1
|
Storkebaum E, Rosenblum K, Sonenberg N. Messenger RNA Translation Defects in Neurodegenerative Diseases. Reply. N Engl J Med 2023; 388:2110-2111. [PMID: 37256994 DOI: 10.1056/nejmc2304387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Erik Storkebaum
- Donders Institute for Brain, Cognition, and Behavior, Nijmegen, the Netherlands
| | | | | |
Collapse
|
2
|
MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function. Proc Natl Acad Sci U S A 2022; 119:2111617119. [PMID: 35121660 PMCID: PMC8832985 DOI: 10.1073/pnas.2111617119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs) are typically implicated in cancer biology. Here, we show that MRP9 and MRP5 localize to mitochondrial-associated membranes and play a concerted role in maintaining mitochondrial homeostasis and male reproductive fitness. Our work fills in significant gaps in our understanding of MRP9 and MRP5 with wider implications in male fertility. It is plausible that variants in these transporters are associated with male reproductive dysfunction. Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.
Collapse
|
3
|
Poulaki E, Detsika MG, Fourtziala E, Lianos EA, Gakiopoulou H. Podocyte-targeted Heme Oxygenase (HO)-1 overexpression exacerbates age-related pathology in the rat kidney. Sci Rep 2020; 10:5719. [PMID: 32235880 PMCID: PMC7109035 DOI: 10.1038/s41598-020-62016-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
Although Heme Oxygenase-1 (HO-1) induction in various forms of kidney injury is protective, its role in age-related renal pathology is unknown. In the ageing kidney there is nephron loss and lesions of focal glomerulosclerosis, interstitial fibrosis, tubular atrophy and arteriolosclerosis. Underlying mechanisms include podocyte (visceral glomerular epithelial cell/GEC) injury. To assess whether HO-1 can attenuate ageing - related lesions, rats with GEC-targeted HO-1 overexpression (GECHO-1 rats) were generated using a Sleeping Beauty (SB) transposon system and extent of lesions over a 12-month period were assessed and compared to those in age-matched wild-type (WT) controls. GECHO-1 rats older than 6 months developed albuminuria that was detectable at 6 months and became significantly higher compared to age-matched WT controls at 12 months. In GECHO-1 rats, lesions of focal segmental and global glomerulosclerosis as well as tubulointerstitial lesions were prominent while podocytes were edematous with areas of foot process effacement and glomerular basement membrane thickening and wrinkling. GECHO-1 rats also developed hemoglobinuria and hemosiderinuria associated with marked tubular hemosiderin deposition and HO-1 induction, while there was depletion of splenic iron stores. Kidney injury was of sufficient magnitude to increase serum lactate dehydrogenase (LDH) and was oxidative in nature as shown by increased expression of 8-hydroxydeoxyguanosine (8-OHdg, a byproduct of oxidative DNA damage) in podocytes and tubular epithelial cells. These observations highlight a detrimental effect of podocyte-targeted HO-1 overexpression on ageing-related renal pathology and point to increased renal iron deposition as a putative underlying mechanism.
Collapse
Affiliation(s)
- Elpida Poulaki
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 11527, Greece
| | - Maria G Detsika
- First Department of Critical Care Medicine & Pulmonary Services, Evangelismos Hospital, National and Kapodistrian University School of Medicine, 3 Ploutarchou Street, Athens, 10675, Greece
| | - Eythimia Fourtziala
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 11527, Greece
| | - Elias A Lianos
- Veterans Affairs Medical Center and Virginia Tech. Carilion School of Medicine, 1970 Roanoke Blvd, Salem, VA, 24153, USA.
| | - Hariklia Gakiopoulou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens, 11527, Greece
| |
Collapse
|
4
|
Guix FX, Sartório CL, Ill-Raga G. BACE1 Translation: At the Crossroads Between Alzheimer's Disease Neurodegeneration and Memory Consolidation. J Alzheimers Dis Rep 2019; 3:113-148. [PMID: 31259308 PMCID: PMC6597968 DOI: 10.3233/adr-180089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human life unfolds not only in time and space, but also in the recollection and interweaving of memories. Therefore, individual human identity depends fully on a proper access to the autobiographical memory. Such access is hindered under pathological conditions such as Alzheimer’s disease, which affects millions of people worldwide. Unfortunately, no effective cure exists to prevent this disorder, the impact of which will rise alarmingly within the next decades. While Alzheimer’s disease is largely considered to be the outcome of amyloid-β (Aβ) peptide accumulation in the brain, conceiving this complex disorder strictly as the result of Aβ-neurotoxicity is perhaps a too straight-line simplification. Instead, complementary to this view, the tableau of molecular disarrangements in the Alzheimer’s disease brain may be reflecting, at least in part, a loss of function phenotype in memory processing. Here we take BACE1 translation and degradation as a gateway to study molecular mechanisms putatively involved in the transition between memory and neurodegeneration. BACE1 participates in the excision of Aβ-peptide from its precursor holoprotein, but plays a role in synaptic plasticity too. Its translation is governed by eIF2α phosphorylation: a hub integrating cellular responses to stress, but also a critical switch in memory consolidation. Paralleling these dualities, the eIF2α-kinase HRI has been shown to be a nitric oxide-dependent physiological activator of hippocampal BACE1 translation. Finally, beholding BACE1 as a representative protease active in the CNS, we venture a new perspective on the cellular basis of memory, which may incorporate neurodegeneration in itself as a drift in memory consolidating systems.
Collapse
Affiliation(s)
- Francesc X Guix
- Department of Molecular Neuropathology, Centro de Biología Molecular Severo Ochoa-CSIC, Madrid, Spain
| | - Carmem L Sartório
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Gerard Ill-Raga
- Division of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
5
|
Burwick N, Aktas BH. The eIF2-alpha kinase HRI: a potential target beyond the red blood cell. Expert Opin Ther Targets 2017; 21:1171-1177. [PMID: 29063813 DOI: 10.1080/14728222.2017.1397133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The eIF2α kinase heme-regulated inhibitor (HRI) is one of four well-described kinases that phosphorylate eIF2α in response to various cell stressors, resulting in reduced ternary complex formation and attenuation of mRNA translation. Although HRI is well known for its role as a heme sensor in erythroid progenitors, pharmacologic activation of HRI has been demonstrated to have anti-cancer activity across a wide range of tumor sub-types. Here, the potential of HRI activators as novel cancer therapeutics is explored. Areas covered: We provide an introduction to eIF2 signaling pathways in general, and specifically review data on the eIF2α kinase HRI in erythroid and non-erythroid cells. We review aspects of targeting eIF2 signaling in cancer and highlight promising data using HRI activators against tumor cells. Expert opinion: Pharmacologic activation of HRI inhibits tumor growth as a single agent without appreciable toxicity in vivo. The ability of HRI activators to provide direct and sustained eIF2α phosphorylation without inducing oxidative stress or broad eIF2α kinase activation may be especially advantageous for tolerability. Combination therapy with established therapeutics may further augment anti-cancer activity to overcome disease resistance.
Collapse
Affiliation(s)
- Nicholas Burwick
- a Division of hematology , VA Puget Sound Health Care System , Seattle , WA , USA.,b Division of Hematology , University of Washington School of Medicine , Seattle WA , USA
| | - Bertal H Aktas
- c Department of Medicine , Brigham and Women's Hospital and Harvard Medical School , Boston , MA , USA
| |
Collapse
|
6
|
Bhavnani V, Swarnendu K, Savergave L, Raghuwanshi AS, Kumar A, Kumar A, Pal J. HRI, a stress response eIF2α kinase, exhibits structural and functional stability at high temperature and alkaline conditions. Int J Biol Macromol 2016; 95:528-538. [PMID: 27888007 DOI: 10.1016/j.ijbiomac.2016.11.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/20/2023]
Abstract
The Heme Regulated Inhibitor (HRI) is a key regulator of protein synthesis in mammalian cells. Once activated under heme-deficiency and other stress conditions, it phosphorylates the α subunit of eukaryotic initiation factor 2 (eIF2α) leading to inhibition of protein synthesis. In the present study, our objective was to establish the structural and functional credentials of this kinase so as to qualify it as a stress responsive eIF2α kinase. When the catalytic kinase domain of the HRI (HRI.CKD) protein was subjected to high temperature, 45°C (above mammalian heat shock temperature), it could still phosphorylate the substrate, indicating its potential as a stress response kinase. At a temperature beyond 45°C, loss in secondary structure of the HRI.CKD is attributable to loss of its function. Furthermore, no significant structural changes were observed at the broad pH range of 3.0--10.0. The HRI.CKD incubated at any pH between 8.0-10.0, exhibited more than 60% of its kinase activity, demonstrating structural and functional stability of the kinase at an alkaline pH. These data taken together establish that the structural stability of this kinase at high temperature and alkaline conditions is due to conservation of its secondary structure and that the resulting functional activity qualifies this kinase as a stress responsive kinase.
Collapse
Affiliation(s)
- Varsha Bhavnani
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Kaviraj Swarnendu
- Vaccine Formulation & Research Centre, Gennova Biopharmaceuticals Limited, Pune, Maharashtra 411057, India
| | - Laxman Savergave
- Vaccine Formulation & Research Centre, Gennova Biopharmaceuticals Limited, Pune, Maharashtra 411057, India
| | - Arjun Singh Raghuwanshi
- Vaccine Formulation & Research Centre, Gennova Biopharmaceuticals Limited, Pune, Maharashtra 411057, India
| | - Ankit Kumar
- Vaccine Formulation & Research Centre, Gennova Biopharmaceuticals Limited, Pune, Maharashtra 411057, India
| | - Avinash Kumar
- Vaccine Formulation & Research Centre, Gennova Biopharmaceuticals Limited, Pune, Maharashtra 411057, India
| | - Jayanta Pal
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India.
| |
Collapse
|
7
|
Ill-Raga G, Tajes M, Busquets-García A, Ramos-Fernández E, Vargas LM, Bosch-Morató M, Guivernau B, Valls-Comamala V, Eraso-Pichot A, Guix FX, Fandos C, Rosen MD, Rabinowitz MH, Maldonado R, Alvarez AR, Ozaita A, Muñoz FJ. Physiological Control of Nitric Oxide in Neuronal BACE1 Translation by Heme-Regulated eIF2α Kinase HRI Induces Synaptogenesis. Antioxid Redox Signal 2015; 22:1295-307. [PMID: 25706765 DOI: 10.1089/ars.2014.6080] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Hippocampus is the brain center for memory formation, a process that requires synaptogenesis. However, hippocampus is dramatically compromised in Alzheimer's disease due to the accumulation of amyloid β-peptide, whose production is initiated by β-site APP Cleaving Enzyme 1 (BACE1). It is known that pathological stressors activate BACE1 translation through the phosphorylation of the eukaryotic initiation factor-2α (eIF2α) by GCN2, PERK, or PKR kinases, leading to amyloidogenesis. However, BACE1 physiological regulation is still unclear. Since nitric oxide (NO) participates directly in hippocampal glutamatergic signaling, we investigated the neuronal role of the heme-regulated eukaryotic initiation factor eIF2α kinase (HRI), which can bind NO by a heme group, in BACE1 translation and its physiological consequences. RESULTS We found that BACE1 is expressed on glutamate activation with NO being the downstream effector by triggering eIF2α phosphorylation, as it was obtained by Western blot and luciferase assay. It is due to the activation of HRI by NO as assayed by Western blot and immunofluorescence with an HRI inhibitor and HRI siRNA. BACE1 expression was early detected at synaptic spines, contributing to spine growth and consolidating the hippocampal memory as assayed with mice treated with HRI or neuronal NO synthase inhibitors. INNOVATION We provide the first description that HRI and eIF2α are working in physiological conditions in the brain under the control of nitric oxide and glutamate signaling, and also that BACE1 has a physiological role in hippocampal function. CONCLUSION We conclude that BACE1 translation is controlled by NO through HRI in glutamatergic hippocampal synapses, where it plays physiological functions, allowing the spine growth and memory consolidation.
Collapse
Affiliation(s)
- Gerard Ill-Raga
- 1 Laboratory of Molecular Physiology and Channelopathies, Universitat Pompeu Fabra , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kubo E, Hasanova N, Sasaki H, Singh DP. Dynamic and differential regulation in the microRNA expression in the developing and mature cataractous rat lens. J Cell Mol Med 2013; 17:1146-59. [PMID: 23844765 PMCID: PMC4118174 DOI: 10.1111/jcmm.12094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023] Open
Abstract
Recent evidence supports a role for microRNAs (miRNAs) in regulating gene expression, and alterations in gene expression are known to affect cells involved in the development of ageing disorders. Using developing rat lens epithelial cells (LECs), we profiled the expression of miRNAs by a microarray-based approach. Few gene expression changes known to be involved in pathogenesis or cytoprotection were uniquely influenced by miRNA expression. Most miRNAs increased or decreased in abundance (let 7b, let 7c, miR29a, miR29c, miR126 and miR551b) in LECs/lenses during late embryonic and post-natal development and in cataract. Among them, miR29a, miR29c and miR126 were dramatically decreased in cataractous LECs from Shumiya Cataract Rats (SCRs). Specifically, the cytoskeleton remodelling genes tropomyosin (Tm) 1α and 2β, which have been implicated in the initiation of pathophysiology, were targets of miR29c and were over-stimulated as demonstrated by inhibitor experiments. In transfection experiments, increasing the level of miR29c caused a corresponding decrease in the expression of Tm1α and 2β, suggesting that miR29c may regulate the translation of Tm1α and 2β. 3′UTR luciferase activity of Tm1α, not 2β, was significantly decreased in miR29c-transfected mouse LECs. These findings demonstrate changes in miRNAs expression, and target molecules have potential as diagnostic indicators of ageing and as a foundation of miR-based therapeutics for age-related diseases.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, Japan
| | | | | | | |
Collapse
|
9
|
Trinh MA, Klann E. Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory. Neurobiol Learn Mem 2013; 105:93-9. [PMID: 23707798 DOI: 10.1016/j.nlm.2013.04.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 01/10/2023]
Abstract
Although the requirement for new protein synthesis in synaptic plasticity and memory has been well established, recent genetic, molecular, electrophysiological, and pharmacological studies have broadened our understanding of the translational control mechanisms that are involved in these processes. One of the critical translational control points mediating general and gene-specific translation depends on the phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α) by four regulatory kinases. Here, we review the literature highlighting the important role for proper translational control via regulation of eIF2α phosphorylation by its kinases in long-lasting synaptic plasticity and long-term memory.
Collapse
Affiliation(s)
- Mimi A Trinh
- Pharmaceutical Research Division, CNS Drug Discovery Unit, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | | |
Collapse
|
10
|
ILL-Raga G, Köhler C, Radiske A, Lima RH, Rosen MD, Muñoz FJ, Cammarota M. Consolidation of object recognition memory requires HRI kinase-dependent phosphorylation of eIF2α in the hippocampus. Hippocampus 2013; 23:431-6. [DOI: 10.1002/hipo.22113] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/06/2022]
|
11
|
McConkey DJ, White M, Yan W. HDAC inhibitor modulation of proteotoxicity as a therapeutic approach in cancer. Adv Cancer Res 2012; 116:131-63. [PMID: 23088870 DOI: 10.1016/b978-0-12-394387-3.00004-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The strong clinical activity of the proteasome inhibitor bortezomib (Velcade) in multiple myeloma and other hematological malignancies has focused considerable attention on its mechanisms of action. Although NFκB inhibition was initially the mechanism in focus, accumulating evidence indicates that misfolded protein accumulation leading to proteotoxicity plays an even more important role in cell killing. Proteotoxicity that occurs as a consequence of protein aggregate accumulation has long been associated with the development of neurodegenerative diseases, and a large and growing body of literature has documented how protein aggregates are handled and disposed of via evolutionarily conserved mechanisms involving cross talk between the proteasome and autophagy in normal cells. The type II histone deacetylase HDAC6 plays important roles in these processes and HDAC6 inhibition enhances proteotoxicity. These observations served as the basis for the development of HDAC6-specific chemical inhibitors that are now being evaluated in combination with proteasome inhibitors in preclinical models. Nonetheless, there is also strong evidence that the more classical, chromatin-associated (type I) HDACs are also involved in the regulation of proteotoxicity, although the biochemical mechanisms underlying their effects are not well defined. Importantly, emerging evidence indicates that subsets of tumor cells contain defects in these protein quality control pathways, which may underlie their vulnerability to proteasome inhibitor-induced death. In addition, our clearer understanding of cytoprotective protein quality control responses is identifying novel candidate targets for therapeutic intervention. In this chapter, we present an overview of protein quality control mechanisms in normal tissues and describe how this information is informing our development of proteasome inhibitors and other agents that impact upon these pathways for cancer therapy.
Collapse
Affiliation(s)
- David J McConkey
- Department of Urology, U.T. M.D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | |
Collapse
|
12
|
Sreejith RK, Suresh CG, Bhosale SH, Bhavnani V, Kumar A, Gaikwad SM, Pal JK. Conformational Transitions of the Catalytic Domain of Heme-Regulated Eukaryotic Initiation Factor 2α Kinase, a Key Translational Regulatory Molecule. J Fluoresc 2011; 22:431-41. [DOI: 10.1007/s10895-011-0976-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/13/2011] [Indexed: 01/18/2023]
|
13
|
Correia MA, Sinclair PR, De Matteis F. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab Rev 2011; 43:1-26. [PMID: 20860521 PMCID: PMC3034403 DOI: 10.3109/03602532.2010.515222] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heme is vital to our aerobic universe. Heme cellular content is finely tuned through an exquisite control of synthesis and degradation. Heme deficiency is deleterious to cells, whereas excess heme is toxic. Most of the cellular heme serves as the prosthetic moiety of functionally diverse hemoproteins, including cytochromes P450 (P450s). In the liver, P450s are its major consumers, with >50% of hepatic heme committed to their synthesis. Prosthetic heme is the sine qua non of P450 catalytic biotransformation of both endo- and xenobiotics. This well-recognized functional role notwithstanding, heme also regulates P450 protein synthesis, assembly, repair, and disposal. These less well-appreciated aspects are reviewed herein.
Collapse
Affiliation(s)
- Maria Almira Correia
- Department of Cellular and Molecular Pharmacology, The Liver Center, University of California, San Francisco, 94158, USA.
| | | | | |
Collapse
|
14
|
Fournier MJ, Gareau C, Mazroui R. The chemotherapeutic agent bortezomib induces the formation of stress granules. Cancer Cell Int 2010; 10:12. [PMID: 20429927 PMCID: PMC2873330 DOI: 10.1186/1475-2867-10-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/29/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cytoplasmic stress granules (SGs) are specialized storage sites of untranslated mRNAs whose formation occurs under different stress conditions and is often associated with cell survival. SGs-inducing stresses include radiations, hypoxia, viral infections, and chemical inhibitors of specific translation initiation factors. The FDA-approved drug bortezomib (Velcade(R)) is a peptide boronate inhibitor of the 26S proteasome that is very efficient for the treatment of myelomas and other hematological tumors. Solid tumors are largely refractory to bortezomib. In the present study, we investigated the formation of SGs following bortezomib treatment. RESULTS We show that bortezomib efficiently induces the formation of SGs in cancer cells. This process involves the phosphorylation of translation initiation factor eIF2alpha by heme-regulated inhibitor kinase (HRI). Depletion of HRI prevents bortezomib-induced formation of SGs and promotes apoptosis. CONCLUSIONS This is the first study describing the formation of SGs by a chemotherapeutic compound. We speculate that the activation of HRI and the formation of SGs might constitute a mechanism by which cancer cells resist bortezomib-mediated apoptosis.
Collapse
Affiliation(s)
- Marie-Josée Fournier
- Centre de recherche de l'hôpital St-François d'Assise (CHUQ/CRSFA), 10 rue de l'Espinay, Quebec, QC G1L 3L5, Canada.
| | | | | |
Collapse
|
15
|
Acharya P, Chen JJ, Correia MA. Hepatic heme-regulated inhibitor (HRI) eukaryotic initiation factor 2alpha kinase: a protagonist of heme-mediated translational control of CYP2B enzymes and a modulator of basal endoplasmic reticulum stress tone. Mol Pharmacol 2010; 77:575-92. [PMID: 20071449 PMCID: PMC2845940 DOI: 10.1124/mol.109.061259] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 01/12/2010] [Indexed: 11/22/2022] Open
Abstract
We have reported previously that the hepatic heme-regulated inhibitor (HRI)-eukaryotic initiation factor 2 alpha (eIF2 alpha) kinase is activated in acute heme-deficient states, resulting in translational shut-off of global hepatic protein synthesis, including phenobarbital (PB)-mediated induction of CYP2B enzymes in rats. These findings revealed that heme regulates hepatic CYP2B synthesis at the translational level via HRI. As a proof of concept, we have now employed a genetic HRI-knockout (KO) mouse hepatocyte model. In HRI-KO hepatocytes, PB-mediated CYP2B protein induction is no longer regulated by hepatic heme availability and proceeds undeterred even after acute hepatic heme depletion. It is noteworthy that genetic ablation of HRI led to a small albeit significant elevation of basal hepatic endoplasmic reticulum (ER) stress as revealed by the activation of ER stress-inducible RNA-dependent protein kinase-like ER-integral (PERK) eIF2 alpha-kinase, and induction of hepatic protein ubiquitination and ER chaperones Grp78 and Grp94. Such ER stress was further augmented after PB-mediated hepatic protein induction. These findings suggest that HRI normally modulates the basal hepatic ER stress tone. Furthermore, because HRI exists in both human and rat liver in its heme-sensitive form and is inducible by cytochrome P450 inducers such as PB, these findings are clinically relevant to acute heme-deficient states, such as the acute hepatic porphyrias. Activation of this exquisitely sensitive heme sensor would normally protect cells by safeguarding cellular energy and nutrients during acute heme deficiency. However, similar HRI activation in genetically predisposed persons could lead to global translational arrest of physiologically relevant enzymes and proteins, resulting in the severe and often fatal clinical symptoms of the acute hepatic porphyrias.
Collapse
Affiliation(s)
- Poulomi Acharya
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
16
|
Stress-induced overexpression of the heme-regulated eIF-2α kinase is regulated by Elk-1 activated through ERK pathway. Biochem Biophys Res Commun 2009; 379:710-5. [DOI: 10.1016/j.bbrc.2008.12.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 12/14/2008] [Indexed: 11/17/2022]
|
17
|
Zhang Y, Wang Y, Kanyuka K, Parry MAJ, Powers SJ, Halford NG. GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2alpha in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3131-41. [PMID: 18603615 PMCID: PMC2504353 DOI: 10.1093/jxb/ern169] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 05/20/2008] [Accepted: 05/20/2008] [Indexed: 05/18/2023]
Abstract
The yeast regulatory protein kinase, general control non-derepressible-2 (GCN2) plays a key role in general amino acid control. GCN2 phosphorylates the alpha subunit of the trimeric eukaryotic translation initiation factor-2 (eIF2), bringing about a decrease in the general rate of protein synthesis but an increase in the synthesis of GCN4, a transcription factor that promotes the expression of genes encoding enzymes for amino acid biosynthesis. The present study concerned the phosphorylation of Arabidopsis eIF2alpha (AteIF2alpha) by the Arabidopsis homologue of GCN2, AtGCN2, and the role of AtGCN2 in regulating genes encoding enzymes of amino acid biosynthesis and responding to virus infection. A null mutant for AtGCN2 called GT8359 was obtained and western analysis confirmed that it lacked AtGCN2 protein. GT8359 was more sensitive than wild-type Arabidopsis to herbicides that affect amino acid biosynthesis. Phosphorylation of AteIF2alpha occurred in response to herbicide treatment but only in wild-type Arabidopsis, not GT8359, showing it to be AtGCN2-dependent. Expression analysis of genes encoding key enzymes for amino acid biosynthesis and nitrate assimilation revealed little effect of loss of AtGCN2 function in GT8359 except that expression of a nitrate reductase gene, NIA1, was decreased. Analysis of wild-type and GT8359 plants infected with Turnip yellow mosaic virus or Turnip crinkle virus showed that AteIF2alpha was not phosphorylated.
Collapse
Affiliation(s)
- Yuhua Zhang
- Centre for Crop Genetic Improvement, Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Yifei Wang
- Centre for Crop Genetic Improvement, Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Kostya Kanyuka
- Centre for Sustainable Pest and Disease Management, Plant Pathology and Microbiology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Martin A. J. Parry
- Centre for Crop Genetic Improvement, Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Stephen J. Powers
- Centre for Mathematical and Computational Biology, Biomathematics and Bioinformatics Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Nigel G. Halford
- Centre for Crop Genetic Improvement, Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| |
Collapse
|
18
|
Yerlikaya A, Kimball SR, Stanley BA. Phosphorylation of eIF2alpha in response to 26S proteasome inhibition is mediated by the haem-regulated inhibitor (HRI) kinase. Biochem J 2008; 412:579-88. [PMID: 18290760 PMCID: PMC2842126 DOI: 10.1042/bj20080324] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The present study demonstrates that even brief inhibition of degradation by the 26S proteasome inhibits global protein synthesis, mediated through increased phosphorylation of eIF2alpha (eukaryotic translational initiation factor 2alpha) by the HRI (haem-regulated inhibitor) kinase. Exposure of COS-7 cells to the proteasome inhibitor MG-132 (the proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-leucinal) for 4 h resulted in a 55-60% decrease in protein synthesis rate compared with control cells. This repression of protein synthesis after treatment with MG-132 is not due to induction of apoptosis, which is known to occur after longer periods of 26S inhibition. Instead, we observed a significantly increased phosphorylation of eIF2alpha, which is known to repress global protein synthesis. In three MEF (mouse embryonic fibroblast) knockout cell lines lacking one of the four kinases known to phosphorylate eIF2alpha, increased phosphorylation of eIF2alpha still occurred after inhibition of the 26S proteasome. These three cell lines included a deletion of the PKR (double-stranded-RNA-dependent protein kinase); a deletion of the PERK (PKR-like endoplasmic reticulum resident kinase); or a deletion of the GCN2 (positive general control of transcription-2) kinase, indicating that none of these kinases was primarily responsible for the observed phosphorylation of eIF2alpha. In contrast, in a fourth MEF knockout cell line, HRI(-/-) cells lacking the HRI kinase failed to increase eIF2alpha phosphorylation upon proteasome inhibitor treatment (MG-132 or various doses of Bortezomib), indicating that the HRI kinase is the primary kinase activated by brief treatment of MEFs with 26S proteasome inhibitors.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Dumlupınar University, Art and Science Faculty, Department of Biology, Kütahya, 43100 Turkey
| | - Scot R. Kimball
- The Pennsylvania State University College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA 17033
| | - Bruce A. Stanley
- The Pennsylvania State University College of Medicine, Section of Research Resources, Hershey, PA 17033
| |
Collapse
|
19
|
Costa-Mattioli M, Sonenberg N. Translational control of gene expression: a molecular switch for memory storage. PROGRESS IN BRAIN RESEARCH 2008; 169:81-95. [PMID: 18394469 DOI: 10.1016/s0079-6123(07)00005-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A critical requirement for the conversion of the labile short-term memory (STM) into the consolidated long-term memory (LTM) is new gene expression (new mRNAs and protein synthesis). The first clues to the molecular mechanisms of the switch from short-term to LTM emerged from studies on protein synthesis in different species. Initially, it was shown that LTM can be distinguished from STM by its susceptibility to protein synthesis inhibitors. Later, it was found that long-lasting synaptic changes, which are believed to be a key cellular mechanism by which information is stored, are also dependent on new protein synthesis. Although the role of protein synthesis in memory was reported more than 40 years ago, recent molecular, genetic, and biochemical studies have provided fresh insights into the molecular mechanisms underlying these processes. In this chapter, we provide an overview of the role of translational control by the eIF2alpha signaling pathway in long-term synaptic plasticity and memory consolidation.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry and McGill Cancer Center, 3655 Promendde Sir William Osler, McGill University, Montréal, QC H3G 1Y6, Canada
| | | |
Collapse
|
20
|
Liao M, Pabarcus MK, Wang Y, Hefner C, Maltby DA, Medzihradszky KF, Salas-Castillo SP, Yan J, Maher JJ, Correia MA. Impaired dexamethasone-mediated induction of tryptophan 2,3-dioxygenase in heme-deficient rat hepatocytes: translational control by a hepatic eIF2alpha kinase, the heme-regulated inhibitor. J Pharmacol Exp Ther 2007; 323:979-89. [PMID: 17761498 DOI: 10.1124/jpet.107.124602] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO), a liver-specific cytosolic hemoprotein, is the rate-limiting enzyme in L-tryptophan catabolism and thus a key serotonergic determinant. Glucocorticoids transcriptionally activate the TDO gene with marked enzyme induction. TDO is also regulated by heme, its prosthetic moiety, as its expression and function are significantly reduced after acute hepatic heme depletion. Here we show in primary rat hepatocytes that this impairment is not due to faulty transcriptional activation of the TDO gene but rather due to its posttranscriptional regulation by heme. Accordingly, in acutely heme-depleted hepatocytes, the de novo synthesis of TDO protein is markedly decreased (>90%) along with that of other hepatic proteins. This global suppression of de novo hepatic protein syntheses in these heme-depleted cells is associated with a significantly enhanced phosphorylation of the alpha-subunit of the eukaryotic initiation factor eIF2 (eIF2alpha), as monitored by the phosphorylated eIF2alpha/total eIF2alpha ratio. Heme supplementation reversed these effects, indicating that heme regulates TDO induction by functional control of an eIF2alpha kinase. A cDNA was cloned from heme-depleted rat hepatocytes, and DNA sequencing verified its identity to the previously cloned rat brain heme-regulated inhibitor (HRI). Proteomic, biochemical, and/or immunoblotting analyses of the purified recombinant protein and the immunoaffinity-captured hepatic protein confirmed its identity as a rat heme-sensitive eIF2alpha kinase. These findings not only document that a hepatic HRI exists and is physiologically relevant but also implicate its translational shut-off of key proteins in the pathogenesis and symptomatology of the acute hepatic heme-deficient conditions clinically known as the hepatic porphyrias.
Collapse
Affiliation(s)
- Mingxiang Liao
- Dept. of Cellular and Molecular Pharmacology, Mission Bay Campus, Genentech Hall, 600 16th Street, N572F/Box 2280, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Miksanova M, Igarashi J, Minami M, Sagami I, Yamauchi S, Kurokawa H, Shimizu T. Characterization of heme-regulated eIF2alpha kinase: roles of the N-terminal domain in the oligomeric state, heme binding, catalysis, and inhibition. Biochemistry 2006; 45:9894-905. [PMID: 16893190 DOI: 10.1021/bi060556k] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heme-regulated eIF2alpha kinase [heme-regulated inhibitor (HRI)] plays a critical role in the regulation of protein synthesis by heme iron. The kinase active site is located in the C-terminal domain, whereas the N-terminal domain is suggested to regulate catalysis in response to heme binding. Here, we found that the rate of dissociation for Fe(III)-protoporphyrin IX was much higher for full-length HRI (1.5 x 10(-)(3) s(-)(1)) than for myoglobin (8.4 x 10(-)(7) s(-)(1)) or the alpha-subunit of hemoglobin (7.1 x 10(-)(6) s(-)(1)), demonstrating the heme-sensing character of HRI. Because the role of the N-terminal domain in the structure and catalysis of HRI has not been clear, we generated N-terminal truncated mutants of HRI and examined their oligomeric state, heme binding, axial ligands, substrate interactions, and inhibition by heme derivatives. Multiangle light scattering indicated that the full-length enzyme is a hexamer, whereas truncated mutants (truncations of residues 1-127 and 1-145) are mainly trimers. In addition, we found that one molecule of heme is bound to the full-length and truncated mutant proteins. Optical absorption and electron spin resonance spectra suggested that Cys and water/OH(-) are the heme axial ligands in the N-terminal domain-truncated mutant complex. We also found that HRI has a moderate affinity for heme, allowing it to sense the heme concentration in the cell. Study of the kinetics showed that the HRI kinase reaction follows classical Michaelis-Menten kinetics with respect to ATP but sigmoidal kinetics and positive cooperativity between subunits with respect to the protein substrate (eIF2alpha). Removal of the N-terminal domain decreased this cooperativity between subunits and affected the other kinetic parameters including inhibition by Fe(III)-protoporphyrin IX, Fe(II)-protoporphyrin IX, and protoporphyrin IX. Finally, we found that HRI is inhibited by bilirubin at physiological/pathological levels (IC(50) = 20 microM). The roles of the N-terminal domain and the binding of heme in the structural and functional properties of HRI are discussed.
Collapse
Affiliation(s)
- Marketa Miksanova
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Nguyen DH, Beuerman RW, Meneray M, Toshida H. Sensory denervation modulates eIF-2 alpha kinase expression in the rabbit lacrimal gland. Curr Eye Res 2006; 31:287-95. [PMID: 16603461 PMCID: PMC2835540 DOI: 10.1080/02713680600598828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To investigate the hypothesis that sensory denervation of the rabbit lacrimal gland results in dysregulation of protein synthesis. We used differential display of mRNA to identify genes associated with protein synthesis and secretion that may be altered in this situation. METHODS New Zealand white rabbits underwent unilateral sensory denervation by the ablation of the trigeminal ganglion. After 7 days, the denervated and contralateral control lacrimal glands were removed. The effects of denervation on gene expression were carried out using differential mRNA display. Northern and Western blot analyses were used to verify differential gene expression. RESULTS Differential mRNA display identified the gene heme-regulated inhibitor eukaryotic initiation factor-2 alpha kinase (HRI eIF-2a kinase) in the lacrimal gland, the expression of which was reduced in the denervated lacrimal gland. The sequenced fragment from differential display showed 94% identity to rabbit HRI eIF-2a kinase. The decreased expression of HRI eIF-2a kinase was confirmed by Northern and Western blots, and measurement of HRI eIF-2a kinase phosphorylation activity in the lacrimal gland after ablation of sensory neurons showed that it was significantly decreased compared with that of normal and control lacrimal glands. CONCLUSIONS The results suggest that loss of sensory innervation has a role in the lacrimal gland, contributing to the expression of HRI eIF-2a kinase, a pivotal negative regulator of protein synthesis. A reduction in control of protein synthesis may lead to the translation of repressed messages associated with cell stress responses.
Collapse
Affiliation(s)
- Doan H Nguyen
- LSU Eye Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | |
Collapse
|
23
|
Zhu R, Zhang YB, Chen YD, Dong CW, Zhang FT, Zhang QY, Gui JF. Molecular cloning and stress-induced expression of paralichthys olivaceus heme-regulated initiation factor 2alpha kinase. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:1047-59. [PMID: 16563505 DOI: 10.1016/j.dci.2006.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 02/05/2006] [Accepted: 02/05/2006] [Indexed: 05/08/2023]
Abstract
The heme-regulated initiation factor 2alpha kinase (HRI) is acknowledged to play an important role in translational shutoff in reticulocytes in response to various cellular stresses. In this study, we report its homologous cDNA cloning and characterization from cultured flounder embryonic cells (FEC) after treatment with UV-inactivated grass carp haemorrhagic virus (GCHV). The full-length cDNA of Paralichthys olivaceus HRI homologue (PoHRI) has 2391 bp and encodes a protein of 651 amino acids. The putative PoHRI protein exhibits high identity with all members of eIF2alpha kinase family. It contains 12 catalytic subdomains located within the C-terminus of all Ser/Thr protein kinases, a unique kinase insertion of 136 amino acids between subdomains IV and V, and a relatively conserved N-terminal domain (NTD). Upon heat shock, virus infection or Poly I:C treatment, PoHRI mRNA and protein are significantly upregulated in FEC cells but show different expression patterns in response to different stresses. In healthy flounders, PoHRI displays a wide tissue distribution at both the mRNA and protein levels. These results indicate that PoHRI is a ubiquitous eIF2alpha kinase and might play an important role in translational control over nonheme producing FEC cells under different stresses.
Collapse
Affiliation(s)
- Rong Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Sarkar A, Kulkarni A, Chattopadhyay S, Mogare D, Sharma KK, Singh K, Pal JK. Lead-induced upregulation of the heme-regulated eukaryotic initiation factor 2α kinase is compromised by hemin in human K562 cells. ACTA ACUST UNITED AC 2005; 1732:15-22. [PMID: 16500424 DOI: 10.1016/j.bbaexp.2005.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 12/10/2005] [Accepted: 12/19/2005] [Indexed: 11/24/2022]
Abstract
Expression and kinase activity of the heme-regulated-eIF-2alpha kinase or -inhibitor (HRI) are induced during cytoplasmic stresses leading to inhibition of protein synthesis. Using a reporter construct with HRI promoter, we have determined the promoter activity during heat-shock and lead toxicity in human K562 cells. These two conditions induced HRI promoter activity by 2- to 3-fold. Contrary to this, hemin, a suppressor of HRI kinase activity, downregulated HRI promoter activity and stimulated hemoglobin synthesis. Interestingly, when hemin-treated cells were transfected and exposed to lead, hemin compromised lead-effect substantially by downregulating HRI promoter activity, HRI transcription and HRI kinase activity. These results together suggest that heme signaling in relation to translation regulation is not only restricted to the cytoplasm (modulating HRI kinase activity) alone but it also spans to the nucleus modulating HRI expression. Hemin may thus be useful for alleviation of stress-induced inhibition of protein synthesis.
Collapse
Affiliation(s)
- Angshuman Sarkar
- Department of Biotechnology, University of Pune, Pune 411 007, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Han XM, Lee G, Hefner C, Maher JJ, Correia MA. Heme-reversible impairment of CYP2B1/2 induction in heme-depleted rat hepatocytes in primary culture: translational control by a hepatic alpha-subunit of the eukaryotic initiation factor kinase? J Pharmacol Exp Ther 2005; 314:128-38. [PMID: 15769864 DOI: 10.1124/jpet.105.084699] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of heme in the phenobarbital-mediated induction of CYP2B1/2 was reexamined in rat hepatocytes in monolayer culture, acutely depleted of heme by treatment with either 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine (DDEP) or N-methylprotoporphyrins (NMPP). The findings revealed that such acute hepatic heme depletion markedly impaired CYP2B1/2 protein induction, an effect that was reversible by heme resupplementation. However, TaqMan analyses of hepatic mRNA isolated from these heme-depleted cells revealed that this impairment was not due to faulty transcriptional activation of either CYP2B1 or CYP2B2 gene expression as previously proposed, thereby confirming literature reports that heme is not a transcriptional regulator of the CYP2B1/2 gene. In contrast, the rate of de novo CYP2B1/2 protein synthesis was found to be dramatically inhibited in both DDEP- and NMPP-treated hepatocytes. Concurrently, a marked (>80%) suppression of de novo hepatocellular protein synthesis was also observed, along with a significantly enhanced phosphorylation of the alpha-subunit of the eukaryotic initiation factor eIF2 (eIF2alpha), as monitored by the phosphorylated eIF2alpha/total eIF2alpha ratio in these heme-depleted cells. Indeed, the parallel reversal of all these three effects by heme supplementation suggests that this impaired CYP2B1 induction most likely stems from blocked translational initiation resulting from the activation of a heme-sensitive eIF2alpha kinase. Such global suppression of hepatic protein synthesis may disrupt a myriad of vital cellular functions, thereby contributing to the clinical symptoms of acute hepatic heme-deficient states such as the hepatic porphyrias.
Collapse
Affiliation(s)
- Xing-Mei Han
- Department of Cellular and Molecular Pharmacology, Box 0450, University of California, San Francisco, CA 94143-0450, USA
| | | | | | | | | |
Collapse
|
26
|
Klann E, Antion MD, Banko JL, Hou L. Synaptic plasticity and translation initiation. Learn Mem 2004; 11:365-72. [PMID: 15254214 DOI: 10.1101/lm.79004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is widely accepted that protein synthesis, including local protein synthesis at synapses, is required for several forms of synaptic plasticity. Local protein synthesis enables synapses to control synaptic strength independent of the cell body via rapid protein production from pre-existing mRNA. Therefore, regulation of translation initiation is likely to be intimately involved in modulating synaptic strength. Our understanding of the translation-initiation process has expanded greatly in recent years. In this review, we discuss various aspects of translation initiation, as well as signaling pathways that might be involved in coupling neurotransmitter and neurotrophin receptors to the translation machinery during various forms of synaptic plasticity.
Collapse
Affiliation(s)
- Eric Klann
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
27
|
Prasad MD, Han SJ, Nagaraju J, Lee WJ, Brey PT. Cloning and characterization of an eukaryotic initiation factor-2alpha kinase from the silkworm, Bombyx mori. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:56-63. [PMID: 12850273 DOI: 10.1016/s0167-4781(03)00084-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Eukaryotic initiation factor 2alpha (eIF-2alpha) kinases are involved in the translational regulations that occur in response to various types of environmental stress, and play an important role in the cellular defense system operating under unfavorable conditions. The identification of additional eIF-2alpha kinases and the elucidation of their functions are necessary to understand how different eIF-2alpha kinases can specifically respond to distinct stimuli. Here, we report a novel eIF-2alpha kinase, termed BeK, from the silkworm, Bombyx mori. This gene encodes 579 amino acids and contains all 11 catalytic domains of protein-serine/threonine kinases. Most notably, it contains an "Ile-Gln-Met-Xaa-Xaa-Cys" motif, which is highly conserved from yeast to mammalian eIF-2alpha kinases. BeK does not show any significant homology in the NH(2) terminal regulatory domain, suggesting a distinct regulatory mechanism of this novel eIF-2alpha kinase. BeK is ubiquitously expressed in the various tissues throughout the final larval stage. Importantly, BeK is activated in Drosophila Schneider cells following heat shock and osmotic stress, and activated-BeK has been shown to phosphorylate an eIF-2alpha subunit at the Ser(50) site. However, other forms of stress, such as immune stress, endoplasmic reticulum stress and oxidative stress, cannot significantly elicit BeK activity. Interestingly, the baculovirus gene product, PK2, can inhibit BeK enzymatic activity, suggesting that BeK may be an endogenous target for a viral gene product. Taken together, these data indicate that BeK is a novel eIF-2alpha kinase involved in the stress response in B. mori.
Collapse
Affiliation(s)
- M Dharma Prasad
- Laboratoire de Biochimie et Biologie Moléculaire des Insectes, Institut Pasteur, 25 rue du Dr. Roux, 75724 Cedex 15, Paris, France
| | | | | | | | | |
Collapse
|
28
|
Zhan K, Vattem KM, Bauer BN, Dever TE, Chen JJ, Wek RC. Phosphorylation of eukaryotic initiation factor 2 by heme-regulated inhibitor kinase-related protein kinases in Schizosaccharomyces pombe is important for fesistance to environmental stresses. Mol Cell Biol 2002; 22:7134-46. [PMID: 12242291 PMCID: PMC139816 DOI: 10.1128/mcb.22.20.7134-7146.2002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein synthesis is regulated by the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) in response to different environmental stresses. One member of the eIF2alpha kinase family, heme-regulated inhibitor kinase (HRI), is activated under heme-deficient conditions and blocks protein synthesis, principally globin, in mammalian erythroid cells. We identified two HRI-related kinases from Schizosaccharomyces pombe which have full-length homology with mammalian HRI. The two HRI-related kinases, named Hri1p and Hri2p, exhibit autokinase and kinase activity specific for Ser-51 of eIF2alpha, and both activities were inhibited in vitro by hemin, as previously described for mammalian HRI. Overexpression of Hri1p, Hri2p, or the human eIF2alpha kinase, double-stranded-RNA-dependent protein kinase (PKR), impeded growth of S. pombe due to elevated phosphorylation of eIF2alpha. Cells from strains with deletions of the hri1(+) and hri2(+) genes, individually or in combination, exhibited a reduced growth rate when exposed to heat shock or to arsenic compounds. Measurements of in vivo phosphorylation of eIF2alpha suggest that Hri1p and Hri2p differentially phosphorylate eIF2alpha in response to these stress conditions. These results demonstrate that HRI-related enzymes are not unique to vertebrates and suggest that these eIF2alpha kinases are important participants in diverse stress response pathways in some lower eukaryotes.
Collapse
Affiliation(s)
- Ke Zhan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
29
|
Lu L, Chen JJ. Molecular cloning and characterization of the promoter of mouse heme-regulated eIF2alpha kinase. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1574:193-9. [PMID: 11955629 DOI: 10.1016/s0167-4781(01)00281-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The heme-regulated eIF2alpha kinase (HRI) phosphorylates the alpha subunit of the translation initiation factor 2, which plays an important role in translational regulation during heme deficiency. HRI is expressed mainly in erythroid cells. To elucidate the mechanisms that regulate the tissue-specific expression of the mouse HRI gene, we have cloned and characterized its 5' flanking region. Primer extension and 5' RACE analyses identified a major transcription initiation site 84 nucleotides upstream from the ATG start codon. Sequence analysis of the 5' flanking region revealed that HRI promoter lacked a TATA element, but contained an initiator core element and three SP1 consensus binding motifs. Transient transfection analysis using luciferase reporter gene constructs containing a series of deletions and mutations in the 5' region identified a 159 bp sequence which is necessary and sufficient for basal HRI promoter activities in NIH 3T3 and mouse erythroleukemic cells. Both the initiator and one of the SP1 binding sites in the 159 bp are essential for HRI promoter activity.
Collapse
Affiliation(s)
- Linrong Lu
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, E25-545, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | |
Collapse
|
30
|
Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:57-89. [PMID: 11575161 DOI: 10.1007/978-3-662-09889-9_3] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha subunit of polypeptide chain initiation factor eIF2 can be phosphorylated by a number of related protein kinases which are activated in response to cellular stresses. Physiological conditions which result in eIF2 alpha phosphorylation include virus infection, heat shock, iron deficiency, nutrient deprivation, changes in intracellular calcium, accumulation of unfolded or denatured proteins and the induction of apoptosis. Phosphorylated eIF2 acts as a dominant inhibitor of the guanine nucleotide exchange factor eIF2B and prevents the recycling of eIF2 between successive rounds of protein synthesis. Extensive phosphorylation of eIF2 alpha and strong inhibition of eIF2B activity can result in the downregulation of the overall rate of protein synthesis; less marked changes may lead to alterations in the selective translation of alternative open reading frames in polycistronic mRNAs, as demonstrated in yeast. These mechanisms can provide a signal transduction pathway linking eukaryotic cellular stress responses to alterations in the control of gene expression at the translational level.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
31
|
Kumar R, Azam S, Sullivan JM, Owen C, Cavener DR, Zhang P, Ron D, Harding HP, Chen JJ, Han A, White BC, Krause GS, DeGracia DJ. Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase, PERK. J Neurochem 2001; 77:1418-21. [PMID: 11389192 DOI: 10.1046/j.1471-4159.2001.00387.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons, which persists in vulnerable neurons, that is caused by the inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha). To identify kinases responsible for eIF2alpha phosphorylation [eIF2alpha(P)] during brain reperfusion, we induced ischemia by bilateral carotid artery occlusion followed by post-ischemic assessment of brain eIF2alpha(P) in mice with homozygous functional knockouts in the genes encoding the heme-regulated eIF2alpha kinase (HRI), or the amino acid-regulated eIF2alpha kinase (GCN2). A 10-fold increase in eIF2alpha(P) was observed in reperfused wild-type mice and in the HRI-/- or GCN2-/- mice. However, in all reperfused groups, the RNA-dependent protein kinase (PKR)-like endoplasmic reticulum eIF2alpha kinase (PERK) exhibited an isoform mobility shift on SDS-PAGE, consistent with the activation of the kinase. These data indicate that neither HRI nor GCN2 are required for the large increase in post-ischemic brain eIF2alpha(P), and in conjunction with our previous report that eIF2alpha(P) is produced in the brain of reperfused PKR-/- mice, provides evidence that PERK is the kinase responsible for eIF2alpha phosphorylation in the early post-ischemic brain.
Collapse
Affiliation(s)
- R Kumar
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Uma S, Yun BG, Matts RL. The heme-regulated eukaryotic initiation factor 2alpha kinase. A potential regulatory target for control of protein synthesis by diffusible gases. J Biol Chem 2001; 276:14875-83. [PMID: 11278914 DOI: 10.1074/jbc.m011476200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) has been reported to inhibit protein synthesis in eukaryotic cells by increasing the phosphorylation of the alpha-subunit of eukaryotic initiation factor (eIF) 2. However, the mechanism through which this increase occurs has not been characterized. In this report, we examined the effect of the diffusible gases nitric oxide (NO) and carbon monoxide (CO) on the activation of the heme-regulated eIF2alpha kinase (HRI) in rabbit reticulocyte lysate. Spectral analysis indicated that both NO and CO bind to the N-terminal heme-binding domain of HRI. Although NO was a very potent activator of HRI, CO markedly suppressed NO-induced HRI activation. The NO-induced activation of HRI was transduced through the interaction of NO with the N-terminal heme-binding domain of HRI and not through S-nitrosylation of HRI. We postulate that the regulation of HRI activity by diffusible gases may be of wider physiological significance, as we further demonstrate that NO generators increase eIF2alpha phosphorylation levels in NT2 neuroepithelial and C2C12 myoblast cells and activate HRI immunoadsorbed from extracts of these non-erythroid cell lines.
Collapse
Affiliation(s)
- S Uma
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | |
Collapse
|
33
|
Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2α kinase. Blood 2000. [DOI: 10.1182/blood.v96.9.3241] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractProtein synthesis in reticulocytes depends on the availability of heme. In heme deficiency, inhibition of protein synthesis correlates with the activation of heme-regulated eIF-2α kinase (HRI), which blocks the initiation of protein synthesis by phosphorylating eIF-2α. HRI is a hemoprotein with 2 distinct heme-binding domains. Heme negatively regulates HRI activity by binding directly to HRI. To further study the physiological function of HRI, the wild-type (Wt) HRI and dominant-negative inactive mutants of HRI were expressed by retrovirus-mediated transfer in both non-erythroid NIH 3T3 and mouse erythroleukemic (MEL) cells. Expression of Wt HRI in 3T3 cells resulted in the inhibition of protein synthesis, a loss of proliferation, and eventually cell death. Expression of the inactive HRI mutants had no apparent effect on the growth characteristics or morphology of NIH 3T3 cells. In contrast, expression of 3 dominant-negative inactive mutants of HRI in MEL cells resulted in increased hemoglobin production and increased proliferative capacity of these cells upon dimethyl-sulfoxide induction of erythroid differentiation. These results directly demonstrate the importance of HRI in the regulation of protein synthesis in immature erythroid cells and suggest a role of HRI in the regulation of the numbers of matured erythroid cells.
Collapse
|
34
|
Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2α kinase. Blood 2000. [DOI: 10.1182/blood.v96.9.3241.h8003241_3241_3248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein synthesis in reticulocytes depends on the availability of heme. In heme deficiency, inhibition of protein synthesis correlates with the activation of heme-regulated eIF-2α kinase (HRI), which blocks the initiation of protein synthesis by phosphorylating eIF-2α. HRI is a hemoprotein with 2 distinct heme-binding domains. Heme negatively regulates HRI activity by binding directly to HRI. To further study the physiological function of HRI, the wild-type (Wt) HRI and dominant-negative inactive mutants of HRI were expressed by retrovirus-mediated transfer in both non-erythroid NIH 3T3 and mouse erythroleukemic (MEL) cells. Expression of Wt HRI in 3T3 cells resulted in the inhibition of protein synthesis, a loss of proliferation, and eventually cell death. Expression of the inactive HRI mutants had no apparent effect on the growth characteristics or morphology of NIH 3T3 cells. In contrast, expression of 3 dominant-negative inactive mutants of HRI in MEL cells resulted in increased hemoglobin production and increased proliferative capacity of these cells upon dimethyl-sulfoxide induction of erythroid differentiation. These results directly demonstrate the importance of HRI in the regulation of protein synthesis in immature erythroid cells and suggest a role of HRI in the regulation of the numbers of matured erythroid cells.
Collapse
|
35
|
Ito T, Warnken SP, May WS. Protein synthesis inhibition by flavonoids: roles of eukaryotic initiation factor 2alpha kinases. Biochem Biophys Res Commun 1999; 265:589-94. [PMID: 10558914 DOI: 10.1006/bbrc.1999.1727] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Flavonoids such as genistein and quercetin suppress tumor cell growth in vitro and in vivo. Many metabolic enzymes, including protein kinases, are known to be inhibited by flavonoids, yet the molecular targets and biochemical mechanisms of the tumor growth suppression remain unclear. Here, we find that flavonoids inhibit protein synthesis in both mouse and human leukemia cells. This inhibition is associated with phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha), a key regulatory mechanism of protein translation. Three mammalian eIF2alpha kinases have been identified: the interferon-inducible double-stranded RNA-dependent kinase (PKR), the heme-regulated inhibitor (HRI), and the very recently discovered PERK/PEK. We find that all of these eIF2alpha kinases can be activated by quercetin and genistein, indicating redundant roles of the eIF2alpha kinases. Thus, activation of eIF2alpha kinases appears to be a mechanism by which flavonoids can inhibit the growth of tumor and leukemia cells.
Collapse
Affiliation(s)
- T Ito
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, 77555-1048, USA
| | | | | |
Collapse
|
36
|
Uma S, Thulasiraman V, Matts RL. Dual role for Hsc70 in the biogenesis and regulation of the heme-regulated kinase of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 1999; 19:5861-71. [PMID: 10454533 PMCID: PMC84435 DOI: 10.1128/mcb.19.9.5861] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The heme-regulated kinase of the alpha subunit of eukaryotic initiation factor 2 (HRI) is activated in rabbit reticulocyte lysate (RRL) in response to a number of environmental conditions, including heme deficiency, heat shock, and oxidative stress. Activation of HRI causes an arrest of initiation of protein synthesis. Recently, we have demonstrated that the heat shock cognate protein Hsc70 negatively modulates the activation of HRI in RRL in response to these environmental conditions. Hsc70 is also known to be a critical component of the Hsp90 chaperone machinery in RRL, which plays an obligatory role for HRI to acquire and maintain a conformation that is competent to activate. Using de novo-synthesized HRI in synchronized pulse-chase translations, we have examined the role of Hsc70 in the regulation of HRI biogenesis and activation. Like Hsp90, Hsc70 interacted with nascent HRI and HRI that was matured to a state which was competent to undergo stimulus-induced activation (mature-competent HRI). Interaction of HRI with Hsc70 was required for the transformation of HRI, as the Hsc70 antagonist clofibric acid inhibited the folding of HRI into a mature-competent conformation. Unlike Hsp90, Hsc70 also interacted with transformed HRI. Clofibric acid disrupted the interaction of Hsc70 with transformed HRI that had been matured and transformed in the absence of the drug. Disruption of Hsc70 interaction with transformed HRI in heme-deficient RRL resulted in its hyperactivation. Furthermore, activation of HRI in response to heat shock or denatured proteins also resulted in a similar blockage of Hsc70 interaction with transformed HRI. These results indicate that Hsc70 is required for the folding and transformation of HRI into an active kinase but is subsequently required to negatively attenuate the activation of transformed HRI.
Collapse
Affiliation(s)
- S Uma
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | |
Collapse
|
37
|
O'Neil BJ, McKeown TR, DeGracia DJ, Alousi SS, Rafols JA, White BC. Cell death, calcium mobilization, and immunostaining for phosphorylated eukaryotic initiation factor 2-alpha (eIF2alpha) in neuronally differentiated NB-104 cells: arachidonate and radical-mediated injury mechanisms. Resuscitation 1999; 41:71-83. [PMID: 10459595 DOI: 10.1016/s0300-9572(99)00028-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
These experiments examine the effects of arachidonate with respect to cell death, radical-mediated injury, Ca2+ mobilization, and formation of ser-51-phosphorylated eukaryotic initiation factor 2alpha [eIF2alpha(P)]. It is known that during brain ischemia the concentration of free arachidonate can reach 180 microM, and during reperfusion oxidative metabolism of arachidonate leads to generation of superoxide that can reduce stored ferric iron and promote lipid peroxidation. During early brain reperfusion, we have shown an approximately 20-fold increase in eIF2alpha(P) which maps to vulnerable neurons that display inhibition of protein synthesis. Here in neuronally differentiated NB-104 cells, equivalent cell death (assessed by LDH release) was induced by 40 microM arachidonate and 20 microM cumene hydroperoxide (CumOOH, a known alkoxyl radical generator). In these injury models (1) radical inhibitors (BHA, BHT, and the lipophilic iron chelator EMHP) block CumOOH-induced cell death but do not block arachidonate-induced death; (2) 40 microM arachidonate (but not up to 40 microM CumOOH) rapidly induces Ca2+ release from intracellular stores; (3) both 40 microM arachidonate and 20 microM CumOOH induce intense immunostaining for eIF2alpha(P); and (4) the elF2alpha(P) immunostaining induced by CumOOH but not that induced by arachidonate is completely blocked by anti-radical intervention with EMHP. Arachidonate-induced formation of eIF2alpha(P) and cell death do not require iron-mediated radical mechanisms and are associated with Ca2+ release from intracellular stores; however, radical-mediated injury also induces both eIF2alpha(P) and cell death without release of intracellular Ca2+. Our data link eIF2alpha(P) formation during brain reperfusion to two established injury mechanisms that may operate concurrently.
Collapse
Affiliation(s)
- B J O'Neil
- Department of Emergency Medicine, Wayne State University School of Medicine, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Martín de la Vega C, García A, Martín ME, Alcázar A, Marin O, Quevedo C, Salinas M. Resistance of initiation factor 2 (eIF-2alpha) kinases to staurosporine: an approach for assaying the kinases in crude extracts. Cell Signal 1999; 11:399-404. [PMID: 10400313 DOI: 10.1016/s0898-6568(99)00009-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied the effect of staurosporine on two well characterised mammalian eIF-2alpha kinases, the heme-regulated translational inhibitor (HRI), and interferon-inducible double-stranded RNA-activated protein kinase (PKR). Both pure eIF-2 and a synthetic peptide used to measure the activity of purified or immunoprecipitated enzymes (sequence ILLSELSRRRIRAI) were phosphorylated with purified enzymes and crude preparations of tissues or cells in the presence of the inhibitor. In the presence of 0.25 microM staurosporine (a concentration which completely inhibits a wide range of Ser/Thr protein kinases), the phosphorylation of eIF-2alpha by HRI and PKR was not inhibited. The lack of response of eIF-2alpha kinases to staurosporine allowed us to measure PKR activity in salt washed postmicrosomal supernatants without previous purification of the enzyme. In the presence of poly(I):poly(C), the PKR activator, we detected both an increased phosphorylation of eIF-2alpha and an increment in the autophosphorylation of PKR. We also confirmed an induction of PKR in cultured neuronal cells after treatment with interferon. The results obtained following phosphorylation of the synthetic peptide with crude extracts are less conclusive. Although its phosphorylation is specific because it displaces eIF-2 phosphorylation, and the presence of staurosporine prevents its phosphorylation by other serine/threonine kinases, it is a rather poor substrate for PKR.
Collapse
|
39
|
Shi Y, An J, Liang J, Hayes SE, Sandusky GE, Stramm LE, Yang NN. Characterization of a mutant pancreatic eIF-2alpha kinase, PEK, and co-localization with somatostatin in islet delta cells. J Biol Chem 1999; 274:5723-30. [PMID: 10026192 DOI: 10.1074/jbc.274.9.5723] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of eukaryotic translation initiation factor-2alpha (eIF-2alpha) is one of the key steps where protein synthesis is regulated in response to changes in environmental conditions. The phosphorylation is carried out in part by three distinct eIF-2alpha kinases including mammalian double-stranded RNA-dependent eIF-2alpha kinase (PKR) and heme-regulated inhibitor kinase (HRI), and yeast GCN2. We report the identification and characterization of a related kinase, PEK, which shares common features with other eIF-2alpha kinases including phosphorylation of eIF-2alpha in vitro. We show that human PEK is regulated by different mechanisms than PKR or HRI. In contrast to PKR or HRI, which are dependent on autophosphorylation for their kinase activity, a point mutation that replaced the conserved Lys-614 with an alanine completely abolished the eIF-2alpha kinase activity, whereas the mutant PEK was still autophosphorylated when expressed in Sf-9 cells. Northern blot analysis indicates that PEK mRNA was predominantly expressed in pancreas, though low expression was also present in several tissues. Consistent with the high levels of mRNA in pancreas, the PEK protein was only detected in human pancreatic islets, and the kinase co-localized with somatostatin, a pancreatic delta cell-specific hormone. Thus PEK is believed to play an important role in regulating protein synthesis in the pancreatic islet, especially in islet delta cells.
Collapse
Affiliation(s)
- Y Shi
- Diabetes Research, DC 0545, Endocrine Division, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
DeGracia DJ, Adamczyk S, Folbe AJ, Konkoly LL, Pittman JE, Neumar RW, Sullivan JM, Scheuner D, Kaufman RJ, White BC, Krause GS. Eukaryotic initiation factor 2alpha kinase and phosphatase activity during postischemic brain reperfusion. Exp Neurol 1999; 155:221-7. [PMID: 10072297 DOI: 10.1006/exnr.1998.6986] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When ischemic brain is reperfused, there is in vulnerable neurons immediate inhibition of protein synthesis associated with a large increase in phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 [eIF2alpha, phosphorylated form eIF2alpha(P)]. We examined eIF2alpha kinase and eIF2alpha(P) phosphatase activity in brain homogenate postmitochondrial supernatants obtained from rats after 3 to 30 min of global brain ischemia (cardiac arrest), after 5 min of ischemia and 5 min of reperfusion (5R), and after 10 min of ischemia and 90 min reperfusion (90R). Because it has been suggested that PKR might be specifically responsible for producing eIF2alpha(P) during reperfusion, we also examined in brain homogenates from wild-type and PKR0/0 C57BL/6J x 129/SV mice the effect of 5 min of ischemia and 5 min of reperfusion on eIF2alpha(P). Cytosolic brain eIF2alpha(P) in the 5R and 90R rats was 18- and 23-fold that of nonischemic controls without any change in the rate of eIF2alpha(P) dephosphorylation. There was no change in eIF2alpha kinase activity between 3 and 30 min of ischemia but an 85% decrease in the 5R group; the 90R group was similar to controls. In wild-type and PKR0/0 mice total eIF2alpha was identical, and there was an identical 16-fold increase in eIF2alpha(P) at 5 min of reperfusion. Our observations contradict hypotheses that PKR activation, loss of eIF2alpha(P) phosphatase activity, or any general increase in eIF2alpha kinase activity are responsible for reperfusion-induced phosphorylation of eIF2alpha, and we suggest that the mechanism may involve regulation of the availability of eIF2alpha to a kinase.
Collapse
Affiliation(s)
- D J DeGracia
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Berlanga JJ, Herrero S, de Haro C. Characterization of the hemin-sensitive eukaryotic initiation factor 2alpha kinase from mouse nonerythroid cells. J Biol Chem 1998; 273:32340-6. [PMID: 9822714 DOI: 10.1074/jbc.273.48.32340] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heme-regulated eukaryotic initiation factor 2alpha (eIF2alpha) kinase (heme-regulated inhibitor (HRI)) is activated by heme deficiency in reticulocytes and plays an important role in translational control in these cells. Previously, HRI was cloned from rabbit reticulocytes and rat brain, but a heme-regulated eIF2alpha kinase activity has only been purified from erythroid cells. In this study, we report the purification of a heme-sensitive eIF2alpha kinase activity from both mouse liver and NIH 3T3 cell extracts. Furthermore, we have cloned and characterized this mouse liver eIF2alpha kinase (mHRI), which exhibits 83 and 94% identities to rabbit and rat HRIs, respectively. Both the purified enzyme and recombinant mHRI exhibited an autokinase and an eIF2alpha kinase activity, and both activities were inhibited in vitro by hemin. In addition, wild-type mHRI, but not the inactive mHRI-K196R mutant, was autophosphorylated in vivo when it was expressed in 293 cells. Quantitation of mHRI mRNA expression in various mouse tissues by reverse transcription-polymerase chain reaction revealed relatively high levels in liver, kidney, and testis. These results provide strong evidence that mHRI is a ubiquitous eIF2alpha kinase of mammalian cells, suggesting that it could play important roles in the translational regulation of nonerythroid tissues.
Collapse
Affiliation(s)
- J J Berlanga
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
42
|
Hsp90 regulates protein synthesis by activating the heme-regulated eukaryotic initiation factor 2α (eIF-2α) kinase in rabbit reticulocyte lysates. J Biosci 1998. [DOI: 10.1007/bf02936128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Sattlegger E, Hinnebusch AG, Barthelmess IB. cpc-3, the Neurospora crassa homologue of yeast GCN2, encodes a polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains required for general amino acid control. J Biol Chem 1998; 273:20404-16. [PMID: 9685394 DOI: 10.1074/jbc.273.32.20404] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on characteristic amino acid sequences of kinases that phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha kinases), degenerate oligonucleotide primers were constructed and used to polymerase chain reaction-amplify from genomic DNA of Neurospora crassa a sequence encoding part of a putative protein kinase. With this sequence an open reading frame was identified encoding a predicted polypeptide with juxtaposed eIF2alpha kinase and histidyl-tRNA synthetase-related domains. The 1646 amino acid sequence of this gene, called cpc-3, showed 35% positional identity over almost the entire sequence with GCN2 of yeast, which stimulates translation of the transcriptional activator of amino acid biosynthetic genes encoded by GCN4. Strains disrupted for cpc-3 were unable to induce increased transcription and derepression of amino acid biosynthetic enzymes in amino acid-deprived cells. The cpc-3 mutation did not affect the ability to up-regulate mRNA levels of cpc-1, encoding the GCN4 homologue and transcriptional activator of amino acid biosynthetic genes in N. crassa, but the mutation abolished the dramatic increase of CPC1 protein level in response to amino acid deprivation. These findings suggest that cpc-3 is the functional homologue of GCN2, being required for increased translation of cpc-1 mRNA in amino acid-starved cells.
Collapse
Affiliation(s)
- E Sattlegger
- Institute of Applied Genetics, University of Hannover, Herrenhäuser Strasse 2, D-30419 Hannover, Germany.
| | | | | |
Collapse
|
44
|
Heme-regulated eukaryotic initiation factor 2α kinase—A molecular indicator of haemolytic anemia. J Biosci 1997. [DOI: 10.1007/bf02703232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Craig AW, Cosentino GP, Donzé O, Sonenberg N. The kinase insert domain of interferon-induced protein kinase PKR is required for activity but not for interaction with the pseudosubstrate K3L. J Biol Chem 1996; 271:24526-33. [PMID: 8798713 DOI: 10.1074/jbc.271.40.24526] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interferon-induced protein kinase (PKR) is a member of a family of kinases that regulate translation initiation through phosphorylation of eukaryotic initiation factor 2alpha. In addition to the conserved catalytic subdomains that are present in all serine/threonine kinases, the eukaryotic initiation factor 2alpha kinases possess an insert region between catalytic subdomains IV and V that has been termed the kinase insert domain. To investigate the importance of the kinase insert domain of PKR, several deletions and point mutations were introduced within this domain and analyzed for kinase activity both in vitro and in vivo. Here we show that deletion of the kinase insert sequence or mutation of serine 355, which lies within this region, abrogates kinase activity. In addition, the kinase insert domain of PKR and adjacent amino acids (LFIQME) in catalytic subdomain V are not required for binding of the pseudosubstrate inhibitor K3L from vaccinia virus. A portion of the catalytic domain of PKR between amino acids 366 and 415 confers K3L binding in vivo, suggesting a possible role for this region of PKR in substrate interaction.
Collapse
Affiliation(s)
- A W Craig
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, Québec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
46
|
Flowers KM, Mellor H, Matts RL, Kimball SR, Jefferson LS. Cloning and characterization of complementary and genomic DNAs encoding the epsilon-subunit of rat translation initiation factor-2B. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:318-24. [PMID: 8688467 DOI: 10.1016/0167-4781(96)00055-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eukaryotic initiation factor-2B (eIF-2B) is a guanine nucleotide-exchange protein involved in the recycling of eIF-2 during peptide-chain initiation. Regulation of eIF-2B activity occurs under a wide range of conditions by diverse mechanisms. To better understand the regulation of eIF-2B activity as well as the coordinate expression of its five subunits, we have begun to clone and characterize the cDNAs and genes encoding these proteins. In the present study, complementary and genomic DNAs encoding the epsilon-subunit of rat eIF-2B were cloned and characterized. The cDNA is 2517 bp in length, including a 30 nt poly(A) tail, and recognizes both 2.7 and 3.5 kb mRNA species on Northern blots of rat RNA. The cDNA contains a 2151 bp open reading frame encoding 716 amino acids producing a protein with a predicted molecular mass of 80 kDa. The derived amino acid sequence contains regions identical to three peptides obtained from bovine liver eIF-2B epsilon and is 31% identical to Gcd6, the putative yeast eIF-2B epsilon. Examination of the derived amino acid sequence of rat eIF-2B epsilon reveals phosphorylation site motifs for several protein kinases which have been implicated in regulation of guanine nucleotide exchange activity. The mRNA for eIF-2B epsilon is expressed to a similar extent in most rat tissues examined with the exception of testis, where its expression is approx, three-fold greater. We have also isolated and sequenced the coding and 5'-flanking region of the rat eIF-2B epsilon gene. The 16 exons encoding rat eIF-2B epsilon are contained within 9.5 kb of genomic DNA. Examination of the promoter region of the gene reveals a consensus binding site for the alpha-Pal transcription factor as well as possible cytokine-response elements and binding sites for testis-specific transcription factors.
Collapse
Affiliation(s)
- K M Flowers
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
47
|
Alcázar A, Rivera J, Gómez-Calcerrada M, Muñoz F, Salinas M, Fando JL. Changes in the phosphorylation of eukaryotic initiation factor 2 alpha, initiation factor 2B activity and translational rates in primary neuronal cultures under different physiological growing conditions. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 38:101-8. [PMID: 8737673 DOI: 10.1016/0169-328x(95)00335-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF-2) is one of the best known mechanisms regulating protein synthesis in a wide range of eukaryotic cells, from yeast to human. To determine whether this mechanism operates in primary neuronal cells, we have cultured primary neuronal cells for 7 days under two optimal growing conditions, complete medium (containing 15% serum) and serum-free medium, and determined the protein synthesis rate, eukaryotic initiation 2 and 2B (eIF-2B) activities, as well as the level of phosphorylation of eIF-2. Cells cultured in serum-free medium exhibited a lower rate of protein synthesis (75%), concomitant to a decreased eIF-2 activity (71%), and slightly higher eIF-2(alpha P) levels (from 10 to 16% of total eIF-2) with respect to cells cultured in complete media. eIF-2B activity, as measured at saturating eIF-2. GDP concentrations (assay independent on the presence of eIF-2(alpha P)) was similar under the two culture conditions. When neurons cultured in serum-free medium are exposed to complete medium for only 24 h, there is a clear decrease in the phosphorylation of eIF-2 alpha (16-3%). This decrease correlates in time with an increase in the protein synthesis rate (154%), as well as eIF-2 activity (236%). The increased levels of eIF-2(alpha P), a competitive inhibitor of eIF-2B in the guanine-exchange reaction, are responsible for the decreased eIF-2B activity found in the neurons cultured in serum-free medium. Additionally, eIF-2(alpha P) is accountable for the lower effect of exogenous eIF-2B in ternary complex formation from preformed eIF-2. GDP in the serum-free media. These changes in phosphorylation of eIF-2 alpha in normal mammalian cells in response to changes in the extracellular medium are reported here for the first time.
Collapse
Affiliation(s)
- A Alcázar
- Departamento de Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Association of HSP90 with the heme-regulated eukaryotic initiation factor 2α kinase—A collaboration for regulating protein synthesis. J Biosci 1996. [DOI: 10.1007/bf02703108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Abstract
It is becoming increasingly apparent that translational control plays an important role in the regulation of gene expression in eukaryotic cells. Most of the known physiological effects on translation are exerted at the level of polypeptide chain initiation. Research on initiation of translation over the past five years has yielded much new information, which can be divided into three main areas: (a) structure and function of initiation factors (including identification by sequencing studies of consensus domains and motifs) and investigation of protein-protein and protein-RNA interactions during initiation; (b) physiological regulation of initiation factor activities and (c) identification of features in the 5' and 3' untranslated regions of messenger RNA molecules that regulate the selection of these mRNAs for translation. This review aims to assess recent progress in these three areas and to explore their interrelationships.
Collapse
Affiliation(s)
- V M Pain
- School of Biological Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
50
|
Kimball SR, Mellor H, Flowers KM, Jefferson LS. Role of translation initiation factor eIF-2B in the regulation of protein synthesis in mammalian cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:165-96. [PMID: 8768075 DOI: 10.1016/s0079-6603(08)60363-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey 17033, USA
| | | | | | | |
Collapse
|