1
|
Jiménez-Sánchez C, Oberhauser L, Maechler P. Role of fatty acids in the pathogenesis of ß-cell failure and Type-2 diabetes. Atherosclerosis 2024; 398:118623. [PMID: 39389828 DOI: 10.1016/j.atherosclerosis.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Pancreatic ß-cells are glucose sensors in charge of regulated insulin delivery to the organism, achieving glucose homeostasis and overall energy storage. The latter function promotes obesity when nutrient intake chronically exceeds daily expenditure. In case of ß-cell failure, such weight gain may pave the way for the development of Type-2 diabetes. However, the causal link between excessive body fat mass and potential degradation of ß-cells remains largely unknown and debated. Over the last decades, intensive research has been conducted on the role of lipids in the pathogenesis of ß-cells, also referred to as lipotoxicity. Among various lipid species, the usual suspects are essentially the non-esterified fatty acids (NEFA), in particular the saturated ones such as palmitate. This review describes the fundamentals and the latest advances of research on the role of fatty acids in ß-cells. This includes intracellular pathways and receptor-mediated signaling, both participating in regulated glucose-stimulated insulin secretion as well as being implicated in ß-cell dysfunction. The discussion extends to the contribution of high glucose exposure, or glucotoxicity, to ß-cell defects. Combining glucotoxicity and lipotoxicity results in the synergistic and more deleterious glucolipotoxicity effect. In recent years, alternative roles for intracellular lipids have been uncovered, pointing to a protective function in case of nutrient overload. This requires dynamic storage of NEFA as neutral lipid droplets within the ß-cell, along with active glycerolipid/NEFA cycle allowing subsequent recruitment of lipid species supporting glucose-stimulated insulin secretion. Overall, the latest studies have revealed the two faces of the same coin.
Collapse
Affiliation(s)
- Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
2
|
Oberhauser L, Jiménez-Sánchez C, Madsen JGS, Duhamel D, Mandrup S, Brun T, Maechler P. Glucolipotoxicity promotes the capacity of the glycerolipid/NEFA cycle supporting the secretory response of pancreatic beta cells. Diabetologia 2022; 65:705-720. [PMID: 35018486 DOI: 10.1007/s00125-021-05633-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/12/2021] [Indexed: 11/03/2022]
Abstract
AIMS/HYPOTHESIS Chronic exposure of pancreatic beta cells to high glucose and fatty acids has been proposed to induce glucolipotoxicity. However, contradictory results suggest adaptations of the beta cells, which might be instrumental for partial preservation of the secretory response. In this context, we delineated the expression pattern of genes related to lipid pathways along with fat storage/mobilisation during glucose-stimulated insulin secretion. METHODS Insulin-secreting cells were cultured for 3 days at different glucose concentrations (5.5, 11.1, 25 mmol/l) without or with BSA-complexed 0.4 mmol/l palmitate and oleate. Then, transcriptomic analyses of lipid pathways were performed in human islets by RNA-Seq and in INS-1E cells and rat islets by quantitative RT-PCR. Storage of fat was assessed in INS-1E cells by electron microscopy and Bodipy staining, which was also used for measuring lipid mobilisation rate. The secretory response was monitored during acute 15 mmol/l glucose stimulation using online luminescence assay for INS-1E cells and by radioimmunoassay for rat islets. RESULTS In human islets, chronic exposure to palmitate and oleate modified expression of a panel of genes involved in lipid handling. Culture at 25 mmol/l glucose upregulated genes encoding for enzymes of the glycerolipid/NEFA cycle and downregulated receptors implicated in fatty acid signalling. Similar results were obtained in INS-1E cells, indicating enhanced capacity of the glycerolipid/NEFA cycle under glucotoxic conditions. Exposure to unsaturated C18:1 fatty acid favoured intracellular lipid accumulation in a glucose-dependent way, an effect also observed with saturated C16:0 fatty acid when combined with the panlipase inhibitor Orlistat. After the glucolipotoxic culture, intracellular fat mobilisation was required for acute glucose-stimulated secretion, particularly in oleate-treated cells under glucotoxic culture conditions. The lipid mobilisation rate was governed chiefly by the levels of stored fat as a direct consequence of the culture conditions rather than energetic demands, except in palmitate-loaded cells. CONCLUSIONS/INTERPRETATION Glucolipotoxic conditions promote the capacity of the glycerolipid/NEFA cycle thereby preserving part of the secretory response. The cycle of fat storage/mobilisation emerges as a mechanism helping the beta cell to cope with glucotoxic conditions.
Collapse
Affiliation(s)
- Lucie Oberhauser
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Jesper Grud Skat Madsen
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Dominique Duhamel
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Susanne Mandrup
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thierry Brun
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Geneva, Switzerland
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Center, Geneva, Switzerland.
- Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
3
|
Oberhauser L, Maechler P. Lipid-Induced Adaptations of the Pancreatic Beta-Cell to Glucotoxic Conditions Sustain Insulin Secretion. Int J Mol Sci 2021; 23:324. [PMID: 35008750 PMCID: PMC8745448 DOI: 10.3390/ijms23010324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decades, lipotoxicity and glucotoxicity emerged as established mechanisms participating in the pathophysiology of obesity-related type 2 diabetes in general, and in the loss of β-cell function in particular. However, these terms hold various potential biological processes, and it is not clear what precisely they refer to and to what extent they might be clinically relevant. In this review, we discuss the basis and the last advances of research regarding the role of free fatty acids, their metabolic intracellular pathways, and receptor-mediated signaling related to glucose-stimulated insulin secretion, as well as lipid-induced β-cell dysfunction. We also describe the role of chronically elevated glucose, namely, glucotoxicity, which promotes failure and dedifferentiation of the β cell. Glucolipotoxicity combines deleterious effects of exposures to both high glucose and free fatty acids, supposedly provoking synergistic defects on the β cell. Nevertheless, recent studies have highlighted the glycerolipid/free fatty acid cycle as a protective pathway mediating active storage and recruitment of lipids. Finally, we discuss the putative correspondence of the loss of functional β cells in type 2 diabetes with a natural, although accelerated, aging process.
Collapse
Affiliation(s)
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, Faculty Diabetes Center, University of Geneva Medical Center, 1206 Geneva, Switzerland;
| |
Collapse
|
4
|
Ackah M, Shi Y, Wu M, Wang L, Guo P, Guo L, Jin X, Li S, Zhang Q, Qiu C, Lin Q, Zhao W. Metabolomics Response to Drought Stress in Morus alba L. Variety Yu-711. PLANTS (BASEL, SWITZERLAND) 2021; 10:1636. [PMID: 34451681 PMCID: PMC8400578 DOI: 10.3390/plants10081636] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Mulberry is an economically significant crop for the sericulture industry worldwide. Stresses such as drought exposure have a significant influence on plant survival. Because metabolome directly reflects plant physiological condition, performing a global metabolomic analysis is one technique to examine this influence. Using a liquid chromatography-mass spectrometry (LC-MS) technique based on an untargeted metabolomic approach, the effect of drought stress on mulberry Yu-711 metabolic balance was examined. For this objective, Yu-711 leaves were subjected to two weeks of drought stress treatment and control without drought stress. Numerous differentially accumulated metabolic components in response to drought stress treatment were revealed by multivariate and univariate statistical analysis. Drought stress treatment (EG) revealed a more differentiated metabolite response than the control (CK). We found that the levels of total lipids, galactolipids, and phospholipids (PC, PA, PE) were significantly altered, producing 48% of the total differentially expressed metabolites. Fatty acyls components were the most abundant lipids expressed and decreased considerably by 73.6%. On the other hand, the prenol lipids class of lipids increased in drought leaves. Other classes of metabolites, including polyphenols (flavonoids and cinnamic acid), organic acid (amino acids), carbohydrates, benzenoids, and organoheterocyclic, had a dynamic trend in response to the drought stress. However, their levels under drought stress decreased significantly compared to the control. These findings give an overview for the understanding of global plant metabolic changes in defense mechanisms by revealing the mulberry plant metabolic profile through differentially accumulated compounds.
Collapse
Affiliation(s)
- Michael Ackah
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Yisu Shi
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Mengmeng Wu
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Lei Wang
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Peng Guo
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Liangliang Guo
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Xin Jin
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Shaocong Li
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Qiaonan Zhang
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| | - Changyu Qiu
- Sericulture Research Institute, Guangxi Zhuang Autonomous Region, Nanning 530007, China; (C.Q.); (Q.L.)
| | - Qiang Lin
- Sericulture Research Institute, Guangxi Zhuang Autonomous Region, Nanning 530007, China; (C.Q.); (Q.L.)
| | - Weiguo Zhao
- School of Biology and Technology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang 212018, China; (Y.S.); (M.W.); (L.W.); (P.G.); (L.G.); (X.J.); (S.L.); (Q.Z.)
| |
Collapse
|
5
|
Palmitate and oleate modify membrane fluidity and kinase activities of INS-1E β-cells alongside altered metabolism-secretion coupling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118619. [DOI: 10.1016/j.bbamcr.2019.118619] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/14/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023]
|
6
|
Prins GH, Luangmonkong T, Oosterhuis D, Mutsaers HAM, Dekker FJ, Olinga P. A Pathophysiological Model of Non-Alcoholic Fatty Liver Disease Using Precision-Cut Liver Slices. Nutrients 2019; 11:E507. [PMID: 30818824 PMCID: PMC6470479 DOI: 10.3390/nu11030507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 01/02/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disorder closely related to metabolic syndrome. NAFLD can progress to an inflammatory state called non-alcoholic steatohepatitis (NASH), which may result in the development of fibrosis and hepatocellular carcinoma. To develop therapeutic strategies against NAFLD, a better understanding of the molecular mechanism is needed. Current in vitro NAFLD models fail to capture the essential interactions between liver cell types and often do not reflect the pathophysiological status of patients. To overcome limitations of commonly used in vitro and in vivo models, precision-cut liver slices (PCLSs) were used in this study. PCLSs, prepared from liver tissue obtained from male Wistar rats, were cultured in supraphysiological concentrations of glucose, fructose, insulin, and palmitic acid to mimic metabolic syndrome. Accumulation of lipid droplets was visible and measurable after 24 h in PCLSs incubated with glucose, fructose, and insulin, both in the presence and absence of palmitic acid. Upregulation of acetyl-CoA carboxylase 1 and 2, and of sterol responsive element binding protein 1c, suggests increased de novo lipogenesis in PCLSs cultured under these conditions. Additionally, carnitine palmitoyltransferase 1 expression was reduced, which indicates impaired fatty acid transport and disrupted mitochondrial β-oxidation. Thus, steatosis was successfully induced in PCLSs with modified culture medium. This novel ex vivo NAFLD model could be used to investigate the multicellular and molecular mechanisms that drive NAFLD development and progression, and to study potential anti-steatotic drugs.
Collapse
Affiliation(s)
- Grietje H Prins
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Theerut Luangmonkong
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, 10400 Bangkok, Thailand.
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, University of Groningen, 9712VM Groningen, The Netherlands.
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9712VM Groningen, The Netherlands.
| |
Collapse
|
7
|
Li H, Wang Z, Li Y, Fang R, Wang H, Shi H, Zhang X, Zhang W, Ye L. Hepatitis B X-interacting protein promotes the formation of the insulin gene-transcribing protein complex Pdx-1/Neurod1 in animal pancreatic β-cells. J Biol Chem 2017; 293:2053-2065. [PMID: 29259128 DOI: 10.1074/jbc.m117.809582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
The activation of insulin gene transcription depends on multiple nuclear proteins, including the transcription factors PDX-1 and NEUROD1, which form a transcriptional complex. We recently reported that hepatitis B X-interacting protein (HBXIP, also termed LAMTOR5) can modulate glucose metabolism reprogramming in cancer cells. However, the physiological role of HBXIP in the modulation of glucose metabolism in normal tissues is poorly understood. Here, we report that Hbxip is an essential regulator of the effect of the Pdx-1/Neurod1 complex on insulin gene transcription in murine pancreatic β-cells in vitro and in vivo We found that pancreatic β-cell-specific Hbxip-knockout mice displayed higher fasting blood glucose levels and impaired glucose tolerance. Furthermore, Hbxip was involved in the regulation of insulin in the pancreas islets and increased insulin gene expression in rat pancreatic β-cells. Mechanistically, Hbxip stimulated insulin enhancer activity by interacting with Pdx-1 and recruiting Neurod1 to Pdx-1. Functionally, we provide evidence that Hbxip is required for Pdx-1/Neurod1-mediated insulin expression in rat pancreatic β-cells. Collectively, these results indicate that Hbxip is involved in the transcription of insulin by increasing the levels of the Pdx-1/Neurod1 complex in animal pancreatic β-cells. Our finding provides the insight into the mechanism by which Hbxip stimulates the transcription of the insulin gene.
Collapse
Affiliation(s)
- Hang Li
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Zhen Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Yinghui Li
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Runping Fang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Huawei Wang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Hui Shi
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Xiaodong Zhang
- Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiying Zhang
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| | - Lihong Ye
- From the State Key Laboratory of Medicinal Chemical Biology, Departments of Biochemistry and
| |
Collapse
|
8
|
Jin Q, Zhao HB, Liu XM, Wan FC, Liu YF, Cheng HJ, You W, Liu GF, Tan XW. Effect of β-carotene supplementation on the expression of lipid metabolism-related genes and the deposition of back fat in beef cattle. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To evaluate the effects of β-carotene (βC) supplementation on lipid metabolism in the back fat of beef cattle, 120 continental crossbred (Simmental × local Luxi yellow cattle) steers were selected randomly from feedlots and allotted to four groups. Each steer was supplemented with 0, 600, 1200, or 1800 mg/day of βC for 90 days, and then received no βC for 60 days (depletion period). The βC levels significantly increased in steers supplemented with βC (P < 0.01), and then decreased to the control level by Day 150. Back fat thickness decreased slightly with increasing βC supplementation, and significantly differed among groups after supplementation ceased (P < 0.01 on Day 120, P < 0.05 on Day 150). Significant regression relationships between βC supplement level and both βC content in back fat tissue on Day 90 and back fat thickness on Days 90, 120, and 150 were established (P < 0.01). No significant differences in the dry matter intake or average daily gain were detected, but higher net meat percentages were observed in the 1200 and 1800 mg/day βC-supplemented groups compared with the control (P < 0.05). The mRNA expression of two fat synthesis-related genes, acetyl-CoA carboxylase and fatty acid synthase, were downregulated during the supplementation period, but upregulated during the next 60 days when the steers received no βC supplementation. In contrast, the expression of two fat hydrolysis-related genes, hormone-sensitive lipase and adipose triglyceride lipase, were upregulated during the supplementation period and downregulated in the subsequent 60 days. The results showed that βC supplementation suppresses back fat deposition in beef cattle by inhibiting fat synthesis and enhancing fat hydrolysis.
Collapse
|
9
|
Kim M, Kim DK, Cha YS. Black Adzuki Bean (Vigna angularis) Extract Protects Pancreatic β Cells and Improves Glucose Tolerance in C57BL/6J Mice Fed a High-Fat Diet. J Med Food 2016; 19:442-9. [DOI: 10.1089/jmf.2015.3598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mina Kim
- Department of Food Science and Human Nutrition, and Research Institute of Human Ecology, Chonbuk National University, Jeonju, Korea
| | - Dae Keun Kim
- College of Pharmacy, Woosuk University, Jeonju, Korea
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, and Research Institute of Human Ecology, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
10
|
Brun T, Li N, Jourdain AA, Gaudet P, Duhamel D, Meyer J, Bosco D, Maechler P. Diabetogenic milieus induce specific changes in mitochondrial transcriptome and differentiation of human pancreatic islets. Hum Mol Genet 2015; 24:5270-5284. [PMID: 26123492 DOI: 10.1093/hmg/ddv247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/23/2015] [Indexed: 01/09/2023] Open
Abstract
In pancreatic β-cells, mitochondria play a central role in coupling glucose metabolism to insulin secretion. Chronic exposure of β-cells to metabolic stresses impairs their function and potentially induces apoptosis. Little is known on mitochondrial adaptation to metabolic stresses, i.e. high glucose, fatty acids or oxidative stress; being all highlighted in the pathogenesis of type 2 diabetes. Here, human islets were exposed for 3 days to 25 mm glucose, 0.4 mm palmitate, 0.4 mm oleate and transiently to H2O2. Culture at physiological 5.6 mm glucose served as no-stress control. Expression of mitochondrion-associated genes was quantified, including the transcriptome of mitochondrial inner membrane carriers. Targets of interest were further evaluated at the protein level. Three days after acute oxidative stress, no significant alteration in β-cell function or apoptosis was detected in human islets. Palmitate specifically increased expression of the pyruvate carriers MPC1 and MPC2, whereas the glutamate carrier GC1 and the aspartate/glutamate carrier AGC1 were down-regulated by palmitate and oleate, respectively. High glucose decreased mRNA levels of key transcription factors (HNF4A, IPF1, PPARA and TFAM) and energy-sensor SIRT1. High glucose also reduced expression of 11 mtDNA-encoded respiratory chain subunits. Interestingly, transcript levels of the carriers for aspartate/glutamate AGC2, malate DIC and malate/oxaloacetate/aspartate UCP2 were increased by high glucose, a profile suggesting important mitochondrial anaplerotic/cataplerotic activities and NADPH-generating shuttles. Chronic exposure to high glucose impaired glucose-stimulated insulin secretion, decreased insulin content, promoted caspase-3 cleavage and cell death, revealing glucotoxicity. Overall, expression profile of mitochondrion-associated genes was selectively modified by glucose, delineating a glucotoxic-specific signature.
Collapse
Affiliation(s)
- Thierry Brun
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland,
| | - Ning Li
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland
| | - Alexis A Jourdain
- Department of Cell Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Pascale Gaudet
- Swiss Institute of Bioinformatics (SIB), Geneva, Switzerland, University of Geneva, Medical Center, Geneva, Switzerland and
| | - Dominique Duhamel
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland
| | - Jérémy Meyer
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland,
| |
Collapse
|
11
|
Brun T, Scarcia P, Li N, Gaudet P, Duhamel D, Palmieri F, Maechler P. Changes in mitochondrial carriers exhibit stress-specific signatures in INS-1Eβ-cells exposed to glucose versus fatty acids. PLoS One 2013; 8:e82364. [PMID: 24349266 PMCID: PMC3861392 DOI: 10.1371/journal.pone.0082364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Chronic exposure of β-cells to metabolic stresses impairs their function and potentially induces apoptosis. Mitochondria play a central role in coupling glucose metabolism to insulin secretion. However, little is known on mitochondrial responses to specific stresses; i.e. low versus high glucose, saturated versus unsaturated fatty acids, or oxidative stress. INS-1E cells were exposed for 3 days to 5.6 mM glucose, 25 mM glucose, 0.4 mM palmitate, and 0.4 mM oleate. Culture at standard 11.1 mM glucose served as no-stress control and transient oxidative stress (200 µM H2O2 for 10 min at day 0) served as positive stressful condition. Mito-array analyzed transcripts of 60 mitochondrion-associated genes with special focus on members of the Slc25 family. Transcripts of interest were evaluated at the protein level by immunoblotting. Bioinformatics analyzed the expression profiles to delineate comprehensive networks. Chronic exposure to the different metabolic stresses impaired glucose-stimulated insulin secretion; revealing glucotoxicity and lipo-dysfunction. Both saturated and unsaturated fatty acids increased expression of the carnitine/acylcarnitine carrier CAC, whereas the citrate carrier CIC and energy sensor SIRT1 were specifically upregulated by palmitate and oleate, respectively. High glucose upregulated CIC, the dicarboxylate carrier DIC and glutamate carrier GC1. Conversely, it reduced expression of energy sensors (AMPK, SIRT1, SIRT4), metabolic genes, transcription factor PDX1, and anti-apoptotic Bcl2. This was associated with caspase-3 cleavage and cell death. Expression levels of GC1 and SIRT4 exhibited positive and negative glucose dose-response, respectively. Expression profiles of energy sensors and mitochondrial carriers were selectively modified by the different conditions, exhibiting stress-specific signatures.
Collapse
Affiliation(s)
- Thierry Brun
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland
- * E-mail: (TB); (PM)
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Ning Li
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland
| | - Pascale Gaudet
- Swiss Institute of Bioinformatics (SIB) and University of Geneva, Medical Center, Geneva, Switzerland
| | - Dominique Duhamel
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
- Center of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland
- * E-mail: (TB); (PM)
| |
Collapse
|
12
|
Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, Hwang YP, Na M, Jeong HG. Phillyrin attenuates high glucose-induced lipid accumulation in human HepG2 hepatocytes through the activation of LKB1/AMP-activated protein kinase-dependent signalling. Food Chem 2012; 136:415-25. [PMID: 23122079 DOI: 10.1016/j.foodchem.2012.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/28/2012] [Accepted: 09/05/2012] [Indexed: 12/31/2022]
Abstract
Phillyrin, an active constituent found in many medicinal plants and certain functional foods, has anti-obesity activity in vivo. The aim of our study was to provide new data on the molecular mechanism(s) underlying the role of phillyrin in the prevention of high glucose-induced lipid accumulation in human HepG2 hepatocytes. We found that phillyrin suppressed high glucose-induced lipid accumulation in HepG2 cells. Phillyrin strongly inhibited high glucose-induced fatty acid synthase (FAS) expression by modulating sterol regulatory element-binding protein-1c (SREBP-1c) activation. Moreover, use of the pharmacological AMP-activated protein kinase (AMPK) inhibitor compound C revealed that AMPK is essential for suppressing SREBP-1c expression in phillyrin-treated cells. Finally, we found that liver kinase B1 (LKB1) phosphorylation is required for the phillyrin-enhanced activation of AMPK in HepG2 hepatocytes. These results indicate that phillyrin prevents lipid accumulation in HepG2 cells by blocking the expression of SREBP-1c and FAS through LKB1/AMPK activation, suggesting that phillyrin is a novel AMPK activator with a role in the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Minh Truong Do
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 305-764, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Glucose and lipid metabolism in the pancreas of rainbow trout is regulated at the molecular level by nutritional status and carbohydrate intake. J Comp Physiol B 2011; 182:507-16. [PMID: 22203338 DOI: 10.1007/s00360-011-0636-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
Abstract
Glucose and lipid metabolism in pancreatic islet organs is poorly characterized. In the present study, using as a model the carnivorous rainbow trout, a glucose-intolerant fish, we assessed mRNA expression levels of several genes involved in glucose and lipid metabolism (including ATP-citrate lyase; carnitine palmitoyltransferase-1 isoforms, CPT; the mitochondrial isoform of the phosphoenolpyrutave carboxykinase, mPEPCK and pyruvate kinase, PK) and glucosensing (glucose transporter type 2, Glut2; glucokinase, GK and the potassium channel, K(ATP)) in Brockmann bodies. We evaluated the response of these parameters to changes in feeding status (food deprived vs. fed fish) as well as to changes in the amount of carbohydrate (dextrin) in the diet. A general inhibition of the glycolytic (including the glucosensing marker GK) and β-oxidation pathways was found when comparing fed versus food-deprived fish. When comparing fish feeding on either low- or high-carbohydrate diets, we found that some genes related to lipid metabolism were more controlled by the feeding status than by the carbohydrate content (fatty acid synthase, CPTs). Findings are discussed in the context of pancreatic regulation of glucose and lipid metabolism in fish, and show that while trout pancreatic metabolism can partially adapt to a high-carbohydrate diet, some of the molecular actors studied seem to be poorly regulated (K(ATP)) and may contribute to the glucose intolerance observed in this species when fed high-carbohydrate diets.
Collapse
|
14
|
Zhang L, Yang G, Tang G, Wu L, Wang R. Rat pancreatic level of cystathionine γ-lyase is regulated by glucose level via specificity protein 1 (SP1) phosphorylation. Diabetologia 2011; 54:2615-25. [PMID: 21618058 DOI: 10.1007/s00125-011-2187-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/19/2011] [Indexed: 01/24/2023]
Abstract
AIMS/HYPOTHESIS Cystathionine γ-lyase (CSE) catalyses the endogenous production of hydrogen sulphide (H(2)S) in pancreatic beta cells, and H(2)S has been shown to inhibit insulin release from these cells. As altered pancreatic H(2)S production modulated by glucose has been previously shown, we hypothesised that the Cse gene could be regulated by glucose level in insulin-secreting cells. METHODS The effects of glucose on CSE protein level and mRNA level were analysed in INS-1E cells. Glucose effect on Cse promoter activity was tested by constructing a proximal Cse promoter vector including specificity protein 1 (Sp1) consensus sequence. RESULTS High glucose (20 mmol/l) inhibited H(2)S production in INS-1E cells and freshly isolated rat pancreatic islets. Cse mRNA expression, CSE activity and protein abundance were also profoundly reduced by high glucose. The involvement of SP1 in basal and high-glucose-regulated CSE production was demonstrated. Sp1-knockdown abolished a large portion of CSE production at basal glucose. Phosphorylation of SP1 stimulated by high glucose was inhibited by p38 mitogen-activated protein kinase (MAPK) inhibitors SB203580 and SB202190. After blocking p38 MAPK phosphorylation, the inhibitive effects of high glucose on CSE protein production and promoter activity in INS-1E cells were also virtually abolished. CONCLUSIONS/INTERPRETATION Glucose stimulates the phosphorylation of SP1 via p38 MAPK activation, which leads to decreased Cse promoter activity and subsequent downregulation of Cse gene expression. Inhibited H(2)S production through glucose-mediated CSE activity and production alterations may be involved in the fine control of glucose-induced insulin secretion.
Collapse
Affiliation(s)
- L Zhang
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, Canada, P7B 5E1
| | | | | | | | | |
Collapse
|
15
|
MacDonald MJ, Longacre MJ, Stoker SW, Kendrick M, Thonpho A, Brown LJ, Hasan NM, Jitrapakdee S, Fukao T, Hanson MS, Fernandez LA, Odorico J. Differences between human and rodent pancreatic islets: low pyruvate carboxylase, atp citrate lyase, and pyruvate carboxylation and high glucose-stimulated acetoacetate in human pancreatic islets. J Biol Chem 2011; 286:18383-96. [PMID: 21454710 DOI: 10.1074/jbc.m111.241182] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Anaplerosis, the net synthesis in mitochondria of citric acid cycle intermediates, and cataplerosis, their export to the cytosol, have been shown to be important for insulin secretion in rodent beta cells. However, human islets may be different. We observed that the enzyme activity, protein level, and relative mRNA level of the key anaplerotic enzyme pyruvate carboxylase (PC) were 80-90% lower in human pancreatic islets compared with islets of rats and mice and the rat insulinoma cell line INS-1 832/13. Activity and protein of ATP citrate lyase, which uses anaplerotic products in the cytosol, were 60-75% lower in human islets than in rodent islets or the cell line. In line with the lower PC, the percentage of glucose-derived pyruvate that entered mitochondrial metabolism via carboxylation in human islets was only 20-30% that in rat islets. This suggests human islets depend less on pyruvate carboxylation than rodent models that were used to establish the role of PC in insulin secretion. Human islets possessed high levels of succinyl-CoA:3-ketoacid-CoA transferase, an enzyme that forms acetoacetate in the mitochondria, and acetoacetyl-CoA synthetase, which uses acetoacetate to form acyl-CoAs in the cytosol. Glucose-stimulated human islets released insulin similarly to rat islets but formed much more acetoacetate. β-Hydroxybutyrate augmented insulin secretion in human islets. This information supports previous data that indicate beta cells can use a pathway involving succinyl-CoA:3-ketoacid-CoA transferase and acetoacetyl-CoA synthetase to synthesize and use acetoacetate and suggests human islets may use this pathway more than PC and citrate to form cytosolic acyl-CoAs.
Collapse
Affiliation(s)
- Michael J MacDonald
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Won JC, Rhee BD, Ko KS. Glucose-responsive gene expression system for gene therapy. Adv Drug Deliv Rev 2009; 61:633-40. [PMID: 19394377 DOI: 10.1016/j.addr.2009.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/25/2009] [Indexed: 12/30/2022]
Abstract
Regulation of gene expression by glucose is an important mechanism for mammals in adapting to their nutritional environment. Glucose, the primary fuel for most cells, modulates gene expression that is crucial in the cellular adaptation to glycemic variation. Transcription of the genes for insulin and glycolytic and lipogenic enzymes is stimulated by glucose in pancreatic beta-cells and liver. Recent findings further support the key role of the carbohydrate-responsive element binding protein in the regulation of glycolytic and lipogenic genes by glucose and dietary carbohydrates. Herein, we review the transcriptional regulation of glucose-responsive genes, and recent advances in the gene therapy using glucose-responsive gene expression for diabetes.
Collapse
Affiliation(s)
- Jong Chul Won
- Department of Internal Medicine, Sanggye Paik Hospital, Mitochondrial Research Group, Inje University College of Medicine, Seoul, Republic of Korea
| | | | | |
Collapse
|
17
|
Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE. Soluble sugars--metabolism, sensing and abiotic stress: a complex network in the life of plants. PLANT SIGNALING & BEHAVIOR 2009; 4:388-93. [PMID: 19816104 PMCID: PMC2676748 DOI: 10.4161/psb.4.5.8294] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 02/26/2009] [Indexed: 05/18/2023]
Abstract
Plants are autotrophic and photosynthetic organisms that both produce and consume sugars. Soluble sugars are highly sensitive to environmental stresses, which act on the supply of carbohydrates from source organs to sink ones. Sucrose and hexoses both play dual functions in gene regulation as exemplified by the upregulation of growth-related genes and downregulation of stress-related genes. Although coordinately regulated by sugars, these growth- and stress-related genes are upregulated or downregulated through HXK-dependent and/or HXK-independent pathways. Sucrose-non-fermenting-1- (SNF1-) related protein pathway, analogue to the protein kinase (SNF-) yeast-signalling pathway, seems also involved in sugar sensing and transduction in plants. However, even if plants share with yeast some elements involved in sugar sensing, several aspects of sugar perception are likely to be peculiar to higher plants. In this paper, we have reviewed recent evidences how plants sense and respond to environmental factors through sugar-sensing mechanisms. However, we think that forward and reverse genetic analysis in combination with expression profiling must be continued to uncover many signalling components, and a full biochemical characterization of the signalling complexes will be required to determine specificity and cross-talk in abiotic stress signalling pathways.
Collapse
Affiliation(s)
- Mariana Rosa
- Facultad de Ciencias Naturales e IML, Tucumán, Argentina
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
PURPOSE OF THE REVIEW In addition to its metabolic function, glucose modulates gene expression which is crucial in adapting cells to variations in glycaemia. We summarize recent advances in our understanding of regulation of gene expression by glucose. RECENT FINDINGS In-vivo and in-vitro experiments demonstrated that glucose regulates the transcription of genes encoding not only lipogenic and glycolytic enzymes but also proteins involved in global cell functions. The molecular mechanisms have begun to be elucidated, and the transcription factor carbohydrate responsive element-binding protein has emerged as a key actor, at least in liver. More recently, other candidates have been proposed, such as liver X receptors. In pathological situations, altered glycaemic control, as observed in diabetes mellitus, is associated with increased risk for microvascular and macrovascular complications. Recent findings suggest that changes in gene expression occurring in response to hyperglycaemia represent a novel component of glucotoxicity. SUMMARY Until recently, the direct transcriptional effects of glucose were underestimated, and insulin was considered to be the major regulator of gene expression in response to glycaemic variation. The recent discovery and characterization of transcription factors mediating the glucose response demonstrate that glucose, like fatty acids and other key nutrients, can directly control gene expression.
Collapse
|
19
|
Chen J, Jeppesen PB, Nordentoft I, Hermansen K. Stevioside improves pancreatic beta-cell function during glucotoxicity via regulation of acetyl-CoA carboxylase. Am J Physiol Endocrinol Metab 2007; 292:E1906-16. [PMID: 17341549 DOI: 10.1152/ajpendo.00356.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic hyperglycemia is detrimental to pancreatic beta-cells, causing impaired insulin secretion and beta-cell turnover. The characteristic secretory defects are increased basal insulin secretion (BIS) and a selective loss of glucose-stimulated insulin secretion (GSIS). Several recent studies support the view that the acetyl-CoA carboxylase (ACC) plays a pivotal role for GSIS. We have shown that stevioside (SVS) enhances insulin secretion and ACC gene expression. Whether glucotoxicity influences ACC and whether this action can be counteracted by SVS are not known. To investigate this, we exposed isolated mouse islets as well as clonal INS-1E beta-cells for 48 h to 27 or 16.7 mM glucose, respectively. We found that 48-h exposure to high glucose impairs GSIS from mouse islets and INS-1E cells, an effect that is partly counteracted by SVS. The ACC dephosphorylation inhibitor okadaic acid (OKA, 10(-8) M), and 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR, 10(-4) M), an activator of 5'-AMP protein kinase that phosphorylates ACC, eliminated the beneficial effect of SVS. 5-Tetrade-cyloxy-2-furancarboxylic acid (TOFA), the specific ACC inhibitor, blocked the effect of SVS as well. During glucotoxity, ACC gene expression, ACC protein, and phosphorylated ACC protein were increased in INS-1E beta-cells. SVS pretreatment further increased ACC gene expression with strikingly elevated ACC activity and increased glucose uptake accompanied by enhanced GSIS. Our studies show that glucose is a potent stimulator of ACC and that SVS to some extent counteracts glucotoxicity via increased ACC activity. SVS possesses the potential to alleviate negative effects of glucotoxicity in beta-cells via a unique mechanism of action.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Endocrinology and Metabolism, C. Aarhus Sygehus THG, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|
20
|
Ren J, Jin P, Wang E, Liu E, Harlan DM, Li X, Stroncek DF. Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation. J Transl Med 2007; 5:1. [PMID: 17201925 PMCID: PMC1769476 DOI: 10.1186/1479-5876-5-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/03/2007] [Indexed: 01/28/2023] Open
Abstract
While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called beta cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding beta-cell function at the molecular level will likely facilitate the development of techniques to manufacture beta-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release.
Collapse
Affiliation(s)
- Jiaqiang Ren
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ping Jin
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ena Wang
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eric Liu
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David M Harlan
- National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Li
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David F Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
21
|
Minn AH, Couto FM, Shalev A. Metabolism-independent sugar effects on gene transcription: the role of 3-O-methylglucose. Biochemistry 2006; 45:11047-51. [PMID: 16964965 DOI: 10.1021/bi0603625] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glucose effects on cellular functions such as gene expression require, in general, glucose metabolism at least to glucose-6-phosphate (G-6-P). However, the example of thioredoxin-interacting protein (TXNIP), a glucose-regulated gene involved in the cellular redox state and pancreatic beta cell apoptosis, demonstrates that this rule may not always apply. We found that aside form glucose, the nonmetabolizable sugars 2-deoxyglucose, which is still converted to G-6-P as well as 3-O-methylglucose (3-MG), which cannot be phosphorylated by glucokinase, stimulate TXNIP expression. In contrast, incubation of INS-1 beta cells with equimolar amounts (25 mM) of l-glucose or mannitol had no effect on TXNIP expression as measured by real-time RT-PCR, eliminating the possibility of an osmotic effect. Also, glucose uptake into the cell is critical because phloretin, an inhibitor of glucose transporter 2, blunted the glucose effects. Moreover, the 3-MG effect was not restricted to a cell line and was observed in 293 cells and primary human islets. Incubation of INS-1 cells with 30mM mannoheptulose, an inhibitor of glucose metabolism, blunted all glucose-induced gene expression but left the 3-MG effects unaltered. Using transient transfection studies and deletion constructs of the human TXNIP promoter, we found that the effects of glucose and 3-MG were dependent on the same region of the TXNIP promoter containing an E-box repeat carbohydrate response element (ChoRE). Thus, these findings provide the first evidence for regulation of gene expression by 3-MG, which is independent of glucose metabolism and suggest that glucose and 3-MG regulate transcription by two distinct pathways converging at a common ChoRE.
Collapse
Affiliation(s)
- Alexandra H Minn
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | |
Collapse
|
22
|
Gupta AK, Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 2006; 30:761-76. [PMID: 16388148 DOI: 10.1007/bf02703574] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca 2+ and calmodulins, results in appropriate gene expression. A variety of genes are either induced or repressed depending upon the status of soluble sugars. Abiotic stresses to plants result in major alterations in sugar status and hence affect the expression of various genes by down- and up-regulating their expression. Hexokinase-dependent and hexokinase-independent pathways are involved in sugar sensing. Sucrose also acts as a signal molecule as it affects the activity of a proton-sucrose symporter. The sucrose trans-porter acts as a sucrose sensor and is involved in phloem loading. Fructokinase may represent an additional sensor that bypasses hexokinase phosphorylation especially when sucrose synthase is dominant. Mutants isolated on the basis of response of germination and seedling growth to sugars and reporter-based screening protocols are being used to study the response of altered sugar status on gene expression. Common cis-acting elements in sugar signalling pathways have been identified. Transgenic plants with elevated levels of sugars/sugar alcohols like fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usually impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes are expressed only at the time of adverse environmental conditions instead of being constitutively synthesized.
Collapse
Affiliation(s)
- Anil K Gupta
- Department of Biochemistry and Chemistry, Punjab Agricultural University, Ludhiana 141 004, India.
| | | |
Collapse
|
23
|
Allagnat F, Martin D, Condorelli DF, Waeber G, Haefliger JA. Glucose represses connexin36 in insulin-secreting cells. J Cell Sci 2005; 118:5335-44. [PMID: 16263767 DOI: 10.1242/jcs.02600] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The gap-junction protein connexin36 (Cx36) contributes to control the functions of insulin-producing cells. In this study, we investigated whether the expression of Cx36 is regulated by glucose in insulin-producing cells. Glucose caused a significant reduction of Cx36 in insulin-secreting cell lines and freshly isolated pancreatic rat islets. This decrease appeared at the mRNA and the protein levels in a dose- and time-dependent manner. 2-Deoxyglucose partially reproduced the effect of glucose, whereas glucosamine, 3-O-methyl-D-glucose and leucine were ineffective. Moreover, KCl-induced depolarization of beta-cells had no effect on Cx36 expression, indicating that glucose metabolism and ATP production are not mandatory for glucose-induced Cx36 downregulation. Forskolin mimicked the repression of Cx36 by glucose. Glucose or forskolin effects on Cx36 expression were not suppressed by the L-type Ca(2+)-channel blocker nifedipine but were fully blunted by the cAMP-dependent protein kinase (PKA) inhibitor H89. A 4 kb fragment of the human Cx36 promoter was identified and sequenced. Reporter-gene activity driven by various Cx36 promoter fragments indicated that Cx36 repression requires the presence of a highly conserved cAMP responsive element (CRE). Electrophoretic-mobility-shift assays revealed that, in the presence of a high glucose concentration, the binding activity of the repressor CRE-modulator 1 (CREM-1) is enhanced. Taken together, these data provide evidence that glucose represses the expression of Cx36 through the cAMP-PKA pathway, which activates a member of the CRE binding protein family.
Collapse
Affiliation(s)
- Florent Allagnat
- Department of Internal Medicine, Laboratory of Molecular Biology 19-135S, University Hospital, CHUV-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Sandberg MB, Fridriksson J, Madsen L, Rishi V, Vinson C, Holmsen H, Berge RK, Mandrup S. Glucose-induced lipogenesis in pancreatic beta-cells is dependent on SREBP-1. Mol Cell Endocrinol 2005; 240:94-106. [PMID: 16002205 DOI: 10.1016/j.mce.2005.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/13/2005] [Accepted: 05/18/2005] [Indexed: 01/22/2023]
Abstract
High concentrations of glucose induce de novo fatty acid synthesis in pancreatic beta-cells and chronic exposure of elevated glucose and fatty acids synergize to induce accumulation of triglycerides, a phenomenon termed glucolipotoxicity. Here we investigate the role of sterol-regulatory element binding proteins in glucose-induced lipogenesis in the pancreatic beta-cell line INS-1E. We show that glucose induces SREBP-1c expression and SREBP-1 activity independent of insulin secretion and signaling. Using adenoviral expression of SREBP-1c and a SREBP-mutant we show that lipogenic gene expression, de novo fatty acid synthesis and lipid accumulation are induced primarily through sterol-regulatory elements (SREs) and not E-Boxes. Adenoviral expression of a dominant negative SREBP compromises glucose induction of some lipogenic genes and significantly reduces glucose-induction of de novo fatty acid synthesis. Thus, we demonstrate for the first time that SREBP activity is necessary for full glucose induction of de novo fatty acid synthesis in pancreatic beta-cells.
Collapse
Affiliation(s)
- Maria B Sandberg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense
| | | | | | | | | | | | | | | |
Collapse
|
25
|
MacDonald MJ, Fahien LA, Brown LJ, Hasan NM, Buss JD, Kendrick MA. Perspective: emerging evidence for signaling roles of mitochondrial anaplerotic products in insulin secretion. Am J Physiol Endocrinol Metab 2005; 288:E1-15. [PMID: 15585595 DOI: 10.1152/ajpendo.00218.2004] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The importance of mitochondrial biosynthesis in stimulus secretion coupling in the insulin-producing beta-cell probably equals that of ATP production. In glucose-induced insulin secretion, the rate of pyruvate carboxylation is very high and correlates more strongly with the glucose concentration the beta-cell is exposed to (and thus with insulin release) than does pyruvate decarboxylation, which produces acetyl-CoA for metabolism in the citric acid cycle to produce ATP. The carboxylation pathway can increase the levels of citric acid cycle intermediates, and this indicates that anaplerosis, the net synthesis of cycle intermediates, is important for insulin secretion. Increased cycle intermediates will alter mitochondrial processes, and, therefore, the synthesized intermediates must be exported from mitochondria to the cytosol (cataplerosis). This further suggests that these intermediates have roles in signaling insulin secretion. Although evidence is quite good that all physiological fuel secretagogues stimulate insulin secretion via anaplerosis, evidence is just emerging about the possible extramitochondrial roles of exported citric acid cycle intermediates. This article speculates on their potential roles as signaling molecules themselves and as exporters of equivalents of NADPH, acetyl-CoA and malonyl-CoA, as well as alpha-ketoglutarate as a substrate for hydroxylases. We also discuss the "succinate mechanism," which hypothesizes that insulin secretagogues produce both NADPH and mevalonate. Finally, we discuss the role of mitochondria in causing oscillations in beta-cell citrate levels. These parallel oscillations in ATP and NAD(P)H. Oscillations in beta-cell plasma membrane electrical potential, ATP/ADP and NAD(P)/NAD(P)H ratios, and glycolytic flux are known to correlate with pulsatile insulin release. Citrate oscillations might synchronize oscillations of individual mitochondria with one another and mitochondrial oscillations with oscillations in glycolysis and, therefore, with flux of pyruvate into mitochondria. Thus citrate oscillations may synchronize mitochondrial ATP production and anaplerosis with other cellular oscillations.
Collapse
Affiliation(s)
- Michael J MacDonald
- Childrens Diabetes Center, University of Wisconsin Medical School, Madison, Wisconsin, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Yu X, Murao K, Sayo Y, Imachi H, Cao WM, Ohtsuka S, Niimi M, Tokumitsu H, Inuzuka H, Wong NCW, Kobayashi R, Ishida T. The role of calcium/calmodulin-dependent protein kinase cascade in glucose upregulation of insulin gene expression. Diabetes 2004; 53:1475-81. [PMID: 15161751 DOI: 10.2337/diabetes.53.6.1475] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A number of factors have been reported to affect insulin synthesis in beta-cells. Although glucose is the most important regulator of insulin gene expression in pancreatic beta-cells, the mechanisms whereby glucose stimulates insulin gene transcription in response to changes in glucose concentration have not been clarified yet. In this study, we examined the role of the Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaM-K) cascade in transcriptional activation of insulin. RT-PCR, Western blotting, and immunohistochemical staining analysis revealed that CaM-K kinase-alpha (CaM-KKalpha) and CaM-KIV were localized in rat pancreatic beta-cells and their cell line, INS-1. Exposure of INS-1 cells to 11.2 mmol/l glucose elicited an increase of insulin promoter activity as well as upregulation of CaM-KIV activity within 2 min after stimulation. We investigated the influence on insulin promoter activity of the constitutively active form (CaM-KIVc) or dominant-negative mutant (CaM-KIVdn) of CaM-KIV in transfected INS-1 cells. CaM-KIVc alone was sufficient, and the upstream kinase, CaM-KK, was enhanced to upregulate the insulin promoter activity in INS-1 cells. Furthermore, cotransfection of CaM-KIVdn suppressed to a significant degree the glucose-upregulated activity of the insulin promoter. Taken together, these results indicated that the CaM-KK/CaM-KIV cascade might play an important role in glucose-upregulated transcriptional activation of the insulin gene.
Collapse
Affiliation(s)
- Xiao Yu
- First Department of Internal Medicine, Kagawa Medical University, 1750-1, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ruderman N, Prentki M. AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 2004; 3:340-51. [PMID: 15060529 DOI: 10.1038/nrd1344] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Neil Ruderman
- Department of Medicine, Boston University School of Medicine and Diabetes Unit, Section of Endocrinology, Boston Medical Center, 715 Albany Street, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
28
|
Guillet-Deniau I, Pichard AL, Koné A, Esnous C, Nieruchalski M, Girard J, Prip-Buus C. Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-1c-dependent pathway. J Cell Sci 2004; 117:1937-44. [PMID: 15039461 DOI: 10.1242/jcs.01069] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We previously reported that sterol-regulatory-element-binding-protein-1c (SREBP-1c) mediates insulin upregulation of genes encoding glycolytic and lipogenic enzymes in rat skeletal muscle. Here, we assessed whether glucose could regulate gene expression in contracting myotubes deriving from cultured muscle satellite cells. Glucose uptake increased twofold after a 30 minute treatment with a high glucose concentration, suggesting an acute glucose-stimulated glucose uptake. Time-course experiments showed that, within 3 hours, glucose stimulated the expression of hexokinase II, fatty acid synthase and acetyl-CoA-carboxylase-2 proteins, leading to an increased lipogenic flux and intracellular lipid accumulation in contracting myotubes. Furthermore, kinetic experiments indicated that glucose upregulated SREBP-1c precursor and nuclear proteins within 30 minutes, SREBP-1c nuclear translocation being confirmed using immunocytochemistry. In addition, the knockdown of SREBP-1 mRNA using a RNA-interference technique totally abrogated the glucose-induced upregulation of lipogenic enzymes, indicating that SREBP-1c mediates the action of glucose on these genes in rat skeletal muscle. Finally, we found that glucose rapidly stimulated SREBP-1c maturation through a Jak/STAT dependent pathway. We propose that increased intramuscular lipid accumulation associated with muscle insulin resistance in obesity or type-2 diabetes could arise partly from de novo fatty acid synthesis in skeletal muscle.
Collapse
Affiliation(s)
- Isabelle Guillet-Deniau
- Département d'Endocrinologie, Institut Cochin, Institut National de la Santé et de la Recherche Médicale (INSERM) U567, CNRS, Unité Mixte de Recherche 8104, Université René Descartes, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Dubois M, Kerr-Conte J, Gmyr V, Bouckenooghe T, Muharram G, D'Herbomez M, Martin-Ponthieu A, Vantyghem MC, Vandewalle B, Pattou F. Non-esterified fatty acids are deleterious for human pancreatic islet function at physiological glucose concentration. Diabetologia 2004; 47:463-469. [PMID: 14968298 DOI: 10.1007/s00125-004-1347-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 12/11/2003] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Whether excess glucose (glucotoxicity) and excess non-esterified fatty acids (lipotoxicity) act synergistically or separately to alter beta-cell function on Type 2 diabetes remains controversial. We examined the influence of non-esterified fatty acids, with or without concomitant increased glucose concentrations, on human islet function and on the expression of genes involved in lipid metabolism. METHODS Human islets isolated from non-diabetic and non-obese donors were cultured with 5.5, 16 or 30 mmol/l glucose, and when appropriate with 1 or 2 mmol/l non-esterified fatty acids. After 48 h, glucose-stimulated insulin secretion, insulin content, triglyceride content and expression of different genes were evaluated. RESULTS Non-esterified fatty acids decreased glucose-stimulated insulin secretion, insulin content and increased triglyceride content of human isolated islets, independently from the deleterious effect of glucose. Increased glucose concentrations also decreased glucose-stimulated insulin secretion and insulin content, but had no influence on triglyceride content. Glucose-stimulated insulin secretion of islets appeared to be significantly correlated with their triglyceride content. Glucose and non-esterified fatty acids modified the gene expression of carnitine palmitoyltransferase-I, acetyl-CoA carboxylase, acyl-CoA oxidase and uncoupling protein 2. CONCLUSION/INTERPRETATION In our model of isolated human islets, increased glucose and non-esterified fatty acids separately reproduced the two major beta-cell alterations observed in vivo, i.e. loss of glucose-stimulated insulin secretion and reduction in islet insulin content. Our results also suggest that this deleterious effect was, at least in part, mediated by modifications in lipid metabolism gene expression.
Collapse
Affiliation(s)
- M Dubois
- ERIT-M 0106 (Diabetes Cell therapy), INSERM, Faculty of Medicine, University of Lille, 1 place de Verdun, 59 045, Lille cedex, France
| | - J Kerr-Conte
- ERIT-M 0106 (Diabetes Cell therapy), INSERM, Faculty of Medicine, University of Lille, 1 place de Verdun, 59 045, Lille cedex, France
| | - V Gmyr
- ERIT-M 0106 (Diabetes Cell therapy), INSERM, Faculty of Medicine, University of Lille, 1 place de Verdun, 59 045, Lille cedex, France
| | - T Bouckenooghe
- ERIT-M 0106 (Diabetes Cell therapy), INSERM, Faculty of Medicine, University of Lille, 1 place de Verdun, 59 045, Lille cedex, France
| | - G Muharram
- ERIT-M 0106 (Diabetes Cell therapy), INSERM, Faculty of Medicine, University of Lille, 1 place de Verdun, 59 045, Lille cedex, France
| | - M D'Herbomez
- Department of Nuclear Medicine, University Hospital Center of Lille, France
| | - A Martin-Ponthieu
- Laboratory of Biochemistry and Molecular Biology, University Hospital Center of Lille, France
| | - M C Vantyghem
- ERIT-M 0106 (Diabetes Cell therapy), INSERM, Faculty of Medicine, University of Lille, 1 place de Verdun, 59 045, Lille cedex, France
| | - B Vandewalle
- ERIT-M 0106 (Diabetes Cell therapy), INSERM, Faculty of Medicine, University of Lille, 1 place de Verdun, 59 045, Lille cedex, France
| | - F Pattou
- ERIT-M 0106 (Diabetes Cell therapy), INSERM, Faculty of Medicine, University of Lille, 1 place de Verdun, 59 045, Lille cedex, France.
| |
Collapse
|
30
|
Liu YQ, Moibi JA, Leahy JL. Chronic high glucose lowers pyruvate dehydrogenase activity in islets through enhanced production of long chain acyl-CoA: prevention of impaired glucose oxidation by enhanced pyruvate recycling through the malate-pyruvate shuttle. J Biol Chem 2003; 279:7470-5. [PMID: 14660628 DOI: 10.1074/jbc.m307921200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In islet beta-cells, the high expression of pyruvate carboxylase and the functional importance of the downstream anaplerosis pathways result in a unique characteristic whereby high glucose and fatty acids both increase production of a key fatty acid metabolite, long chain acyl-CoA, for signaling and enzyme regulation in beta-cells. We showed previously in islets that pyruvate dehydrogenase (PDH) activity is lowered by excess fatty acids (the so-called Randle effect). We have now investigated PDH activity and pyruvate metabolism in islets after 48-h culture at 16.7 mmol/liter glucose. Active PDH V(max) was lowered 65% by 48 h of high glucose, and this effect was markedly attenuated by co-culture with triacsin C, which inhibits acyl-CoA synthase. Despite the large reduction in PDH activity, glucose oxidation was twice normal. The reason was continued metabolism of pyruvate through pyruvate carboxylase (V(max), 83% of control) and diversion of flux through the pyruvate-malate shuttle. The result was a 3-fold increase of the pyruvate concentration that overcame the lowered PDH activity by mass action as shown by glucose oxidation measured with [6-(14)C]glucose being twice normal. In addition, glucose-induced insulin secretion was 3-fold increased after 48 h of high glucose, and this effect was totally blocked by co-culture with triacsin C. These results show that a unique feature of islet beta-cells is not only fatty acids but also excess glucose that impairs PDH activity. Also, a specialized trait of beta-cells is a long chain acyl-CoA-mediated defense mechanism that prevents a reduction in glucose oxidation and consequently in insulin secretion.
Collapse
Affiliation(s)
- Ye Qi Liu
- Division of Endocrinology, Diabetes, and Metabolism, University of Vermont, Burlington, Vermont 05405
| | | | | |
Collapse
|
31
|
Abstract
Insulin secretion is thought principally to be regulated by blood glucose concentration. Three recent studies emphasise the additional importance of fatty acids as regulators of insulin secretion, and demonstrate the involvement of a novel G protein-coupled receptor.
Collapse
Affiliation(s)
- Guy A Rutter
- Henry Wellcome Laboratories for Integrated Cell Signalling and Department of Biochemistry, School of Medical Sciences, University of Bristol, UK.
| |
Collapse
|
32
|
Prentki M, Joly E, El-Assaad W, Roduit R. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 2002; 51 Suppl 3:S405-13. [PMID: 12475783 DOI: 10.2337/diabetes.51.2007.s405] [Citation(s) in RCA: 307] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Beta-cells possess inherent mechanisms to adapt to overnutrition and the prevailing concentrations of glucose, fatty acids, and other fuels to maintain glucose homeostasis. However, this is balanced by potentially harmful actions of the same nutrients. Both glucose and fatty acids may cause good/adaptive or evil/toxic actions on the beta-cell, depending on their concentrations and the time during which they are elevated. Chronic high glucose dramatically influences beta-cell lipid metabolism via substrate availability, changes in the activity and expression of enzymes of glucose and lipid metabolism, and modifications in the expression level of key transcription factors. We discuss here the emerging view that beta-cell "glucotoxicity" is in part indirectly caused by "lipotoxicity," and that beta-cell abnormalities will become particularly apparent when both glucose and circulating fatty acids are high. We support the concept that elevated glucose and fatty acids synergize in causing toxicity in islets and other organs, a process that may be instrumental in the pleiotropic defects associated with the metabolic syndrome and type 1 and type 2 diabetes. The mechanisms by which hyperglycemia and hyperlipidemia alter insulin secretion are discussed and a model of beta-cell "glucolipotoxicity" that implicates alterations in beta-cell malonyl-CoA concentrations; peroxisome proliferator-activated receptor-alpha and -gamma and sterol regulatory element binding protein-1c expression; and lipid partitioning is proposed.
Collapse
Affiliation(s)
- Marc Prentki
- Molecular Nutrition Unit, Department of Nutrition, University of Montreal, the Centre de Recherche du CHUM, Montreal, Quebec, Canada.
| | | | | | | |
Collapse
|
33
|
Lopaschuk GD. Malonyl CoA control of fatty acid oxidation in the diabetic rat heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 498:155-65. [PMID: 11900364 DOI: 10.1007/978-1-4615-1321-6_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Increased fatty acid metabolism can decrease cardiac function and efficiency, and may therefore contribute to the outcome of ischemic injury in the diabetic. Alterations in the control of myocardial malonyl CoA levels is an important contributing factor to these high fatty acid oxidation rates. This includes alterations in AMPK, ACC, and MCD activity in the diabetic rat heart. A further understanding of how malonyl CoA controls fatty acid oxidation in the diabetic heart should help identify new targets for pharmacological intervention which decreases the reliance of the heart on fatty acid oxidation, and ultimately improves heart function.
Collapse
Affiliation(s)
- G D Lopaschuk
- Cardiovascular Research Group, University of Alberta, Edmonton, Canada
| |
Collapse
|
34
|
Andreolas C, da Silva Xavier G, Diraison F, Zhao C, Varadi A, Lopez-Casillas F, Ferré P, Foufelle F, Rutter GA. Stimulation of acetyl-CoA carboxylase gene expression by glucose requires insulin release and sterol regulatory element binding protein 1c in pancreatic MIN6 beta-cells. Diabetes 2002; 51:2536-45. [PMID: 12145168 DOI: 10.2337/diabetes.51.8.2536] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Acetyl-CoA carboxylase I (ACCI) is a key lipogenic enzyme whose induction in islet beta-cells may contribute to glucolipotoxicity. Here, we provide evidence that enhanced insulin release plays an important role in the activation of this gene by glucose. Glucose (30 vs. 3 mmol/l) increased ACCI mRNA levels approximately 4-fold and stimulated ACCI (pII) promoter activity >30-fold in MIN6 cells. The latter effect was completely suppressed by blockade of insulin release or of insulin receptor signaling. However, added insulin substantially, but not completely, mimicked the effects of glucose, suggesting that intracellular metabolites of glucose may also contribute to transcriptional stimulation. Mutational analysis of the ACCI promoter, and antibody microinjection, revealed that the effect of glucose required sterol response element binding protein (SREBP)-1c. Moreover, adenoviral transduction with dominant-negative-acting SREBP1c blocked ACCI gene induction, whereas constitutively active SREBP1c increased ACCI mRNA levels. Finally, glucose also stimulated SREBP1c transcription, although this effect was independent of insulin release. These data suggest that glucose regulates ACCI gene expression in the beta-cell by complex mechanisms that may involve the covalent modification of SREBP1c. However, overexpression of SREBP1c also decreased glucose-stimulated insulin release, implicating SREBP1c induction in beta-cell lipotoxicity in some forms of type 2 diabetes.
Collapse
|
35
|
Laybutt DR, Sharma A, Sgroi DC, Gaudet J, Bonner-Weir S, Weir GC. Genetic regulation of metabolic pathways in beta-cells disrupted by hyperglycemia. J Biol Chem 2002; 277:10912-21. [PMID: 11782487 DOI: 10.1074/jbc.m111751200] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In models of type 2 diabetes the expression of beta-cell genes is altered, but these changes have not fully explained the impairment in beta-cell function. We hypothesized that changes in beta-cell phenotype and global alterations in both carbohydrate and lipid pathways are likely to contribute to secretory abnormalities. Therefore, expression of genes involved in carbohydrate and lipid metabolism were analyzed in islets 4 weeks after 85-95% partial pancreatectomy (Px) when beta-cells have impaired glucose-induced insulin secretion and ATP synthesis. Px rats after 1 week developed mild to severe hyperglycemia that was stable for the next 3 weeks, whereas neither plasma triglyceride, non-esterified fatty acid, or islet triglyceride levels were altered. Expression of peroxisome proliferator-activated receptors (PPARs), with several target genes, were reciprocally regulated; PPARalpha was markedly reduced even at low level hyperglycemia, whereas PPARgamma was progressively increased with increasing hyperglycemia. Uncoupling protein 2 (UCP-2) was increased as were other genes barely expressed in sham islets including lactate dehydrogenase-A (LDH-A), lactate (monocarboxylate) transporters, glucose-6-phosphatase, fructose-1,6-bisphosphatase, 12-lipoxygenase, and cyclooxygenase 2. On the other hand, the expression of beta-cell-associated genes, insulin, and GLUT2 were decreased. Treating Px rats with phlorizin normalized hyperglycemia without effecting plasma fatty acids and reversed the changes in gene expression implicating the importance of hyperglycemia per se in the loss of beta-cell phenotype. In addition, parallel changes were observed in beta-cell-enriched tissue dissected by laser capture microdissection from the central core of islets. In conclusion, chronic hyperglycemia leads to a critical loss of beta-cell differentiation with altered expression of genes involved in multiple metabolic pathways diversionary to normal beta-cell glucose metabolism. This global maladaptation in gene expression at the time of increased secretory demand may contribute to the beta-cell dysfunction found in diabetes.
Collapse
Affiliation(s)
- D Ross Laybutt
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
36
|
Bonaventure G, Ohlrogge JB. Differential regulation of mRNA levels of acyl carrier protein isoforms in Arabidopsis. PLANT PHYSIOLOGY 2002; 128:223-235. [PMID: 11788768 DOI: 10.1104/pp.010397] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
All higher plants express several different acyl carrier protein (ACP) isoforms in a tissue-specific manner. We provide evidence that expression of mRNA for the most abundant ACP isoform in Arabidopsis leaves (ACP4) is increased severalfold by light, whereas mRNA levels for ACP isoforms 2 and 3 are independent of light. The presence of GATA-like motifs in the upstream region of the Acl1.4 gene (encoding for ACP4) and the similarity in light-mediated induction to ferredoxin-A mRNA suggests a direct role of light in Acl1.4 gene activation. Polyribosomal analysis indicated that light also affects the association of ACP transcripts with polysomes, similarly to mRNAs encoding ferredoxin-A. ACP2, ACP3, and ACP4 mRNA levels were also examined in Arabidopsis cell suspension culture and were found to be differentially controlled by metabolic and/or growth derived signals. Comparison of 5'-untranslated regions (UTRs) of ACP mRNAs of diverse plant species revealed two motifs that have been conserved during evolution, a CTCCGCC box and C-T-rich sequences. Fusions of the 5'-UTR sequences of ACP1 and ACP2 to luciferase and expression in transgenic plants indicated that the ACP1 leader contributes to preferential expression in seeds, whereas the ACP2 5'-UTR favored expression in roots. The deletion of 58 bp containing the conserved motifs of the ACP1 5'-UTR resulted in 10- to 20-fold lower gene expression in leaf and seed tissues of transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Genetics Program, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
37
|
Abstract
Insulin secretion from pancreatic islet beta-cells is a tightly regulated process, under the close control of blood glucose concentrations, and several hormones and neurotransmitters. Defects in glucose-triggered insulin secretion are ultimately responsible for the development of type II diabetes, a condition in which the total beta-cell mass is essentially unaltered, but beta-cells become progressively "glucose blind" and unable to meet the enhanced demand for insulin resulting for peripheral insulin resistance. At present, the mechanisms by which glucose (and other nutrients including certain amino acids) trigger insulin secretion in healthy individuals are understood only in part. It is clear, however, that the metabolism of nutrients, and the generation of intracellular signalling molecules including the products of mitochondrial metabolism, probably play a central role. Closure of ATP-sensitive K+(K(ATP)) channels in the plasma membrane, cell depolarisation, and influx of intracellular Ca2+, then prompt the "first phase" on insulin release. However, recent data indicate that glucose also enhances insulin secretion through mechanisms which do not involve a change in K(ATP) channel activity, and seem likely to underlie the second, sustained phase of glucose-stimulated insulin secretion. In this review, I will discuss recent advances in our understanding of each of these signalling processes.
Collapse
Affiliation(s)
- G A Rutter
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
38
|
|
39
|
da Silva Xavier G, Varadi A, Ainscow EK, Rutter GA. Regulation of gene expression by glucose in pancreatic beta -cells (MIN6) via insulin secretion and activation of phosphatidylinositol 3'-kinase. J Biol Chem 2000; 275:36269-77. [PMID: 10967119 DOI: 10.1074/jbc.m006597200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increases in glucose concentration control the transcription of the preproinsulin (PPI) gene and several other genes in the pancreatic islet beta-cell. Although recent data have demonstrated that secreted insulin may regulate the PPI gene (Leibiger, I. B., Leibiger, B., Moede, T., and Berggren, P. O. (1998) Mol. Cell 1, 933-938), the role of insulin in the control of other beta-cell genes is unexplored. To study the importance of insulin secretion in the regulation of the PPI and liver-type pyruvate kinase (L-PK) genes by glucose, we have used intranuclear microinjection of promoter-luciferase constructs into MIN6 beta-cells and photon-counting imaging. The activity of each promoter was increased either by 30 (versus 3) mm glucose or by 1-20 nm insulin. These effects of insulin were not due to enhanced glucose metabolism since culture with the hormone had no impact on the stimulation of increases in intracellular ATP concentration caused by 30 mm glucose. Furthermore, the islet-specific glucokinase promoter and cellular glucokinase immunoreactivity were unaffected by 30 mm glucose or 20 nm insulin. Inhibition of insulin secretion with the Ca(2+) channel blocker verapamil, the ATP-sensitive K(+) channel opener diazoxide, or the alpha(2)-adrenergic agonist clonidine blocked the effects of glucose on L-PK gene transcription. Similarly, 30 mm glucose failed to induce the promoter after inhibition of phosphatidylinositol 3'-kinase activity with LY294002 and the expression of dominant negative-acting phosphatidylinositol 3'-kinase (Deltap85) or the phosphoinositide 3'-phosphatase PTEN (phosphatase and tensin homologue). LY294002 also diminished the activation of the L-PK gene caused by inhibition of 5'-AMP-activated protein kinase with anti-5'-AMP-activated protein kinase alpha2 antibodies. Conversely, stimulation of insulin secretion with 13 mm KCl or 10 microm tolbutamide strongly activated the PPI and L-PK promoters. These data indicate that, in MIN6 beta-cells, stimulation of insulin secretion is important for the activation by glucose of L-PK as well as the PPI promoter, but does not cause increases in glucokinase gene expression or glucose metabolism.
Collapse
Affiliation(s)
- G da Silva Xavier
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
40
|
Roduit R, Morin J, Massé F, Segall L, Roche E, Newgard CB, Assimacopoulos-Jeannet F, Prentki M. Glucose down-regulates the expression of the peroxisome proliferator-activated receptor-alpha gene in the pancreatic beta -cell. J Biol Chem 2000; 275:35799-806. [PMID: 10967113 DOI: 10.1074/jbc.m006001200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To better understand the action of glucose on fatty acid metabolism in the beta-cell and the link between chronically elevated glucose or fatty acids and beta-cell decompensation in adipogenic diabetes, we investigated whether glucose regulates peroxisomal proliferator-activated receptor (PPAR) gene expression in the beta-cell. Islets or INS(832/13) beta-cells exposed to high glucose show a 60-80% reduction in PPARalpha mRNA expression. Oleate, either in the absence or presence of glucose, has no effect. The action of glucose is dose-dependent in the 6-20 mm range and maximal after 6 h. Glucose also causes quantitatively similar reductions in PPARalpha protein and DNA binding activity of this transcription factor. The effect of glucose is blocked by the glucokinase inhibitor mannoheptulose, is partially mimicked by 2-deoxyglucose, and is not blocked by the 3-O-methyl or the 6-deoxy analogues of the sugar that are not phosphorylated. Chronic elevated glucose reduces the expression levels of the PPAR target genes, uncoupling protein 2 and acyl-CoA oxidase, which are involved in fat oxidation and lipid detoxification. A 3-day exposure of INS-1 cells to elevated glucose results in a permanent rise in malonyl-CoA, the inhibition of fat oxidation, and the promotion of fatty acid esterification processes and causes elevated insulin secretion at low glucose. The results suggest that a reduction in PPARalpha gene expression together with a rise in malonyl-CoA plays a role in the coordinated adaptation of beta-cell glucose and lipid metabolism to hyperglycemia and may be implicated in the mechanism of beta-cell "glucolipotoxicity."
Collapse
Affiliation(s)
- R Roduit
- Molecular Nutrition Unit, Department of Nutrition, University of Montreal and the Centre Hospitalier de l'Université de Montreal and Institut du Cancer, Montreal, Quebec H2L 4M1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Glucose-induced insulin secretion is pulsatile. Glucose metabolism generates oscillations in the ATP/ADP ratio which lead to opening and closing of ATP-sensitive K(+)-channels producing subsequent oscillations in membrane potential, cytoplasmic calcium and insulin release. Metabolic signals derived from glucose can also stimulate insulin release independent of their effects on ATP-sensitive K(+)-channels. The ATP/ADP ratio may mediate both ATP-sensitive K(+)-channel-dependent and -independent pathways of secretion. Glucose metabolism also results in an increase in long-chain acyl-CoA, which is proposed to act as an effector molecule in the beta -cell. Long-chain acyl-CoA has a variety of effects in the beta -cell that may effect insulin secretion including opening ATP-sensitive K(+)-channels, activating endoplasmic reticulum Ca(2+)-ATPases and stimulating classical protein kinase C activity. In addition to stimulating insulin release, nutrients also effect gene expression, protein synthesis and beta -cell proliferation. Gene expression is effected by nutrient induction of a variety of immediate early response genes. Glucose stimulates proinsulin biosynthesis both at the translational and transcriptional level. beta -cell proliferation, as a result of insulin-like growth factor and growth hormone mitogenic pathways, is also glucose dependent. Thus, many beta -cell functions in addition to secretion are controlled by nutrient metabolism.
Collapse
Affiliation(s)
- J T Deeney
- Obesity Research Center, Evans Department of Medicine, Boston Medical Center, Boston, MA 02118, USA
| | | | | |
Collapse
|
42
|
Roche E, Maestre I, Martín F, Fuentes E, Casero J, Reig JA, Soria B. Nutrient toxicity in pancreatic beta-cell dysfunction. J Physiol Biochem 2000; 56:119-28. [PMID: 11014617 DOI: 10.1007/bf03179907] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nutrients, such as glucose and fatty acids, have a dual effect on pancreatic beta-cell function. Acute administration of high glucose concentrations to pancreatic beta-cells stimulates insulin secretion. In addition, short term exposure of this cell type to dietary fatty acids potentiates glucose-induced insulin release. On the other hand, long-term exposure to these nutrients causes impaired insulin secretion, characterized by elevated exocytosis at low concentrations of glucose and no response when glucose increases in the extracellular medium. In addition, other phenotypic changes are observed in these conditions. One major step in linking these phenotypic changes to the diabetic pathology has been the recognition of both glucose and fatty acids as key modulators of beta-cell gene expression. This could explain the adaptative response of the cell to sustained nutrient concentration. Once this phase is exhausted, the beta-cell becomes progressively unresponsive to glucose and this alteration is accompanied by the irreversible induction of apoptotic programs. The aim of this review is to present actual data concerning the development of the toxicity to the main nutrients glucose and fatty acids in the pancreatic beta-cell and to find a possible link to the development of type 2 diabetes.
Collapse
Affiliation(s)
- E Roche
- Instituto de Bioingeniería, Universidad Miguel Hernández, San Juan, Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Xie Z, Li H, Liu L, Kahn BB, Najjar SM, Shah W. Metabolic regulation of Na(+)/P(i)-cotransporter-1 gene expression in H4IIE cells. Am J Physiol Endocrinol Metab 2000; 278:E648-55. [PMID: 10751198 DOI: 10.1152/ajpendo.2000.278.4.e648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We showed that the rat Na(+)/P(i) cotransporter-1 (RNaPi-1) gene was regulated by insulin and glucose in rat hepatocytes. The aim of this work was to elucidate signaling pathways of insulin-mediated metabolic regulation of the RNaPi-1 gene in H4IIE cells. Insulin increased RNaPi-1 mRNA abundance in the presence of glucose and decreased RNaPi-1 mRNA in the absence of glucose, clearly establishing an involvement of metabolic signals for insulin-induced upregulation of the RNaPi-1 gene. Pyruvate and insulin increased RNaPi-1 expression but downregulated L-pyruvate kinase, indicating the existence of gene-specific metabolic signals. Although fructose, glycerol, and lactate could support insulin-induced upregulation of the RNaPi-1 gene, compounds entering metabolism beyond pyruvate oxidation, such as acetate and citrate, could not, suggesting that RNaPi-1-specific metabolic signals are generated at or above pyruvate oxidation. Wortmannin, LY-294002, and rapamycin abolished the insulin effect on the RNaPi-1 gene, whereas expression of dominant negative Asn(17) Ras and mitogen-activating protein kinase (MAPK) kinase (MEK) inhibitor PD-98059 exhibited no effect. Thus we herein propose that metabolic regulation of RNaPi-1 expression by insulin is mediated through the phosphatidylinositol 3-kinase/p70 ribosomal S6 kinase pathways, but not the Ras/MAPK pathway.
Collapse
Affiliation(s)
- Z Xie
- Department of Pharmacology, Medical College of Ohio, Toledo, Ohio 43614-5804, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Cournarie F, Azzout-Marniche D, Foretz M, Guichard C, Ferre P, Foufelle F. The inhibitory effect of glucose on phosphoenolpyruvate carboxykinase gene expression in cultured hepatocytes is transcriptional and requires glucose metabolism. FEBS Lett 1999; 460:527-32. [PMID: 10556529 DOI: 10.1016/s0014-5793(99)01407-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is the rate-limiting enzyme of gluconeogenesis in the liver. PEPCK gene expression is controlled at the transcriptional level and is mainly regulated by hormones that are involved in glucose homeostasis. In this study, we have investigated the role of glucose on PEPCK gene expression in cultured hepatocytes. We demonstrate that glucose counteracts the stimulatory effect of glucocorticoids and cAMP on PEPCK expression. Glucose must be metabolized through glucokinase to have its inhibitory effect. The effect of glucose is mainly transcriptional and the region responsible for glucose inhibition is localized in the first 490 bp of the promoter.
Collapse
Affiliation(s)
- F Cournarie
- U465 INSERM, Institut Biomédical des Cordeliers (Université Paris 6), 15 rue de l'Ecole de Médecine, F-75270, Paris, France
| | | | | | | | | | | |
Collapse
|
45
|
Munday MR, Hemingway CJ. The regulation of acetyl-CoA carboxylase--a potential target for the action of hypolipidemic agents. ADVANCES IN ENZYME REGULATION 1999; 39:205-34. [PMID: 10470374 DOI: 10.1016/s0065-2571(98)00016-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ACC exists as two major isoforms ACC1 or ACC alpha, and ACC2 or ACC beta, and there is evidence that they play separate roles in the production of malonyl-CoA for fatty acid synthesis and the control of mitochondrial beta-oxidation, respectively. ACC alpha can be regulated at the level of gene expression, allosteric regulation of the enzyme, and reversible phosphorylation by AMP-PK. Emerging lines of research suggest that similar mechanisms of regulation exist for ACC beta. Its inactivation in heart and skeletal muscle through phosphorylation by AMP-PK is becoming well-established. ACC is an important target of certain hypolipidemic drugs such as the fibrates. This is not simply because ACC alpha inhibition decreases the synthesis of a lipid component of VLDL because fatty acids synthesized de novo in liver are not always major contributors to VLDL lipid (158); it is also because ACC beta inhibition leads to a decrease in malonyl-CoA levels and the disinhibition of fatty acid oxidation. Partitioning fatty acids towards oxidation and away from esterification is an important aspect of the lipid-lowering effects of fibrates. Fibrates could use any of the mechanisms of ACC regulation to decrease activity. They could repress ACC gene expression through the activation of PPAR alpha, and fibroyl-CoA esters could inhibit ACC allosterically just as TOFyl-CoA does. However, we have demonstrated a rapid inactivation of ACC in cultured rat hepatocytes by gemfibrozil that is mediated by activation of AMP-PK and the subsequent phosphorylation of ACC. The end result is the inhibition of hepatic fatty acid synthesis and a possible activation of beta-oxidation as evidenced by the increased production of ketone bodies. The mechanism through which fibrates activate the AMP-PK cascade, the role of PPAR alpha, the physiological responses of biosynthesis and oxidation and the use of these mechanisms by other hypolipidemic agents are areas of ongoing investigation.
Collapse
Affiliation(s)
- M R Munday
- Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University of London, UK
| | | |
Collapse
|
46
|
Segall L, Lameloise N, Assimacopoulos-Jeannet F, Roche E, Corkey P, Thumelin S, Corkey BE, Prentki M. Lipid rather than glucose metabolism is implicated in altered insulin secretion caused by oleate in INS-1 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E521-8. [PMID: 10484365 DOI: 10.1152/ajpendo.1999.277.3.e521] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A comprehensive metabolic study was carried out to understand how chronic exposure of pancreatic beta-cells to fatty acids causes high basal secretion and impairs glucose-induced insulin release. INS-1 beta-cells were exposed to 0.4 mM oleate for 3 days and subsequently incubated at 5 or 25 mM glucose, after which various parameters were measured. Chronic oleate promoted triglyceride deposition, increased fatty acid oxidation and esterification, and reduced malonyl-CoA at low glucose in association with elevated basal O(2) consumption and redox state. Oleate caused a modest (25%) reduction in glucose oxidation but did not affect glucose usage, the glucose 6-phosphate and citrate contents, and the activity of pyruvate dehydrogenase of INS-1 cells. Thus changes in glucose metabolism and a Randle-glucose/fatty acid cycle do not explain the altered secretory properties of beta-cells exposed to fatty acids. The main response of INS-1 cells to chronic oleate, which is to increase the oxidation and esterification of fatty acids, may contribute to cause high basal insulin secretion via increased production of reducing equivalents and/or the generation of complex lipid messenger molecule(s).
Collapse
Affiliation(s)
- L Segall
- Molecular Nutrition Unit, Department of Nutrition, University of Montreal, Montreal, Quebec, Canada H2L 4M1
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Studies using both transgenic mice and transfected mammary epithelial cells have established that composite response elements containing multiple binding sites for several transcription factors mediate the hormonal and developmental regulation of milk protein gene expression. Activation of signal transduction pathways by lactogenic hormones and cell-substratum interactions activate transcription factors and change chromatin structure and milk protein gene expression. The casein promoters have binding sites for signal transducers and activators of transcription 5, Yin Yang 1, CCAAT/enhancer binding protein, and the glucocorticoid receptor. The whey protein gene promoters have binding sites for nuclear factor I, as well as the glucocorticoid receptor and the signal transducers and activators of transcription 5. The functional importance of some of these factors in mammary gland development and milk protein gene expression has been elucidated by studying mice in which some of these factors have been deleted.
Collapse
Affiliation(s)
- J M Rosen
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| | | | | |
Collapse
|
48
|
Schmoll D, Watkins SL, Wasner C, Walther R, Burchell A. Glucose induces glucose 6-phosphatase hydrolytic subunit gene transcription in an insulinoma cell line (INS-1). FEBS Lett 1999; 443:53-6. [PMID: 9928951 DOI: 10.1016/s0014-5793(98)01678-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Primer extension analysis and RNase protection assays revealed the identity of glucose 6-phosphatase gene transcripts in both the insulinoma cell line INS-1 and hepatic cells. In transient transfection assays of INS-1 cells, using constructs between the human glucose 6-phosphatase gene promoter and a luciferase reporter gene, the reporter gene activity was induced by dexamethasone and dibutyryl cAMP. Furthermore, the promoter was regulated by the glucose concentration in the medium. This effect was dependent on glucose metabolism. The data indicated that glucose 6-phosphatase gene transcription is regulated in a similar way in the insulinoma cell line and in liver.
Collapse
Affiliation(s)
- D Schmoll
- Department of Biochemistry, Ernst-Moritz-Arndt-University Greifswald, Germany
| | | | | | | | | |
Collapse
|
49
|
Susini S, Roche E, Prentki M, Schlegel W. Glucose and glucoincretin peptides synergize to induce c‐
fos
, c‐
jun
,
junB
,
zif
‐268, and nur‐
77
gene expression in pancreatic β(INS‐1) cells. FASEB J 1998. [DOI: 10.1096/fasebj.12.12.1173] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stefan Susini
- Fondation pour Recherches MédicalesUniversity of Geneva 1211 Geneva Switzerland
| | - Enrique Roche
- Department of NutritionUniversity of Montreal and the CHUMCentre de Recherche L. C. Simard and Institut du Cancer Montreal QC H2L 4M1 Canada
| | - Marc Prentki
- Department of NutritionUniversity of Montreal and the CHUMCentre de Recherche L. C. Simard and Institut du Cancer Montreal QC H2L 4M1 Canada
| | - Werner Schlegel
- Fondation pour Recherches MédicalesUniversity of Geneva 1211 Geneva Switzerland
| |
Collapse
|
50
|
Hayakawa T, Noda M, Yasuda K, Yorifuji H, Taniguchi S, Miwa I, Sakura H, Terauchi Y, Hayashi J, Sharp GW, Kanazawa Y, Akanuma Y, Yazaki Y, Kadowaki T. Ethidium bromide-induced inhibition of mitochondrial gene transcription suppresses glucose-stimulated insulin release in the mouse pancreatic beta-cell line betaHC9. J Biol Chem 1998; 273:20300-7. [PMID: 9685380 DOI: 10.1074/jbc.273.32.20300] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, a mitochondrial mutation was found to be associated with maternally inherited diabetes mellitus (Kadowaki, T., Kadowaki, H., Mori, Y., Tobe, K., Sakuta, R., Suzuki, Y., Tanabe, Y, Sakura, H., Awata, T., Goto, Y., Hayakawa, T., Matsuoka, K., Kawamori, R., Kamada, T., Horai, S., Nonaka, I., Hagura, R., Akanuma, Y., and Yazaki, Y. (1994) N. Engl. J. Med. 330, 962-968). In order to elucidate its etiology, we have investigated the involvement of mitochondrial function in insulin secretion. Culture of the pancreatic beta-cell line, betaHC9, with low dose ethidium bromide (EB) (0.4 microg/ml) for 2-6 days resulted in a substantial decrease in the transcription level of mitochondrial DNA (to 10-20% of the control cells) without changing its copy number, whereas the transcription of nuclear genes was grossly unaffected. Electron microscopic analysis revealed that treatment by EB caused morphological changes only in mitochondria and not in other organelles such as nuclei, endoplasmic reticula, Golgi bodies, or secretory granules. When the cells were treated with EB for 6 days, glucose (20 mM) could no longer stimulate insulin secretion, while glibenclamide (1 microM) still did. When EB was removed after 3- or 6-day treatment, mitochondrial gene transcription recovered within 2 days, and the profiles of insulin secretion returned to normal within 7 days. Studies with fura-2 indicated that in EB-treated cells, glucose (20 mM) failed to increase intracellular Ca2+, while the effect of glibenclamide (1 microM) was maintained. Our system provides a unique way to investigate the relationship between mitochondrial function and insulin secretion.
Collapse
Affiliation(s)
- T Hayakawa
- Third Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|