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Entomopathogenic nematodes (EPNs) are soil-dwelling parasitic roundworms commonly used as biocontrol agents of insect pests in agriculture. EPN dauer juveniles locate and infect a host in which they will grow and multiply until resource depletion. During their free-living stage, EPNs face a series of internal and environmental stresses. Their ability to overcome these challenges is crucial to determine their infection success and survival. In this review, we provide a comprehensive overview of EPN response to stresses associated with starvation, low/elevated temperatures, desiccation, osmotic stress, hypoxia, and ultra-violet light. We further report EPN defense strategies to cope with biotic stressors such as viruses, bacteria, fungi, and predatory insects. By comparing the genetic and biochemical basis of these strategies to the nematode model Caenorhabditis elegans, we provide new avenues and targets to select and engineer precision nematodes adapted to specific field conditions.
Collapse
Affiliation(s)
- Dorothy Maushe
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vera Ogi
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Keerthi Divakaran
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | | | - Paul Anton Himmighofen
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Ricardo A R Machado
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
| | - Benjamin Daniel Towbin
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | - Ralf-Udo Ehlers
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Carlos Molina
- e- nema GmbH, Klausdorfer Str. 28-36, DE-24223 Schwentinental, Germany
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland; Oeschger Centre for Climate Change Research, University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland.
| |
Collapse
|
11
|
Shi H, Ruan L, Chen Z, Liao Y, Wu W, Liu L, Xu X. Sulfur, sterol and trehalose metabolism in the deep-sea hydrocarbon seep tubeworm Lamellibrachia luymesi. BMC Genomics 2023; 24:175. [PMID: 37020304 PMCID: PMC10077716 DOI: 10.1186/s12864-023-09267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Lamellibrachia luymesi dominates cold sulfide-hydrocarbon seeps and is known for its ability to consume bacteria for energy. The symbiotic relationship between tubeworms and bacteria with particular adaptations to chemosynthetic environments has received attention. However, metabolic studies have primarily focused on the mechanisms and pathways of the bacterial symbionts, while studies on the animal hosts are limited. RESULTS Here, we sequenced the transcriptome of L. luymesi and generated a transcriptomic database containing 79,464 transcript sequences. Based on GO and KEGG annotations, we identified transcripts related to sulfur metabolism, sterol biosynthesis, trehalose synthesis, and hydrolysis. Our in-depth analysis identified sulfation pathways in L. luymesi, and sulfate activation might be an important detoxification pathway for promoting sulfur cycling, reducing byproducts of sulfide metabolism, and converting sulfur compounds to sulfur-containing organics, which are essential for symbiotic survival. Moreover, sulfide can serve directly as a sulfur source for cysteine synthesis in L. luymesi. The existence of two pathways for cysteine synthesis might ensure its participation in the formation of proteins, heavy metal detoxification, and the sulfide-binding function of haemoglobin. Furthermore, our data suggested that cold-seep tubeworm is capable of de novo sterol biosynthesis, as well as incorporation and transformation of cycloartenol and lanosterol into unconventional sterols, and the critical enzyme involved in this process might have properties similar to those in the enzymes from plants or fungi. Finally, trehalose synthesis in L. luymesi occurs via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. The TPP gene has not been identified, whereas the TPS gene encodes a protein harbouring conserved TPS/OtsA and TPP/OtsB domains. The presence of multiple trehalases that catalyse trehalose hydrolysis could indicate the different roles of trehalase in cold-seep tubeworms. CONCLUSIONS We elucidated several molecular pathways of sulfate activation, cysteine and cholesterol synthesis, and trehalose metabolism. Contrary to the previous analysis, two pathways for cysteine synthesis and the cycloartenol-C-24-methyltransferase gene were identified in animals for the first time. The present study provides new insights into particular adaptations to chemosynthetic environments in L. luymesi and can serve as the basis for future molecular studies on host-symbiont interactions and biological evolution.
Collapse
Affiliation(s)
- Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China.
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China.
- College of Marine Biology, Xiamen ocean vocational college, 361100, Xiamen, People's Republic of China.
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang, 222005, People's Republic of China.
| | - Zimeng Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| | - Yifei Liao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
- School of Advanced Manufacturing, Fuzhou University, Fuzhou, 362200, People's Republic of China
| | - Wenhao Wu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, People's Republic of China
| | - Linmin Liu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Ministry of Natural Resources, Third Institute of Oceanography, Ministry of Natural Resources, Fujian Key Laboratory of Marine Genetic Resources, No. 178 Daxue Road, Xiamen, Fujian, 361005, People's Republic of China
| |
Collapse
|
12
|
Cystidicola farionis, a Swim Bladder Parasite of European Smelt: Characterization of the Nematode Trehalose Strategy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116430. [PMID: 35682012 PMCID: PMC9180254 DOI: 10.3390/ijerph19116430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022]
Abstract
The molecular identification of Cystidicola farionis (a swim bladder nematode of European smelt from the Vistula Lagoon in Poland) was performed. Their prevalence level was determined, and changes in the trehalose synthesis pathway in larvae and adult nematodes were demonstrated. The trehalose level was almost four times higher in adult nematodes than in larvae. In contrast, the activity of both enzymes (trehalose 6-phosphate synthase, TPS and trehalose 6-phosphate phosphatase, TPP) involved in the synthesis of trehalose was higher in larvae than in adults under optimal conditions. The optimum pH for TPS isolated from larvae and adults was pH 7.0. The optimum pH for TPP from larvae and adults was pH 7.0 and pH 8.0, respectively. The optimal temperature was 20 °C, and Mg2+ ions were an activator for trehalose-synthetizing enzymes from both sources. Enzymes isolated from adult nematodes were less susceptible to divalent ion chelator and inorganic phosphate than larval enzymes. The dynamic transformation of trehalose in the nematode developing inside the swim bladder of the smelt appears to be an important metabolic pathway in the nematode survival strategy. These studies are aimed at a better understanding of the issue of the metabolic adaptation of parasites, which, in the future, may indirectly contribute to the elimination of the parasite from aquacultures, which will impact public health.
Collapse
|
13
|
Lillis PE, Griffin CT, Carolan JC. The effect of temperature conditioning (9°C and 20°C) on the proteome of entomopathogenic nematode infective juveniles. PLoS One 2022; 17:e0266164. [PMID: 35390034 PMCID: PMC8989221 DOI: 10.1371/journal.pone.0266164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Entomopathogenic nematodes (EPN) of the genera Steinernema and Heterorhabditis are parasites which kill and reproduce within insects. While both have life cycles centred around their developmentally arrested, nonfeeding and stress tolerant infective juvenile (IJ) stage, they are relatively distantly related. These IJs are promising biocontrol agents, and their shelf life and stress tolerance may be enhanced by storage at low temperatures. The purpose of this study was to investigate how the proteome of the IJs of two distantly related EPN species is affected by storage at 9°C (for up to 9 weeks) and 20°C (for up to 6 weeks), using label-free quantitative proteomics. Overall, more proteins were detected in S. carpocapsae (2422) than in H. megidis (1582). The S. carpocapsae proteome was strongly affected by temperature, while the H. megidis proteome was affected by both time and temperature. The proteins which increased in abundance to the greatest extent in S. carpocapsae IJs after conditioning at 9°C were chaperone proteins, and proteins related to stress. The proteins which increased in abundance the most after storage at 20°C were proteins related to the cytoskeleton, cell signalling, proteases and their inhibitors, which may have roles in infection. The proteins which decreased in abundance to the greatest extent in S. carpocapsae after both 9°C and 20°C storage were those associated with metabolism, stress and the cytoskeleton. After storage at both temperatures, the proteins increased to the greatest extent in H. megidis IJs were those associated with the cytoskeleton, cell signalling and carbon metabolism, and the proteins decreased in abundance to the greatest extent were heat shock and ribosomal proteins, and those associated with metabolism. As the longest-lived stage of the EPN life cycle, IJs may be affected by proteostatic stress, caused by the accumulation of misfolded proteins and toxic aggregates. The substantial increase of chaperone proteins in S. carpocapsae, and to a greater extent at 9°C, and the general decrease in ribosomal and chaperone proteins in H. megidis may represent species-specific proteostasis mechanisms. Similarly, organisms accumulate reactive oxygen species (ROS) over time and both species exhibited a gradual increase in proteins which enhance ROS tolerance, such as catalase. The species-specific responses of the proteome in response to storage temperature, and over time, may reflect the phylogenetic distance and/or different ecological strategies.
Collapse
Affiliation(s)
- Peter E. Lillis
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - James C. Carolan
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
- * E-mail:
| |
Collapse
|
14
|
Erol OD, Pervin B, Seker ME, Aerts-Kaya F. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J Stem Cells 2021; 13:1197-1214. [PMID: 34630858 PMCID: PMC8474714 DOI: 10.4252/wjsc.v13.i9.1197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation. However, the use of DMSO has been associated with in vitro and in vivo toxicity and has been shown to affect many cellular processes due to changes in DNA methylation and dysregulation of gene expression. Despite studies showing that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both in a research setting and in the clinics. However, numerous alternatives to DMSO have been shown to hold promise for use as a CPA and include albumin, trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we will discuss the use, advantages and disadvantages of these CPAs for cryopreservation of different types of stem cells, including hematopoietic stem cells, mesenchymal stromal/stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ozgur Dogus Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Burcu Pervin
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Mehmet Emin Seker
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
15
|
Flores Francisco BG, Ponce IM, Plascencia Espinosa MÁ, Mendieta Moctezuma A, López Y López VE. Advances in the biological control of phytoparasitic nematodes via the use of nematophagous fungi. World J Microbiol Biotechnol 2021; 37:180. [PMID: 34562178 DOI: 10.1007/s11274-021-03151-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Agricultural production is one of most important activities for food supply and demand, that provides a source of raw materials, and generates commercial opportunities for other industries around the world. It may be both positively and negatively affected by climatic and biological factors. Negative biological factors are those caused by viruses, bacteria, or parasites. Given the serious problems posed by phytoparasitic nematodes for farmers, causing crop losses globally every year, the agrochemical industry has developed compounds with the capacity to inhibit their development; however, they can cause the death of other beneficial organisms and their lixiviation can contaminate the water table. On the other hand, the positive biological factors are found in biotechnology, the scientific discipline that develops products, such as nematophagous fungi (of which Purpureocillium lilacinum and Pochonia chlamydosporia have the greatest potential), for the control of pests and/or diseases. The present review focuses on the importance of nematophagous fungi, particularly sedentary endoparasitic nematodes, their research on the development of biological control agents, the mass production of fungi Purpureocillium lilacinum and Pochonia chlamydosporia, and their limited commercialization due to the lack of rigorous methods that enable the anticipation of complex interactions between plant and phytopathogenic agents.
Collapse
Affiliation(s)
- Bianca Guadalupe Flores Francisco
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Isabel Méndez Ponce
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Miguel Ángel Plascencia Espinosa
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Aarón Mendieta Moctezuma
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico
| | - Víctor Eric López Y López
- Centro de Investigación en Biotecnología Aplicada del Instituto Politécnico Nacional. Laboratorio de Bioprocesos, Carretera Estatal Sta. Inés Tecuexcomac-Tepetitla, 90700, Tepetitla de Lardizábal, Tlaxcala, Mexico.
| |
Collapse
|
16
|
Chen Q, Zhang R, Li D, Wang F, Jiang S, Wang J. Trehalose in pine wood nematode participates in DJ3 formation and confers resistance to low-temperature stress. BMC Genomics 2021; 22:524. [PMID: 34243706 PMCID: PMC8268229 DOI: 10.1186/s12864-021-07839-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 06/24/2021] [Indexed: 01/07/2023] Open
Abstract
Background Recently, pine wood nematode (PWN, Bursaphelenchus xylophilus) has been found in the extreme cold area of northeast China. The third-stage dispersal juvenile (DJ3) of PWN, which is a long-lived stress-resistant stage, plays an important role in the process of PWN spreading to low-temperature areas, as this stage can survive under unfavorable conditions. Results Weighted correlation network analysis (WGCNA) was used to analyze the expression patterns of 15,889 genes included in 21 RNA-Seq results of PWN at DJ3 and the other 6 different stages, and a total of 12 coexpression modules were obtained. Among them, the magenta module has the highest correlation with DJ3, which included a total of 652 genes. KEGG enrichment analysis showed that most of the genes in the magenta module were involved in metabolic processes, which were related to autophagy and longevity regulation. These pathways included starch and sucrose metabolism, which contains trehalose metabolism. To explore the function of trehalose in DJ3 formation and survival under − 20 °C, a trehalose-6-phosphate synthase encoding gene (Bx-tps), a trehalose-6-phosphate phosphatase encoding gene (Bx-tpp) and 7 trehalase encoding genes (Bx-tres) were identified and investigated. The expression of these 9 genes was related to the formation of DJ3. A treatment under − 20 °C induced the accumulation of trehalose. The survival rate of DJ3 at -20 °C reduced after silencing of any of these trehalose metabolism genes. Further analysis suggested that two trehalose synthesis genes were highly correlated with DJ3 and might be involved in autophagy by regulating with energy conversion related genes. Conclusions The above results indicated that trehalose metabolism promotes DJ3 formation and helps DJ3 survive at -20 °C. Although trehalose accumulation is favorable for DJ3 to cope with low-temperature stress, multiple trehalose metabolism genes need to work together. There may be a multi-path regulated physiological process involving trehalose synthesis genes under low-temperature stress resistance. This physiological process may regulate the formation and maintenance of DJ3 through autophagy and energy conversion. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07839-0.
Collapse
Affiliation(s)
- Qiaoli Chen
- Key Laboratory of Alien Forest Pests Monitoring and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, P. R. China.,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, Heilongjiang, P. R. China
| | - Ruizhi Zhang
- Key Laboratory of Alien Forest Pests Monitoring and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, P. R. China
| | - Danlei Li
- Key Laboratory of Alien Forest Pests Monitoring and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, P. R. China.,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, Heilongjiang, P. R. China
| | - Feng Wang
- Key Laboratory of Alien Forest Pests Monitoring and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, P. R. China. .,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 150040, Harbin, Heilongjiang, P. R. China.
| | - Shengwei Jiang
- Station of Forest and Grassland Pest Control and Quarantine, 110001, Shenyang, Liaoning, P. R. China
| | - Jianan Wang
- Key Laboratory of Alien Forest Pests Monitoring and Control-Heilongjiang Province, School of Forestry, Northeast Forestry University, 150040, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
17
|
Sun X, Tu K, Li L, Wu B, Wu L, Liu Z, Zhou L, Tian J, Yang A. Integrated transcriptome and metabolome analysis reveals molecular responses of the clams to acute hypoxia. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105317. [PMID: 33819872 DOI: 10.1016/j.marenvres.2021.105317] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Mudflat shellfish have evolved well-adapted strategies for coping with dynamic environmental fluxes and stressful conditions, including oxygen availability. The Manila clams Ruditapes philippinarum are worldwide cultured shellfish in marine intertidal zone, which usually encounter great risk of acute hypoxia exposure in coastal habitats. To reveal the effects of acute hypoxia on metabolic changes of the clams, we performed the integrated analysis of transcriptomics and metabolomics to investigate the global changes of genes and metabolites during acute hypoxia stress at the whole-organism level. The comparative transcriptome analysis reveals that the clams show the remarkable depression in a variety of biological performance, such as metabolic rates, neuronal activity, biomineralization activity, and cell proliferation and differentiation at the hypoxic condition. The metabolomic analysis reveals that amino acid metabolism plays a critical role in the metabolic changes of the clams in response to acute hypoxia. A variety of free amino acids may not only be served as the potential osmolytes for osmotic regulation, but also may contribute to energy production during the acute hypoxia exposure. The metabolite analysis also reveals several important biomarkers for metabolic changes, and provides new insights into how clams deal with acute hypoxia. These findings suggest that clams may get through acute hypoxia stress by the adaptive metabolic strategy to survive short-period of acute hypoxia which is likely to occur in their typical habitat. The present findings will not only shed lights on the molecular and metabolic mechanisms of adaptive strategies under stressful conditions, but also provide the signaling metabolites to assess the physiological states of clams in aquaculture.
Collapse
Affiliation(s)
- Xiujun Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Kang Tu
- Putian Institute of Aquaculture Science of Fujian Province, Putian, 351100, China
| | - Li Li
- Marine Biology Institute of Shandong Province, Qingdao, 266104, China
| | - Biao Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Lei Wu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China; Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhihong Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Liqing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiteng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Aiguo Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
18
|
Yu R, Cao X, Sun L, Zhu JY, Wasko BM, Liu W, Crutcher E, Liu H, Jo MC, Qin L, Kaeberlein M, Han Z, Dang W. Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun 2021; 12:1981. [PMID: 33790287 PMCID: PMC8012573 DOI: 10.1038/s41467-021-22257-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Histone acetylations are important epigenetic markers for transcriptional activation in response to metabolic changes and various stresses. Using the high-throughput SEquencing-Based Yeast replicative Lifespan screen method and the yeast knockout collection, we demonstrate that the HDA complex, a class-II histone deacetylase (HDAC), regulates aging through its target of acetylated H3K18 at storage carbohydrate genes. We find that, in addition to longer lifespan, disruption of HDA results in resistance to DNA damage and osmotic stresses. We show that these effects are due to increased promoter H3K18 acetylation and transcriptional activation in the trehalose metabolic pathway in the absence of HDA. Furthermore, we determine that the longevity effect of HDA is independent of the Cyc8-Tup1 repressor complex known to interact with HDA and coordinate transcriptional repression. Silencing the HDA homologs in C. elegans and Drosophila increases their lifespan and delays aging-associated physical declines in adult flies. Hence, we demonstrate that this HDAC controls an evolutionarily conserved longevity pathway.
Collapse
Affiliation(s)
- Ruofan Yu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Xiaohua Cao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Luyang Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Jun-Yi Zhu
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian M Wasko
- Department of Pathology, University of Washington, Seattle, WA, USA
- University of Houston, Clear Lake, TX, USA
| | - Wei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Emeline Crutcher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Haiying Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | | | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Weiwei Dang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Silva H, Anjo SI, Manadas B, Abrantes I, Fonseca L, Cardoso JMS. Comparative Analysis of Bursaphelenchus xylophilus Secretome Under Pinus pinaster and P. pinea Stimuli. FRONTIERS IN PLANT SCIENCE 2021; 12:668064. [PMID: 34046053 PMCID: PMC8144518 DOI: 10.3389/fpls.2021.668064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 05/19/2023]
Abstract
The pinewood nematode (PWN), Bursaphelenchus xylophilus, the pine wilt disease's (PWD) causal agent, is a migratory endoparasitic nematode skilled to feed on pine tissues and on fungi that colonize the trees. In order to study B. xylophilus secretomes under the stimulus of pine species with different susceptibilities to disease, nematodes were exposed to aqueous pine extracts from Pinus pinaster (high-susceptible host) and P. pinea (low-susceptible host). Sequential windowed acquisition of all theoretical mass spectra (SWATH-MS) was used to determine relative changes in protein amounts between B. xylophilus secretions, and a total of 776 secreted proteins were quantified in both secretomes. From these, 22 proteins were found increased in the B. xylophilus secretome under the P. pinaster stimulus and 501 proteins increased under the P. pinea stimulus. Functional analyses of the 22 proteins found increased in the P. pinaster stimulus showed that proteins with peptidase, hydrolase, and antioxidant activities were the most represented. On the other hand, gene ontology (GO) enrichment analysis of the 501 proteins increased under the P. pinea stimulus revealed an enrichment of proteins with binding activity. The differences detected in the secretomes highlighted the diverse responses from the nematode to overcome host defenses with different susceptibilities and provide new clues on the mechanism behind the pathogenicity of this plant-parasitic nematode. Proteomic data are available via ProteomeXchange with identifier PXD024011.
Collapse
Affiliation(s)
- Hugo Silva
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Sandra I. Anjo
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Isabel Abrantes
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Luís Fonseca
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Joana M. S. Cardoso
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
- *Correspondence: Joana M. S. Cardoso,
| |
Collapse
|
20
|
Mata-Cabana A, Gómez-Delgado L, Romero-Expósito FJ, Rodríguez-Palero MJ, Artal-Sanz M, Olmedo M. Social Chemical Communication Determines Recovery From L1 Arrest via DAF-16 Activation. Front Cell Dev Biol 2020; 8:588686. [PMID: 33240886 PMCID: PMC7683423 DOI: 10.3389/fcell.2020.588686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/21/2020] [Indexed: 01/06/2023] Open
Abstract
In a population, chemical communication determines the response of animals to changing environmental conditions, what leads to an enhanced resistance against stressors. In response to starvation, the nematode Caenorhabditis elegans arrest post-embryonic development at the first larval stage (L1) right after hatching. As arrested L1 larvae, C. elegans become more resistant to diverse stresses, allowing them to survive for several weeks expecting to encounter more favorable conditions. L1 arrested at high densities display an enhanced resistance to starvation, dependent on soluble compounds released beyond hatching and the first day of arrest. Here, we show that this chemical communication also influences recovery after prolonged periods in L1 arrest. Animals at high density recovered faster than animals at low density. We found that the density effect on survival depends on the final effector of the insulin signaling pathway, the transcription factor DAF-16. Moreover, DAF-16 activation was higher at high density, consistent with a lower expression of the insulin-like peptide DAF-28 in the neurons. The improved recovery of animals after arrest at high density depended on soluble compounds present in the media of arrested L1s. In an effort to find the nature of these compounds, we investigated the disaccharide trehalose as putative signaling molecule, since its production is enhanced during L1 arrest and it is able to activate DAF-16. We detected the presence of trehalose in the medium of arrested L1 larvae at a low concentration. The addition of this concentration of trehalose to animals arrested at low density was enough to rescue DAF-28 production and DAF-16 activation to the levels of animals arrested at high density. However, despite activating DAF-16, trehalose was not capable of reversing survival and recovery phenotypes, suggesting the participation of additional signaling molecules. With all, here we describe a molecular mechanism underlying social communication that allows C. elegans to maintain arrested L1 larvae ready to quickly recover as soon as they encounter nutrient sources.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Laura Gómez-Delgado
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - María J. Rodríguez-Palero
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas – Junta de Andalucía – Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Marta Artal-Sanz
- Andalusian Center for Developmental Biology, Consejo Superior de Investigaciones Científicas – Junta de Andalucía – Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
21
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
22
|
Gorka M, Cherepanov DA, Semenov AY, Golbeck JH. Control of electron transfer by protein dynamics in photosynthetic reaction centers. Crit Rev Biochem Mol Biol 2020; 55:425-468. [PMID: 32883115 DOI: 10.1080/10409238.2020.1810623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Characterization and internalization of nanodiamond–trehalose conjugates into mammalian fibroblast cells of naked mole rat. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Gupta R, Laxman S. Steady-state and Flux-based Trehalose Estimation as an Indicator of Carbon Flow from Gluconeogenesis or Glycolysis. Bio Protoc 2020; 10:e3483. [PMID: 32181267 DOI: 10.21769/bioprotoc.3483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Trehalose (and glycogen) is a major storage carbohydrate in many cells, including S. cerevisiae. Typically, trehalose (a disaccharide of glucose) is synthesized and stored through gluconeogenesis. However, trehalose can also be made directly from glucose, if glucose-6-phosphate is channeled away from glycolysis or pentose phosphate pathway. Therefore, analyzing trehalose synthesis, utilization or its accumulation, can be used as a sentinel read-out for either gluconeogenesis or rewired glucose utilization. However, the steady-state measurements alone of trehalose cannot unambiguously distinguish the nature of carbon flux in a system. Here, we first summarize simple steady-state enzymatic assays to measure trehalose (and glycogen), that will have very wide uses. Subsequently, we describe methods of highly sensitive, quantitative LC-MS/MS based to measure trehalose. We include methods of 13C stable-isotope based pulse-labeling experiments (using different carbon sources) with which to measure rates of trehalose synthesis, from different carbon metabolism pathways. This approach can be used to unambiguously determine the extent of carbon flux into trehalose coming from gluconeogenesis, or directly from glucose/glycolysis. These protocols collectively enable comprehensive steady-state as well as carbon flux based measurements of trehalose. This permits a dissection of carbon flux to distinguish between cells in a gluconeogenic state (conventionally leading to trehalose synthesis), or cells with rewired glucose metabolism (also leading to trehalose synthesis). While the methods presented are optimized for yeast, these methods can be easily adapted to several types of cells, including many microbes.
Collapse
Affiliation(s)
- Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore 560065, India
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post Bellary Road, Bangalore 560065, India
| |
Collapse
|
25
|
Zhang Y, Wang H, Stewart S, Jiang B, Ou W, Zhao G, He X. Cold-Responsive Nanoparticle Enables Intracellular Delivery and Rapid Release of Trehalose for Organic-Solvent-Free Cryopreservation. NANO LETTERS 2019; 19:9051-9061. [PMID: 31680526 DOI: 10.1021/acs.nanolett.9b04109] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conventional cryopreservation of mammalian cells requires the use of toxic organic solvents (e.g., dimethyl sulfoxide) as cryoprotectants. Consequently, the cryopreserved cells must undergo a tedious washing procedure to remove the organic solvents for their further applications in cell-based medicine, and many of the precious cells may be lost or killed during the procedure. Trehalose has been explored as a nontoxic alternative to traditional cryoprotectants. However, mammalian cells do not synthesize trehalose or express trehalose transporters in their membranes, and the lack of an approach for the efficient intracellular delivery of trehalose has been a major hurdle for its use in cell cryopreservation. In this study, a cold-responsive polymer (poly(N-isopropylacrylamide-co-butyl acrylate)) is utilized to synthesize nanoparticles for the encapsulation and intracellular delivery of trehalose. The trehalose-laden nanoparticles can be efficiently taken up by mammalian cells. The nanoparticles quickly and irreversibly disassemble upon cold treatment, enabling the controlled and rapid release of trehalose from the nanoparticles inside cells. The latter is confirmed by an evident increase in cell volume upon cold treatment. This rapid cold-triggered intracellular release of trehalose is crucial to developing a fast protocol to cryopreserve cells using trehalose. Cells with intracellular trehalose delivered using the nanoparticles show comparable postcryopreservation viability compared to that of cells treated with DMSO, eliminating the need for the tedious and cell-damaging washing procedure required for using the DMSO-cryopreserved cells in vivo. This cold-responsive nanoparticle may greatly facilitate the use of trehalose as a nontoxic cryoprotectant for banking cells and tissues to meet their high demand by modern cell-based medicine.
Collapse
Affiliation(s)
- Yuntian Zhang
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | - Gang Zhao
- Department of Electronic Science and Technology , University of Science and Technology of China , Hefei , Anhui 230027 , China
| | - Xiaoming He
- Marlene and Stewart Greenebaum Comprehensive Cancer Center , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
26
|
Łopieńska-Biernat E, Paukszto Ł, Jastrzębski JP, Myszczyński K, Polak I, Stryiński R. Genome-wide analysis of Anisakis simplex sensu lato: the role of carbohydrate metabolism genes in the parasite's development. Int J Parasitol 2019; 49:933-943. [PMID: 31560928 DOI: 10.1016/j.ijpara.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
Anisakis simplex sensu lato is a parasitic nematode which can cause gastric symptoms and/or allergic reactions in humans who consume raw and undercooked fish. Anisakiasis poses a growing health problem around the globe because it causes non-specific symptoms and is difficult to diagnose. This genome-wide study was undertaken to expand our knowledge of A. simplex s.l. at the molecular level and provide novel data for biological and biotechnological research into the analyzed species and related nematodes. A draft genome assembly of the L3 stage of A. simplex s.l. was analyzed in detail, and changes in the expression of carbohydrate metabolism genes during the parasite's life cycle were determined. To our knowledge, this is the first genome to be described for a parasitic nematode of the family Anisakidae to date. We identified genes involved in parasite-specific pathways, including carbohydrates metabolism, apoptosis and chemo signaling. A total of 7607 coding genes were predicted. The genome of A. simplex s.l. is highly similar to genomes of other parasitic nematodes. In particular, we described a valuable repository of genes encoding proteins of trehalose and glycogen metabolism, and we developed the most comprehensive data set relating to the conversion of both saccharides which play important roles during the parasite's life cycle in a host environment. We also confirmed that trehalose is synthesized at the expense of glycogen. Trehalose anabolism and glycogen catabolism were the predominant processes in stages L4 and L5, which could confirm our and other authors' previous reports that trehalose is synthesized at the expense of glycogen. The A. simplex s.l. genome provides essential data for post-genomic research into the biology of gastrointestinal and allergic anisakiasis in humans and the biology of other important parasitic helminths.
Collapse
Affiliation(s)
- Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Kamil Myszczyński
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Iwona Polak
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
27
|
Tyagi R, Verma S, Mishra S, Srivastava M, Alam S, Khan F, Srivastava SK. In Vitro and In Silico Studies of Glycyrrhetinic Acid Derivatives as Anti- Filarial Agents. Curr Top Med Chem 2019; 19:1191-1200. [PMID: 31210109 DOI: 10.2174/1568026619666190618141450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Lymphatic filariasis is one of the chronic diseases in many parts of the tropics and sub-tropics of the world despite the use of standard drugs diethylcarbamazine and ivermectin because they kill microfilaries and not the adult parasites. Therefore, new leads with activity on adult parasites are highly desirable. OBJECTIVE Anti-filarial lead optimization by semi-synthetic modification of glycyrrhetinic acid (GA). METHODS The GA was first converted into 3-O-acyl derivative, which was further converted into 12 amide derivatives. All these derivatives were assessed for their antifilarial potential by parasite motility assay. The binding affinity of active GA derivatives on trehalose-6-phosphate phosphatase (Bm-TPP) was assessed by molecular docking studies. RESULTS Among 15 GA derivatives, GAD-2, GAD-3, and GAD-4 were found more potent than the GA and standard drug DEC. These derivatives reduced the motility of Brugia malayi adult worms by up to 74% while the GA and DEC reduced only up to 49%. Further, GA and most of its derivatives exhibited two times more reduction in MTT assay when compared to the standard drug DEC. These derivatives also showed 100% reduction of microfilariae and good interactions with Bm-TPP protein. CONCLUSION The present study suggests that 3-O-acyl and linear chain amide derivatives of glycyrrhetinic acid may be potent leads against B. malayi microfilariae and adult worms. These results might be helpful in developing QSAR model for optimizing a new class of antifilarial lead from a very common, inexpensive, and non toxic natural product.
Collapse
Affiliation(s)
- Rekha Tyagi
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Surjeet Verma
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Shikha Mishra
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India
| | - Mrigank Srivastava
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sarfaraz Alam
- Metabolic & Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Feroz Khan
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Metabolic & Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Santosh Kumar Srivastava
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| |
Collapse
|
28
|
Heid E, Honegger P, Braun D, Szabadi A, Stankovic T, Steinhauser O, Schröder C. Computational spectroscopy of trehalose, sucrose, maltose, and glucose: A comprehensive study of TDSS, NQR, NOE, and DRS. J Chem Phys 2019; 150:175102. [DOI: 10.1063/1.5095058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Esther Heid
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Philipp Honegger
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Daniel Braun
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria
| | - András Szabadi
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Toda Stankovic
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Othmar Steinhauser
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| | - Christian Schröder
- University of Vienna, Faculty of Chemistry, Department of Computational Biological Chemistry, Währingerstraße 17, A-1090 Vienna, Austria
| |
Collapse
|
29
|
Abstract
The investigation of the glycan repertoire of several organisms has revealed a wide variation in terms of structures and abundance of glycan moieties. Among the parasites, it is possible to observe different sets of glycoconjugates across taxa and developmental stages within a species. The presence of distinct glycoconjugates throughout the life cycle of a parasite could relate to the ability of that organism to adapt and survive in different hosts and environments. Carbohydrates on the surface, and in excretory-secretory products of parasites, play essential roles in host-parasite interactions. Carbohydrate portions of complex molecules of parasites stimulate and modulate host immune responses, mainly through interactions with specific receptors on the surface of dendritic cells, leading to the generation of a pattern of response that may benefit parasite survival. Available data reviewed here also show the frequent aspect of parasite immunomodulation of mammalian responses through specific glycan interactions, which ultimately makes these molecules promising in the fields of diagnostics and vaccinology.
Collapse
|
30
|
Łopieńska-Biernat E, Paukszto Ł, Jastrzębski JP, Makowczenko K, Stryiński R. Genes expression and in silico studies of functions of trehalases, a highly dispersed Anisakis simplex s. l. specific gene family. Int J Biol Macromol 2019; 129:957-964. [DOI: 10.1016/j.ijbiomac.2019.02.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
|
31
|
Łopieńska-Biernat E, Stryiński R, Dmitryjuk M, Wasilewska B. Infective larvae of Anisakis simplex (Nematoda) accumulate trehalose and glycogen in response to starvation and temperature stress. Biol Open 2019; 8:bio040014. [PMID: 30824422 PMCID: PMC6451339 DOI: 10.1242/bio.040014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Anisakis simplex L3 larvae infect fish and other seafood species such as squid or octopi; therefore, humans consuming raw or undercooked fish may become accidental hosts for this parasite. These larvae are induced to enter hypometabolism by cold temperatures. It is assumed that sugars (in particular trehalose and glycogen) are instrumental for survival under environmental stress conditions. To elucidate the mechanisms of environmental stress response in A. simplex, we observed the effects of starvation and temperature on trehalose and glycogen content, the activity of enzymes metabolizing those sugars, and the relative expression of genes of trehalose and glycogen metabolic pathways. The L3 of A. simplex synthesize trehalose both in low (0°C) and high temperatures (45°C). The highest content of glycogen was observed at 45°C at 36 h of incubation. On the second day of incubation, tissue content of trehalose depended on the activity of the enzymes: TPS was more active at 45°C, and TPP was more active at 0°C. The changes in TPP activity were consistent with the transcript level changes of the TPP gene, and the trehalose level, while glycogen synthesis correlates with the expression of glycogen synthase gene at 45°C; this suggests that the synthesis of trehalose is more essential. These results show that trehalose plays a key role in providing energy during the thermotolerance and starvation processes through the molecular and biochemical regulation of trehalose and glycogen metabolism.
Collapse
Affiliation(s)
- Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Małgorzata Dmitryjuk
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Barbara Wasilewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
32
|
First echinoderm trehalase from a tropical sea cucumber (Holothuria leucospilota): Molecular cloning and mRNA expression in different tissues, embryonic and larval stages, and under a starvation challenge. Gene 2018; 665:74-81. [PMID: 29719214 DOI: 10.1016/j.gene.2018.04.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
Abstract
Trehalases are a group of enzymes that catalyse the conversion of trehalose to glucose, and they are observed in most organisms. In this study, the first echinoderm trehalase, designated Hl-Tre, was identified from a tropical sea cucumber, Holothuria leucospilota. The full-length cDNA of H. leucospilota trehalase (Hl-Tre) is 2461 bp in length with an open reading frame (ORF) of 1788 bp that encodes a 595-amino-acid protein with a deduced molecular weight of 67.95 KDa. The Hl-Tre protein contains a signal peptide at the N-terminal and a functional trehalase domain, which includes the signature motifs 1 and 2. The mRNA expression of Hl-Tre was ubiquitously detected in all selected tissues, with the highest level being detected in the intestine. By in situ hybridization (ISH), the positive Hl-Tre signals were observed in the brush borders of the intestinal mucosa. In embryonic and larval stages, the transcript levels of Hl-Tre decreased during embryonic development and increased after the pentactula stage. After a challenge of starvation, the intestinal Hl-Tre mRNA levels were observed to be first decreased and partially recovered thereafter. Overall, our study provided the first evidence for trehalase in echinoderms and showed that this enzyme was potentially linked to a trehalose metabolic pathway in sea cucumbers.
Collapse
|
33
|
Metabolic shift from glycogen to trehalose promotes lifespan and healthspan in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2018; 115:E2791-E2800. [PMID: 29511104 DOI: 10.1073/pnas.1714178115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
As Western diets continue to include an ever-increasing amount of sugar, there has been a rise in obesity and type 2 diabetes. To avoid metabolic diseases, the body must maintain proper metabolism, even on a high-sugar diet. In both humans and Caenorhabditis elegans, excess sugar (glucose) is stored as glycogen. Here, we find that animals increased stored glycogen as they aged, whereas even young adult animals had increased stored glycogen on a high-sugar diet. Decreasing the amount of glycogen storage by modulating the C. elegans glycogen synthase, gsy-1, a key enzyme in glycogen synthesis, can extend lifespan, prolong healthspan, and limit the detrimental effects of a high-sugar diet. Importantly, limiting glycogen storage leads to a metabolic shift whereby glucose is now stored as trehalose. Two additional means to increase trehalose show similar longevity extension. Increased trehalose is entirely dependent on a functional FOXO transcription factor DAF-16 and autophagy to promote lifespan and healthspan extension. Our results reveal that when glucose is stored as glycogen, it is detrimental, whereas, when stored as trehalose, animals live a longer, healthier life if DAF-16 is functional. Taken together, these results demonstrate that trehalose modulation may be an avenue for combatting high-sugar-diet pathology.
Collapse
|
34
|
Chen Q, Wang F, Li D, Zhang R, Ling Y. Trehalose metabolism genes render rice white tip nematode Aphelenchoides besseyi (Nematoda: Aphelenchoididae) resistant to an anaerobic environment. ACTA ACUST UNITED AC 2018; 221:jeb.171413. [PMID: 29158222 PMCID: PMC5868927 DOI: 10.1242/jeb.171413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022]
Abstract
After experiencing anaerobic environments, Aphelenchoides besseyi will enter a state of suspended animation known as anoxybiosis, during which it may use trehalose as an energy supply to survive. To explore the function of trehalose metabolism, two trehalose-6-phosphate synthase (TPS) genes (Ab-tps1 and Ab-tps2) encoding enzymes catalysing trehalose synthesis, and three trehalase (TRE) genes (Ab-ntre1, Ab-ntre2 and Ab-atre) encoding enzymes catalysing the hydrolysis of trehalose, were identified and investigated. Ab-tps1 and Ab-tps2 were active during certain periods of anoxybiosis for A. besseyi, and Ab-tps2, Ab-ntre1, Ab-ntre2 and Ab-atre were active during certain periods of recovery. The results of RNA interference experiments suggested that TRE genes regulated each other and both TPS genes, while a single TPS gene only regulated the other TPS gene. However, two TPS genes together could regulate TRE genes, which indicated a feedback mechanism between these genes. All these genes also positively regulated the survival and resumption of active metabolism of the nematode. Genes functioning at re-aeration have a greater impact on nematode survival, suggesting that these genes could play roles in anoxybiosis regulation, but may function within restricted time frames. Changes in trehalose levels matched changes in TRE activity during the anoxybiosis–re-aeration process, suggesting that trehalose may act as an energy supply source. The observation of up-regulation of TPS genes during anoxybiosis suggested a possible signal role of trehalose. Trehalose metabolism genes could also work together to control trehalose levels at a certain level when the nematode is under anaerobic conditions. Summary: To ensure survival, nematodes utilize both extracellular and intracellular trehalose, and trehalose metabolism genes regulate each other to keep trehalose and trehalase activity at certain levels during the anoxybiosis–re-aeration process.
Collapse
Affiliation(s)
- Qiaoli Chen
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Feng Wang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Danlei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Ruizhi Zhang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yaming Ling
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| |
Collapse
|
35
|
Tang B, Wang S, Wang SG, Wang HJ, Zhang JY, Cui SY. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications. Front Physiol 2018; 9:30. [PMID: 29445344 PMCID: PMC5797772 DOI: 10.3389/fphys.2018.00030] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/09/2018] [Indexed: 11/15/2022] Open
Abstract
The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Su Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Juan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jia-Yong Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, College of Life Science and Chemistry, Zhejiang Normal University, Jinhua, China
| | - Shuai-Ying Cui
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
36
|
Seybold AC, Wharton DA, Thorne MAS, Marshall CJ. Investigating trehalose synthesis genes after cold acclimation in the Antarctic nematode Panagrolaimus sp. DAW1. Biol Open 2017; 6:1953-1959. [PMID: 29175859 PMCID: PMC5769639 DOI: 10.1242/bio.023341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Panagrolaimus sp. DAW1 is a freeze-tolerant Antarctic nematode which survives extensive intracellular ice formation. The molecular mechanisms of this extreme adaptation are still poorly understood. We recently showed that desiccation-enhanced RNA interference (RNAi) soaking can be used in conjunction with quantitative polymerase chain reaction (qPCR) to screen for phenotypes associated with reduced expression of candidate genes in Panagrolaimus sp. DAW1. Here, we present the use of this approach to investigate the role of trehalose synthesis genes in this remarkable organism. Previous studies have shown that acclimating Panagrolaimus sp. DAW1 at 5°C before freezing or desiccation substantially enhances survival. In this study, the expression of tps-2 and other genes associated with trehalose metabolism, as well as lea-1, hsp-70 and gpx-1, in cold-acclimated and non-acclimated nematodes was analyzed using qPCR. Pd-tps-2 and Pd-lea-1 were significantly upregulated after cold acclimation, indicating an inducible expression in the cold adaptation of Panagrolaimus sp. DAW1. The role of trehalose synthesis genes in Panagrolaimus sp. DAW1 was further investigated by RNAi. Compared to the controls, Pd-tps-2a(RNAi)-treated and cold-acclimated nematodes showed a significant decrease in mRNA, but no change in trehalose content or freezing survival. The involvement of two other trehalose synthesis genes (tps-2b and gob-1) was also investigated. These findings provide the first functional genomic investigation of trehalose synthesis genes in the non-model organism Panagrolaimus sp. DAW1. The presence of several trehalose synthesis genes with different RNAi sensitivities suggests the existence of multiple backup systems in Panagrolaimus sp. DAW1, underlining the importance of this sugar in preparation for freezing. Summary: Functional genomics was used to investigate trehalose synthesis genes after cold acclimation in Panagrolaimus sp. DAW1, an Antarctic nematode with the ability to survive intracellular freezing.
Collapse
Affiliation(s)
- Anna C Seybold
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - David A Wharton
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, United Kingdom
| | - Craig J Marshall
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand .,Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
37
|
Łopieńska-Biernat E, Molcan T, Paukszto Ł, Jastrzębski JP, Myszczyński K. Modelling studies determing the mode of action of anthelmintics inhibiting in vitro trehalose-6-phosphate phosphatase (TPP) of Anisakis simplex s.l. Exp Parasitol 2017; 184:46-56. [PMID: 29170085 DOI: 10.1016/j.exppara.2017.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/20/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
Abstract
The trehalose-6-phosphate phosphatase (TPP) enzyme is involved in the synthesis of trehalose, the main sugar in the energy metabolism of nematodes. TPP is a member of the HAD-like hydrolase superfamily and shows a robust and specific phosphatase activity for the substrate trehalose-6-phosphate. The presence of conserved active sites of TPP in closely related nematodes and its absence in humans makes it a promising target for antiparasitic drugs. In the present study, homology modeling, molecular docking and MD simulation techniques were used to explore the structure and dynamics of TPP. In the active site, a magnesium ion is stabilized by 3 coordinate bonds formed by D189, D191 and D400. The key amino acids involved in ligand binding by the enzyme are C198, Y201,T357, D191 and Y197. This study relied on docking to select potential inhibitors of TPP which were tested in vitro for sensitivity to anthelmintic drugs such as levamisole and ivermectin targeting Anisakis simplex. The higher toxicity of LEV than IVM was demonstrated after 96 h, 30% of larvae were motile in cultures with 100 μg/ml of LEV and 1000 μg/ml of IVM. We identified drug combination of LEV-IVM against in vitro A. simplex as agonistic effect (CI = 1.1). Levamisole appeared to be a more effective drug which inhibited enzyme activity after 48 h and expression of mRNA after 96 h at a concentration of 10 μg/ml. This preliminary study predicted the structure of TPP, and the results of an in vitro experiment involving A. simplex will contribute to the development of effective inhibitors with potential antiparasitic activity in the future.
Collapse
Affiliation(s)
- Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Tomasz Molcan
- Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Kamil Myszczyński
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Poland
| |
Collapse
|
38
|
Hibshman JD, Doan AE, Moore BT, Kaplan RE, Hung A, Webster AK, Bhatt DP, Chitrakar R, Hirschey MD, Baugh LR. daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival. eLife 2017; 6. [PMID: 29063832 PMCID: PMC5655125 DOI: 10.7554/elife.30057] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
daf-16/FoxO is required to survive starvation in Caenorhabditis elegans, but how daf-16IFoxO promotes starvation resistance is unclear. We show that daf-16/FoxO restructures carbohydrate metabolism by driving carbon flux through the glyoxylate shunt and gluconeogenesis and into synthesis of trehalose, a disaccharide of glucose. Trehalose is a well-known stress protectant, capable of preserving membrane organization and protein structure during abiotic stress. Metabolomic, genetic, and pharmacological analyses confirm increased trehalose synthesis and further show that trehalose not only supports survival as a stress protectant but also serves as a glycolytic input. Furthermore, we provide evidence that metabolic cycling between trehalose and glucose is necessary for this dual function of trehalose. This work demonstrates that daf-16/FoxO promotes starvation resistance by shifting carbon metabolism to drive trehalose synthesis, which in turn supports survival by providing an energy source and acting as a stress protectant. Most animals rarely have access to a constant supply of food, and so have evolved ways to cope with times of plenty and times of shortage. Insulin is a hormone that travels throughout the body to signal when an animal is well fed. Insulin signaling inhibits the activity of a protein called FoxO, which otherwise switches on and off hundreds of genes to control the starvation response. The roundworm, Caenorhabditis elegans, has been well studied in the laboratory, and often has to cope with starvation in the wild. These worms can pause their development if no food is available, or divert to a different developmental path if they anticipate that food will be short in future. As with more complex animals, the worm responds to starvation by reducing insulin-like signaling, which in turn activates a FoxO protein called daf-16. When the worms stop feeding, daf-16 is switched on, which is crucial for survival. It was known how daf-16 stops the roundworm’s development, but it was not known how it helps the worms to survive starvation. Now, Hibshman et al. have compared normal roundworm larvae to larvae that are missing the gene for daf-16 to determine how this protein influences the roundworm’s ability to survive starvation. The worms were examined with and without food, to look for which genes were switched on and off by daf-16 during starvation. This revealed that daf-16 controls metabolism, activating a metabolic shortcut that makes the worms produce glucose and begin turning it into another type of sugar, called trehalose. This sugar usually promotes survival in conditions where water is limiting, like dehydration and high salt, but it can also be broken down to release energy. The levels of trehalose in the worms rose within hours of the onset of starvation. To confirm the importance of trehalose in surviving starvation, roundworms with mutations in genes involved in glucose or trehalose production were examined, as was the effect of giving starving worms glucose or trehalose. Disrupting the production of sugars caused the worms to die sooner of starvation, while supplementing with sugar had the opposite effect meaning the worms survived for longer. Taken together, these findings reveal that daf-16 protects against starvation by shifting metabolism towards the production of trehalose. This helps worms to survive by both protecting them from stress and providing them with a source of energy. These findings not only extend the current understanding of how animals respond to starvation, but could also lead to improved understanding of diseases where this response goes wrong, including diabetes and obesity.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Department of Biology, Duke University, Durham, United States.,University Program in Genetics and Genomics, Duke University, Durham, United States
| | | | - Brad T Moore
- Department of Biology, Duke University, Durham, United States
| | - Rebecca Ew Kaplan
- Department of Biology, Duke University, Durham, United States.,University Program in Genetics and Genomics, Duke University, Durham, United States
| | - Anthony Hung
- Department of Biology, Duke University, Durham, United States
| | - Amy K Webster
- Department of Biology, Duke University, Durham, United States.,University Program in Genetics and Genomics, Duke University, Durham, United States
| | - Dhaval P Bhatt
- Duke Molecular Physiology Institute, Duke University, Durham, United States
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, United States
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute, Duke University, Durham, United States.,Department of Medicine, Duke University, Durham, United States.,Department of Pharmacology & Cancer Biology, Duke University, Durham, United States
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, United States.,University Program in Genetics and Genomics, Duke University, Durham, United States
| |
Collapse
|
39
|
Cross M, Rajan S, Chekaiban J, Saunders J, Hamilton C, Kim JS, Coster MJ, Gasser RB, Hofmann A. Enzyme characteristics of pathogen-specific trehalose-6-phosphate phosphatases. Sci Rep 2017; 7:2015. [PMID: 28515463 PMCID: PMC5435700 DOI: 10.1038/s41598-017-02220-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/07/2017] [Indexed: 12/21/2022] Open
Abstract
Owing to the key role of trehalose in pathogenic organisms, there has recently been growing interest in trehalose metabolism for therapeutic purposes. Trehalose-6-phosphate phosphatase (TPP) is a pivotal enzyme in the most prominent biosynthesis pathway (OtsAB). Here, we compare the enzyme characteristics of recombinant TPPs from five important nematode and bacterial pathogens, including three novel members of this protein family. Analysis of the kinetics of trehalose-6-phosphate hydrolysis reveals that all five enzymes display a burst-like kinetic behaviour which is characterised by a decrease of the enzymatic rate after the pre-steady state. The observed super-stoichiometric burst amplitudes can be explained by multiple global conformational changes in members of this enzyme family during substrate processing. In the search for specific TPP inhibitors, the trapping of the complex conformational transitions in TPPs during the catalytic cycle may present a worthwhile strategy to explore.
Collapse
Affiliation(s)
- Megan Cross
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Siji Rajan
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Janine Chekaiban
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Jake Saunders
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Chloe Hamilton
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mark J Coster
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, 4111, Australia.
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
- Queensland Tropical Health Alliance, Smithfield, Queensland, 4878, Australia.
| |
Collapse
|
40
|
Chen Q, Li D, Wang F, Zhang R, Ling Y. Trehalose metabolism genes of Aphelenchoides besseyi (Nematoda: Aphelenchoididae) in hypertonic osmotic pressure survival. Biol Open 2017; 6:664-672. [PMID: 28396490 PMCID: PMC5450318 DOI: 10.1242/bio.023267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Some organisms can survive extreme desiccation caused by hypertonic osmotic pressure by entering a state of suspended animation known as osmobiosis. The free-living mycophagous nematode Aphelenchoides besseyi can be induced to enter osmobiosis by soaking in osmolytes. It is assumed that sugars (in particular trehalose) are instrumental for survival under environmental stress. In A. besseyi, two putative trehalose-6-phosphate synthase genes (TPS) encoding enzymes catalyzing trehalose synthesis, and a putative trehalase gene (TRE) encoding enzymes that catalyze hydrolysis of trehalose were identified and then characterized based on their transcriptome. RT-qPCR analyses showed that each of these genes is expressed as mRNA when A. besseyi is entering in, during and recovering from osmobiosis, but only for certain periods. The changes of TRE activity were consistent with the transcript level changes of the TRE gene, and the trehalose level declined at certain periods when the nematodes were in, as well as recovering from, osmobiosis; this suggested that the hydrolysis of threhalose is essential. The feeding method of RNA interference (RNAi) was used to temporarily knock down the expression of each of the TPS and TRE genes. No obviously different phenotype was observed from any of the genes silenced individually or simultaneously, but the survival under hypertonic osmotic pressure reduced significantly and the recovery was delayed. These results indicated that trehalose metabolism genes should play a role in osmobiosis regulation and function within a restricted time frame. Summary: Trehalose metabolism genes should play a role in osmobiosis regulation and also function within a restricted time frame. Silence of any of these genes will cut down the nematode survival under hypertonic osmotic condition.
Collapse
Affiliation(s)
- Qiaoli Chen
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Danlei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Feng Wang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Ruizhi Zhang
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Yaming Ling
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
41
|
Liu C, Dunaway-Mariano D, Mariano PS. Rational design of first generation inhibitors for trehalose 6-phosphate phosphatases. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Martinetti D, Colarossi C, Buccheri S, Denti G, Memeo L, Vicari L. Effect of trehalose on cryopreservation of pure peripheral blood stem cells. Biomed Rep 2017; 6:314-318. [PMID: 28451392 DOI: 10.3892/br.2017.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/04/2016] [Indexed: 01/14/2023] Open
Abstract
Stem cells are an important tool for the study of hematopoiesis. Despite developments in cryopreservation, post-thaw cell death remains a considerable problem. Cryopreservation protocol should limit cell damage due to freezing and ensure the recovery of the functional cell characteristics after thawing. Thus, the use of cryoprotectants is essential. In particular, the efficacy of trehalose has been reported for clinical purposes in blood stem cells. The aim of the current study was to establish an efficient method for biological research based on the use of trehalose, to cryopreserve pure peripheral blood stem cells. The efficacy of trehalose was assessed in vitro and the cell viability was evaluated. The data indicate that trehalose improves cell survival after thawing compared with the standard freezing procedure. These findings could suggest the potential for future trehalose application for research purposes in cell cryopreservation.
Collapse
Affiliation(s)
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy
| | - Simona Buccheri
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy.,Department of Laboratory Medicine and Advanced Biotechnologies, Fondazione Ri.MED, Regenerative Medicine and Biomedical Technologies Unit, IRCCS-ISMETT, I- 90133 Palermo, Italy
| | - Gabriella Denti
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy
| | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy.,Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, I-95029 Catania, Italy
| | - Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande, I-95029 Catania, Italy
| |
Collapse
|
43
|
Liu C, Dunaway-Mariano D, Mariano PS. Rational design of reversible inhibitors for trehalose 6-phosphate phosphatases. Eur J Med Chem 2017; 128:274-286. [PMID: 28192710 DOI: 10.1016/j.ejmech.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/19/2022]
Abstract
In some organisms, environmental stress triggers trehalose biosynthesis that is catalyzed collectively by trehalose 6-phosphate synthase, and trehalose 6-phosphate phosphatase (T6PP). T6PP catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to trehalose and inorganic phosphate and is a promising target for the development of antibacterial, antifungal and antihelminthic therapeutics. Herein, we report the design, synthesis and evaluation of a library of aryl d-glucopyranoside 6-sulfates to serve as prototypes for small molecule T6PP inhibitors. Steady-state kinetic techniques were used to measure inhibition constants (Ki) of a panel of structurally diverse T6PP orthologs derived from the pathogens Brugia malayi, Ascaris suum, Mycobacterium tuberculosis, Shigella boydii and Salmonella typhimurium. The binding affinities of the most active inhibitor of these T6PP orthologs, 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (9a), were found to be in the low micromolar range. The Ki of 9a with the B. malayi T6PP ortholog is 5.3 ± 0.6 μM, 70-fold smaller than the substrate Michaelis constant. The binding specificity of 9a was demonstrated using several representative sugar phosphate phosphatases from the HAD enzyme superfamily, the T6PP protein fold family of origin. Lastly, correlations drawn between T6PP active site structure, inhibitor structure and inhibitor binding affinity suggest that the aryl d-glucopyranoside 6-sulfate prototypes will find future applications as a platform for development of tailored second-generation T6PP inhibitors.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Patrick S Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
44
|
Yun EJ, Lee SH, Kim S, Kim SH, Kim KH. Global profiling of metabolic response of Caenorhabditis elegans against Escherichia coli O157:H7. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Sangshetti JN, Shinde DB, Kulkarni A, Arote R. Two decades of antifilarial drug discovery: a review. RSC Adv 2017. [DOI: 10.1039/c7ra01857f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Filariasis is one of the oldest, most debilitating, disabling, and disfiguring neglected tropical diseases with various clinical manifestations and a low rate of mortality, but has a high morbidity rate, which results in social stigma.
Collapse
Affiliation(s)
| | | | | | - Rohidas Arote
- Department of Molecular Genetics
- School of Dentistry
- Seoul National University
- Seoul
- Republic of Korea
| |
Collapse
|
46
|
Heid E, Schröder C. Computational solvation dynamics of oxyquinolinium betaine linked to trehalose. J Chem Phys 2016; 145:164507. [DOI: 10.1063/1.4966189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Esther Heid
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstraße 19, A-1090 Vienna, Austria
| | - Christian Schröder
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Währingerstraße 19, A-1090 Vienna, Austria
| |
Collapse
|
47
|
Shukla N, Pomarico E, Chen L, Chergui M, Othon CM. Retardation of Bulk Water Dynamics by Disaccharide Osmolytes. J Phys Chem B 2016; 120:9477-83. [DOI: 10.1021/acs.jpcb.6b07751] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nimesh Shukla
- Department
of Physics, Wesleyan University, Middletown, Connecticut 06457, United States
| | - Enrico Pomarico
- Laboratoire
de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB, CH-1015 Lausanne, Switzerland
| | - Lee Chen
- Department
of Physics, Wesleyan University, Middletown, Connecticut 06457, United States
| | - Majed Chergui
- Laboratoire
de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast
Science (LACUS), École Polytechnique Fédérale de Lausanne, ISIC, FSB, CH-1015 Lausanne, Switzerland
| | - Christina M. Othon
- Department
of Physics, Wesleyan University, Middletown, Connecticut 06457, United States
- Molecular
Biophysics Program, Wesleyan University, Middletown, Connecticut 06457, United States
| |
Collapse
|
48
|
Dmitryjuk M, Łopieńska-Biernat E. The gene expression and the activity of enzyme synthesis of trehalose during development ofAscaris suum(Nematoda) eggs. INVERTEBR REPROD DEV 2016. [DOI: 10.1080/07924259.2016.1160000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Fosu-Nyarko J, Nicol P, Naz F, Gill R, Jones MGK. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii. PLoS One 2016; 11:e0147511. [PMID: 26824923 PMCID: PMC4733053 DOI: 10.1371/journal.pone.0147511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668) with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.). Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- NemGenix Pty Ltd, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| | - Paul Nicol
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Fareeha Naz
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Michael G. K. Jones
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| |
Collapse
|
50
|
Coello A, Campos P, Remohí J, Meseguer M, Cobo A. A combination of hydroxypropyl cellulose and trehalose as supplementation for vitrification of human oocytes: a retrospective cohort study. J Assist Reprod Genet 2016; 33:413-421. [PMID: 26754749 DOI: 10.1007/s10815-015-0633-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022] Open
Abstract
PURPOSE This study aimed to determine whether the new formulation of vitrification solutions containing a combination of hydroxypropyl cellulose (HPC) and trehalose does not affect outcomes in comparison with using conventional solutions made of serum substitute supplement (SSS) and sucrose. METHODS Ovum donation cycles were retrospectively compared regarding the solution used for vitrification and warming of human oocytes. The analysis included 218 cycles (N = 2532 oocytes) in the study group (HPC + trehalose) and 214 cycles (N = 2353 oocytes) in the control group (SSS + sucrose). RESULTS No statistical differences were found in ovarian stimulation parameters and baseline characteristics of donors and recipients. The survival rate was 91.3% (95% confidence interval (CI) = 89.8-92.9) in the HPC + trehalose group vs. 92.1% (95% CI = 90.4-93.7) in the SSS + sucrose group (NS). The implantation rate (42.8%, 95% CI = 37.7-47.9 vs. 41.2%, 95% CI = 36.0-46.4), clinical pregnancy rate (CPR) per transfer (60.7%, 95% CI = 53.9-67.5 vs. 56.4%, 95% CI = 49.3-63.5), and ongoing pregnancy rate (OPR) per transfer (48.5%, 95% CI = 41.5-55.5 vs. 46.3%, 95% CI = 39.2-53.4) were similar for patients who received either HPC + trehalose-vitrified oocytes or SSS + sucrose-vitrified oocytes. Statistical differences were found when analyzing blastocyst rate both per injected oocyte (30.2%, 95% CI = 28.3-32.1 vs. 24.1%, 95% CI = 22.3-25.9) and per fertilized oocyte (40.8%, 95%CI = 38.5-43.1 vs. 33.2%, 95% CI = 30.8-35.5) (P < 0.0001). Delivery rate was comparable between groups (37.2%, 95% CI = 30.8-46.6 vs. 36.9%, 95% CI = 30.4-43.4; NS). CONCLUSIONS Our data demonstrate that HPC and trehalose are suitable and safe substitutes for serum and sucrose. Therefore, the new commercial media can be used efficiently in the vitrification of human oocytes avoiding viral and endotoxin contamination risk.
Collapse
Affiliation(s)
- Aila Coello
- Instituto Valenciano de Infertilidad (IVI), University of Valencia, Pl. Policía Local 3, Valencia, Spain
| | - Pilar Campos
- Instituto Valenciano de Infertilidad (IVI), University of Valencia, Pl. Policía Local 3, Valencia, Spain
| | - José Remohí
- Instituto Valenciano de Infertilidad (IVI), University of Valencia, Pl. Policía Local 3, Valencia, Spain
| | - Marcos Meseguer
- Instituto Valenciano de Infertilidad (IVI), University of Valencia, Pl. Policía Local 3, Valencia, Spain
| | - Ana Cobo
- Instituto Valenciano de Infertilidad (IVI), University of Valencia, Pl. Policía Local 3, Valencia, Spain.
| |
Collapse
|