1
|
Guan S, Tang J, Di C, Cheng B. Protocol for visualizing the chromatin assembly properties of epigenetic protein complexes via an HTM module-mediated artificial tethering system. STAR Protoc 2025; 6:103597. [PMID: 39879359 PMCID: PMC11803143 DOI: 10.1016/j.xpro.2025.103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/06/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
The detailed chromatin assembly processes for many epigenetic regulatory complexes are largely unknown. Here, we present a protocol utilizing heterochromatin-targeting module (HTM) module-mediated chromatin tethering followed by microscopy-based visualization to detect the recruitment priority between two components in Polycomb repressive complex 1 (PRC1). Moreover, we detail procedures for detecting the resultant histone-modifying activities of PRC1 using immunofluorescence (IF) analyses. This approach allows directly visualization of the on-chromatin assembly of the histone-modifying complexes of interest in live cells. For complete details on the use and execution of this protocol, please refer to Cheng et al.1.
Collapse
Affiliation(s)
- Shanli Guan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Jiajia Tang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, P.R. China
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, P.R. China.
| |
Collapse
|
2
|
Lee JA, Park HE, Jin HY, Jin L, Yoo SY, Cho NY, Bae JM, Kim JH, Kang GH. The combination of CDX2 expression status and tumor-infiltrating lymphocyte density as a prognostic factor in adjuvant FOLFOX-treated patients with stage III colorectal cancers. J Pathol Transl Med 2025; 59:50-59. [PMID: 39440351 PMCID: PMC11736276 DOI: 10.4132/jptm.2024.09.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Colorectal carcinomas (CRCs) with caudal-type homeobox 2 (CDX2) loss are recognized to pursue an aggressive behavior but tend to be accompanied by a high density of tumor-infiltrating lymphocytes (TILs). However, little is known about whether there is an interplay between CDX2 loss and TIL density in the survival of patients with CRC. METHODS Stage III CRC tissues were assessed for CDX2 loss using immunohistochemistry and analyzed for their densities of CD8 TILs in both intraepithelial (iTILs) and stromal areas using a machine learning-based analytic method. RESULTS CDX2 loss was significantly associated with a higher density of CD8 TILs in both intraepithelial and stromal areas. Both CDX2 loss and a high CD8 iTIL density were found to be prognostic parameters and showed hazard ratios of 2.314 (1.050-5.100) and 0.378 (0.175-0.817), respectively, for cancer-specific survival. A subset of CRCs with retained CDX2 expression and a high density of CD8 iTILs showed the best clinical outcome (hazard ratio of 0.138 [0.023-0.826]), whereas a subset with CDX2 loss and a high density of CD8 iTILs exhibited the worst clinical outcome (15.781 [3.939-63.230]). CONCLUSIONS Altogether, a high density of CD8 iTILs did not make a difference in the survival of patients with CRC with CDX2 loss. The combination of CDX2 expression and intraepithelial CD8 TIL density was an independent prognostic marker in adjuvant chemotherapy-treated patients with stage III CRC.
Collapse
Affiliation(s)
- Ji-Ae Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Eun Park
- Department of Pathology, Seoul National University Boramae Hospital, Seoul, Korea
| | - Hye-Yeong Jin
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Lingyan Jin
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Yeon Yoo
- Pathology Center, Seegene Medical Foundation, Seoul, Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Boussios S, Sheriff M, Ovsepian SV. Molecular Biology of Cancer-Interplay of Malignant Cells with Emerging Therapies. Int J Mol Sci 2024; 25:13090. [PMID: 39684799 DOI: 10.3390/ijms252313090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is currently one of the leading causes of death worldwide, and according to data from the World Health Organization reported in 2020, it ranks as the second leading cause of death globally, accounting for 10 million fatalities [...].
Collapse
Affiliation(s)
- Stergios Boussios
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury CT1 1QU, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Gillingham ME4 4AG, UK
- Faculty of Medicine, Tbilisi State University, Tbilisi 0179, Georgia
| |
Collapse
|
4
|
Chan WY, Chua W, Wilkinson K, Epitakaduwa C, Mandaliya H, Descallar J, Roberts TL, Becker TM, Ng W, Lee CS, Lim SHS. The Prognostic and Predictive Utility of CDX2 in Colorectal Cancer. Int J Mol Sci 2024; 25:8673. [PMID: 39201360 PMCID: PMC11354371 DOI: 10.3390/ijms25168673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Caudal type homeobox transcription factor 2 (CDX2) is a gastrointestinal cancer biomarker that regulates epithelial development and differentiation. Absence or low levels of CDX2 have been associated with poor prognosis and proposed as a chemotherapy response predictor. Tumour tissue samples from 668 patients with stage I-IV colorectal cancer were stained for CDX2 and stratified into two subgroups according to expression levels. Statistical tests were used to evaluate CDX2's relationship with survival and chemotherapy response. Of 646 samples successfully stained, 51 (7.9%) had low CDX2 levels, and 595 (92.1%) had high levels. Low CDX2 staining was associated with poor differentiation and the presence of lymphovascular or perineural invasion and was more common in colon and right-sided tumours. Overall survival (p < 0.001) and disease-free survival (p = 0.009) were reduced in patients with low CDX2 expression. Multivariable analysis validated CDX2 as an independent poor prognostic factor after excluding confounding variables. There was no statistically significant improvement in survival with adjuvant chemotherapy in stage II colon cancer (p = 0.11). In the rectal cohort, there was no relationship between CDX2 levels and therapy response. While confirming the prognostic utility of CDX2 in colorectal cancer, our study highlights that larger studies are required to confirm its utility as a predictive chemotherapy biomarker, especially in left-sided and rectal cancers.
Collapse
Affiliation(s)
- Wei Yen Chan
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia; (W.Y.C.); (W.C.); (K.W.)
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
| | - Wei Chua
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia; (W.Y.C.); (W.C.); (K.W.)
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Kate Wilkinson
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia; (W.Y.C.); (W.C.); (K.W.)
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
| | - Chandika Epitakaduwa
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Hiren Mandaliya
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| | - Joseph Descallar
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Faculty of Medicine, South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW 2170, Australia
| | - Tara Laurine Roberts
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Therese Maria Becker
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Faculty of Medicine, South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW 2170, Australia
| | - Weng Ng
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, NSW 2170, Australia; (W.Y.C.); (W.C.); (K.W.)
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
| | - Cheok Soon Lee
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Faculty of Medicine, South Western Sydney Clinical School, The University of New South Wales, Liverpool, NSW 2170, Australia
| | - Stephanie Hui-Su Lim
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2571, Australia; (T.L.R.); (T.M.B.); (C.S.L.)
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia;
- Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
5
|
Yang L, Tu L, Bisht S, Mao Y, Petkovich D, Thursby SJ, Liang J, Patel N, Yen RWC, Largent T, Zahnow C, Brock M, Gabrielson K, Salimian KJ, Baylin SB, Easwaran H. Tissue-location-specific transcription programs drive tumor dependencies in colon cancer. Nat Commun 2024; 15:1384. [PMID: 38360902 PMCID: PMC10869357 DOI: 10.1038/s41467-024-45605-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Cancers of the same tissue-type but in anatomically distinct locations exhibit different molecular dependencies for tumorigenesis. Proximal and distal colon cancers exemplify such characteristics, with BRAFV600E predominantly occurring in proximal colon cancers along with increased DNA methylation phenotype. Using mouse colon organoids, here we show that proximal and distal colon stem cells have distinct transcriptional programs that regulate stemness and differentiation. We identify that the homeobox transcription factor, CDX2, which is silenced by DNA methylation in proximal colon cancers, is a key mediator of the differential transcriptional programs. Cdx2-mediated proximal colon-specific transcriptional program concurrently is tumor suppressive, and Cdx2 loss sufficiently creates permissive state for BRAFV600E-driven transformation. Human proximal colon cancers with CDX2 downregulation showed similar transcriptional program as in mouse proximal organoids with Cdx2 loss. Developmental transcription factors, such as CDX2, are thus critical in maintaining tissue-location specific transcriptional programs that create tissue-type origin specific dependencies for tumor development.
Collapse
Affiliation(s)
- Lijing Yang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shilpa Bisht
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Yiqing Mao
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Daniel Petkovich
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Sara-Jayne Thursby
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Jinxiao Liang
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Nibedita Patel
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Ray-Whay Chiu Yen
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Tina Largent
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Cynthia Zahnow
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Malcolm Brock
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Kathy Gabrielson
- Department of Comparative Medicine, Johns Hopkins Medical Institutions, 863 Broadway Research Building, 733 N. Broadway, Baltimore, MD, 21205-2196, USA
| | - Kevan J Salimian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Stephen B Baylin
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA
| | - Hariharan Easwaran
- CRB1, Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Room 530, Baltimore, MD, 21287, USA.
| |
Collapse
|
6
|
Caldas ÁMC, Nunes WA, Taboada R, Cesca MG, Germano JN, Riechelmann RP. Loss of CDX2 and high COX2 ( PTGS2) expression in metastatic colorectal cancer. Ecancermedicalscience 2024; 18:1666. [PMID: 38439814 PMCID: PMC10911677 DOI: 10.3332/ecancer.2024.1666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 03/06/2024] Open
Abstract
Lack of expression of the tumour suppressor gene caudal-type homeobox 2 (CDX2) associates with poor outcomes in early stage colorectal cancer (CRC). Yet its prognostic value in the context of other prognostic biomarkers in metastatic CRC (mCRC) is unknown. Overexpressed cyclooxygenase-2 (COX2) has been reported in advanced CRC. However, CDX2 and COX2 relationship in mCRC remains undetermined. We aimed to assess their expression in mCRC tumours from a clinically characterised cohort and their influence on overall survival (OS) and progression-free survival (PFS) in first line. Among 720 consecutive mCRC patients, 346 had tumour samples appropriate for tissue microarray assembly and immunohistochemistry analyses. Clinical and survival data were retrospectively assessed. Loss of CDX2 expression was detected in 27 (7.8%) samples, enriched in poorly differentiated tumours (20%; p < 0.01) and in those with the BRAF p.V600E variant (40%; p < 0.01). Most tumours (93.4%) expressed COX2. COX2-negative samples were enriched in poorly differentiated mCRC. In unadjusted analyses, median OS (p < 0.001) and median PFS (p < 0.05) were inferior for patients with CDX2-negative versus CDX2-positive tumours. In conclusion, loss of CDX2 was significantly associated with poorly differentiated mCRC and BRAF p.V600E allele and a prognostic marker of worse OS.
Collapse
Affiliation(s)
- Álvaro M C Caldas
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Warley A Nunes
- Department of Pathology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Rodrigo Taboada
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Marcelle G Cesca
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Janaína N Germano
- Statistic Group at the International Research Center (CIPE), AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| | - Rachel P Riechelmann
- Department of Clinical Oncology, AC Camargo Cancer Center, São Paulo 01509-900, Brazil
| |
Collapse
|
7
|
Badia-Ramentol J, Gimeno-Valiente F, Duréndez E, Martínez-Ciarpaglini C, Linares J, Iglesias M, Cervantes A, Calon A, Tarazona N. The prognostic potential of CDX2 in colorectal cancer: Harmonizing biology and clinical practice. Cancer Treat Rev 2023; 121:102643. [PMID: 37871463 DOI: 10.1016/j.ctrv.2023.102643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Adjuvant chemotherapy following surgical intervention remains the primary treatment option for patients with localized colorectal cancer (CRC). However, a significant proportion of patients will have an unfavorable outcome after current forms of chemotherapy. While reflecting the increasing complexity of CRC, the clinical application of molecular biomarkers provides information that can be utilized to guide therapeutic strategies. Among these, caudal-related homeobox transcription factor 2 (CDX2) emerges as a biomarker of both prognosis and relapse after therapy. CDX2 is a key transcription factor that controls intestinal fate. Although rarely mutated in CRC, loss of CDX2 expression has been reported mostly in right-sided, microsatellite-unstable tumors and is associated with aggressive carcinomas. The pathological assessment of CDX2 by immunohistochemistry can thus identify patients with high-risk CRC, but the evaluation of CDX2 expression remains challenging in a substantial proportion of patients. In this review, we discuss the roles of CDX2 in homeostasis and CRC and the alterations that lead to protein expression loss. Furthermore, we review the clinical significance of CDX2 assessment, with a particular focus on its current use as a biomarker for pathological evaluation and clinical decision-making. Finally, we attempt to clarify the molecular implications of CDX2 deficiency, ultimately providing insights for a more precise evaluation of CDX2 protein expression.
Collapse
Affiliation(s)
- Jordi Badia-Ramentol
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | - Elena Duréndez
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | | | - Jenniffer Linares
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain; Department of Pathology, Hospital del Mar, Barcelona, CIBERONC, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain
| | - Alexandre Calon
- Cancer Research Program, Hospital del Mar Research Institute (IMIM), Barcelona, Spain.
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, CIBERONC, Spain.
| |
Collapse
|
8
|
Liang X, Duronio GN, Yang Y, Bala P, Hebbar P, Spisak S, Sahgal P, Singh H, Zhang Y, Xie Y, Cejas P, Long HW, Bass AJ, Sethi NS. An Enhancer-Driven Stem Cell-Like Program Mediated by SOX9 Blocks Intestinal Differentiation in Colorectal Cancer. Gastroenterology 2022; 162:209-222. [PMID: 34571027 PMCID: PMC10035046 DOI: 10.1053/j.gastro.2021.09.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS Genomic alterations that encourage stem cell activity and hinder proper maturation are central to the development of colorectal cancer (CRC). Key molecular mediators that promote these malignant properties require further elucidation to galvanize translational advances. We therefore aimed to characterize a key factor that blocks intestinal differentiation, define its transcriptional and epigenetic program, and provide preclinical evidence for therapeutic targeting in CRC. METHODS Intestinal tissue from transgenic mice and patients were analyzed by means of histopathology and immunostaining. Human CRC cells and neoplastic murine organoids were genetically manipulated for functional studies. Gene expression profiling was obtained through RNA sequencing. Histone modifications and transcription factor binding were determined with the use of chromatin immunoprecipitation sequencing. RESULTS We demonstrate that SRY-box transcription factor 9 (SOX9) promotes CRC by activating a stem cell-like program that hinders intestinal differentiation. Intestinal adenomas and colorectal adenocarcinomas from mouse models and patients demonstrate ectopic and elevated expression of SOX9. Functional experiments indicate a requirement for SOX9 in human CRC cell lines and engineered neoplastic organoids. Disrupting SOX9 activity impairs primary CRC tumor growth by inducing intestinal differentiation. By binding to genome wide enhancers, SOX9 directly activates genes associated with Paneth and stem cell activity, including prominin 1 (PROM1). SOX9 up-regulates PROM1 via a Wnt-responsive intronic enhancer. A pentaspan transmembrane protein, PROM1 uses its first intracellular domain to support stem cell signaling, at least in part through SOX9, reinforcing a PROM1-SOX9 positive feedback loop. CONCLUSIONS These studies establish SOX9 as a central regulator of an enhancer-driven stem cell-like program and carry important implications for developing therapeutics directed at overcoming differentiation defects in CRC.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gina N Duronio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yaying Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Prajna Hebbar
- Department of Information Technology, National Institute of Technology Karnataka, Surathkal, India
| | - Sandor Spisak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pranshu Sahgal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Yanxi Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yingtian Xie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nilay S Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts; Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Singh H, Seruggia D, Madha S, Saxena M, Nagaraja AK, Wu Z, Zhou J, Huebner AJ, Maglieri A, Wezenbeek J, Hochedlinger K, Orkin SH, Bass AJ, Hornick JL, Shivdasani RA. Transcription factor-mediated intestinal metaplasia and the role of a shadow enhancer. Genes Dev 2021; 36:38-52. [PMID: 34969824 PMCID: PMC8763054 DOI: 10.1101/gad.348983.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022]
Abstract
Here, Singh et al. show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy. Barrett's esophagus (BE) and gastric intestinal metaplasia are related premalignant conditions in which areas of human stomach epithelium express mixed gastric and intestinal features. Intestinal transcription factors (TFs) are expressed in both conditions, with unclear causal roles and cis-regulatory mechanisms. Ectopic CDX2 reprogrammed isogenic mouse stomach organoid lines to a hybrid stomach–intestinal state transcriptionally similar to clinical metaplasia; squamous esophageal organoids resisted this CDX2-mediated effect. Reprogramming was associated with induced activity at thousands of previously inaccessible intestine-restricted enhancers, where CDX2 occupied DNA directly. HNF4A, a TF recently implicated in BE pathogenesis, induced weaker intestinalization by binding a novel shadow Cdx2 enhancer and hence activating Cdx2 expression. CRISPR/Cas9-mediated germline deletion of that cis-element demonstrated its requirement in Cdx2 induction and in the resulting activation of intestinal genes in stomach cells. dCas9-conjugated KRAB repression mapped this activity to the shadow enhancer's HNF4A binding site. Altogether, we show extensive but selective recruitment of intestinal enhancers by CDX2 in gastric cells and that HNF4A-mediated ectopic CDX2 expression in the stomach occurs through a conserved shadow cis-element. These findings identify mechanisms for TF-driven intestinal metaplasia and a likely pathogenic TF hierarchy.
Collapse
Affiliation(s)
- Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Davide Seruggia
- Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Madhurima Saxena
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ankur K Nagaraja
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhong Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Jin Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Aaron J Huebner
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | - Adrianna Maglieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Juliette Wezenbeek
- Hubretch Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht 3584 CT, Netherlands
| | - Konrad Hochedlinger
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| | - Stuart H Orkin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Hematology Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02215, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jason L Hornick
- Departments of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
10
|
Mucosal ribosomal stress-induced PRDM1 promotes chemoresistance via stemness regulation. Commun Biol 2021; 4:543. [PMID: 33972671 PMCID: PMC8110964 DOI: 10.1038/s42003-021-02078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
The majorities of colorectal cancer (CRC) cases are sporadic in origin and a large proportion of etiologies are associated with environmental stress responses. In response to external and internal stress, the ribosome stands sentinel and stress-driven ribosomal dysfunction triggers the cellular decision pathways via transcriptional reprogramming. In the present study, PR domain zinc finger protein (PRDM) 1, a master transcriptional regulator, was found to be closely associated with ribosomal actions in patients with CRC and the murine models. Stress-driven ribosomal dysfunction enhanced PRDM1 levels in intestinal cancer cells, which contributed to their survival and enhanced cancer cell stemness against cancer treatment. Mechanistically, PRDM1 facilitated clustering modulation of insulin-like growth factor (IGF) receptor-associated genes, which supported cancer cell growth and stemness-linked features. Ribosomal dysfunction-responsive PRDM1 facilitated signaling remodeling for the survival of tumor progenitors, providing compelling evidence for the progression of sporadic CRC.
Collapse
|
11
|
Liu H, Yan R, Liang L, Zhang H, Xiang J, Liu L, Zhang X, Mao Y, Peng W, Xiao Y, Zhang F, Zhou Y, Shi M, Wang Y, Guo B. The role of CDX2 in renal tubular lesions during diabetic kidney disease. Aging (Albany NY) 2021; 13:6782-6803. [PMID: 33621200 PMCID: PMC7993706 DOI: 10.18632/aging.202537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
Renal tubules are vulnerable targets of various factors causing kidney injury in diabetic kidney disease (DKD), and the degree of tubular lesions is closely related to renal function. Abnormal renal tubular epithelial cells (RTECs) differentiation and depletion of cell junction proteins are important in DKD pathogenesis. Caudal-type homeobox transcription factor 2 (CDX2), represents a key nuclear transcription factor that maintains normal proliferation and differentiation of the intestinal epithelium. The present study aimed to evaluate the effects of CDX2 on RTECs differentiation and cell junction proteins in DKD. The results demonstrated that CDX2 was mainly localized in renal tubules, and downregulated in various DKD models. CDX2 upregulated E-cadherin and suppressed partial epithelial-mesenchymal transition (EMT), which can alleviate hyperglycemia-associated RTECs injury. Cystic fibrosis transmembrane conductance regulator (CFTR) was regulated by CDX2 in NRK-52E cells, and CFTR interfered with β-catenin activation by binding to Dvl2, which is an essential component of Wnt/β-catenin signaling. CFTR knockdown abolished the suppressive effects of CDX2 on Wnt/β-catenin signaling, thereby upregulating cell junction proteins and inhibiting partial EMT in RTECs. In summary, CDX2 can improve renal tubular lesions during DKD by increasing CFTR amounts to suppress the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Huiming Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rui Yan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Luqun Liang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Huifang Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Jiayi Xiang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Xiaohuan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yanwen Mao
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Wei Peng
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang 550025, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang 550025, Guizhou, China
| |
Collapse
|
12
|
Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. Nat Rev Gastroenterol Hepatol 2021; 18:7-23. [PMID: 33024279 PMCID: PMC7997278 DOI: 10.1038/s41575-020-00357-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.
Collapse
|
13
|
Saller J, Al Diffalha S, Neill K, Bhaskar RA, Oliveri C, Boulware D, Levine H, Kalvaria I, Corbett FS, Khazanchi A, Klapman J, Coppola D. CDX-2 Expression in Esophageal Biopsies Without Goblet Cell Intestinal Metaplasia May Be Predictive of Barrett's Esophagus. Dig Dis Sci 2020; 65:1992-1998. [PMID: 31691172 PMCID: PMC7771382 DOI: 10.1007/s10620-019-05914-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND CDX-2 is a nuclear homeobox transcription factor not normally expressed in esophageal and gastric epithelia, reported to highlight intestinal metaplasia (IM) in the esophagus. Pathological absence of goblet cells at initial screening via hematoxylin and eosin (HE) and alcian blue (AB) staining results in patient exclusion from surveillance programs. AIMS This study aimed to determine whether non-goblet cell IM, as defined by CDX-2 positivity, can be considered to be a precursor to Barrett's esophagus (BE). METHODS This study received IRB approval (17,284). Patients with gastroesophageal reflux disease (n = 181) who underwent upper-gastrointestinal endoscopy with biopsies of the distal esophagus to rule out BE using HE/AB staining and CDX-2 immunostaining were followed for 3 years. Initial and follow-up staining results were evaluated for age/sex. RESULTS Differences between development of goblet cell IM in CDX-2-negative and CDX-2-positive groups were evaluated. A Kaplan-Meier curve showed that, out of the 134 patients initially positive for CDX-2, 25 (18.7%) had developed goblet cell IM after 2 years and 106 (79.1%) after 3 years. Conversely, of the 47 patients initially negative for CDX-2, 8 (17.9%) developed goblet cell IM after 24 months and only 11 (23.8%) after 40 to 45 months (P = .049; age-adjusted Cox proportional hazard regression model). CONCLUSION In cases that are initially AB negative and CDX-2 positive, CDX-2 was demonstrated to have a potential prognostic utility for early detection of progression to BE. CDX-2 expression is significantly predictive for risk of goblet cell IM development 40 to 45 months after initial biopsy.
Collapse
Affiliation(s)
- James Saller
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sameer Al Diffalha
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Kevin Neill
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rahill A Bhaskar
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - David Boulware
- Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Isaac Kalvaria
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - F Scott Corbett
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - Arun Khazanchi
- Florida Digestive Health Specialists, Lakewood Ranch, FL, USA
| | - Jason Klapman
- Endoscopy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Domenico Coppola
- Departments of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
14
|
Omori Y, Ono Y, Kobayashi T, Motoi F, Karasaki H, Mizukami Y, Makino N, Ueno Y, Unno M, Furukawa T. How does intestinal-type intraductal papillary mucinous neoplasm emerge? CDX2 plays a critical role in the process of intestinal differentiation and progression. Virchows Arch 2020; 477:21-31. [PMID: 32291497 DOI: 10.1007/s00428-020-02806-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/02/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Intestinal-type intraductal papillary mucinous neoplasm (IPMN) of the pancreas is clinicopathologically distinctive. Our research aimed to elucidate the molecular mechanism of the development and progression of the intestinal-type IPMN. In 60 intestinal-type IPMN specimens, histological transitions from gastric-type epithelia to intestinal-type epithelia were observed in 48 cases (80%). CDX2/MUC2/alcian blue triple staining indicated that CDX2 appeared to precede MUC2 expression and subsequent alcian blue-positive mucin production. Expression of p21 and Ki-67 seemed to be accelerated by CDX2 expression (p = 6.02e-13 and p = 3.1e-09, respectively). p21/Ki-67 double staining revealed that p21 was mostly expressed in differentiated cells in the apex of papillae, while Ki-67 was expressed in proliferative cells in the base of papillae. This clear cellular arrangement seemed to break down with the progression of atypical grade and development of invasion (p = 0.00197). Intestinal-type IPMNs harbored frequent GNAS mutations (100%, 25/25) and RNF43 mutations (57%, 8/14) and shared identical GNAS and KRAS mutations with concurrent gastric-type IPMNs or incipient gastric-type neoplasia (100%, 25/25). RNF43 mutations showed emerging or being selected in intestinal-type neoplasms along with ß-catenin aberration. Activation of protein kinase A and extracellular-regulated kinase was observed in CDX2-positive intestinal-type neoplasm. These results suggest that gastric-type epithelia that acquire GNAS mutations together with induction of intrinsic CDX2 expression may evolve with clonal selection and additional molecular aberrations including RNF43 and ß-catenin into intestinal-type IPMNs, which may further progress with complex villous growth due to disoriented cell cycle regulation, acceleration of atypical grade, and advance to show an invasive phenotype.
Collapse
Affiliation(s)
- Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, 065-0033, Japan.,Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Toshikazu Kobayashi
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-Ku, Sendai, 980-8575, Japan.,Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Fuyuhiko Motoi
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Hidenori Karasaki
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, 065-0033, Japan
| | - Yusuke Mizukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, 065-0033, Japan.,Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Naohiko Makino
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-Ku, Sendai, 980-8575, Japan.
| |
Collapse
|
15
|
CDX2 Loss With Microsatellite Stable Phenotype Predicts Poor Clinical Outcome in Stage II Colorectal Carcinoma. Am J Surg Pathol 2020; 43:1473-1482. [PMID: 31490234 DOI: 10.1097/pas.0000000000001356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Current risk factors in stage II colorectal carcinoma are insufficient to guide treatment decisions. Loss of CDX2 has been shown to associate with poor clinical outcome and predict benefit for adjuvant chemotherapy in stage II and III colorectal carcinoma. The prognostic relevance of CDX2 in stage II disease has not been sufficiently validated, especially in relation to clinical risk factors, such as microsatellite instability (MSI) status, BRAF mutation status, and tumor budding. In this study, we evaluated the protein expression of CDX2 in tumor center and front areas in a tissue microarrays material of stage II colorectal carcinoma patients (n=232). CDX2 expression showed a partial or total loss in respective areas in 8.6% and 10.9% of patient cases. Patients with loss of CDX2 had shorter disease-specific survival when scored independently either in tumor center or tumor front areas (log rank P=0.012; P=0.012). Loss of CDX2 predicted survival independently of other stage II risk factors, such as MSI status and BRAF mutation status, pT class, and tumor budding (hazard ratio=5.96, 95% confidence interval=1.55-22.95; hazard ratio=3.70, 95% confidence interval=1.30-10.56). Importantly, CDX2 loss predicted inferior survival only in patients with microsatellite stable, but not with MSI-high phenotype. Interestingly, CDX2 loss associated with low E-cadherin expression, tight junction disruption, and high expression of ezrin protein. The work demonstrates that loss of CDX2 is an independent risk factor of poor disease-specific survival in stage II colorectal carcinoma. Furthermore, the study suggests that CDX2 loss is linked with epithelial-to-mesenchymal transition independently of tumor budding.
Collapse
|
16
|
Mithal A, Capilla A, Heinze D, Berical A, Villacorta-Martin C, Vedaie M, Jacob A, Abo K, Szymaniak A, Peasley M, Stuffer A, Mahoney J, Kotton DN, Hawkins F, Mostoslavsky G. Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells. Nat Commun 2020; 11:215. [PMID: 31924806 PMCID: PMC6954238 DOI: 10.1038/s41467-019-13916-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Efficient generation of human induced pluripotent stem cell (hiPSC)-derived human intestinal organoids (HIOs) would facilitate the development of in vitro models for a variety of diseases that affect the gastrointestinal tract, such as inflammatory bowel disease or Cystic Fibrosis. Here, we report a directed differentiation protocol for the generation of mesenchyme-free HIOs that can be primed towards more colonic or proximal intestinal lineages in serum-free defined conditions. Using a CDX2eGFP iPSC knock-in reporter line to track the emergence of hindgut progenitors, we follow the kinetics of CDX2 expression throughout directed differentiation, enabling the purification of intestinal progenitors and robust generation of mesenchyme-free organoids expressing characteristic markers of small intestinal or colonic epithelium. We employ HIOs generated in this way to measure CFTR function using cystic fibrosis patient-derived iPSC lines before and after correction of the CFTR mutation, demonstrating their future potential for disease modeling and therapeutic screening applications.
Collapse
Affiliation(s)
- Aditya Mithal
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Department of Microbiology at Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA
| | - Amalia Capilla
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Dar Heinze
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Department of Surgery at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Andrew Berical
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Pulmonary Center at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Marall Vedaie
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Anjali Jacob
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Kristine Abo
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
| | - Aleksander Szymaniak
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Megan Peasley
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Alexander Stuffer
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - John Mahoney
- Cystic Fibrosis Foundation Therapeutics Lab, 44 Hartwell Avenue, Lexington, MA, 02421, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Pulmonary Center at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Finn Hawkins
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA
- The Pulmonary Center at Boston University School of Medicine, 72 E Concord Street, Boston, MA, 02118, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, 670 Albany Street, Boston, MA, 02118, USA.
- The Department of Microbiology at Boston University School of Medicine, 700 Albany Street, Boston, MA, 02118, USA.
- The Section of Gastroenterology in the Department of Medicine at Boston University School of Medicine, 650 Albany Street, Boston, MA, 02118, USA.
| |
Collapse
|
17
|
Okamura E, Tam OH, Posfai E, Li L, Cockburn K, Lee CQE, Garner J, Rossant J. Esrrb function is required for proper primordial germ cell development in presomite stage mouse embryos. Dev Biol 2019; 455:382-392. [PMID: 31315026 DOI: 10.1016/j.ydbio.2019.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
Estrogen related receptor beta (Esrrb) is an orphan nuclear receptor that is required for self-renewal and pluripotency in mouse embryonic stem (ES) cells. However, in the early post-implantation mouse embryo, Esrrb is specifically expressed in the extraembryonic ectoderm (ExE) and plays a crucial role in trophoblast development. Previous studies showed that Esrrb is also required to maintain trophoblast stem (TS) cells, the in vitro stem cell model of the early trophoblast lineage. In order to identify regulatory targets of Esrrb in vivo, we performed microarray analysis of Esrrb-null versus wild-type post-implantation ExE, and identified 30 genes down-regulated in Esrrb-mutants. Among them is Bmp4, which is produced by the ExE and known to be critical for primordial germ cell (PGC) specification in vivo. We further identified an enhancer region bound by Esrrb at the Bmp4 locus by performing Esrrb ChIP-seq and luciferase reporter assay using TS cells. Finally, we established a knockout mouse line in which the enhancer region was deleted using CRISPR/Cas9 technology. Both Esrrb-null embryos and enhancer knockout embryos expressed lower levels of Bmp4 in the ExE, and had reduced numbers of PGCs. These results suggested that Esrrb functions as an upstream factor of Bmp4 in the ExE, regulating proper PGC development in mice.
Collapse
Affiliation(s)
- Eiichi Okamura
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.
| | - Oliver H Tam
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eszter Posfai
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lingyu Li
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Katie Cockburn
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cheryl Q E Lee
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jodi Garner
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Suzuki D, Morimoto H, Yoshimura K, Kono T, Ogawa H. The Differentiation Potency of Trophoblast Stem Cells from Mouse Androgenetic Embryos. Stem Cells Dev 2019; 28:290-302. [PMID: 30526365 DOI: 10.1089/scd.2018.0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mice, trophoblast stem (TS) cells are derived from the polar trophectoderm of blastocysts. TS cells cultured in the presence of fibroblast growth factor 4 (Fgf4) are in an undifferentiated state and express undifferentiated marker genes such as Cdx2. After removing Fgf4 from the culture medium, TS cells drastically reduce the expression of undifferentiated marker genes, stop cell proliferation, and differentiate into all trophoblast cell subtypes. To clarify the roles of the parental genomes in placentation, we previously established TS cells from androgenetic embryos (AGTS cells). AGTS cells are in the undifferentiated state when cultured with Fgf4 and express undifferentiated marker genes. After removing Fgf4, AGTS cells differentiate into trophoblast giant cells (TGCs), but not into spongiotrophoblast cells, and some of the AGTS cells continue to proliferate. In this study, we investigated the differentiation potency of AGTS cells by analyzing the expression of undifferentiated marker genes and all trophoblast cell subtype-specific genes. After removing Fgf4, some undifferentiated marker genes (Cdx2, Eomes and Elf5) continued to be expressed. Interestingly, TGCs differentiated from AGTS cells also expressed Cdx2, but not Prl3d1. Moreover, the expression of Gcm1 and Synb was induced after the differentiation, indicating that AGTS cells preferentially differentiated into labyrinth progenitor cells. Cdx2 knockdown resulted in increased Prl3d1 expression, suggesting that Fgf4-independent Cdx2 expression inhibited the functional TGCs. Moreover, Fgf4-independent Cdx2 expression was activated by Gab1, one of the paternally expressed imprinted genes via the mitogen-activated protein kinase kinase (MEK)-extracellular signal regulated protein kinase (ERK) pathway. These results suggested that the paternal genome activates the MEK-ERK pathway without the Fgf4 signal, accelerates the differentiation into labyrinth progenitor cells and controls the function of TGCs.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiromu Morimoto
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kaoru Yoshimura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
19
|
Banerjee KK, Saxena M, Kumar N, Chen L, Cavazza A, Toke NH, O'Neill NK, Madha S, Jadhav U, Verzi MP, Shivdasani RA. Enhancer, transcriptional, and cell fate plasticity precedes intestinal determination during endoderm development. Genes Dev 2018; 32:1430-1442. [PMID: 30366903 PMCID: PMC6217732 DOI: 10.1101/gad.318832.118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023]
Abstract
After acquiring competence for selected cell fates, embryonic primordia may remain plastic for variable periods before tissue identity is irrevocably determined. Banerjee et al. show that the midgut endoderm is primed for heterologous cell fates and that transcription factors act on a background of shifting chromatin access to determine intestinal at the expense of foregut identity. After acquiring competence for selected cell fates, embryonic primordia may remain plastic for variable periods before tissue identity is irrevocably determined (commitment). We investigated the chromatin basis for these developmental milestones in mouse endoderm, a tissue with recognizable rostro–caudal patterning and transcription factor (TF)-dependent interim plasticity. Foregut-specific enhancers are as accessible and active in early midgut as in foregut endoderm, and intestinal enhancers and identity are established only after ectopic cis-regulatory elements are decommissioned. Depletion of the intestinal TF CDX2 before this cis element transition stabilizes foregut enhancers, reinforces ectopic transcriptional programs, and hence imposes foregut identities on the midgut. Later in development, as the window of chromatin plasticity elapses, CDX2 depletion weakens intestinal, without strengthening foregut, enhancers. Thus, midgut endoderm is primed for heterologous cell fates, and TFs act on a background of shifting chromatin access to determine intestinal at the expense of foregut identity. Similar principles likely govern other fate commitments.
Collapse
Affiliation(s)
- Kushal K Banerjee
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Madhurima Saxena
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Namit Kumar
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Lei Chen
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Alessia Cavazza
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Natalie H Toke
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Nicholas K O'Neill
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Shariq Madha
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Unmesh Jadhav
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA.,Cancer Institute of New Jersey, Piscataway, New Jersey 08854, USA.,Human Genetics Institute of New Jersey, Piscataway, New Jersey 08854, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Id2 Determines Intestinal Identity through Repression of the Foregut Transcription Factor Irx5. Mol Cell Biol 2018; 38:MCB.00250-17. [PMID: 29463648 PMCID: PMC5902590 DOI: 10.1128/mcb.00250-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022] Open
Abstract
The cellular components and function of the gastrointestinal epithelium exhibit distinct characteristics depending on the region, e.g., stomach or intestine. How these region-specific epithelial characteristics are generated during development remains poorly understood. Here, we report on the involvement of the helix-loop-helix inhibitor Id2 in establishing the specific characteristics of the intestinal epithelium. Id2−/− mice developed tumors in the small intestine. Histological analysis indicated that the intestinal tumors were derived from gastric metaplasia formed in the small intestine during development. Heterotopic Id2 expression in developing gastric epithelium induced a fate change to intestinal epithelium. Gene expression analysis revealed that foregut-enriched genes encoding Irx3 and Irx5 were highly induced in the midgut of Id2−/− embryos, and transgenic mice expressing Irx5 in the midgut endoderm developed tumors recapitulating the characteristics of Id2−/− mice. Altogether, our results demonstrate that Id2 plays a crucial role in the development of regional specificity in the gastrointestinal epithelium.
Collapse
|
21
|
Ma Z, Xin Z, Hu W, Jiang S, Yang Z, Yan X, Li X, Yang Y, Chen F. Forkhead box O proteins: Crucial regulators of cancer EMT. Semin Cancer Biol 2018; 50:21-31. [PMID: 29427645 DOI: 10.1016/j.semcancer.2018.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an acknowledged cellular transition process in which epithelial cells acquire mesenchymal-like properties that endow cancer cells with increased migratory and invasive behavior. Forkhead box O (FOXO) proteins have been shown to orchestrate multiple EMT-associated pathways and EMT-related transcription factors (EMT-TFs), thereby modulating the EMT process. The focus of the current review is to evaluate the latest research progress regarding the roles of FOXO proteins in cancer EMT. First, a brief overview of the EMT process in cancer and a general background on the FOXO family are provided. Next, we present the interactions between FOXO proteins and multiple EMT-associated pathways during malignancy development. Finally, we propose several novel potential directions for future research. Collectively, the information compiled herein should serve as a comprehensive repository of information on this topic and should aid in the design of additional studies and the future development of FOXO proteins as therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China.
| |
Collapse
|
22
|
Kigerl KA, Hall JCE, Wang L, Mo X, Yu Z, Popovich PG. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med 2016; 213:2603-2620. [PMID: 27810921 PMCID: PMC5110012 DOI: 10.1084/jem.20151345] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/13/2016] [Indexed: 12/13/2022] Open
Abstract
Kigerl et al. show that spinal cord injury causes profound changes in gut microbiota and that these changes in gut ecology are associated with activation of GALT immune cells. They show that feeding mice probiotics after SCI confers neuroprotection and improves functional recovery. The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid–producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI.
Collapse
Affiliation(s)
- Kristina A Kigerl
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| | - Jodie C E Hall
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| | - Lingling Wang
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210
| | - Phillip G Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, Wexner Medical Center, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
23
|
Porcine milk-derived exosomes promote proliferation of intestinal epithelial cells. Sci Rep 2016; 6:33862. [PMID: 27646050 PMCID: PMC5028765 DOI: 10.1038/srep33862] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023] Open
Abstract
Milk-derived exosomes were identified as a novel mechanism of mother-to-child transmission of regulatory molecules, but their functions in intestinal tissues of neonates are not well-studied. Here, we characterized potential roles of porcine milk-derived exosomes in the intestinal tract. In vitro, treatment with milk-derived exosomes (27 ± 3 ng and 55 ± 5 ng total RNA) significantly promoted IPEC-J2 cell proliferation by MTT, CCK8, EdU fluorescence and EdU flow cytometry assays. The qRT-PCR and Western blot analyses indicated milk-derived exosomes (0.27 ± 0.03 μg total RNA) significantly promoted expression of CDX2, IGF-1R and PCNA, and inhibited p53 gene expression involved in intestinal proliferation. Additionally, six detected miRNAs were significantly increased in IPEC-J2 cell, while FAS and SERPINE were significantly down-regulated relative to that in control. In vivo, treated groups (0.125 μg and 0.25 μg total RNA) significantly raised mice' villus height, crypt depth and ratio of villus length to crypt depth of intestinal tissues, significantly increased CDX2, PCNA and IGF-1R' expression and significantly inhibited p53' expression. Our study demonstrated that milk-derived exosomes can facilitate intestinal cell proliferation and intestinal tract development, thus giving a new insight for milk nutrition and newborn development and health.
Collapse
|
24
|
Tamminen K, Balboa D, Toivonen S, Pakarinen MP, Wiener Z, Alitalo K, Otonkoski T. Intestinal Commitment and Maturation of Human Pluripotent Stem Cells Is Independent of Exogenous FGF4 and R-spondin1. PLoS One 2015; 10:e0134551. [PMID: 26230325 PMCID: PMC4521699 DOI: 10.1371/journal.pone.0134551] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/12/2015] [Indexed: 01/21/2023] Open
Abstract
Wnt/beta-catenin signaling plays a central role in guiding the differentiation of the posterior parts of the primitive gut tube into intestinal structures in vivo and some studies suggest that FGF4 is another crucial factor for intestinal development. The aim of this study was to define the effects of Wnt and FGF4 on intestinal commitment in vitro by establishing conditions for differentiation of human pluripotent stem cells (hPSC) into posterior endoderm (hindgut) and further to self-renewing intestinal-like organoids. The most prominent induction of the well-established intestinal marker gene CDX2 was achieved when hPSC-derived definitive endoderm cells were treated with Wnt agonist molecule CHIR99021 during differentiation to hindgut. FGF4 was found to be dispensable during intestinal commitment, but it had an early role in repressing development towards the hepatic lineage. When hindgut stage cells were further cultured in 3D, they formed self-renewing organoid structures containing all major intestinal cell types even without exogenous R-spondin1 (RSPO1), a crucial factor for the culture of epithelial organoids derived from adult intestine. This may be explained by the presence of a mesenchymal compartment in the hPSC-derived organoids. Addition of WNT3A increased the expression of the Paneth cell marker Lysozyme in hPSC-derived organoid cultures, whereas FGF4 inhibited both the formation and maturation of intestinal-like organoids. Similar hindgut and organoid cultures were established from human induced pluripotent stem cells, implying that this approach can be used to create patient-specific intestinal tissue models for disease modeling in vitro.
Collapse
Affiliation(s)
- Kaisa Tamminen
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
| | - Diego Balboa
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
| | - Sanna Toivonen
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
| | - Mikko P. Pakarinen
- Children’s Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Zoltan Wiener
- Translational Cancer Biology Program and Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Translational Cancer Biology Program and Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology and Biomedicum Stem Cell Centre, University of Helsinki, Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- * E-mail:
| |
Collapse
|
25
|
Barone M, Scavo MP, Licinio R, Piombino M, De Tullio N, Mallamaci R, Di Leo A. Role of Bone Marrow-Derived Stem Cells in Polyps Development in Mice with Apc(Min/+) Mutation. Stem Cells Int 2015; 2015:354193. [PMID: 26167184 PMCID: PMC4488009 DOI: 10.1155/2015/354193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/30/2015] [Indexed: 02/07/2023] Open
Abstract
We explored the hypothesis that an altered microenvironment (intestinal adenomatous polyp) could modify the differentiation program of bone marrow-derived stem cells (BMSCs), involving them in colon carcinogenesis. Sublethally irradiated 8-week-old female Apc(Min/+) mice were transplanted with bone marrow (BM) cells obtained from either male age-matched Apc(Min/+) (Apc-Tx-Apc) or wild type (WT) (WT-Tx-Apc) mice. At 4 and 7 weeks after transplantation, BM-derived colonocytes were recognized by colocalization of Y-chromosome and Cdx2 protein (specific colonocyte marker). Polyp number, volume, and grade of dysplasia were not influenced by irradiation/transplantation procedures since they were similar in both untreated female Apc(Min/+) and Apc-Tx-Apc mice. At 4 and 7 weeks after transplantation, a progressive significant reduction of polyp number and volume was observed in WT-Tx-Apc mice. Moreover, the number of WT-Tx-Apc mice with a high-grade dysplastic polyps significantly decreased as compared to Apc-Tx-Apc mice. Finally, at 4 and 7 weeks after transplantation, WT-Tx-Apc mice showed a progressive significant increase of Y+/Cdx2+ cells in "normal" mucosa, whereas, in the adenomatous tissue, Y+/Cdx2+ cells remained substantially unvaried. Our findings demonstrate that WT BMSCs do not participate in polyp development but rather inhibit their growth. The substitution of genotypically altered colonocytes with Y+/Cdx2+ cells probably contributes to this process.
Collapse
Affiliation(s)
- Michele Barone
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Maria Principia Scavo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
- Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Raffaele Licinio
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Michele Piombino
- Radiotherapy Unit, Diagnostic Imaging Department, Polyclinic Hospital, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Nicola De Tullio
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Rosanna Mallamaci
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Via E. Orabona 4, 70124 Bari, Italy
| | - Alfredo Di Leo
- Gastroenterology Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| |
Collapse
|
26
|
San Roman AK, Aronson BE, Krasinski SD, Shivdasani RA, Verzi MP. Transcription factors GATA4 and HNF4A control distinct aspects of intestinal homeostasis in conjunction with transcription factor CDX2. J Biol Chem 2014; 290:1850-60. [PMID: 25488664 DOI: 10.1074/jbc.m114.620211] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinct groups of transcription factors (TFs) assemble at tissue-specific cis-regulatory sites, implying that different TF combinations may control different genes and cellular functions. Within such combinations, TFs that specify or maintain a lineage and are therefore considered master regulators may play a key role. Gene enhancers often attract these tissue-restricted TFs, as well as TFs that are expressed more broadly. However, the contributions of the individual TFs to combinatorial regulatory activity have not been examined critically in many cases in vivo. We address this question using a genetic approach in mice to inactivate the intestine-specifying and intestine-restricted factor CDX2 alone or in combination with its more broadly expressed partner factors, GATA4 and HNF4A. Compared with single mutants, each combination produced significantly greater defects and rapid lethality through distinct anomalies. Intestines lacking Gata4 and Cdx2 were deficient in crypt cell replication, whereas combined loss of Hnf4a and Cdx2 specifically impaired viability and maturation of villus enterocytes. Integrated analysis of TF binding and of transcripts affected in Hnf4a;Cdx2 compound-mutant intestines indicated that this TF pair controls genes required to construct the apical brush border and absorb nutrients, including dietary lipids. This study thus defines combinatorial TF activities, their specific requirements during tissue homeostasis, and modules of transcriptional targets in intestinal epithelial cells in vivo.
Collapse
Affiliation(s)
- Adrianna K San Roman
- From the Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, the Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts 02115
| | - Boaz E Aronson
- the Division of Pediatric Gastroenterology and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, Emma Children's Hospital, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Stephen D Krasinski
- the Division of Pediatric Gastroenterology and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Ramesh A Shivdasani
- From the Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, the Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, and
| | - Michael P Verzi
- From the Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, the Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| |
Collapse
|
27
|
Krieg A, Mersch S, Boeck I, Dizdar L, Weihe E, Hilal Z, Krausch M, Möhlendick B, Topp SA, Piekorz RP, Huckenbeck W, Stoecklein NH, Anlauf M, Knoefel WT. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines. PLoS One 2014; 9:e88713. [PMID: 24551139 PMCID: PMC3925161 DOI: 10.1371/journal.pone.0088713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022] Open
Abstract
Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) according to their proliferation index into G1- or G2-neuroendocrine tumors (NET) and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC). Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1) or lymph node metastases (NEC-DUE2) from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.
Collapse
Affiliation(s)
- Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Sabrina Mersch
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Inga Boeck
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Eberhard Weihe
- Institute of Anatomy and Cell Biology, Department of Molecular Neuroscience, Philipps University Marburg, Marburg, Germany
| | - Zena Hilal
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Markus Krausch
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Birte Möhlendick
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Stefan A. Topp
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Roland P. Piekorz
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Huckenbeck
- Institute of Forensic Medicine, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nikolas H. Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Martin Anlauf
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfram T. Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
28
|
Heverhagen AE, Geis C, Fendrich V, Ramaswamy A, Montalbano R, Di Fazio P, Bartsch DK, Ocker M, Quint K. Embryonic transcription factors CDX2 and Oct4 are overexpressed in neuroendocrine tumors of the ileum: a pilot study. Eur Surg Res 2013; 51:14-20. [PMID: 23887079 DOI: 10.1159/000353612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 06/11/2013] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroendocrine tumors (NETs) of the ileum are rare submucosal tumors that are often diagnosed at advanced stages with metastatic spread to the liver causing a carcinoid syndrome. They present as solitary or multiple tumors. In NETs, loss of sequences on chromosomes 11, 16, 18 and 22 or gain of sequences on chromosomes 17 and 19 has been described. In this study we explored the expression of two novel candidate genes, CDX2 and Oct4, in NETs of the ileum and analyzed whether the molecular expression pattern correlates with the clinical phenotype (solitary/multiple tumors). METHODS Data from all patients who underwent surgery for a NET of the ileum between 2000 and 2010 were retrieved from a prospective database. For each patient, frozen normal and tumor tissue was used for the comparison of gene expression levels of two putative cancer stem cell markers, CDX2 and Oct4, using real-time PCR (rtPCR). Serial slides from paraffin blocks were used for immunohistochemistry. Gene expression was compared between normal and tumor tissue as well as between solitary and multiple tumors. RESULTS 78 patients were identified. In rtPCR, a statistically significant higher expression of CDX2 in tumor tissue (p < 0.001) compared to normal tissue was found. The expression of Oct4 was elevated in the tumors, but did not reach the level of significance (p = 0.155). The expression of both candidate genes was confirmed immunohistochemically and showed a nuclear expression pattern. There was no difference in expression between solitary and multiple tumors or between tumors that had already spread to the liver. CONCLUSION CDX2 is overexpressed in ileum NETs, thus playing a role in the tumorigenesis of these rare tumors. Since expression does not correlate with clinical stage or phenotype, it might be an early event in tumor development.
Collapse
Affiliation(s)
- A E Heverhagen
- Department of Visceral, Thoracic and Vascular Surgery, Philipp University of Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Raghoebir L, Biermann K, Buscop-van Kempen M, Wijnen RM, Tibboel D, Smits R, Rottier RJ. Disturbed balance between SOX2 and CDX2 in human vitelline duct anomalies and intestinal duplications. Virchows Arch 2013; 462:515-22. [PMID: 23568430 DOI: 10.1007/s00428-013-1405-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 03/11/2013] [Accepted: 03/18/2013] [Indexed: 01/30/2023]
Abstract
Congenital gastric-type heteroplasia is common in intestinal duplications and anomalies, which originate from incomplete resorption of the omphalomesenteric duct during development. Two transcription factors determine the proximodistal specification of the gastrointestinal tract, SOX2, expressed exclusively in the proximal part of the primitive gut, and CDX2, expressed solely in the distal part. Aberrant expression of these factors may result in abnormal development and congenital abnormalities. Therefore, we analyzed the expression of SOX2 and CDX2 in a number of pediatric intestinal anomalies. We investigated the expression pattern of SOX2 and CDX2 in three congenital intestinal anomalies in which ectopic gastric tissue may be present, Meckel's diverticulum (N = 8), persistent ductus omphalomesentericus (N = 14), and intestinal duplications (N = 8). CDX2, but not SOX2, was detected in intestinal epithelial cells in tissue lacking gastric heteroplasia. In gastric-type heteroplasia, a reciprocal expression pattern existed between SOX2 and CDX2 in the gastric and intestinal tissues, respectively. Interestingly, patches of CDX2-positive cells were present within the gastric mucosa in a subset of Meckel's diverticula and intestinal duplications, suggesting that it is not the absence of CDX2, but rather the ectopic expression of SOX2 that leads to gastric tissue in the prospective intestinal tissue. This is in concordance with our previous mouse studies. Collectively, our data indicate that a fine balance between SOX2 and CDX2 expression in the gastrointestinal tract is essential for proper development and that ectopic expression of SOX2 may lead to malformations of the gut.
Collapse
Affiliation(s)
- Lalini Raghoebir
- Department of Pediatric Surgery, of the Erasmus MC, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Frankenberg S, Shaw G, Freyer C, Pask AJ, Renfree MB. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development 2013; 140:965-75. [DOI: 10.1242/dev.091629] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals.
Collapse
Affiliation(s)
| | - Geoff Shaw
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Claudia Freyer
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Andrew J. Pask
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, 3010 Victoria, Australia
| |
Collapse
|
31
|
Grainger S, Hryniuk A, Lohnes D. Cdx1 and Cdx2 exhibit transcriptional specificity in the intestine. PLoS One 2013; 8:e54757. [PMID: 23382958 PMCID: PMC3559873 DOI: 10.1371/journal.pone.0054757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022] Open
Abstract
The caudal-related homeodomain transcription factors Cdx1 and Cdx2 are expressed in the developing endoderm with expression persisting into adulthood. Cdx1−/− mutants are viable and fertile and display no overt intestinal phenotype. Cdx2 null mutants are peri-implantation lethal; however, conditional mutation approaches have revealed that Cdx2 is required for patterning the intestinal epithelium and specification of the colon. Cdx2 is also necessary for homeostasis of the intestinal tract in the adult, where Cdx1 and Cdx2 appear to functionally overlap in the distal colon, but not during intestinal development. Cdx1 and Cdx2 exhibit complete overlap of expression in the intestine, although they differ in their relative levels, with Cdx1 maximal in the distal colon and Cdx2 peaking in the proximal cecum. Moreover, Cdx1 protein is graded along the crypt-villus axis, being abundant in the crypts and diminishing towards the villi. Cdx2 is expressed uniformly along this axis, but is differentially phosphorylated; the functional relevance of these expression domains and phosphorylation is currently unknown. Cdx1 and Cdx2 have been suggested to exhibit functional specificity in the intestinal tract. In the present study, using cell-based models, we found that relative to Cdx1, Cdx2 was significantly less potent at effecting a transcriptional response from the Cdx1 promoter, a known Cdx target gene. We subsequently assessed this relationship in vivo using a “gene swap” approach and found that Cdx2 cannot substitute for Cdx1 in this autoregulatory loop. This is in marked contrast with the ability of Cdx2 to support Cdx1 expression and function in paraxial mesoderm and vertebral patterning, thus providing novel in vivo evidence of context-dependent transcriptional specificity between these transcription factors.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David Lohnes
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Involvement of liver-intestine cadherin in cancer progression. Med Mol Morphol 2013; 46:1-7. [DOI: 10.1007/s00795-012-0003-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/03/2012] [Indexed: 12/23/2022]
|
33
|
Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS. Wnt5a potentiates TGF-β signaling to promote colonic crypt regeneration after tissue injury. Science 2012; 338:108-13. [PMID: 22956684 DOI: 10.1126/science.1223821] [Citation(s) in RCA: 372] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reestablishing homeostasis after tissue damage depends on the proper organization of stem cells and their progeny, though the repair mechanisms are unclear. The mammalian intestinal epithelium is well suited to approach this problem, as it is composed of well-delineated units called crypts of Lieberkühn. We found that Wnt5a, a noncanonical Wnt ligand, was required for crypt regeneration after injury in mice. Unlike controls, Wnt5a-deficient mice maintained an expanded population of proliferative epithelial cells in the wound. We used an in vitro system to enrich for intestinal epithelial stem cells to discover that Wnt5a inhibited proliferation of these cells. Surprisingly, the effects of Wnt5a were mediated by activation of transforming growth factor-β (TGF-β) signaling. These findings suggest a Wnt5a-dependent mechanism for forming new crypt units to reestablish homeostasis.
Collapse
Affiliation(s)
- Hiroyuki Miyoshi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
34
|
Bhat AA, Sharma A, Pope J, Krishnan M, Washington MK, Singh AB, Dhawan P. Caudal homeobox protein Cdx-2 cooperates with Wnt pathway to regulate claudin-1 expression in colon cancer cells. PLoS One 2012; 7:e37174. [PMID: 22719836 PMCID: PMC3376107 DOI: 10.1371/journal.pone.0037174] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/17/2012] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of tight junctions (TJs) is often associated with human diseases including carcinogenesis and recent studies support role of TJ integral proteins in the regulation of Epithelial-to-Mesenchymal Transition (EMT). In this regard, expression of claudin-1, a key constituent of TJs, is highly increased in colon cancer and is causally associated with the tumor growth and progression. However, mechanism/s underlying regulation of claudin-1 expression in intestinal epithelial cells remains poorly understood. In our studies, we have identified putative binding sites for intestinal transcription factors Cdx1, -2 and GATA4 in the 5'-flanking region of the claudin-1 gene. Our further studies using full length and/or deletion mutant constructs in two different human colon cancer cell lines, SW480 and HCT116, showed key role of Cdx1, Cdx2 and GATA4 in the regulation of claudin-1 mRNA expression. However, overexpression of Cdx2 had the most potent effect upon claudin-1 mRNA expression and promoter activity. Also, in colon cancer patient samples, we observed a significant and parallel correlation between claudin-1 and Cdx2 expressions. Chromatin immunoprecipitation (ChIP) assay confirmed the Cdx2 binding with claudin-1 promoter in vivo. Using Cdx2 deletion mutant constructs, we further mapped the Cdx2 C-terminus domain to be important in the regulation of claudin-1 promoter activity. Interestingly, co-expression of activated β-catenin further induced the Cdx2-dependent upregulation of claudin-1 promoter activity while expression of the dominant negative (dn)-TCF-4 abrogated this activation. Taken together, we conclude that homeodomain transcription factors Cdx1, Cdx2 and GATA4 regulate claudin-1 gene expression in human colon cancer cells. Moreover, a functional crosstalk between Wnt-signaling and transcriptional activation related to caudal-related homeobox (Cdx) proteins and GATA-proteins is demonstrated in the regulation of claudin-1 promoter-activation.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Ashok Sharma
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jillian Pope
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Moorthy Krishnan
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mary K. Washington
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Amar B. Singh
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Punita Dhawan
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
35
|
Raghoebir L, Bakker ERM, Mills JC, Swagemakers S, Kempen MBV, Munck ABD, Driegen S, Meijer D, Grosveld F, Tibboel D, Smits R, Rottier RJ. SOX2 redirects the developmental fate of the intestinal epithelium toward a premature gastric phenotype. J Mol Cell Biol 2012; 4:377-85. [PMID: 22679103 DOI: 10.1093/jmcb/mjs030] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Various factors play an essential role in patterning the digestive tract. During development, Sox2 and Cdx2 are exclusively expressed in the anterior and the posterior parts of the primitive gut, respectively. However, it is unclear whether these transcription factors influence each other in determining specification of the naïve gut endoderm. We therefore investigated whether Sox2 redirects the fate of the prospective intestinal part of the primitive gut. Ectopic expression of Sox2 in the posterior region of the primitive gut caused anteriorization of the gut toward a gastric-like phenotype. Sox2 activated the foregut transcriptional program, in spite of sustained co-expression of endogenous Cdx2. However, binding of Cdx2 to its genomic targets and thus its transcriptional activity was strongly reduced. Recent findings indicate that endodermal Cdx2 is required to initiate the intestinal program and to suppress anterior cell fate. Our findings suggest that reduced Cdx2 expression by itself is not sufficient to cause anteriorization, but that Sox2 expression is also required. Moreover, it indicates that the balance between Sox2 and Cdx2 function is essential for proper specification of the primitive gut and that Sox2 may overrule the initial patterning of the primitive gut, emphasizing the plasticity of the primitive gut.
Collapse
Affiliation(s)
- Lalini Raghoebir
- Department of Pediatric Surgery, Erasmus Medical Center, Dr Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moreno E, Permanyer J, Martinez P. The origin of patterning systems in bilateria-insights from the Hox and ParaHox genes in Acoelomorpha. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:65-76. [PMID: 21802044 PMCID: PMC5054442 DOI: 10.1016/s1672-0229(11)60010-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 02/24/2011] [Indexed: 01/22/2023]
Abstract
Hox and ParaHox genes constitute two families of developmental regulators that pattern the Anterior–Posterior body axis in all bilaterians. The members of these two groups of genes are usually arranged in genomic clusters and work in a coordinated fashion, both in space and in time. While the mechanistic aspects of their action are relatively well known, it is still unclear how these systems evolved. For instance, we still need a proper model of how the Hox and ParaHox clusters were assembled over time. This problem is due to the shortage of information on gene complements for many taxa (mainly basal metazoans) and the lack of a consensus phylogenetic model of animal relationships to which we can relate our new findings. Recently, several studies have shown that the Acoelomorpha most probably represent the first offshoot of the Bilateria. This finding has prompted us, and others, to study the Hox and ParaHox complements in these animals, as well as their activity during development. In this review, we analyze how the current knowledge of Hox and ParaHox genes in the Acoelomorpha is shaping our view of bilaterian evolution.
Collapse
|
37
|
Hryniuk A, Grainger S, Savory JGA, Lohnes D. Cdx function is required for maintenance of intestinal identity in the adult. Dev Biol 2012; 363:426-37. [PMID: 22285812 DOI: 10.1016/j.ydbio.2012.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 01/09/2023]
Abstract
The homeodomain transcription factors Cdx1 and Cdx2 are expressed in the intestinal epithelium from early development, with expression persisting throughout the life of the animal. While our understanding of the function of Cdx members in intestinal development has advanced significantly, their roles in the adult intestine is relatively poorly understood. In the present study, we found that ablation of Cdx2 in the adult small intestine severely impacted villus morphology, proliferation and intestinal gene expression patterns, resulting in the demise of the animal. Long-term loss of Cdx2 in a chimeric model resulted in loss of all differentiated intestinal cell types and partial conversion of the mucosa to a gastric-like epithelium. Concomitant loss of Cdx1 did not exacerbate any of these phenotypes. Loss of Cdx2 in the colon was associated with a shift to a cecum-like epithelial morphology and gain of cecum-associated genes which was more pronounced with subsequent loss of Cdx1. These findings suggest that Cdx2 is essential for differentiation of the small intestinal epithelium, and that both Cdx1 and Cdx2 contribute to homeostasis of the colon.
Collapse
Affiliation(s)
- Alexa Hryniuk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada, K17 8M5
| | | | | | | |
Collapse
|
38
|
Lemieux E, Boucher MJ, Mongrain S, Boudreau F, Asselin C, Rivard N. Constitutive activation of the MEK/ERK pathway inhibits intestinal epithelial cell differentiation. Am J Physiol Gastrointest Liver Physiol 2011; 301:G719-30. [PMID: 21737780 DOI: 10.1152/ajpgi.00508.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Ras/Raf/MEK/ERK cascade regulates intestinal epithelial cell proliferation. Indeed, while barely detectable in differentiated cells of the villi, ERK1/2-activated forms are detected in the nucleus of undifferentiated human intestinal crypt cells. In addition, we and others have reported that ERKs are selectively inactivated during enterocyte differentiation. However, whether inactivation of the ERK pathway is necessary for inhibition of both proliferation and induction of differentiation of intestinal epithelial cells is unknown. Human Caco-2/15 cells, undifferentiated crypt IEC-6 cells, and differentiating Cdx3-expressing IEC-6 cells were infected with retroviruses encoding either a hemagglutinin (HA)-tagged MEK1 wild type (wtMEK) or a constitutively active S218D/S222D MEK1 mutant (caMEK). Protein and gene expression was assessed by Western blotting, semiquantitative RT-PCR, and real-time PCR. Morphology was analyzed by transmission electron microscopy. We found that 1) IEC-6/Cdx3 cells formed multicellular layers after confluence and differentiated after 30 days in culture, as assessed by increased polarization, microvilli formation, expression of differentiation markers, and ERK1/2 inhibition; 2) while activated MEK prevented neither the inhibition of ERK1/2 activities nor the differentiation process in postconfluent Caco-2/15 cells, caMEK expression prevented ERK inhibition in postconfluent IEC-6/Cdx3 cells, thus leading to maintenance of elevated ERK1/2 activities; 3) caMEK-expressing IEC-6/Cdx3 cells exhibited altered multicellular structure organization, poorly defined tight junctions, reduced number of microvilli on the apical surface, and decreased expression of the hepatocyte nuclear factor 1α transcription factor and differentiation markers, namely apolipoprotein A-4, fatty acid-binding protein, calbindin-3, mucin 2, alkaline phosphatase, and sucrase-isomaltase; and 4) increased Cdx3 phosphorylation on serine-60 (S60) in IEC-6/Cdx3 cells expressing caMEK led to decreased Cdx2 transactivation potential. These results indicate that inactivation of the ERK pathway is required to ensure the full Cdx2/3 transcriptional activity necessary for intestinal epithelial cell terminal differentiation.
Collapse
Affiliation(s)
- Etienne Lemieux
- Canadian Institutes of Health Research Team on Digestive Epithelium, Department of Anatomy and Cellular Biology, Quebec
| | | | | | | | | | | |
Collapse
|
39
|
The dichotomy in carcinogenesis of the distal esophagus and esophagogastric junction: intestinal-type vs cardiac-type mucosa-associated adenocarcinoma. Mod Pathol 2011; 24:1177-90. [PMID: 21572404 DOI: 10.1038/modpathol.2011.77] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenocarcinoma of the distal esophagus and esophagogastric junction continues to rise in incidence. An intestinal metaplasia (Barrett esophagus)-dysplasia-carcinoma sequence induced by gastroesophageal reflux disease is well established. However, a significant number of adenocarcinomas in the vicinity of the esophagogastric junction are seen in the background of gastric/cardiac-type mucosa without intestinal metaplasia. Thus, the aim of this study was to investigate the role of Barrett esophagus (intestinal-type mucosa) in the classification and prognosis of tumors of the distal esophagus and esophagogastric junction. Clinicopathological and molecular characteristics were examined in 157 consecutively resected adenocarcinomas of the distal esophagus and esophagogastric junction and were compared between tumors arising in association with intestinal-type and cardiac-type mucosa. Intestinal-type mucosa-associated adenocarcinomas were more likely to be associated with younger age (P=0.0057), reflux symptoms (P<0.0001), proximal location (P=0.0009), lower T stage (P<0.0001), fewer nodal metastases (P=0.0001), absence of lymphatic (P<0.0001), venous (P=0.0060) or perineural (P<0.0001) invasion. Histologically, intestinal-type mucosa-associated tumors were more likely to be low-grade glandular tumors (P=0.0095) of intestinal or mixed immunophenotype (P=0.015) and express nuclear β-catenin (P=0.0080), whereas tumors arising in a background of cardiac-type mucosa were more frequently associated with EGFR amplification (P=0.0051). Five-year overall survival rate was significantly higher in patients with intestinal-type mucosa-associated tumors (28 vs 9%, P=0.0015), although no survival benefit was seen after adjusting for potential confounders. Our findings support the theory that multiple distinct pathways of tumorigenesis exist in the vicinity of the esophagogastric junction, including one in which tumors arise from dysplastic intestinal metaplasia (intestinal pathway), and one potentially involving dysplasia of the cardiac-type mucosa (non-intestinal pathway). Additional studies are warranted to further clarify their pathogenesis and the molecular mechanisms involved.
Collapse
|
40
|
Park SY, Jeong MS, Yoo MA, Jang SB. Caudal-related homeodomain proteins CDX1/2 bind to DNA replication-related element binding factor. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1891-9. [PMID: 21821154 DOI: 10.1016/j.bbapap.2011.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/19/2011] [Accepted: 07/22/2011] [Indexed: 12/28/2022]
Abstract
In the intestinal epithelium, the CDX1 and CDX2 homeodomain genes play proliferative and tumor suppressor roles, respectively. The transcription factor DNA replication-related element binding factor (DREF), is an 80kDa polypeptide homodimer that plays an important role in regulating cell proliferation-related genes. Homeodomain genes encode DNA-binding proteins that play crucial roles during development by defining the body plan and determining cell fate. However, until now, the regulation of DREF function by caudal-related homeodomain proteins is poorly understood. In this study, recombinant CDX1/2 homeodomains (CDX1, amino acids [aa] 152-216 and CDX2, aa 184-248) and the DNA-binding domain of Drosophila DREF (dDREF; aa 1-125) were isolated in order to investigate the regulatory mechanism of their interaction. The expression and purification of the truncated CDX1/2 and DREF proteins were successfully performed in Escherichia coli. Models of the CDX1/2 homeodomain and dDREF were constructed using SWISS-MODEL software, a program for relative protein structure modeling. The binding of CDX1/2 and DREF proteins was detected by fluorescence measurement, size-exclusion column (SEC) chromatography, His-tagged pull-down assay, and surface plasmon resonance spectroscopy (BIAcore). In addition, we identified that four different mutants of CDX1 (S185A, N190A, T194A, and V212A) were bound to dDREF with different degrees of interaction. Our results indicate that CDX1/2 homeodomains interact with the DNA-binding domain of dDREF, thereby regulating its transcription activity.
Collapse
Affiliation(s)
- So Young Park
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | | | | | | |
Collapse
|
41
|
Essential and redundant functions of caudal family proteins in activating adult intestinal genes. Mol Cell Biol 2011; 31:2026-39. [PMID: 21402776 DOI: 10.1128/mcb.01250-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors that potently induce cell fate often remain expressed in the induced organ throughout life, but their requirements in adults are uncertain and varied. Mechanistically, it is unclear if they activate only tissue-specific genes or also directly repress heterologous genes. We conditionally inactivated mouse Cdx2, a dominant regulator of intestinal development, and mapped its genome occupancy in adult intestinal villi. Although homeotic transformation, observed in Cdx2-null embryos, was absent in mutant adults, gene expression and cell morphology were vitally compromised. Lethality was significantly accelerated in mice lacking both Cdx2 and its homolog Cdx1, with particular exaggeration of defects in villus enterocyte differentiation. Importantly, Cdx2 occupancy correlated with hundreds of transcripts that fell but not with equal numbers that rose with Cdx loss, indicating a predominantly activating role at intestinal cis-regulatory regions. Integrated consideration of a transcription factor's mutant phenotype and cistrome hence reveals the continued and distinct requirement in adults of a critical developmental regulator that activates tissue-specific genes.
Collapse
|
42
|
Ye W, Lin W, Tartakoff AM, Tao T. Karyopherins in nuclear transport of homeodomain proteins during development. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1654-62. [PMID: 21256166 DOI: 10.1016/j.bbamcr.2011.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 12/08/2010] [Accepted: 01/09/2011] [Indexed: 01/12/2023]
Abstract
Homeodomain proteins are crucial transcription factors for cell differentiation, cell proliferation and organ development. Interestingly, their homeodomain signature structure is important for both their DNA-binding and their nucleocytoplasmic trafficking. The accurate nucleocytoplasmic distribution of these proteins is essential for their functions. We summarize information on (a) the roles of karyopherins for import and export of homeoproteins, (b) the regulation of their nuclear transport during development, and (c) the corresponding complexity of homeoprotein nucleocytoplasmic transport signals. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Wenduo Ye
- Xiamen University School of Life Sciences, Xiamen, Fujian 361005, China
| | | | | | | |
Collapse
|
43
|
Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2. Dev Cell 2010; 19:713-26. [PMID: 21074721 DOI: 10.1016/j.devcel.2010.10.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 08/09/2010] [Accepted: 09/22/2010] [Indexed: 12/16/2022]
Abstract
VIDEO ABSTRACT Cell differentiation requires remodeling of tissue-specific gene loci and activities of key transcriptional regulators, which are recognized for their dominant control over cellular programs. Using epigenomic methods, we characterized enhancer elements specifically modified in differentiating intestinal epithelial cells and found enrichment of transcription factor-binding motifs corresponding to CDX2, a critical regulator of the intestine. Directed investigation revealed surprising lability in CDX2 occupancy of the genome, with redistribution from hundreds of sites occupied only in proliferating cells to thousands of new sites in differentiated cells. Knockout mice confirmed distinct Cdx2 requirements in dividing and mature adult intestinal cells, including responsibility for the active enhancer configuration associated with maturity. Dynamic CDX2 occupancy corresponds with condition-specific gene expression and, importantly, to differential co-occupancy with other tissue-restricted transcription factors, such as GATA6 and HNF4A. These results reveal dynamic, context-specific functions and mechanisms of a prominent transcriptional regulator within a cell lineage.
Collapse
|
44
|
Wu G, Gentile L, Fuchikami T, Sutter J, Psathaki K, Esteves TC, Araúzo-Bravo MJ, Ortmeier C, Verberk G, Abe K, Schöler HR. Initiation of trophectoderm lineage specification in mouse embryos is independent of Cdx2. Development 2010; 137:4159-69. [PMID: 21098565 DOI: 10.1242/dev.056630] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The separation of the first two lineages - trophectoderm (TE) and inner cell mass (ICM) - is a crucial event in the development of the early embryo. The ICM, which constitutes the pluripotent founder cell population, develops into the embryo proper, whereas the TE, which comprises the surrounding outer layer, supports the development of the ICM before and after implantation. Cdx2, the first transcription factor expressed specifically in the developing TE, is crucial for the differentiation of cells into the TE, as lack of zygotic Cdx2 expression leads to a failure of embryos to hatch and implant into the uterus. However, speculation exists as to whether maternal Cdx2 is required for initiation of TE lineage separation. Here, we show that effective elimination of both maternal and zygotic Cdx2 transcripts by an RNA interference approach resulted in failure of embryo hatching and implantation, but the developing blastocysts exhibited normal gross morphology, indicating that TE differentiation had been initiated. Expression of keratin 8, a marker for differentiated TE, further confirmed the identity of the TE lineage in Cdx2-deficient embryos. However, these embryos exhibited low mitochondrial activity and abnormal ultrastructure, indicating that Cdx2 plays a key role in the regulation of TE function. Furthermore, we found that embryonic compaction does not act as a 'switch' regulator to turn on Cdx2 expression. Our results clearly demonstrate that neither maternal nor zygotic Cdx2 transcripts direct the initiation of ICM/TE lineage separation.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The role of CDX2 in intestinal homeostasis and inflammation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:283-9. [PMID: 21126581 DOI: 10.1016/j.bbadis.2010.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 12/17/2022]
Abstract
Many transcription factors are known to control transcription at several promoters, while others are only active at a few places. However, due to their importance in controlling cellular functions, aberrant transcription factor function and inappropriate gene regulation have been shown to play a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including cell proliferation, differentiation, cell adhesion, migration, and tumorigenesis. In addition to these critical cellular processes, there is increasing evidence for linking CDX2 to intestinal inflammation. The aim of the present paper was to review the current knowledge of CDX2 in regulation of the intestinal homeostasis and further to reveal its potential role in inflammation.
Collapse
|
46
|
Stairs DB, Kong J, Lynch JP. Cdx genes, inflammation, and the pathogenesis of intestinal metaplasia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 96:231-70. [PMID: 21075347 PMCID: PMC6005371 DOI: 10.1016/b978-0-12-381280-3.00010-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intestinal metaplasia (IM) is a biologically interesting and clinically relevant condition in which one differentiated type of epithelium is replaced by another that is morphologically similar to normal intestinal epithelium. Two classic examples of this are gastric IM and Barrett's esophagus (BE). In both, a chronic inflammatory microenvironment, provoked either by Helicobacter pylori infection of the stomach or acid and bile reflux into the esophagus, precedes the metaplasia. The Caudal-related homeodomain transcription factors Cdx1 and Cdx2 are critical regulators of the normal intestinal epithelial cell phenotype. Ectopic expression of Cdx1 and Cdx2 occurs in both gastric IM as well as in BE. This expression precedes the onset of the metaplasia and implies a causal role for these factors in this process. We review the observations regarding the role of chronic inflammation and the Cdx transcription factors in the pathogenesis of gastric IM and BE.
Collapse
Affiliation(s)
- Douglas B Stairs
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
47
|
Saad RS, Ismiil N, Dubé V, Nofech-Mozes S, Khalifa MA. CDX-2 expression is a common event in primary intestinal-type endocervical adenocarcinoma. Am J Clin Pathol 2009; 132:531-8. [PMID: 19762530 DOI: 10.1309/ajcp7e5asgoenpfp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We studied the expression of cytokeratin (CK) 7, CK20, CDX-2, and p16 in 119 cervical adenocarcinomas (65 usual type [50 invasive; 15 in situ], 37 intestinal type [21 invasive; 16 in situ], 10 endometrioid, 5 adenosquamous, and 2 signet-ring carcinomas) in comparison with 55 cases of rectal adenocarcinomas. The percentage of cells staining was considered negative if 0% to 5% stained; more than 5% was considered positive. For p16, staining of more than 50% was considered positive. CK7 was expressed in all cervical cases and in 12 rectal adenocarcinomas (22%). CK20 was expressed in 17 cervical adenocarcinomas (14.3%) and in 48 rectal adenocarcinomas (87%). CK20 immunostaining was diffuse in the majority of rectal tumors but focal in most cervical tumors. CDX-2 was expressed in all cases of rectal adenocarcinoma and in 46 cervical adenocarcinomas (38.7%): usual type, 10 (15%); intestinal type, 31 (84%); endometrioid type, 5 (50%); adenosquamous and signet-ring types, 0 (0%). CDX-2 is a marker for intestinal differentiation irrespective of a rectal or cervical origin. Therefore, it should not be used as the sole basis to confirm the colorectum as the primary origin in metastatic cases.
Collapse
Affiliation(s)
- Reda S. Saad
- Departments of Pathology, Medical Research Institute, University of Alexandria, Alexandria, Egypt
- Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nadia Ismiil
- Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Valérie Dubé
- Sunnybrook Health Sciences Centre, Toronto, Canada
| | | | | |
Collapse
|
48
|
Koslowski M, Türeci O, Huber C, Sahin U. Selective activation of tumor growth-promoting Ca2+ channel MS4A12 in colon cancer by caudal type homeobox transcription factor CDX2. Mol Cancer 2009; 8:77. [PMID: 19781065 PMCID: PMC2759907 DOI: 10.1186/1476-4598-8-77] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/25/2009] [Indexed: 12/27/2022] Open
Abstract
Colon cancer-associated MS4A12 is a novel colon-specific component of store-operated Ca2+ (SOC) entry sensitizing cells for epidermal growth factor (EGF)-mediated effects on proliferation and chemotaxis. In the present study, we investigated regulation of the MS4A12 promoter to understand the mechanisms responsible for strict transcriptional restriction of this gene to the colonic epithelial cell lineage. DNA-binding assays and luciferase reporter assays showed that MS4A12 promoter activity is governed by a single CDX homeobox transcription factor binding element. RNA interference (RNAi)-mediated silencing of intestine-specific transcription factors CDX1 and CDX2 and chromatin immunoprecipitation (ChIP) in LoVo and SW48 colon cancer cells revealed that MS4A12 transcript and protein expression is essentially dependent on the presence of endogenous CDX2. In summary, our findings provide a rationale for colon-specific expression of MS4A12. Moreover, this is the first report establishing CDX2 as transactivator of tumor growth-promoting gene expression in colon cancer, adding to untangle the complex and conflicting biological functions of CDX2 in colon cancer and supporting MS4A12 as important factor for normal colonic development as well as for the biology and treatment of colon cancer.
Collapse
Affiliation(s)
- Michael Koslowski
- Department of Internal Medicine III, Experimental and Translational Oncology, Johannes Gutenberg University, Obere Zahlbacherstr, 63, 55131 Mainz, Germany.
| | | | | | | |
Collapse
|
49
|
Wang P, Wang Q, Sun J, Wu J, Li H, Zhang N, Huang Y, Su B, Li RK, Liu L, Zhang Y, Elsholtz HP, Hu J, Gaisano HY, Jin T. POU homeodomain protein Oct-1 functions as a sensor for cyclic AMP. J Biol Chem 2009; 284:26456-65. [PMID: 19617623 PMCID: PMC2785334 DOI: 10.1074/jbc.m109.030668] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/15/2009] [Indexed: 01/30/2023] Open
Abstract
Cyclic AMP is a fundamentally important second messenger for numerous peptide hormones and neurotransmitters that control gene expression, cell proliferation, and metabolic homeostasis. Here we show that cAMP works with the POU homeodomain protein Oct-1 to regulate gene expression in pancreatic and intestinal endocrine cells. This ubiquitously expressed transcription factor is known as a stress sensor. We found that it also functions as a repressor of Cdx-2, a proglucagon gene activator. Through a mechanism that involves the activation of exchange protein activated by cyclic AMP, elevation of cAMP leads to enhanced phosphorylation and nuclear exclusion of Oct-1 and reduced interactions between Oct-1 or nuclear co-repressors and the Cdx-2 gene promoter, detected by chromatin immunoprecipitation. In rat primary pancreatic islet cells, cAMP elevation also reduces nuclear Oct-1 content, which causes increased proglucagon and proinsulin mRNA expression. Our study therefore identifies a novel mechanism by which cAMP regulates hormone-gene expression and suggests that ubiquitously expressed Oct-1 may play a role in metabolic homeostasis by functioning as a sensor for cAMP.
Collapse
Affiliation(s)
| | - Qinghua Wang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Jane Sun
- From the Division of Cell and Molecular Biology and
- the Departments of Laboratory Medicine and Pathobiology and
| | - Jing Wu
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Hang Li
- From the Division of Cell and Molecular Biology and
| | - Nina Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Division of Endocrinology and Metabolism, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada, and
| | - Yachi Huang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brenda Su
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ren-ke Li
- Division of Experimental Therapeutics, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ling Liu
- From the Division of Cell and Molecular Biology and
| | - Yi Zhang
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Jim Hu
- the Departments of Laboratory Medicine and Pathobiology and
- the **Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Herbert Y. Gaisano
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tianru Jin
- From the Division of Cell and Molecular Biology and
- the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- the Departments of Laboratory Medicine and Pathobiology and
- Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- the Department of Nutrition, School of Public Health, Sun Yat-sen University, 510080 Guangzhou, China
| |
Collapse
|
50
|
Boyd M, Bressendorff S, Møller J, Olsen J, Troelsen JT. Mapping of HNF4alpha target genes in intestinal epithelial cells. BMC Gastroenterol 2009; 9:68. [PMID: 19761587 PMCID: PMC2761415 DOI: 10.1186/1471-230x-9-68] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 09/17/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The role of HNF4alpha has been extensively studied in hepatocytes and pancreatic beta-cells, and HNF4alpha is also regarded as a key regulator of intestinal epithelial cell differentiation. The aim of the present work is to identify novel HNF4alpha target genes in the human intestinal epithelial cells in order to elucidate the role of HNF4alpha in the intestinal differentiation progress. METHODS We have performed a ChIP-chip analysis of the human intestinal cell line Caco-2 in order to make a genome-wide identification of HNF4alpha binding to promoter regions. The HNF4alpha ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4alpha binding to actively transcribed genes with an open chromatin structure. RESULTS 1,541 genes were identified as potential HNF4alpha targets, many of which have not previously been described as being regulated by HNF4alpha. The 1,541 genes contributed significantly to gene ontology (GO) pathways categorized by lipid and amino acid transport and metabolism. An analysis of the homeodomain transcription factor Cdx-2 (CDX2), the disaccharidase trehalase (TREH), and the tight junction protein cingulin (CGN) promoters verified that these genes are bound by HNF4alpha in Caco2 cells. For the Cdx-2 and trehalase promoters the HNF4alpha binding was verified in mouse small intestine epithelium. CONCLUSION The HNF4alpha regulation of the Cdx-2 promoter unravels a transcription factor network also including HNF1alpha, all of which are transcription factors involved in intestinal development and gene expression.
Collapse
Affiliation(s)
- Mette Boyd
- Department of Cellular and Molecular Medicine, Panum Institute, Building 6,4, University of Copenhagen, Blegdamsvej 3B 2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|