1
|
Barcus CE, Hwang PY, Morikis V, Brenot A, Pence P, Clarke M, Longmore GD. Tyrosine kinase-independent actions of DDR2 in tumor cells and cancer-associated fibroblasts influence tumor invasion, migration and metastasis. J Cell Sci 2021; 134:272035. [PMID: 34477203 PMCID: PMC8542384 DOI: 10.1242/jcs.258431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/23/2021] [Indexed: 01/27/2023] Open
Abstract
Both tumor cell-intrinsic signals and tumor cell-extrinsic signals from cells within the tumor microenvironment influence tumor cell dissemination and metastasis. The fibrillar collagen receptor tyrosine kinase (RTK) discoidin domain receptor 2 (DDR2) is essential for breast cancer metastasis in mouse models, and high expression of DDR2 in tumor and tumor stromal cells is strongly associated with poorer clinical outcomes. DDR2 tyrosine kinase activity has been hypothesized to be required for the metastatic activity of DDR2; however, inhibition of DDR2 tyrosine kinase activity, along with that of other RTKs, has failed to provide clinically relevant responses in metastatic patients. Here, we show that tyrosine kinase activity-independent action of DDR2 in tumor cells can support Matrigel invasion and in vivo metastasis. Paracrine actions of DDR2 in tumor cells and cancer-associated fibroblasts (CAFs) also support tumor invasion, migration and lung colonization in vivo. These data suggest that tyrosine kinase-independent functions of DDR2 could explain failures of tyrosine kinase inhibitor treatment in metastatic breast cancer patients and highlight the need for alternative therapeutic strategies that inhibit both tyrosine kinase-dependent and -independent actions of RTKs in the treatment of breast cancer. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Craig E. Barcus
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Priscilla Y. Hwang
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA,College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Vasilios Morikis
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Audrey Brenot
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Patrick Pence
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Maria Clarke
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA
| | - Gregory D. Longmore
- ICCE Institute, Washington University, St Louis, MO 63110, USA,Department of Medicine (Oncology), Washington University, St Louis, MO 63110, USA,Author for correspondence ()
| |
Collapse
|
2
|
WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer. Sci Rep 2017; 7:40664. [PMID: 28102297 PMCID: PMC5244396 DOI: 10.1038/srep40664] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022] Open
Abstract
While multiple post-translational modifications have been reported to regulate the function of epidermal growth factor receptor (EGFR), the effect of protein methylation on its function has not been well characterized. In this study, we show that WHSC1L1 mono-methylates lysine 721 in the tyrosine kinase domain of EGFR, and that this methylation leads to enhanced activation of its downstream ERK cascade without EGF stimulation. We also show that EGFR K721 mono-methylation not only affects the function of cytoplasmic EGFR, but also that of nuclear EGFR. WHSC1L1-mediated methylation of EGFR in the nucleus enhanced its interaction with PCNA in squamous cell carcinoma of the head and neck (SCCHN) cells and resulted in enhanced DNA synthesis and cell cycle progression. Overall, our study demonstrates the multifaceted oncogenic function of the protein lysine methyltransferase WHSC1L1 in SCCHN, which is mediated through direct non-histone methylation of the EGFR protein with effects both in its cytoplasmic and nuclear functions.
Collapse
|
3
|
Wodziak D, Dong A, Basin MF, Lowe AW. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration. PLoS One 2016; 11:e0164968. [PMID: 27764193 PMCID: PMC5072742 DOI: 10.1371/journal.pone.0164968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023] Open
Abstract
A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/-null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/-null mouse. AG1478-treated and AGR2-/-null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis.
Collapse
Affiliation(s)
- Dariusz Wodziak
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Aiwen Dong
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Michael F. Basin
- Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Anson W. Lowe
- Department of Medicine, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
4
|
Tresini M, Lorenzini A, Torres C, Cristofalo VJ. Modulation of replicative senescence of diploid human cells by nuclear ERK signaling. J Biol Chem 2006; 282:4136-51. [PMID: 17145763 DOI: 10.1074/jbc.m604955200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Normal somatic cells have a limited replicative lifespan, and serial subcultivation ultimately results in senescence. Senescent cells are irreversibly growth-arrested and show impaired responses to mitogens. Activation of the ERK signaling pathway, an absolute requirement for cell proliferation, results in nuclear relocalization of active ERKs, an event impaired in senescent fibroblasts. This impairment coincides with increased activity of the nuclear ERK phosphatase MKP2. Here we show that replicative lifespan can be altered by changes in nuclear ERK activity. Ectopic expression of MKP2 results in premature senescence. In contrast, knock-down of MKP2 expression, through transduction of MKP2 sequence-specific short hairpin RNA, or expression of the phosphatase resistant ERK2(D319N) mutant, abrogates the effects of increased endogenous MKP2 levels and senescence is postponed. Nuclear targeting of ERK2(D319N) significantly augments its effects and the transduced cultures show higher than 60% increase in replicative lifespan compared with cultures transduced with wt ERK2. Long-lived cultures senesce with altered molecular characteristics and retain the ability to express c-fos, and Rb is maintained in its inactive form. Our results support that MKP2-mediated inactivation of nuclear ERK2 represents a key event in the establishment of replicative senescence. Although it is evident that senescence can be imposed through multiple mechanisms, restoration of nuclear ERK activity can bypass a critical senescence checkpoint and, thus, extend replicative lifespan.
Collapse
Affiliation(s)
- Maria Tresini
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania 19096, USA.
| | | | | | | |
Collapse
|
5
|
Metge B, Ofori-Acquah S, Stevens T, Balczon R. Stat3 activity is required for centrosome duplication in chinese hamster ovary cells. J Biol Chem 2004; 279:41801-6. [PMID: 15294906 DOI: 10.1074/jbc.m407094200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The centrosome is the major microtubule organizing center in mammalian cells. During interphase, the single centrosome is duplicated and the progeny centrosomes then serve as the spindle poles during mitosis. Little is known about the signals that drive centrosome doubling. In these studies, various inhibitors and molecular approaches were used to demonstrate a role for the Stat pathway in regulating the events of centrosome doubling. Both piceatannol and a dominant negative behaving Stat3 adenovirus were able to disrupt centrosome duplication in hydroxyurea-arrested Chinese hamster ovary cells, demonstrating that Stat3 is a key signaling molecule in the events of centrosome duplication. Investigation into the role of Stat3 signaling during centrosome production demonstrated that Stat3 does not directly regulate the transcription of the centrosome genes encoding gamma-tubulin and PCM-1. Instead, Stat3 apparently regulated gamma-tubulin levels through post-transcriptional mechanisms whereas PCM-1 levels actually increased when Stat3 was inhibited, suggesting more complex mechanisms for regulating PCM-1 production. These studies demonstrate that Stat3 plays a vital role in centrosome duplication events, although the downstream targets of Stat3 activation leading to centrosome production remain to be established. The proposed signaling pathway utilizes Stat3 as a fundamental signaling molecule that directs the production of the various centrosome proteins indirectly.
Collapse
Affiliation(s)
- Brandon Metge
- Department of Cell Biology and Neuroscience, Department of Pharmacology, and Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
6
|
Morgan E, Varro R, Sepulveda H, Ember JA, Apgar J, Wilson J, Lowe L, Chen R, Shivraj L, Agadir A, Campos R, Ernst D, Gaur A. Cytometric bead array: a multiplexed assay platform with applications in various areas of biology. Clin Immunol 2004; 110:252-66. [PMID: 15047203 DOI: 10.1016/j.clim.2003.11.017] [Citation(s) in RCA: 373] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 11/10/2003] [Indexed: 11/29/2022]
Abstract
The introduction of flow cytometric bead-based technology has added a new approach for investigators to simultaneously measure multiple analytes in biological and environmental samples. This new technology allows for (1) evaluation of multiple analytes in a single sample; (2) utilization of minimal sample volumes to glean data; (3) reproducibility and results comparative with previous experiments; (4) direct comparison with existing assays; and (5) a more rapid evaluation of multiple samples in a single platform. The cytometric bead array (CBA) system enables simultaneous measurement of multiple analytes in sample volumes too small for traditional immunoassays. Results have been presented for the analysis of a variety of human cytokines. In addition, the technology allows for the design and creation of assays to measure a variety of analytes including inflammatory mediators, chemokines, immunoglobulin isotypes, intracellular signaling molecules, apoptotic mediators, adhesion molecules, and antibodies. New initiatives put forward by the Human Genome Project and the FDA require the development and use of assays for the rapid simultaneous quantitation of multiple analytes. The CBA technology provides the ability to quantify multiple proteins within a given sample, with precision and consistency.
Collapse
|
7
|
Manna PR, Huhtaniemi IT, Wang XJ, Eubank DW, Stocco DM. Mechanisms of epidermal growth factor signaling: regulation of steroid biosynthesis and the steroidogenic acute regulatory protein in mouse Leydig tumor cells. Biol Reprod 2002; 67:1393-404. [PMID: 12390868 DOI: 10.1095/biolreprod.102.007179] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Steroid hormone biosynthesis in the adrenals and gonads is regulated by the steroidogenic acute regulatory (StAR) protein through its action in mediating the intramitochondrial transport of cholesterol. A role for epidermal growth factor (EGF) in modulating steroidogenesis has been previously determined, but the mechanism of its action remains unknown. The present investigation was designed to explore the potential mechanism of action of mouse EGF (mEGF) in the regulation of steroid biosynthesis and StAR protein expression in mLTC-1 mouse Leydig tumor cells. We show that treatment of mLTC-1 cells with mEGF significantly increased the levels of progesterone (P), StAR protein, and StAR mRNA in a time- and dose-dependent manner. The coordinate induction of P synthesis and StAR gene expression by mEGF was effectively inhibited by cycloheximide, indicating a requirement for de novo protein synthesis. Also, longer exposure of mLTC-1 cells to mEGF produced a marked decrease in LH-receptor mRNA expression. These effects of mEGF were exerted through high-affinity binding sites (K(d) approximately 0.53 nmol/L) in these cells. It was also determined that the arachidonic acid (especially lipoxygenase metabolites) and mitogen-activated protein kinase pathways were also involved in the mEGF-induced steroidogenic response. However, involvement of the latter pathway was further assessed in nonsteroidogenic COS-1 cells transfected with the Elk1 trans-reporting plasmids and resulted in a significant increase in luciferase activity in response to mEGF. Furthermore, deletion and mutational analyses demonstrated a predominant involvement of activator protein-1 in addition to the multiple mEGF responsive elements found within the 5'-flanking region (-151/-1 base pairs) of the mouse StAR gene. These findings provide novel insights into the mEGF-induced regulatory cascades associated with steroid synthesis and StAR protein expression in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | |
Collapse
|
8
|
Justman QA, Clinton GM. Herstatin, an autoinhibitor of the human epidermal growth factor receptor 2 tyrosine kinase, modulates epidermal growth factor signaling pathways resulting in growth arrest. J Biol Chem 2002; 277:20618-24. [PMID: 11934884 DOI: 10.1074/jbc.m111359200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.
Collapse
Affiliation(s)
- Quincey A Justman
- Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
9
|
Tresini M, Lorenzini A, Frisoni L, Allen RG, Cristofalo VJ. Lack of Elk-1 phosphorylation and dysregulation of the extracellular regulated kinase signaling pathway in senescent human fibroblast. Exp Cell Res 2001; 269:287-300. [PMID: 11570821 DOI: 10.1006/excr.2001.5334] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replicative senescence is characterized by numerous phenotypic alterations including the loss of proliferative capacity in response to mitogens and numerous changes in gene expression including impaired serum inducibility of the immediate-early genes c-fos and erg-1. Transcription of c-fos in response to mitogens depends on the activation of a multiprotein complex formed on the c-fos serum response element (SRE), which includes the transcription factors SRF (serum response factor) and TCF (ternary complex factor). Our data indicate that at least two defects are responsible for the decreased c-fos transcription in senescent cells, one caused by diminished DNA binding activity of the SRF and another resulting from impaired activation of the TCF, Elk-1. In nuclei isolated from serum stimulated senescent cells the activating phosphorylation of p62(TCF)/Elk-1, which is catalyzed by the members of the extracellular-regulated kinase (ERK) family was strikingly diminished and correlated with a decrease in the abundance of activated ERK proteins. In contrast, in total cell lysates ERK phosphorylation and ERK activity (normalized to total protein) reached similar levels following stimulation of early- and late-passage cells. Interestingly, senescent cells consistently exhibited higher ERK protein abundance. Thus, the proportion of phosphorylated (active) ERK molecules in stimulated senescent cells was lower than in early passage cells. The accumulation of unphosphorylated ERK molecules in senescent cells correlated with the diminished abundance of phosphorylated (active) MEK. These data indicate that in senescent cells there is a general dysregulation in the ERK signaling pathway, which results in the accumulation of inactive ERK molecules, decreased abundance of active ERK in the nucleus of senescent cells, and subsequent lack of activation of the transcription factor TCF(Elk-1). These impairments, together with the impaired DNA binding activity of SRF, could potentially account for the lack of c-fos expression in senescent cells and for multiple other molecular changes dependent upon this pathway.
Collapse
Affiliation(s)
- M Tresini
- The Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, Pennsylvania 19096, USA
| | | | | | | | | |
Collapse
|
10
|
Ewald JA, Coker KJ, Price JO, Staros JV, Guyer CA. Stimulation of mitogenic pathways through kinase-impaired mutants of the epidermal growth factor receptor. Exp Cell Res 2001; 268:262-73. [PMID: 11478852 DOI: 10.1006/excr.2001.5271] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two residues have been shown to be critical for the kinase activity of the receptor for epidermal growth factor (EGF): lysine-721, which functions in the binding of ATP by correctly positioning the gamma-phosphate for phosphoryl transfer, and aspartate-813, which functions as the catalytic base of the kinase. Mutation of either of these two residues has been shown to disrupt kinase activity of the receptor. However, studies performed in different laboratories had suggested that while EGF receptors mutated at lysine-721 are unable to stimulate significant increases of [(3)H]thymidine incorporation into DNA in response to EGF treatment, cells expressing EGF receptors mutated at aspartate-813 do stimulate significant incorporation of [(3)H]thymidine into DNA in response to EGF. In the present study, EGF receptors mutated at lysine-721 or aspartate-813 (K721R and D813A, respectively), as well as wild-type EGF receptors, were expressed in the same cellular background, Chinese hamster ovary cells, and side-by-side experiments were performed to investigate possible signaling-related differences. Our results indicate that while there are measurable differences in the abilities of the two mutant receptors to stimulate [(3)H]thymidine incorporation between 20 and 24 h after addition of EGF, these differences cannot be correlated with significant differences in EGF-stimulated tyrosine phosphorylation of mutant EGF receptor and endogenous ErbB2, the extent of receptor internalization, EGF-stimulated ion uptake, stimulation of SHC activity, or receptor association with Grb2. Flow cytometric data suggest that populations of cells expressing either kinase-impaired mutant EGF receptor progress similarly into S phase in response to addition of EGF. These observations suggest that D813A and K721R retain similar ability to stimulate mitogenic signaling events through transactivation of ErbB2 with only subtle temporal differences, and they emphasize the importance of expressing mutant receptors in an identical cellular context to make valid comparisons of functions.
Collapse
Affiliation(s)
- J A Ewald
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
11
|
Deb TB, Su L, Wong L, Bonvini E, Wells A, David M, Johnson GR. Epidermal growth factor (EGF) receptor kinase-independent signaling by EGF. J Biol Chem 2001; 276:15554-60. [PMID: 11279155 DOI: 10.1074/jbc.m100928200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ErbB family of receptors, which includes the epidermal growth factor receptor (EGFR), ErbB2, ErbB3, and ErbB4, mediate signaling by EGF-like polypeptides. To better understand the role of the EGFR tyrosine kinase, we analyzed signaling by a kinase-inactive EGFR (K721M) in ErbB-devoid 32D cells. K721M alone exhibited no detectable signaling capacity, whereas coexpression of K721M with ErbB2, but not ErbB3 or ErbB4, resulted in EGF-dependent mitogen-activated protein kinase (MAPK) activation. The kinase activity, but not tyrosine phosphorylation, of ErbB2 was required for EGF-induced MAPK activation. The presence of tyrosine phosphorylation sites in K721M was not a requisite for signaling, indicating that transphosphorylation of K721M by ErbB2 was not an essential mechanism of receptor activation. Conversely, the mutated kinase domain of K721M (residues 648-973) and tyrosine phosphorylation of at least one of the receptors were necessary. EGF was found to activate the pro-survival protein kinase Akt in stable cell lines expressing K721M and ErbB2 but, unlike cells expressing wild-type EGFR, was incapable of activating signal transducers and activators of transcription (STAT) or driving cell proliferation. These results demonstrate that EGFR-ErbB2 oligomers are potent activators of MAPK and Akt, and this signaling does not require EGFR kinase activity.
Collapse
Affiliation(s)
- T B Deb
- Divisions of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Högnason T, Chatterjee S, Vartanian T, Ratan RR, Ernewein KM, Habib AA. Epidermal growth factor receptor induced apoptosis: potentiation by inhibition of Ras signaling. FEBS Lett 2001; 491:9-15. [PMID: 11226409 DOI: 10.1016/s0014-5793(01)02166-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that certain tumor cell lines which naturally express high levels of the epidermal growth factor receptor (EGFR) undergo apoptosis when exposed to epidermal growth factor. Whether this phenomenon is a direct result of receptor overexpression or some other genetic alteration renders these cells sensitive to apoptosis is yet to be established. We show that experimentally increasing the level of EGFR expression predictably leads to apoptosis in a variety of cell types which requires an active tyrosine kinase but not EGFR autophosphorylation sites. Expression of a dominant negative Ras mutant in EGFR overexpressing cells results in a significant potentiation of EGFR induced apoptosis suggesting that Ras activation is a key survival signal generated by the EGFR. We propose that potentiation of EGFR induced apoptosis by dominant negative Ras results, at least in part, by a block of Akt activation.
Collapse
Affiliation(s)
- T Högnason
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School Boston, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
13
|
Huang C, Ma WY, Dong Z. The extracellular-signal-regulated protein kinases (Erks) are required for UV-induced AP-1 activation in JB6 cells. Oncogene 1999; 18:2828-35. [PMID: 10362253 DOI: 10.1038/sj.onc.1202639] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitogen activated protein (MAP) kinase belongs to a large family of serine/threonine protein kinases, including extracellular-signal-regulated protein kinases (Erks), P38 kinase and c-Jun N-terminal kinases (JNKs). Although previous work has shown that both Erks and JNKs are activated in cells in response to ultraviolet (UV) irradiation, most studies have focused only on the role of JNKs in UV-induced AP-1 activation. Hence, the role of Erks in UV-induced AP-1 activity is not well defined. We here have investigated this issue by using MAP kinase kinase (MEK1) inhibitor PD098059 and a dominant negative Erk2, as well as wild-type Erk2, in a JB6 cell model. PD098059 inhibited UVB- or UVC-induced AP-1 activity and phosphorylation of MEK1 and Erks, but not JNKs, in JB6 Cl 41 cells. Overexpression of wild-type Erk2 in Cl 30.7b cells that contain small amounts of Erks caused a 46.6- or 138.1-fold increase of AP-1 activity by UVB and UVC, respectively; introduction of a dominant negative Erk2 into Cl 41 cells significantly blocked the UV-induced Erks activation as well as the AP-1 activation. In contrast, overexpression of wild-type Erk2 in Cl 30.7b cells and dominant negative Erk2 in Cl 41 cells did not show a marked influence on the phosphorylation of JNKs. These results demonstrate that activation of Erks, in addition to the previously reported JNKs, is required for UV-induced AP-1 activation.
Collapse
Affiliation(s)
- C Huang
- The Hormel Institute, University of Minnesota, Austin 55912, USA
| | | | | |
Collapse
|
14
|
Li J, Lin ML, Wiepz GJ, Guadarrama AG, Bertics PJ. Integrin-mediated migration of murine B82L fibroblasts is dependent on the expression of an intact epidermal growth factor receptor. J Biol Chem 1999; 274:11209-19. [PMID: 10196208 DOI: 10.1074/jbc.274.16.11209] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To evaluate the mechanisms by which epidermal growth factor (EGF) regulates actin-based cellular processes such as cell migration, we first examined the effects of EGF on cell adhesion, which is essential for cell migration. In mouse B82L fibroblasts transfected with the full-length EGF receptor, EGF promotes cell rounding and attenuates cell spreading on fibronectin, laminin, and vitronectin, and thus appears to reduce the strength of cell adhesion. Moreover, EGF synergizes with multiple extracellular matrix (ECM) components in the promotion of integrin-mediated cell migration of several different cell types, including fibroblasts and various carcinoma and osteosarcoma cell lines. Interestingly, co-presentation (co-positioning) of EGF with laminin or fibronectin is essential for EGF-stimulated migration. When EGF is mixed with the cells instead of the ECM components, it has little effect on cell migration. These results suggest that co-presentation of EGF with ECM components can enhance the polarization events required for directional cell movement. To identify the EGF receptor elements critical for the EGF stimulation of cell migration, B82L fibroblasts were transfected with either mutated or wild-type EGF receptors. Surprisingly, we found that B82L-Parental cells that lack the EGF receptor are not able to migrate to fibronectin, even though they can adhere to fibronectin. However, the introduction of wild-type EGF receptors into these fibroblasts enables them to migrate toward fibronectin even in the absence of EGF. The requirement of the EGF receptor for cell migration does not appear to result from the secretion of EGF or TGF-alpha by the cells transfected with the EGF receptor. Furthermore, cells expressing EGF receptors that are kinase-inactive, or C-terminally truncated, exhibit little migration toward fibronectin, indicating that an intact EGF receptor kinase is required for fibronectin-induced cell migration. In addition, neutralizing anti-EGF receptor antibodies attenuate cell migration in the presence of EGF, and inhibit migration to fibronectin or laminin alone. These results further suggest that the EGF receptor is downstream of integrin activation in the signal transduction pathways leading to fibroblast migration.
Collapse
Affiliation(s)
- J Li
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706-1532, USA
| | | | | | | | | |
Collapse
|
15
|
Wang Y, Guo W, Liang L, Esselman WJ. Phosphorylation of CD45 by casein kinase 2. Modulation of activity and mutational analysis. J Biol Chem 1999; 274:7454-61. [PMID: 10066810 DOI: 10.1074/jbc.274.11.7454] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD45 is a receptor-type protein-tyrosine phosphatase (PTP) that is required for antigen-specific stimulation and proliferation in lymphocytes. This study was designed to determine the nature of specific kinases in lymphocytes that phosphorylate CD45 and to determine the effect of phosphorylation on CD45 PTP activity. A major cytoplasmic lymphocyte kinase that phosphorylated CD45 was identified as casein kinase 2 (CK2) by use of an in-gel kinase assay in combination with immunoprecipitation, immunodepletion, and specific inhibition. Mutational analysis of CK2 consensus sites showed that the target for CK2 was in an acidic insert of 19 amino acids in the D2 domain, and Ser to Ala mutations at amino acids 965, 968, 969, and 973 abrogated CK2 phosphorylation of CD45. CK2 phosphorylation increased CD45 activity 3-fold toward phosphorylated myelin basic protein, and this increase was reversible by PP2A treatment. Mutation of Ser to Glu at the CK2 sites had the same effect as phosphorylation and also tripled the Vmax of CD45. CD45 isolated in vivo was highly phosphorylated and could not be phosphorylated by CK2 without prior dephosphorylation with phosphatase PP2A. We conclude that CK2 is a major lymphocyte kinase that is responsible for in vivo phosphorylation of CD45, and phosphorylation at specific CK2 sites regulates CD45 PTP activity.
Collapse
Affiliation(s)
- Y Wang
- Department of Microbiology, Michigan State University, East Lansing, Michigan 48824-1101, USA
| | | | | | | |
Collapse
|
16
|
Gil M, Yang Y, Lee Y, Choi I, Ha H. Cloning and expression of a cDNA encoding a novel protein serine/threonine kinase predominantly expressed in hematopoietic cells. Gene 1997; 195:295-301. [PMID: 9305775 DOI: 10.1016/s0378-1119(97)00181-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated a cDNA clone of a new member of protein serine/threonine kinases, MPK38, from a cDNA library constructed from the murine teratocarcinoma PCC4 cell line by the polymerase chain reaction. MPK38 was transcribed as an approx. 2.5 kb mRNA encoding for a protein of 643 amino acids. N-terminus of MPK38 contains the kinase catalytic domain which exhibits approximately 60% protein sequence identity with the SNF1 serine/threonine kinase family. The MPK38 cDNA directs the in vitro translation of two protein species of approx. 70 and approx. 50 kDa, which appear to result from an internal initiation of translation. MPK38 was predominantly expressed in thymus and spleen, but was not detectable in kidney, liver, and muscle in the adult tissues. In addition, MPK38 was apparently expressed in T lineage cells and a macrophage/monocyte cell, but was not detectable in a B cell line and an embryonic cell line. However, a low level of MPK38 transcript was detectable in a mast cell line after a longer exposure. Furthermore, MPK38 gene product showed the kinase activity which was assessed by immune complex kinase assay. Thus, MPK38 gene product seems to play an important role in signal transduction of certain lineages of hematopoietic cells.
Collapse
Affiliation(s)
- M Gil
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Taejon
| | | | | | | | | |
Collapse
|
17
|
Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG. Epidermal Growth Factor (EGF)-induced Generation of Hydrogen Peroxide. J Biol Chem 1997. [DOI: 10.1074/jbc.272.1.217] [Citation(s) in RCA: 863] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
18
|
Yang EB, Wang DF, Mack P, Cheng LY. Detection of EGF-induced EGF receptor degradation and tyrosine phosphorylation in intact cells. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1996; 32:97-108. [PMID: 8796482 DOI: 10.1016/0165-022x(96)00003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this work, a simple, sensitive, and non-isotopic assay system for the detection of EGF-induced EGF receptor degradation and tyrosine phosphorylation in intact cells is described. In this system, boiling Laemmli sample buffer was directly added to cultured Chang liver cells to stop the reactions in the cells stimulated by EGF and to make whole-cell extracts. The effects of EGF concentration and incubation time on the EGF-induced degradation and tyrosine phosphorylation of EGF receptor were successfully determined using monoclonal anti-EGF receptor, recombinant anti-phosphotyrosine peroxidase conjugate, and enhanced chemiluminescence (ECL) Western blotting assay system. Unlike other assay systems, the use of radioisotopes was avoided in this determination. The assay system is linear up to 100 micrograms sample protein from whole-cell extracts for the detection of EGF receptor and EGF-induced autophosphorylation. This assay may be easily adopted for identification of other growth factor receptors and phosphotyrosine-containing proteins in intact cells, using appropriate anti-growth factor receptor antibodies.
Collapse
Affiliation(s)
- E B Yang
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Crescent, Singapore
| | | | | | | |
Collapse
|
19
|
David M, Wong L, Flavell R, Thompson SA, Wells A, Larner AC, Johnson GR. STAT activation by epidermal growth factor (EGF) and amphiregulin. Requirement for the EGF receptor kinase but not for tyrosine phosphorylation sites or JAK1. J Biol Chem 1996; 271:9185-8. [PMID: 8621573 DOI: 10.1074/jbc.271.16.9185] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The epidermal growth factor (EGF) receptor activates several signaling cascades in response to the ligands EGF and amphiregulin (AR). One of these signaling events involves the tyrosine phosphorylation of STATs (signal transducers and activators of transcription), a process believed to require the activation of a tyrosine kinase of the JAK family. In this report we demonstrate that EGF- and AR-induced STAT activation requires the intrinsic kinase activity of the receptor but not the presence of Jak1. We show that both wild type (WT) and truncated EGF receptors lacking all autophosphorylation sites activate STAT 1, 3, and 5 in response to either EGF or AR. Furthermore, relative to cells expressing WT receptor, ligand-induced tyrosine phosphorylation of the STATs was enhanced in cells expressing only the truncated receptor. These results provide the first evidence that (i) EGF receptor-mediated STAT activation occurs in a Jak1-independent manner, (ii) the intrinsic tyrosine kinase activity of the receptor is essential for STAT activation, and (iii) tyrosine phosphorylation sites within the EGF receptor are not required for STAT activation.
Collapse
Affiliation(s)
- M David
- Division of Cytokine Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Dougall WC, Qian X, Miller MJ, Greene MI. Association of signaling proteins with a nonmitogenic heterodimeric complex composed of epidermal growth factor receptor and kinase-inactive p185c-neu. DNA Cell Biol 1996; 15:31-40. [PMID: 8561895 DOI: 10.1089/dna.1996.15.31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The functional consequences of heterodimer formation between the epidermal growth factor receptor (EGFr) and the p185c-neu receptor tyrosine kinase include increased mitogenic and transformation potencies. To determine the possible alteration of signal transduction pathways resulting from this heteromeric complex, the capacity of several signaling proteins to associate with the heterodimeric receptors has been assayed. The in vivo interaction with the EGFr/p185c-neu heterodimer of several signal transduction proteins, including phospholipase C-gamma 1 (PLC-gamma 1), the p85 subunit of phosphotidylinositol 3-kinase, the ras GTPase activating protein, SHC, NCK, p72RAF, and the tyrosine phosphatase SHPTP2, was measured by coimmunoprecipitation. The binding of these signaling proteins to a complex composed of EGFr and a kinase-inactive form of p185 (p185K757M) was not impaired, even though the mitogenic and transformation activity of this complex had been abrogated. In addition, the EGF-induced phosphorylation of GAP, p85, and PLC-gamma 1 did not correlate with the dominant-negative action of p185K757M on EGFr function. Thus, substrate association and phosphorylation do not correlate stringently with the mitogenic and transforming activity of this receptor complex, suggesting additional pathways or mechanisms vital to EGFr/p185c-neu heterodimeric signaling.
Collapse
Affiliation(s)
- W C Dougall
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | |
Collapse
|
21
|
Cano E, Hazzalin CA, Kardalinou E, Buckle RS, Mahadevan LC. Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction. J Cell Sci 1995; 108 ( Pt 11):3599-609. [PMID: 8586671 DOI: 10.1242/jcs.108.11.3599] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of EGF, TPA, UV radiation, okadaic acid and anisomycin on ERK and JNK/SAPK MAP kinase cascades have been compared with their ability to elicit histone H3/HMG-14 phosphorylation and induce c-fos and c-jun in C3H 10T1/2 cells. EGF and UV radiation activate both ERKs and JNK/SAPKs but to markedly different extents; EGF activates ERKs more strongly than JNK/SAPKs, whereas UV radiation activates JNK/SAPKs much more strongly than ERKs. Anisomycin and okadaic acid activate JNK/SAPKs but not ERKs, and conversely, TPA activates ERKs but not JNK/SAPKs. Nevertheless, all these agents elicit phosphorylation of ribosomal and pre-ribosomal S6, histone H3 and HMG-14, and the induction of c-fos and c-jun, showing that neither cascade is absolutely essential for these responses. We then analysed the relationship between ERKs, JNK/SAPKs and the transcription factors Elk-1 and c-Jun, implicated in controlling c-fos and c-jun, respectively. JNK/SAPKs bind to GST-cJun1-79, and ERKs, particularly ERK-2, to GST-Elk1(307–428); there is no cross-specificity of binding. Further, GST-Elk1(307–428) binds preferentially to active rather than inactive ERK-2. In vitro, JNK/SAPKs phosphorylate both GST-cJun1-79 and GST-Elk1(307–428), whereas ERKs phosphorylate GST-Elk1(307–428) but not GST-cJun1-79. Thus, neither ERKs nor JNK/SAPKs are absolutely essential for nuclear signalling and c-fos and c-jun induction. The data suggest either that activation of a single MAP kinase subtype is sufficient to elicit a complete nuclear response, or that other uncharacterised routes exist.
Collapse
Affiliation(s)
- E Cano
- Nuclear Signalling Laboratory, Randall Institute, King's College London, UK
| | | | | | | | | |
Collapse
|
22
|
Okada S, Yamauchi K, Pessin JE. Shc isoform-specific tyrosine phosphorylation by the insulin and epidermal growth factor receptors. J Biol Chem 1995; 270:20737-41. [PMID: 7544794 DOI: 10.1074/jbc.270.35.20737] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Insulin stimulation of Chinese hamster ovary cells expressing the human insulin and epidermal growth factor (EGF) receptors (CHO/IR/ER) resulted in the tyrosine phosphorylation of the 52-kDa Shc isoform with a relatively low extent of 46-kDa Shc tyrosine phosphorylation. In contrast, EGF stimulation resulted in the tyrosine phosphorylation of both the 52- and 46-kDa Shc isoforms. Consistent with these differences, Grb2 predominantly bound to the 52-kDa Shc isoform following insulin stimulation, whereas Grb2 associated with both the 52- and 46-kDa Shc isoforms after EGF stimulation. Further, in vitro kinetic analysis demonstrated that the insulin receptor has a 4-fold greater Vmax with no significant difference in the Km for the purified 52-kDa Shc isoform compared with the 46-kDa Shc isoform. However, the EGF receptor displayed the identical Vmax and Km for tyrosine phosphorylation of both of these species. In direct contrast to the EGF receptor, we also observed significant differences in binding interactions between the insulin receptor with the 52- and 46-kDa Shc isoforms in vitro. These data demonstrate that the predominant insulin-dependent Shc signaling pathway occurs via the 52-kDa Shc isoform, whereas the EGF receptor can effectively use both the 52- and 46-kDa Shc species.
Collapse
Affiliation(s)
- S Okada
- Department of Physiology and Biophysics, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
23
|
Wright JD, Reuter CW, Weber MJ. An incomplete program of cellular tyrosine phosphorylations induced by kinase-defective epidermal growth factor receptors. J Biol Chem 1995; 270:12085-93. [PMID: 7538132 DOI: 10.1074/jbc.270.20.12085] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although signaling by the epidermal growth factor (EGF) receptor is thought to be dependent on receptor tyrosine kinase activity, it is clear that mitogen-activated protein (MAP) kinase can be activated by receptors lacking kinase activity. Since analysis of the signaling pathways used by kinase-defective receptors could reveal otherwise masked capabilities, we examined in detail the tyrosine phosphorylations and enzymes of the MAP kinase pathway induced by kinase-defective EGF receptors. Following EGF stimulation of B82L cells expressing a kinase-defective EGF receptor mutant (K721M), we found that ERK2 and ERK1 MAP kinases, as well as MEK1 and MEK2 were all activated, and SHC became prominently tyrosine-phosphorylated. By contrast, kinase-defective receptors failed to induce detectable phosphorylations of GAP (GTPase-activating protein), p62, JAK1, or p91STAT1, all of which were robustly phosphorylated by wild-type receptors. These data demonstrate that kinase-defective receptors induce several protein tyrosine phosphorylations, but that these represent only a subset of those seen with wild-type receptors. This suggests that kinase-defective receptors activate a heterologous tyrosine kinase with a specificity different from the EGF receptor. We found that kinase-defective receptors induced ErbB2/c-Neu enzymatic activation and ErbB2/c-Neu binding to SHC at a level even greater than that induced by wild-type receptors. Thus, heterodimerization with and activation of endogenous ErbB2/c-Neu is a possible mechanism by which kinase-defective receptors stimulate the MAP kinase pathway.
Collapse
Affiliation(s)
- J D Wright
- Department of Microbiology, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | | | |
Collapse
|
24
|
Roback JD, Marsh HN, Downen M, Palfrey HC, Wainer BH. BDNF-activated signal transduction in rat cortical glial cells. Eur J Neurosci 1995; 7:849-62. [PMID: 7613622 DOI: 10.1111/j.1460-9568.1995.tb01072.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cortical glial cells in culture were found to be responsive to the neurotrophin brain-derived neurotrophic factor (BDNF), as evidenced by activation of multiple signal transduction processes. BDNF produced an increase in mitogen-activated protein (MAP) kinase tyrosine phosphorylation, MAP kinase activity, intracellular calcium concentration and c-fos expression in the glial cells. Only a subset of the glial cells responded to BDNF, as reflected in single-cell analysis of calcium transients and c-fos expression. BDNF had no detectable effect on glial mitotic activity, as measured by DNA synthesis. In parallel studies, nerve growth factor and neurotrophin-3 had no effect on signalling in these cultures. BDNF has previously been demonstrated to act via trkB receptors with a cytoplasmic tyrosine kinase domain (gp145trkB). Pretreatment of glial cultures with K252a, which at low concentrations specifically inhibits the trk tyrosine kinases, abolished BDNF effects on MAP kinase stimulation, suggesting that BDNF was acting through gp145trkB. However, subsequent studies showed that gp145trkB was expressed at extremely low levels in the cultures: gp145trkB mRNA transcripts could only be detected using the reverse transcription-polymerase chain reaction, and gp145trkB protein was not detected by either immunoblotting or immunocytochemistry. On the other hand, the glia expressed significantly higher levels of gp95trkB mRNA and protein, which represent truncated forms of trkB receptors lacking the tyrosine kinase domain. The results of these studies demonstrate that a subset of cultured CNS glia respond to BDNF with the activation of conventional signal transduction processes. The mechanism of BDNF-initiated signal transduction in glial cells most likely involves a relatively small number of gp145trkB receptors, but involvement of the more abundant truncated gp95trkB receptors cannot be excluded.
Collapse
Affiliation(s)
- J D Roback
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- T Hunter
- Molecular Biology and Virology Laboratory, Salk Institute, La Jolla, California 92037
| |
Collapse
|
26
|
Roger PP, Reuse S, Maenhaut C, Dumont JE. Multiple facets of the modulation of growth by cAMP. VITAMINS AND HORMONES 1995; 51:59-191. [PMID: 7483330 DOI: 10.1016/s0083-6729(08)61038-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P P Roger
- Institute of Interdisciplinary Research, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
27
|
Hazan R, Krushel L, Crossin KL. EGF receptor-mediated signals are differentially modulated by concanavalin A. J Cell Physiol 1995; 162:74-85. [PMID: 7814452 DOI: 10.1002/jcp.1041620110] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
NIH 3T3 cells expressing high levels of the human epidermal growth factor (EGF) receptor were used to examine the effects of the lectin concanavalin A (Con A) on EGF-mediated signaling events. Proliferation of NIH 3T3 cells expressing high levels of the human EGF receptor was inhibited in a dose-dependent manner by Con A. At the same time, Con A also inhibited both dimerization and tyrosine phosphorylation of the EGF receptor. Tyrosine phosphorylation of the enzyme phospholipase C-gamma, a substrate of the phosphorylated EGF receptor kinase, was also inhibited. In contrast, EGF-stimulated changes in pH, calcium, and levels of inositol phosphates were unaffected by the presence of Con A. These results indicate that certain signals (changes in the levels of intracellular calcium, pH, and inositol phosphates) mediated by EGF binding to its receptor still occur when receptor dimerization and phosphorylation are dramatically decreased, suggesting that multiple independent signals are transmitted by the binding of EGF to its receptor.
Collapse
Affiliation(s)
- R Hazan
- Department of Neurobiology, Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
28
|
Hoppe J, Hoppe V, Karenberg TA, Fenn A, Simm A, Sachinidis A. Differential activation by platelet-derived growth factor-BB of mitogen activated protein kinases in starved or nonstarved AKR-2B fibroblasts. J Cell Physiol 1994; 161:342-50. [PMID: 7962118 DOI: 10.1002/jcp.1041610219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than 90% of serum-deprived (starved) AKR-2B mouse fibroblasts are stimulated to divided by the addition of platelet-derived growth factor (PDGF)-BB. In density-arrested (nonstarved) cells, PDGF-BB affords protection from cell death without stimulation of cell division. In both cultivation conditions the cells express similar amounts of PDGF beta-receptors and the receptor kinase activity was identical as judged by its autophosphorylation capacity. Three signaling pathways were studied in detail: 1) Phospholipase C-gamma (PLC-gamma) and [Ca2+]i increase, 2) activation of the phosphatidylinositol-3 kinase (PI-3 kinase), and 3) activation of mitogen activated kinases I and II (MAP kinases I and II). There was no difference in starved or nonstarved cells regarding PLC-gamma activation, increase of [Ca2+]i, and stimulation of PI-3 kinase activity. But most remarkably the activation of MAP-I was largely suppressed in nonstarved cells. The implications of these signaling pathways in cell protection or cell division are discussed.
Collapse
Affiliation(s)
- J Hoppe
- Department of Physiological Chemistry, Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Connolly DC, Toutenhoofd SL, Maihle NJ. Tyrosine kinase activity may be necessary but is not sufficient for c-erbB1-mediated tissue-specific tumorigenicity. J Virol 1994; 68:6804-10. [PMID: 7916062 PMCID: PMC237108 DOI: 10.1128/jvi.68.10.6804-6810.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Expression of mutant avian c-erbB1 genes results in tissue-specific transformation in chickens. Site-directed mutagenesis was used to generate kinase-defective mutants of several tissue-specific v-erbB transforming mutants by replacement of the ATP-binding lysine residue in the kinase domain with an arginine residue. These kinase-defective v-erbB mutants were analyzed for their in vitro and in vivo transforming potentials. Specifically, kinase-defective mutants of erythroleukemogenic, hemangioma-inducing, and sarcomagenic v-erbB genes were assessed for their oncogenic potential. In vitro transformation potential was assessed by soft-agar colony formation in primary cultures of chick embryo fibroblasts (CEF). In vivo transformation potential was determined by infection of 1-day-old line 0 chicks with concentrated recombinant retrovirus and then monitoring of birds for tumor formation. These transformation assays demonstrate that kinase activity is absolutely essential for transformation by tissue-specific transforming mutants of the avian c-erbB1 gene. Since all of the tissue-specific v-erbB mutants characterized to date exhibit tyrosine kinase activity in vitro but do not transform all tissues in which they are expressed, we conclude that v-erbB-associated tyrosine kinase activity may be necessary but is not sufficient to induce tumor formation.
Collapse
Affiliation(s)
- D C Connolly
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | | | | |
Collapse
|
30
|
Burgess AW, Thumwood CM. The Sixth George Swanson Christie Memorial Lecture: growth factors and their receptors: new opportunities for cancer treatment. Pathology 1994; 26:453-63. [PMID: 7892049 DOI: 10.1080/00313029400169182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A W Burgess
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria
| | | |
Collapse
|
31
|
Hipskind RA, Büscher D, Nordheim A, Baccarini M. Ras/MAP kinase-dependent and -independent signaling pathways target distinct ternary complex factors. Genes Dev 1994; 8:1803-16. [PMID: 7958858 DOI: 10.1101/gad.8.15.1803] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transcriptional activation of the immediate early genes c-fos and egr-1 by extracellular signals appears to be mediated by ternary complex factors (TCFs). In BAC-1 macrophages, growth factor stimulation leads to the retardation of protein-DNA complexes containing distinct TCFs. One TCF is recognized by Elk-1 antisera, whereas the other is immunologically related to SAP-1. The appearance and decay of hyperphosphorylated TCF/Elk-1-containing complexes after stimulation coincide with the activation of mitogen-activated protein kinase (MAPK) and the induction and repression of c-fos and egr-1, whereas modified TCF/SAP-1-containing complexes decay more slowly. Suppression of MAPK activation in macrophages and fibroblasts correlates with the failure to induce TCF/Elk-1 hyperphosphorylation without blocking TCF/SAP-1 modification. Accordingly the modified Elk-1 complex is generated in vitro by activated MAPK, whereas that of SAP-1 is not. Expression of a dominant-negative Ras mutant (RasAsn17) in BAC-1 cells does not affect CSF-1-induced TCF/SAP-1 modification while suppressing TCF/Elk-1 phosphorylation. Neither PKC down-regulation by TPA nor inhibition of Gi proteins by pertussis toxin pretreatment influences CSF-1-induced signaling to TCFs. These data indicate the existence of two separate signaling pathways for the modification of distinct TCFs: one dependent on Ras and MAPK and converging on TCF/Elk-1, and the other targeting TCF/SAP-1 independently of Ras and MAPK.
Collapse
Affiliation(s)
- R A Hipskind
- Institute for Molecular Biology, Hannover Medical School, Germany
| | | | | | | |
Collapse
|
32
|
|
33
|
D'Onofrio F, Le MQ, Chiasson JL, Srivastava AK. Activation of mitogen activated protein (MAP) kinases by vanadate is independent of insulin receptor autophosphorylation. FEBS Lett 1994; 340:269-75. [PMID: 8131857 DOI: 10.1016/0014-5793(94)80152-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyl phosphorylation of the beta-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases.
Collapse
Affiliation(s)
- F D'Onofrio
- Centre de Recherche/Hôpital Hôtel-Dieu de Montréal, Department of Medicine, Université de Montréal, Qué, Canada
| | | | | | | |
Collapse
|
34
|
Pelletier DB, Boynton AL. Dissociation of PDGF receptor tyrosine kinase activity from PDGF-mediated inhibition of gap junctional communication. J Cell Physiol 1994; 158:427-34. [PMID: 8126067 DOI: 10.1002/jcp.1041580306] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gap junction-mediated intercellular communication (GJC) may play an important role in cell proliferation and transformation since GJC is inhibited by growth factors, oncogenes, tumor promoters, and carcinogens. We have studied inhibition of GJC by platelet-derived growth factor-BB (PDGF) in the mouse fibroblast cell line C3H/10T1/2 and have sought to determine whether PDGF-induced inhibition of GJC is mediated by the PDGF receptor tyrosine kinase (RTK). PDGF-mediated inhibition of GJC was rapid and transient, with maximal inhibition occurring 40 min after PDGF addition and GJC returning to control levels after 70 min. The effect of PDGF on GJC was concentration-dependent, with maximal inhibition of 90% or greater occurring at 10 ng/ml PDGF. Stimulation of RTK activity, as determined by antiphosphotyrosine immunoblot analysis of PDGF receptor and the receptor substrates phospholipase C-gamma I (PLC-gamma I) and guanosine triphosphatase activating protein (GAP), was also concentration-dependent. Inhibition of GJC required a greater concentration of PDGF than did stimulation of RTK activity. The tyrosine kinase inhibitor genistein blocked PDGF-induced RTK activity, as measured by PDGF receptor, PLC-gamma I, and GAP tyrosine phosphorylation, in a concentration-dependent manner but did not affect PDGF-mediated inhibition of GJC. Genistein alone had no effect on GJC or PDGF receptor expression. PDGF treatment in the presence or absence of genistein resulted in phosphorylation of the connexin 43 protein on nontyrosine residues. These results suggest that inhibition of GJC by ligand-activated PDGF receptor is dissociable from the RTK activity responsible for PDGF, PLC-gamma I, and GAP phosphorylation.
Collapse
Affiliation(s)
- D B Pelletier
- Department of Molecular and Cell Biology, Pacific Northwest Research Foundation, Seattle, Washington 98122
| | | |
Collapse
|
35
|
Luetteke NC, Phillips HK, Qiu TH, Copeland NG, Earp HS, Jenkins NA, Lee DC. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 1994; 8:399-413. [PMID: 8125255 DOI: 10.1101/gad.8.4.399] [Citation(s) in RCA: 340] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mice harboring the waved-1 (wa-1) and waved-2 (wa-2) mutations exhibit skin and eye abnormalities that are strikingly similar to those of TGF-alpha-deficient mice, and wa-1 and TGF-alpha were recently shown to be allelic. Because the wa-2 mutation was mapped previously to the vicinity of the EGF/TGF-alpha receptor (EGFR) gene on mouse chromosome 11, we hypothesized that the wa-2 phenotype might result from a defect in either the expression or activity of EGFR, or both. In the present report, we show that EGFR mRNA and protein of normal size are expressed in wa-2 liver and skin at levels that are comparable to those in the corresponding normal tissues, and that the ability of wa-2 EGFR to bind ligand is unaltered. However, ligand-dependent autophosphorylation of wa-2 EGFR is diminished 5- to 10-fold in vitro, and the ability of wa-2 EGFR to phosphorylate an exogenous substrate is reduced by > 90% compared with that of the control receptor. EGF-induced tyrosine phosphorylation, including that of EGFR itself, is also diminished in skin, particularly at lower dose of exogenous EGF. To establish the nature of the wa-2 mutation, we determined the nucleotide sequence of the coding region of normal and wa-2 murine EGFR cDNAs. A comparison of these sequences revealed a single-nucleotide transversion resulting in the substitution of a glycine for a conserved valine residue near the amino terminus of the tyrosine kinase domain. The importance of this mutation was confirmed by showing that its introduction into an otherwise normal EGFR markedly reduced the receptor's tyrosine kinase activity in transfected Chinese hamster ovary cells. Finally, in situ hybridization analysis demonstrated expression of EGFR predominantly in the outer root sheath of active hair follicles in neonatal mice. As we previously localized TGF-alpha mRNA to the inner root sheath, this pattern of EGFR expression is consistent with the effect of the wa-2 mutation on hair structure, and together with our previous characterization of TGF-alpha-deficient mice, reveals a critical role for signaling by this ligand/receptor system in skin.
Collapse
Affiliation(s)
- N C Luetteke
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill 27599-7295
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
MAP kinases (MAPK) are serine/threonine kinases which are activated by a dual phosphorylation on threonine and tyrosine residues. Their specific upstream activators, called MAP kinase kinases (MAPKK), constitute a new family of dual-specific threonine/tyrosine kinases, which in turn are activated by upstream MAP kinase kinase kinases (MAPKKK). These three kinase families are successively stimulated in a cascade of activation described in various species such as mammals, frog, fly, worm or yeast. In mammals, the MAP kinase module lies on the signaling pathway triggered by numerous agonists such as growth factors, hormones, lymphokines, tumor promoters, stress factors, etc. Targets of MAP kinase have been characterized in all subcellular compartments. In yeast, genetic epistasis helped to characterize the presence of several MAP kinase modules in the same system. By complementation tests, the relationships existing between phylogenetically distant members of each kinase family have been described. The roles of the MAP kinase cascade have been analyzed by engineering various mutations in the kinases of the module. The MAP kinase cascade has thus been implicated in higher eukaryotes in cell growth, cell fate and differentiation, and in low eukaryotes, in conjugation, osmotic stress, cell wall construct and mitosis.
Collapse
|
37
|
Hack N, Sue-A-Quan A, Mills GB, Skorecki KL. Expression of human tyrosine kinase-negative epidermal growth factor receptor amplifies signaling through endogenous murine epidermal growth factor receptor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74334-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Filhol O, Chambaz EM, Gill GN, Cochet C. Epidermal growth factor stimulates a protein tyrosine kinase which is separable from the epidermal growth factor receptor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74206-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Nair BG, Patel TB. Regulation of cardiac adenylyl cyclase by epidermal growth factor (EGF). Role of EGF receptor protein tyrosine kinase activity. Biochem Pharmacol 1993; 46:1239-45. [PMID: 8216375 DOI: 10.1016/0006-2952(93)90473-a] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have shown previously that the alpha subunit of the stimulatory GTP binding regulatory component of adenylyl cyclase (Gs alpha) mediates epidermal growth factor (EGF)-elicited stimulation of rat cardiac adenylyl cyclase (Nair et al., J Biol Chem 265: 21317-21322, 1990). Employing purified protein phosphotyrosine phosphatase, and benzylidene derivatives (tyrphostins: compounds 11 and 12) that selectively inhibit EGF receptor protein tyrosine kinase (EGFRK) activity, the role of EGFRK in EGF-mediated stimulation of cardiac adenylyl cyclase was investigated. The ability of the tyrphostins to inhibit the EGFRK activity in cardiac membranes was determined by monitoring tyrosine phosphorylation of either the 170 kDa protein or immunoprecipitated EGF receptor at 0 degrees and room temperature, respectively. Compounds 11 and 12, in a concentration-dependent manner, inhibited EGF receptor tyrosine kinase activity. In assays of adenylyl cyclase activity neither compound 11 nor compound 12 altered Gpp(NH)p- or isoproterenol-stimulated activity. However, both compounds, in a concentration-dependent manner, attenuated the ability of EGF to stimulate adenylyl cyclase activity without altering specific binding of [125I]EGF to cardiac membranes. Similarly, protein phosphotyrosine phosphatase obliterated the ability of EGF, but not isoproterenol, to stimulate adenylyl cyclase. Thus, we conclude that protein tyrosine kinase activity of the EGF receptor is essential for the stimulation of cardiac adenylyl cyclase by EGF.
Collapse
Affiliation(s)
- B G Nair
- Department of Pharmacology, University of Tennessee, Memphis
| | | |
Collapse
|
40
|
Kindy MS. Inhibition of tyrosine phosphorylation prevents delayed neuronal death following cerebral ischemia. J Cereb Blood Flow Metab 1993; 13:372-7. [PMID: 8386729 DOI: 10.1038/jcbfm.1993.50] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine phosphorylation plays an important role in the regulation of neuronal function. We examined the effects of inhibition of tyrosine phosphorylation on ischemic neuronal damage in the CA1 region of the hippocampus. In the gerbil hippocampus, genistein and lavendustin A, tyrosine kinase inhibitors, were administered 30 min before initiation of 5-min ischemia and reperfusion. Both genistein and lavendustin A blocked tyrosine phosphorylation and prevented delayed neuronal death (DND). However, genistein, an inactive analogue of genistein, did not block DND. Genistein was dose-dependent in the inhibition of DND after ischemia and reperfusion. Administration of genistein 5 to 10 min after ischemia and reperfusion was ineffective in blocking DND in the CA1 region of the hippocampus. The tyrosine kinase inhibitors selectively blocked the phosphorylation of microtubule-associated protein (MAP)-2 kinase following ischemia and reperfusion injury. These results suggest that tyrosine phosphorylation in the ischemic brain is important for neuronal injury and that MAP-2 kinase may play a role in the onset of delayed neuronal death.
Collapse
Affiliation(s)
- M S Kindy
- Department of Biochemistry, University of Kentucky, Lexington 40536-0084
| |
Collapse
|
41
|
Decker S. Transmembrane signaling by epidermal growth factor receptors lacking autophosphorylation sites. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98330-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Mitogen-activated protein kinase stimulation by a tyrosine kinase-negative epidermal growth factor receptor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53989-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Campos-González R, Kindy MS. Tyrosine phosphorylation of microtubule-associated protein kinase after transient ischemia in the gerbil brain. J Neurochem 1992; 59:1955-8. [PMID: 1328534 DOI: 10.1111/j.1471-4159.1992.tb11032.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tyrosine phosphorylation of microtubule-associated protein (MAP) kinase was examined in the gerbil brain after transient ischemia and reperfusion. Phosphorylation of MAP kinase was maximal within 1 min of reperfusion following 5 min of ischemia and returned to control levels as early as 5 min postischemia. The greatest increase in MAP kinase phosphorylation was detected in the hippocampus, with minor increases in other ischemic regions of the brain. Several tyrosine-phosphorylated proteins were detected in the gerbil hippocampus; however, the ischemia and reperfusion injury only increased tyrosine phosphorylation of MAP kinase. The increase in tyrosine phosphorylation was prevented by the N-methyl-D-aspartate (NMDA) receptor blocker (+)-MK-801, whereas a non-NMDA receptor blocker, 6-cyano-7-nitroquinoxaline-2,3-dione, was ineffective. Pretreatment of gerbils with calcium channel blockers also prevented the tyrosine phosphorylation of MAP kinase in the ischemic brain. Altogether, these results imply an involvement of glutamate receptors and calcium during the tyrosine phosphorylation of MAP kinase. Tyrosine phosphorylation was also prevented when ischemia and reperfusion were conducted under hypothermic conditions, which protect against neurodegenerative damage. These findings implicate a role for MAP kinase in neuronal damage resulting from ischemia and reperfusion.
Collapse
Affiliation(s)
- R Campos-González
- Department of Surgery, University of Kentucky Medical Center, Lexington 40536-0084
| | | |
Collapse
|