1
|
Siddiqui S, Liu F, Kanthasamy AG, McGrail M. Stat3 mediates Fyn kinase-driven dopaminergic neurodegeneration and microglia activation. Dis Model Mech 2024; 17:dmm052011. [PMID: 39641161 PMCID: PMC11646115 DOI: 10.1242/dmm.052011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
The Alzheimer's disease and Parkinson's disease risk locus FYN kinase is implicated in neurodegeneration and inflammatory signaling. To investigate in vivo mechanisms of Fyn-driven neurodegeneration, we built a zebrafish neural-specific Gal4:UAS model of constitutively active FynY531F signaling. Using in vivo live imaging, we demonstrated that neural FynY531F expression leads to dopaminergic neuron loss and mitochondrial aggregation in 5 day larval brain. Dopaminergic loss coincided with microglia activation and induction of tnfa, il1b and il12a inflammatory cytokine expression. Transcriptome analysis revealed Stat3 signaling as a potential Fyn target. Chemical inhibition experiments confirmed Fyn-driven dopaminergic neuron loss, and the inflammatory response was dependent upon activation of Stat3 and NF-κB pathways. Dual chemical inhibition demonstrated that Stat3 acts synergistically with NF-κB in dopaminergic neuron degeneration. These results identify Stat3 as a novel downstream effector of Fyn signaling in neurodegeneration and inflammation.
Collapse
Affiliation(s)
- Sahiba Siddiqui
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Graduate Program (IGG), Iowa State University, Ames, IA 50011, USA
| | - Fang Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Anumantha G. Kanthasamy
- Center for Brain Science and Neurodegenerative Diseases, Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Maura McGrail
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Genetics and Genomics Graduate Program (IGG), Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Extensive proteomic and transcriptomic changes quench the TCR/CD3 activation signal of latently HIV-1 infected T cells. PLoS Pathog 2021; 17:e1008748. [PMID: 33465149 PMCID: PMC7846126 DOI: 10.1371/journal.ppat.1008748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/29/2021] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
The biomolecular mechanisms controlling latent HIV-1 infection, despite their importance for the development of a cure for HIV-1 infection, are only partially understood. For example, ex vivo studies have recently shown that T cell activation only triggered HIV-1 reactivation in a fraction of the latently infected CD4+ T cell reservoir, but the molecular biology of this phenomenon is unclear. We demonstrate that HIV-1 infection of primary T cells and T cell lines indeed generates a substantial amount of T cell receptor (TCR)/CD3 activation-inert latently infected T cells. RNA-level analysis identified extensive transcriptomic differences between uninfected, TCR/CD3 activation-responsive and -inert T cells, but did not reveal a gene expression signature that could functionally explain TCR/CD3 signaling inertness. Network analysis suggested a largely stochastic nature of these gene expression changes (transcriptomic noise), raising the possibility that widespread gene dysregulation could provide a reactivation threshold by impairing overall signal transduction efficacy. Indeed, compounds that are known to induce genetic noise, such as HDAC inhibitors impeded the ability of TCR/CD3 activation to trigger HIV-1 reactivation. Unlike for transcriptomic data, pathway enrichment analysis based on phospho-proteomic data directly identified an altered TCR signaling motif. Network analysis of this data set identified drug targets that would promote TCR/CD3-mediated HIV-1 reactivation in the fraction of otherwise TCR/CD3-reactivation inert latently HIV-1 infected T cells, regardless of whether the latency models were based on T cell lines or primary T cells. The data emphasize that latent HIV-1 infection is largely the result of extensive, stable biomolecular changes to the signaling network of the host T cells harboring latent HIV-1 infection events. In extension, the data imply that therapeutic restoration of host cell responsiveness prior to the use of any activating stimulus will likely have to be an element of future HIV-1 cure therapies. A curative therapy for HIV-1 infection will at least require the eradication of a small pool of CD4+ helper T cells in which the virus can persist in an inactive, latent state, even after years of successful antiretroviral therapy. It has been assumed that activation of these viral reservoir T cells will also reactivate the latent virus, which is a prerequisite for the destruction of these cells. Remarkably, this is not always the case and following application of even the most potent stimuli that activate normal T cells through their T cell receptor, a large portion of the latent virus pool remains in a dormant state. Herein we demonstrate that a large part of latent HIV-1 infection events reside in T cells that have been rendered activation inert. We provide a systemwide, biomolecular description of the changes that render latently HIV-1 infected T cells activation inert and using this description, devise pharmacologic interference strategies that render initially activation inert T cells responsive to stimulation. This in turn allows for efficient triggering of HIV-1 reactivation in a large part of the otherwise unresponsive latently HIV-1 infected T cell reservoir.
Collapse
|
3
|
Mukherjee A, Singh R, Udayan S, Biswas S, Reddy PP, Manmadhan S, George G, Kumar S, Das R, Rao BM, Gulyani A. A Fyn biosensor reveals pulsatile, spatially localized kinase activity and signaling crosstalk in live mammalian cells. eLife 2020; 9:50571. [PMID: 32017701 PMCID: PMC7000222 DOI: 10.7554/elife.50571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cell behavior is controlled through spatio-temporally localized protein activity. Despite unique and often contradictory roles played by Src-family-kinases (SFKs) in regulating cell physiology, activity patterns of individual SFKs have remained elusive. Here, we report a biosensor for specifically visualizing active conformation of SFK-Fyn in live cells. We deployed combinatorial library screening to isolate a binding-protein (F29) targeting activated Fyn. Nuclear-magnetic-resonance (NMR) analysis provides the structural basis of F29 specificity for Fyn over homologous SFKs. Using F29, we engineered a sensitive, minimally-perturbing fluorescence-resonance-energy-transfer (FRET) biosensor (FynSensor) that reveals cellular Fyn activity to be spatially localized, pulsatile and sensitive to adhesion/integrin signaling. Strikingly, growth factor stimulation further enhanced Fyn activity in pre-activated intracellular zones. However, inhibition of focal-adhesion-kinase activity not only attenuates Fyn activity, but abolishes growth-factor modulation. FynSensor imaging uncovers spatially organized, sensitized signaling clusters, direct crosstalk between integrin and growth-factor-signaling, and clarifies how compartmentalized Src-kinase activity may drive cell fate.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,SASTRA University, Thanjavur, India
| | - Randhir Singh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sreeram Udayan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sayan Biswas
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | | | - Saumya Manmadhan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Geen George
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Shilpa Kumar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ranabir Das
- National Centre for Biological Sciences, Bangalore, India
| | - Balaji M Rao
- North Carolina State University, Raleigh, United States
| | - Akash Gulyani
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| |
Collapse
|
4
|
SUMOylation of Csk Negatively Modulates its Tumor Suppressor Function. Neoplasia 2019; 21:676-688. [PMID: 31125786 PMCID: PMC6531875 DOI: 10.1016/j.neo.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022] Open
Abstract
Csk, a non-receptor tyrosine kinase, serves as an indispensable negative regulator of the Src family kinases (SFKs). However, little is known about regulation of Csk expression so far. SUMOylation, a reversible post-translational modification, has been shown to regulate many biological processes especially in tumor progression. Here we report that Csk is covalently modified by SUMO1 at lysine 53 (K53) both in vitro and in vivo. Treatment with hydrogen peroxide inhibited this modification to a certain extent, but PIAS3, identified as the main specific SUMO E3 ligase for Csk, could significantly enhance SUMO1-Csk level. In addition, phosphorylation at Ser364, the active site in Csk, had no effect on this modification. Ectopic expression of SUMO-defective mutant, Csk K53R, inhibited tumor cell growth more potentially than Csk wild-type. Consistent with the biological phenotype, the SUMO modification of Csk impaired its activity to interact with Cbp (Csk binding protein) leading to decreased c-Src phosphorylation at Y527. Our results suggest that SUMOylation of Csk mainly at lysine 53 negatively modulates its tumor suppressor function by reducing its binding with Cbp and consequently, inducing c-Src activation.
Collapse
|
5
|
Peckham H, Giuffrida L, Wood R, Gonsalvez D, Ferner A, Kilpatrick TJ, Murray SS, Xiao J. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia 2015; 64:255-69. [PMID: 26449489 DOI: 10.1002/glia.22927] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/17/2015] [Accepted: 09/15/2015] [Indexed: 01/17/2023]
Abstract
Fyn, a member of the Src family of nonreceptor tyrosine kinases, promotes central nervous system myelination during development; however the mechanisms mediating this effect remain unknown. Here we show that Fyn phosphorylation is modulated by BDNF in vivo. Concordant with this, we find that BDNF stimulates Fyn phosphorylation in myelinating cocultures, an effect dependent on oligodendroglial expression of TrkB. Importantly, PP2, a pharmacological inhibitor of Src family kinases, not only abrogated the promyelinating influence of BDNF in vitro, but also attenuated BDNF-induced phosphorylation of Erk1/2 in oligodendrocytes. Over-expression of Fyn in oligodendrocytes significantly promotes phosphorylation of Erk1/2, and promotes myelination to the extent that exogenous BDNF exerts no additive effect in vitro. In contrast, expression of a kinase-dead mutant of Fyn in oligodendrocytes significantly inhibited BDNF-induced activation of Erk1/2 and abrogated the promyelinating effect of BDNF. Analysis of white matter tracts in vivo revealed that phosphorylated Fyn primarily colocalized with mature oligodendrocytes, and was rarely observed in oligodendrocyte progenitor cells, a profile that closely parallels the detection of phosphorylated Erk1/2 in the developing central nervous system. Taken together, these data identify that Fyn kinase exerts a key role in mediating the promyelinating influence of BDNF. Here we identify a pathway in which BDNF activation of oligodendroglial TrkB receptors stimulates the phosphorylation of Fyn, a necessary step required to potentiate the phosphorylation of Erk1/2, which in turn regulates oligodendrocyte myelination.
Collapse
Affiliation(s)
- Haley Peckham
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Lauren Giuffrida
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Rhiannon Wood
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - David Gonsalvez
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Anita Ferner
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Trevor J Kilpatrick
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Simon S Murray
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Junhua Xiao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
6
|
Fenton SE, Denning MF. FYNagling divergent adhesive functions for Fyn in keratinocytes. Exp Dermatol 2014; 24:81-5. [PMID: 24980626 DOI: 10.1111/exd.12485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2014] [Indexed: 12/29/2022]
Abstract
Fyn, a member of the Src family kinases (SFKs), has been shown to play important yet contradictory roles in keratinocyte (KC) adhesion. During KC differentiation, physiological activation of Fyn results in the formation of adherens junctions, recruiting junctional components and inducing signaling pathways that control the differentiation program. However, in KC transformation and oncogenesis, increased Fyn activity has been implicated in the dissolution of adhesion structures and an increased migratory phenotype. Fyn activity is also associated with both the formation and dissolution of focal adhesions, and to a lesser extent hemidesmosomes and desmosomes. This viewpoint article aims to reconcile these disparate bodies of literature regarding Fyn's role in cell-cell and cell-matrix adhesion by proposing several alternative, testable hypotheses that unify Fyn's fractured functions.
Collapse
Affiliation(s)
- Sarah E Fenton
- Molecular Biology Program, Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, IL, USA
| | | |
Collapse
|
7
|
Stirnweiss A, Hartig R, Gieseler S, Lindquist JA, Reichardt P, Philipsen L, Simeoni L, Poltorak M, Merten C, Zuschratter W, Prokazov Y, Paster W, Stockinger H, Harder T, Gunzer M, Schraven B. T cell activation results in conformational changes in the Src family kinase Lck to induce its activation. Sci Signal 2013; 6:ra13. [PMID: 23423439 DOI: 10.1126/scisignal.2003607] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The lymphocyte-specific Src family protein tyrosine kinase p56(Lck) (Lck) is essential for T cell development and activation and, hence, for adaptive immune responses. The mechanism by which Lck activity is directed toward specific substrates in response to T cell receptor (TCR) activation remains elusive. We used fluorescence lifetime imaging microscopy to assess the activation-dependent spatiotemporal changes in the conformation of Lck in live human T cells. Kinetic analysis of the fluorescence lifetime of Lck biosensors enabled the direct visualization of the dynamic local opening of 20% of the total amount of Lck proteins after activation of T cells with antibody against CD3 or by superantigen-loaded antigen-presenting cells. Parallel biochemical analysis of TCR complexes revealed that the conformational changes in Lck correlated with the induction of Lck enzymatic activity. These data show the dynamic, local activation through conformational change of Lck at sites of TCR engagement.
Collapse
Affiliation(s)
- Anja Stirnweiss
- Institute of Molecular and Clinical Immunology, Otto von Guericke University, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kim HS, Kim DK, Kim AR, Mun SH, Lee SK, Kim JH, Kim YM, Choi WS. Fyn positively regulates the activation of DAP12 and FcRγ-mediated costimulatory signals by RANKL during osteoclastogenesis. Cell Signal 2012; 24:1306-14. [PMID: 22387224 DOI: 10.1016/j.cellsig.2012.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 02/19/2012] [Indexed: 12/26/2022]
Abstract
Osteoclasts (OCs) are the only bone-resorbing cells and are critically involved in various bone-associated diseases, including osteoporosis and rheumatoid arthritis. Differentiation of OCs from bone marrow macrophage cells (BMMs) is regulated by RANK and the adaptor protein (DAP12/FcRγ)-mediated costimulatory signals. However, it is unknown how RANKL/RANK signal stimulates phosphorylation of DAP12/FcRγ to initiate the costimulatory signals. As reported here, we found that OC differentiation and acquisition of bone resorption capacity were suppressed in RANKL-stimulated Fyn(-/-) or Fyn-siRNA-transfected BMMs, but could be restored by overexpression of Fyn kinase in Fyn(-/-) BMMs. However, the RANKL-stimulated proliferation of BMMs was unaffected by the absence of Fyn. In addition, RANKL-stimulated Fyn(-/-) BMMs no longer exhibited the optimal induction of typical OC markers such as NFATc1, c-Fos, c-Src, TRAF6, and cathepsin K or costimulatory signals such as the activating phosphorylations of Syk, PLCγ2, and Gab2. These were restored by overexpression of Fyn in Fyn(-/-) BMMs. Immunoprecipitation studies also indicated that the adaptor proteins DAP12/FcRγ and Syk interacted with RANK during RANKL stimulation in BMMs in a Fyn-dependent manner. Phosphorylation of the DAP12/FcRγ and the recruitment of Syk by DAP12/FcRγ were suppressed in Fyn(-/-) BMMs. This is the first demonstration that Fyn relays the initial RANK/RANKL signal to the ITAM-containing adaptors DAP12/FcRγ for OC differentiation.
Collapse
Affiliation(s)
- H S Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Targeted therapies of the LKB1/AMPK pathway for the treatment of insulin resistance. Future Med Chem 2011; 2:1785-96. [PMID: 21428801 DOI: 10.4155/fmc.10.264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type II diabetes is characterized by elevated serum glucose levels and altered lipid metabolism due to peripheral insulin resistance and defects of insulin secretion in the pancreatic β-cells. While some cases of obesity and Type II diabetes result from genetic dysfunction, the increased worldwide incidence of these two disorders strongly suggest that the contribution of environmental factors such as sedentary lifestyles and high-calorie intake may disrupt energy balance. AMP-activated protein kinase and its upstream kinase liver kinase B1 are conserved serine/threonine kinases regulating anabolic and catabolic metabolic processes, therefore representing attractive therapeutic targets for the treatment of obesity and Type II diabetes. In this review, we will discuss the advantages of targeting the liver kinase B1/AMP-activated protein kinase pathway for the treatment of metabolic diseases.
Collapse
|
10
|
Chen ZY, Cai L, Bie P, Wang SG, Jiang Y, Dong JH, Li XW. Roles of Fyn in pancreatic cancer metastasis. J Gastroenterol Hepatol 2010; 25:293-301. [PMID: 19968749 DOI: 10.1111/j.1440-1746.2009.06021.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Src family kinases have been suggested to be associated with the metastasis of tumors, but their related mechanisms remain unclear. The aims of the present study were to assess the possible mechanisms by which the inhibition of Fyn activation regulates pancreatic cancer metastasis. METHODS We examined the expressions of Fyn in human pancreatic cancer tissues by immunohistochemistry and systematically investigated the relationship between Fyn expression and pancreatic cancer metastasis. A nude mouse xenograft model induced by BxPC3 cells with or without the inhibition of Fyn activation was used to explore the effect of the inhibition of Fyn on metastasis in vivo. Methyl thiazolyl tetrazolium and terminal deoxynucleotidyl transferase-labeling assays were used to examine the effect of the inhibition of Fyn on the cell proliferation of BxPC3 pancreatic cancer cells in vitro. Reverse transcription polymerase chain reaction and Western blot analysis were performed to explore the possible mechanism of Fyn-induced metastasis. RESULTS We found that the upregulation of Fyn expression was correlated with human pancreatic cancer metastasis. In BxPC3 pancreatic cancer cells, the inhibition of Fyn activation by kinase-dead Fyn transfection decreased liver metastasis in nude mice. Further analyses showed that Fyn activity modulated pancreatic cell metastasis through the regulation of proliferation and apoptosis. CONCLUSIONS Our results suggest a possible mechanism by which Fyn activity regulates cell proliferation and apoptosis that exerts an effect on pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Zhi-Yu Chen
- Hepatobiliary Surgery Institute, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Vatish M, Yamada E, Pessin JE, Bastie CC. Fyn kinase function in lipid utilization: a new upstream regulator of AMPK activity? Arch Physiol Biochem 2009; 115:191-8. [PMID: 19728795 PMCID: PMC4324608 DOI: 10.1080/13813450903164348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The balance of cellular energy levels in response to changes of nutrient availability, stress stimuli or exercise is a critical step in maintaining tissue and whole body homeostasis. Disruption of this balance is associated with various pathologies, including the metabolic syndrome. Recently, accumulating evidence has demonstrated that the AMP-activated protein kinase (AMPK) plays a central role in sensing changes in energy levels. The regulation of AMPK activity is currently the subject of significant investigation since this enzyme is a potential therapeutic target in both metabolic disorders and tumorigenesis. In this review, we present novel evidence of crosstalk between Fyn, one member of the Src kinase family, and AMPK.
Collapse
Affiliation(s)
- Manu Vatish
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK
| | - Eijiro Yamada
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
| | - Jeffrey E. Pessin
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
| | - Claire C. Bastie
- Albert Einstein College of Medicine, Diabetes Research and Training Center, Department of Medicine, Bronx, NY USA
| |
Collapse
|
12
|
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228:9-22. [PMID: 19290918 DOI: 10.1111/j.1600-065x.2008.00745.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell development in the thymus and activation of mature T cells in secondary lymphoid organs requires the ability of cells to respond appropriately to environmental signals at multiple stages of their development. The process of thymocyte selection insures a functional T-cell repertoire, while activation of naive peripheral T cells induces proliferation, gain of effector function, and, ultimately, long-lived T-cell memory. The T-cell immune response is initiated upon engagement of the T-cell receptor (TCR) and coreceptor, CD4 or CD8, by cognate antigen/major histocompatibility complexes presented by antigen-presenting cells. TCR/coreceptor engagement induces the activation of biochemical signaling pathways that, in combination with signals from costimulator molecules and cytokine receptors, direct the outcome of the response. Activation of the src-family kinases p56(lck) (Lck) and p59(fyn) (Fyn) is central to the initiation of TCR signaling pathways. This review focuses on our current understanding of the mechanisms by which these two proteins orchestrate T-cell function.
Collapse
Affiliation(s)
- Robert J Salmond
- Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
13
|
Baba A, Akagi K, Takayanagi M, Flanagan JG, Kobayashi T, Hattori M. Fyn tyrosine kinase regulates the surface expression of glycosylphosphatidylinositol-linked ephrin via the modulation of sphingomyelin metabolism. J Biol Chem 2009; 284:9206-14. [PMID: 19181669 DOI: 10.1074/jbc.m809401200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glycosylphosphatidylinositol-linked ephrin-As play important roles in various biological events, such as neuronal development and immune responses. Because the surface amount of ephrin-As is critical in these events, the trafficking of ephrin-As must be regulated by intracellular machinery. In particular, Src family protein-tyrosine kinases regulate the intracellular trafficking of several membrane molecules and act downstream of ephrin-As; whether they affect the trafficking of ephrin-As, however, has remained unexplored. Here, we report that the activity of Src family protein-tyrosine kinases, particularly Fyn, negatively regulates the cell-surface amount of ephrin-As. The expression of constitutively active Fyn decreases the surface amount of ephrin-As. Conversely, the expression of dominant-negative Fyn or the application of a Src-family inhibitor increases the surface amount of ephrin-A2. The total cellular amount of ephrin-A is inversely correlated with its amount on the surface, suggesting that ephrin-As are more stable in the intracellular compartment. The expression of constitutively active Fyn increases the amount of sphingomyelin clusters on the plasma membrane, whereas inhibiting Fyn decreases it. Moreover, the inhibition of sphingomyelin synthesis greatly increases the surface amount of ephrin-As. Altogether, these results suggest that Fyn regulates the surface amount of ephrin-As by modulating the metabolism of sphingomyelin, which presumably inhibits the trafficking of ephrin-As from endosomes to the plasma membrane. The signaling cascade described here may function as part of the negative feedback loop of ephrin-A function.
Collapse
Affiliation(s)
- Atsushi Baba
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Goat’s αS1-casein polymorphism affects gene expression profile of lactating mammary gland. Animal 2008; 2:566-73. [DOI: 10.1017/s1751731108001584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Walter RB, Häusermann P, Raden BW, Teckchandani AM, Kamikura DM, Bernstein ID, Cooper JA. Phosphorylated ITIMs Enable Ubiquitylation of an Inhibitory Cell Surface Receptor. Traffic 2007; 9:267-79. [DOI: 10.1111/j.1600-0854.2007.00682.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Walter RB, Raden BW, Zeng R, Häusermann P, Bernstein ID, Cooper JA. ITIM-dependent endocytosis of CD33-related Siglecs: role of intracellular domain, tyrosine phosphorylation, and the tyrosine phosphatases, Shp1 and Shp2. J Leukoc Biol 2007; 83:200-11. [PMID: 17947393 DOI: 10.1189/jlb.0607388] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The leukocyte CD33-related sialic acid-binding Ig-like lectins (Siglecs) are implicated in glycan recognition and host defense against and pathogenicity of sialylated pathogens. Recent studies have shown endocytosis by CD33-related Siglecs, which is implicated in clearance of sialylated antigens and antigen presentation and makes targeted immunotherapy possible. Using CD33 as a paradigm, we have now investigated the reasons underlying the comparatively slow rate of endocytosis of these receptors. We show that endocytosis is largely limited and determined by the intracellular domain while the extracellular and transmembrane domains play a minor role. Tyrosine phosphorylation, most likely through Src family kinases, increases uptake of CD33 depending on the integrity of the two cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Simultaneous depletion of the protein tyrosine phosphatases, Src homology-2-containing tyrosine phosphatase 1 (Shp1) and Shp2, which bind to phosphorylated CD33, increases internalization of CD33 slightly in some cell lines, whereas depletion of spleen tyrosine kinase (Syk) has no effect, implying that Shp1 and Shp2 can dephosphorylate the ITIMs or mask binding of the phosphorylated ITIMs to an endocytic adaptor. Our studies show that restraint of CD33 internalization through the intracellular domain is relieved partly when the ITIMs are phosphorylated and show that Shp1 and Shp2 can modulate this process.
Collapse
Affiliation(s)
- Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., D2-373, Seattle, WA 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Disabled1 (DAB1) is an intracellular mediator of the Reelin-signaling pathway and essential for correct neuronal positioning during brain development. So far, DAB1 has been considered a cytoplasmic protein. Here, we show that DAB1 is subject to nucleocytoplasmic shuttling. In its steady state, DAB1 is mainly located in the cytoplasm. However, treatment with leptomycine B, a specific inhibitor of the CRM1 (chromosomal region maintenance 1)-RanGTP-dependent nuclear export, resulted in nuclear accumulation of DAB1. By using deletion or substitutional mutants of DAB1 fused with enhanced green fluorescent protein, we have mapped a bipartite nuclear localization signal and two CRM1-dependent nuclear export signals. These targeting signals were functional in both Neuro2a cells and primary cerebral cortical neurons. Using purified recombinant proteins, we have shown that CRM1 binds to DAB1 directly in a RanGTP-dependent manner. We also show that tyrosine phosphorylation of DAB1, which is indispensable for the layer formation of the brain, by Fyn tyrosine kinase or Reelin stimulation did not affect the subcellular localization of DAB1 in vitro. These results suggest that DAB1 is a nucleocytoplasmic shuttling protein and raise the possibility that DAB1 plays a role in the nucleus as well as in the cytoplasm.
Collapse
Affiliation(s)
- Takao Honda
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | |
Collapse
|
18
|
Liu H, Nakazawa T, Tezuka T, Yamamoto T. Physical and functional interaction of Fyn tyrosine kinase with a brain-enriched Rho GTPase-activating protein TCGAP. J Biol Chem 2006; 281:23611-9. [PMID: 16777849 DOI: 10.1074/jbc.m511205200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fyn, a member of the Src family of tyrosine kinases, is implicated in both brain development and adult brain function. In the present study, we identified a Rho GTPase-activating protein (GAP), TCGAP (Tc10/Cdc42 GTPase-activating protein), as a novel Fyn substrate. TCGAP interacted with Fyn and was phosphorylated by Fyn, with Tyr-406 in the GAP domain as a major Fyn-mediated phosphorylation site. Fyn suppressed the GAP activity of wild-type TCGAP but not the Y406F mutant of TCGAP in a phosphorylation-dependent manner, suggesting that Fyn-mediated Tyr-406 phosphorylation negatively regulated the TCGAP activity. In situ hybridization analyses showed that TCGAP mRNA was expressed prominently in both immature and adult mouse brain, with high levels in cortex, corpus striatum, hippocampus, and olfactory bulb. Overexpression of wild-type TCGAP in PC12 cells suppressed nerve growth factor-induced neurite outgrowth, whereas a GAP-defective mutant of TCGAP enhanced the neurite outgrowth. Nerve growth factor enhanced tyrosine phosphorylation of TCGAP through activation of Src family kinases. These results suggest that TCGAP is involved in Fyn-mediated regulation of axon and dendrite outgrowth.
Collapse
Affiliation(s)
- Hui Liu
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
19
|
Ohshima T, Suzuki H, Morimura T, Ogawa M, Mikoshiba K. Modulation of Reelin signaling by Cyclin-dependent kinase 5. Brain Res 2006; 1140:84-95. [PMID: 16529723 DOI: 10.1016/j.brainres.2006.01.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/22/2006] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
The Reelin signaling and Cyclin-dependent kinase 5 (Cdk5) both regulate neuronal positioning in the developing brain. Using double-transgenic mice, we have previously shown that these two signaling pathways lie in parallel fashion and have a genetic interaction. Disabled-1 (Dab1), an adapter protein, mediates Reelin signaling and becomes tyrosine-phosphorylated on the binding of Reelin to its receptors. Several isoforms of Dab1 are expressed in embryonic mouse brain, and p80 [Dab1(555)] is the major protein translated. In the present study, we investigated whether Cdk5-mediated phosphorylation of Dab1 modulates Reelin signaling. Cdk5 phosphorylates p80 Dab1 at multiple sites in its carboxyl-terminal region, and tyrosine phosphorylation of p80 Dab1 by Fyn tyrosine kinase is attenuated by this Cdk5-mediated phosphorylation in vitro. Tyrosine phosphorylation of p80 Dab1 induced by exogenous Reelin is enhanced in Cdk5-deficient neurons, corroborating the inhibitory effect of Cdk5-mediated Ser/Thr phosphorylation on tyrosine phosphorylation of p80 Dab1. Another isoform, p45 Dab1 [Dab1(271)], however, is phosphorylated by Cdk5 at one serine residue within a unique carboxyl-terminal region, and its serine phosphorylation enhances tyrosine phosphorylation by Fyn and results in progressive degradation of p45 Dab1. These results indicate that Cdk5 modulates Reelin signaling through the Ser/Thr phosphorylation of Dab1 differently in an isoform-specific manner.
Collapse
Affiliation(s)
- Toshio Ohshima
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| | | | | | | | | |
Collapse
|
20
|
Fukazawa N, Ayukawa K, Nishikawa K, Ohashi H, Ichihara N, Hikawa Y, Abe T, Kudo Y, Kiyama H, Wada K, Aoki S. Identification and functional characterization of mouse TPO1 as a myelin membrane protein. Brain Res 2006; 1070:1-14. [PMID: 16405874 DOI: 10.1016/j.brainres.2005.11.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 01/06/2023]
Abstract
TPO1 is a member of the AIGP family, a unique group of proteins that contains 11 putative transmembrane domains. Expression of the rat TPO1 gene is upregulated in cultured oligodendrocytes (OLs) during development from pro-oligodendroblasts to postmitotic OLs. However, the distribution of native TPO1 protein in cultured OLs and in the brain has not been elucidated. We investigated the distribution and cellular function of TPO1 in myelinating cells of the nervous system. In mice, TPO1 gene expression was detected in the central (CNS) and peripheral (PNS) nervous systems and was markedly upregulated at postnatal days 10-20, an early phase of myelination in the mouse brain. To investigate TPO1 localization, we generated affinity-purified antibodies to synthetic peptides derived from mouse TPO1. Immunohistochemical analysis showed that TPO1 was expressed in OLs and Schwann cells but not in neurons and astrocytes. Schwann cells from trembler mice, which lack PNS myelin, had significantly decreased TPO1 expression and an altered localization pattern, suggesting that TPO1 is a functional myelin membrane protein. In OL lineage cell cultures, TPO1 was detected in A2B5+ bipolar early progenitors, A2B5+ multipolar Pro-OLs, GalC+ immature OLs and MBP+ mature OLs. The subcellular localization of TPO1 in OL lineage cells was mapped to the GM130+ Golgi in cell bodies and Fyn+ cell processes and myelin-like sheets. Furthermore, TPO1 selectively colocalized with non-phosphorylated Fyn and promoted Fyn autophosphorylation in COS7 cells, suggesting that TPO1 may play a role in myelin formation via Fyn kinase activation in the PNS and CNS.
Collapse
Affiliation(s)
- Nobuna Fukazawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Odell AF, Scott JL, Van Helden DF. Epidermal Growth Factor Induces Tyrosine Phosphorylation, Membrane Insertion, and Activation of Transient Receptor Potential Channel 4. J Biol Chem 2005; 280:37974-87. [PMID: 16144838 DOI: 10.1074/jbc.m503646200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various members of the canonical family of transient receptor potential channels (TRPCs) exhibit increased cation influx following receptor stimulation or Ca(2+) store depletion. Tyrosine phosphorylation of TRP family members also results in increased channel activity; however, the link between the two events is unclear. We report that two tyrosine residues in the C terminus of human TRPC4 (hTRPC4), Tyr-959 and Tyr-972, are phosphorylated following epidermal growth factor (EGF) receptor stimulation of COS-7 cells. This phosphorylation was mediated by Src family tyrosine kinases (STKs), with Fyn appearing to be the dominant kinase. In addition, EGF receptor stimulation induced the exocytotic insertion of hTRPC4 into the plasma membrane dependent on the activity of STKs and was accompanied by a phosphorylation-dependent increase in the association of hTRPC4 with Na(+)/H(+) exchanger regulatory factor. Furthermore, this translocation and association was defective upon mutation of Tyr-959 and Tyr-972 to phenylalanine. Significantly, inhibition of STKs was concomitant with a reduction in Ca(2+) influx in both native COS-7 cells and hTRPC4-expressing HEK293 cells, with cells expressing the Y959F/Y972F mutant exhibiting a reduced EGF response. These findings represent the first demonstration of a mechanism for phosphorylation to modulate TRPC channel function.
Collapse
Affiliation(s)
- Adam F Odell
- School of Biomedical Sciences, Level 5 MSB, University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | |
Collapse
|
22
|
Suetsugu S, Tezuka T, Morimura T, Hattori M, Mikoshiba K, Yamamoto T, Takenawa T. Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem J 2005; 384:1-8. [PMID: 15361067 PMCID: PMC1134082 DOI: 10.1042/bj20041103] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Migration of cells is critical to development of the central nervous system. Reelin, which was identified from the reeler mutant mice having a defect in the multilamellar structure of the brain, is thought to be a key signalling molecule that functions as a cue for determination of cell position. mDab1 (mouse Disabled homologue 1) functions downstream of Reelin. However, the mechanism by which mDab1 regulates cell migration during brain development is unknown. In the present paper, we show that mDab1 associates with N-WASP (neuronal Wiskott-Aldrich syndrome protein) in vitro and in brains of embryonic mice. mDab1 activates N-WASP directly, and induces actin polymerization through the Arp2/3 (actin-related protein 2/3) complex. mDab1 induces formation of filopodia when it is overexpressed in COS-7 cells. This filopodium formation is dependent on N-WASP, because expression of an N-WASP mutant that cannot induce Arp2/3-complex-mediated actin polymerization suppressed filopodium formation. The PTB (phosphotyrosine-binding) domain of mDab1 binds to N-WASP via the NRFY (Asn-Arg-Phe-Tyr) sequence close to the CRIB (Cdc42/Rac-interactive binding) motif of N-WASP and activates N-WASP in vitro. When mDab1 is phosphorylated by Fyn kinase in COS-7 cells, mDab1 is ubiquitinated in a Cbl-dependent manner, and mDab1 does not induce filopodium in the presence of activated Fyn. These findings suggest that mDab1 regulates the actin cytoskeleton through N-WASP, which is negatively regulated by phosphorylation-mediated ubiquitination of mDab1.
Collapse
Affiliation(s)
- Shiro Suetsugu
- *Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- †CREST, Japan Science and Technology Corporation (JST), 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tohru Tezuka
- ‡Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Toshifumi Morimura
- §Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- ∥Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mitsuharu Hattori
- ¶Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
- **PREST, Japan Science and Technology Corporation (JST), Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Katsuhiko Mikoshiba
- §Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- ∥Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tadashi Yamamoto
- ‡Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tadaomi Takenawa
- *Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- †CREST, Japan Science and Technology Corporation (JST), 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108-8639, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Shinohara H, Yasuda T, Yamanashi Y. Dok-1 tyrosine residues at 336 and 340 are essential for the negative regulation of Ras-Erk signalling, but dispensable for rasGAP-binding. Genes Cells 2005; 9:601-7. [PMID: 15189452 DOI: 10.1111/j.1356-9597.2004.00748.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dok-1 is a common substrate of many protein tyrosine kinases (PTKs). It recruits rasGAP and other SH2-containing proteins and negatively regulates Ras-Erk signalling downstream of PTKs. However, the mechanisms of its inhibitory effect are yet unclear. Here, a series of C-terminal deletion mutants of Dok-1 delineated the core domain for the inhibition of Erk from 334 to 346 amino acid, which contains two SH2-binding motifs having Tyr-336 or Tyr-340. The Dok-1 mutants having tyrosine-to-phenylalanine (YF) substitution(s) at Tyr-336 and/or Tyr-340 lost their inhibitory effect on Ras and Erk downstream of Src-like PTK, Lyn or Fyn, whereas the rasGAP-binding of each mutant remained intact. However, the Dok-1 mutant having YF substitutions at the rasGAP-binding sites (Tyr-295 and Tyr-361) also showed incapability of Ras and Erk inhibition. Moreover, the Dok-1 mutant having YF substitutions at Tyr-336 and Tyr-340 showed an impaired inhibitory effect on v-Abl-induced transformation of NIH-3T3 cells. These results demonstrate that Tyr-336 and Tyr-340 of Dok-1 are dispensable for rasGAP-binding but essential for inhibition of Ras-Erk signalling and cellular transformation downstream of PTKs. Thus, Dok-1 probably recruits as yet unidentified molecule(s), which, in concert with rasGAP, negatively regulate Ras-Erk signalling.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | |
Collapse
|
24
|
Fukuhara T, Shimizu K, Kawakatsu T, Fukuyama T, Minami Y, Honda T, Hoshino T, Yamada T, Ogita H, Okada M, Takai Y. Activation of Cdc42 by trans interactions of the cell adhesion molecules nectins through c-Src and Cdc42-GEF FRG. ACTA ACUST UNITED AC 2004; 166:393-405. [PMID: 15277544 PMCID: PMC2172271 DOI: 10.1083/jcb.200401093] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nectins, Ca2+-independent immunoglobulin-like cell–cell adhesion molecules, initiate cell–cell adhesion by their trans interactions and recruit cadherins to cooperatively form adherens junctions (AJs). In addition, the trans interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which increases the velocity of the formation of AJs. We examined here how nectins induce the activation of Cdc42 in MDCK epithelial cells and L fibroblasts. Nectins recruited and activated c-Src at the nectin-based cell–cell adhesion sites. FRG, a GDP/GTP exchange factor specific for Cdc42, was then recruited there, tyrosine phosphorylated by c-Src, and activated, causing an increase in the GTP-bound active form of Cdc42. Inhibition of the nectin-induced activation of c-Src suppressed the nectin-induced activation of FRG and Cdc42. Inhibition of the nectin-induced activation of FRG or depletion of FRG by RNA interference suppressed the nectin-induced activation of Cdc42. These results indicate that nectins induce the activation of Cdc42 through c-Src and FRG locally at the nectin-based cell–cell adhesion sites.
Collapse
Affiliation(s)
- Tatsuro Fukuhara
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hirose M, Kitano J, Nakajima Y, Moriyoshi K, Yanagi S, Yamamura H, Muto T, Jingami H, Nakanishi S. Phosphorylation and Recruitment of Syk by Immunoreceptor Tyrosine-based Activation Motif-based Phosphorylation of Tamalin. J Biol Chem 2004; 279:32308-15. [PMID: 15173175 DOI: 10.1074/jbc.m400547200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tamalin is a scaffold protein that forms a multiple protein assembly including metabotropic glutamate receptors (mGluRs) and several postsynaptic and protein-trafficking scaffold proteins in distinct mode of protein-protein association. In the present investigation, we report that tamalin possesses a typical immunoreceptor tyrosine-based activation motif (ITAM), which enables Syk kinase to be recruited and phosphorylated by the Src family kinases. Coimmunoprecipitation analysis of rat brain membrane fractions showed that tamalin is present in a multimolecular protein assembly comprising not only mGluR1 but also c-Src, Fyn, and a protein phosphatase, SHP-2. The protein association of both tamalin and c-Src, as determined by truncation analysis of mGluR1 in COS-7 cells, occurred at the carboxyl-terminal tail of mGluR1. Mutation analysis of tyrosine with phenylalanine in COS-7 cells revealed that paired tyrosines at the ITAM sequence of tamalin are phosphorylated preferentially by c-Src and Fyn, and this phosphorylation can recruit Syk kinase and enables it to be phosphorylated by the Src family kinases. The phosphorylated tyrosines at the ITAM sequence of tamalin were highly susceptible to dephosphorylation by protein-tyrosine phosphatases in COS-7 cells. Importantly, tamalin was endogenously phosphorylated and associated with Syk in retinoic acid-treated P19 embryonal carcinoma cells that undergo neuron-like differentiation. The present investigation demonstrates that tamalin is a novel signaling molecule that possesses a PDZ domain and a PDZ binding motif and mediates Syk signaling in an ITAM-based fashion.
Collapse
Affiliation(s)
- Masayuki Hirose
- Department of Biological Sciences, Faculty of Medicine, Graduate School of Biostudies, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li X, Yang Y, Hu Y, Dang D, Regezi J, Schmidt BL, Atakilit A, Chen B, Ellis D, Ramos DM. Alphavbeta6-Fyn signaling promotes oral cancer progression. J Biol Chem 2003; 278:41646-53. [PMID: 12917446 DOI: 10.1074/jbc.m306274200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that the integrin beta6 is neo-expressed in invasive oral squamous cell carcinoma (SCC) and is correlated with oral tumor progression. However, the mechanism by which the integrin beta6 promotes oral tumor progression is not well understood. The purpose of the present study was to determine whether integrin beta6 signaling activates Fyn and thus promotes oral squamous cell carcinoma progression. We analyzed the integrin beta6 signaling complex and investigated the function of these signaling molecules in oral SCC cells. We found that, upon ligation of the integrin beta6 with fibronectin, beta6 complexed with Fyn and activated it. The activation of Fyn recruited and activated focal adhesion kinase to this complex. This complex was necessary to activate Shc and to couple beta6 signaling to the Raf-ERK/MAPK pathway. This pathway transcriptionally activated the matrix metalloproteinase-3 gene and promoted oral SCC cell proliferation and experimental metastasis in vivo. These findings indicate that integrin beta6 signaling activates Fyn and thus promotes oral cancer progression.
Collapse
Affiliation(s)
- Xiaowu Li
- Department of Stomatology, University of California-San Francisco, San Francisco, CA 94143-0512, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lahdenperä J, Kilpeläinen P, Liu XL, Pikkarainen T, Reponen P, Ruotsalainen V, Tryggvason K. Clustering-induced tyrosine phosphorylation of nephrin by Src family kinases. Kidney Int 2003; 64:404-13. [PMID: 12846735 DOI: 10.1046/j.1523-1755.2003.00097.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nephrin is a recently discovered protein of the immunoglobulin (Ig) superfamily. In the kidney, it is located at the slit diaphragm, which forms the decisive size-selective filter of glomerular ultrafiltration barrier and locates between the interdigitating foot processes of podocytes. Nephrin is mutated in congenital nephrosis of the Finnish type (NPHS1) and has been demonstrated to be an essential component of the slit diaphragm. Based on its domain structure, nephrin is likely to be a cell-cell or cell-matrix adhesion protein that may have a signaling function. In this study, we hypothesized that the clustering of nephrin with antibodies on cell surface mimics the situation where the interaction between nephrin and its extracellular ligand(s) is altered. METHODS Nephrin was clustered on the surface of stably transfected HEK293 cells by a monoclonal antinephrin antibody and polyclonal secondary antibody. Clusters were visualized by immunofluorescence microscopy. Changes in protein phosphorylation were studied employing immunoprecipitations and Western blot analysis. A specific inhibitor and cotransfection experiments were used to investigate role of Src family kinases in nephrin phosphorylation. RESULTS Clustering of nephrin induced its own tyrosine phosphorylation. This phosphorylation was inhibited by PP2, an inhibitor of Src family kinases. Several members of Src family kinases were able to induce nephrin phosphorylation when cotransfected to HEK293 cells with nephrin. Moreover, the Src family kinase Fyn was consistently found to be coimmunoprecipitated with nephrin. Interestingly, clustering of nephrin induced also tyrosine phosphorylation of a 46 kD protein that was as well found to be coimmunoprecipitated with nephrin. CONCLUSION Nephrin is a signaling protein phosphorylated by Src family kinases.
Collapse
Affiliation(s)
- Juhani Lahdenperä
- Division of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Nakazawa T, Watabe AM, Tezuka T, Yoshida Y, Yokoyama K, Umemori H, Inoue A, Okabe S, Manabe T, Yamamoto T. p250GAP, a novel brain-enriched GTPase-activating protein for Rho family GTPases, is involved in the N-methyl-d-aspartate receptor signaling. Mol Biol Cell 2003; 14:2921-34. [PMID: 12857875 PMCID: PMC165687 DOI: 10.1091/mbc.e02-09-0623] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
N-methyl-d-aspartate (NMDA) receptors regulate structural plasticity by modulating actin organization within dendritic spines. Herein, we report identification and characterization of p250GAP, a novel GTPase-activating protein for Rho family proteins that interacts with the GluRepsilon2 (NR2B) subunit of NMDA receptors in vivo. The p250GAP mRNA was enriched in brain, with high expression in cortex, corpus striatum, hippocampus, and thalamus. Within neurons, p250GAP was highly concentrated in the postsynaptic density and colocalized with the GluRepsilon2 (NR2B) subunit of NMDA receptors and with postsynaptic density-95. p250GAP promoted GTP hydrolysis of Cdc42 and RhoA in vitro and in vivo. When overexpressed in neuroblastoma cells, p250GAP suppressed the activities of Rho family proteins, which resulted in alteration of neurite outgrowth. Finally, NMDA receptor stimulation led to dephosphorylation and redistribution of p250GAP in hippocampal slices. Together, p250GAP is likely to be involved in NMDA receptor activity-dependent actin reorganization in dendritic spines.
Collapse
Affiliation(s)
- Takanobu Nakazawa
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Taniguchi S, Liu H, Nakazawa T, Yokoyama K, Tezuka T, Yamamoto T. p250GAP, a neural RhoGAP protein, is associated with and phosphorylated by Fyn. Biochem Biophys Res Commun 2003; 306:151-5. [PMID: 12788081 DOI: 10.1016/s0006-291x(03)00923-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fyn is a member of the Src-family protein tyrosine kinases and plays important roles in both neurons and oligodendrocytes. Here we report association of Fyn with p250GAP, a RhoGAP protein that is expressed predominantly in brain. p250GAP interacts with Fyn both in vitro and in vivo. p250GAP is tyrosine phosphorylated by Fyn when co-expressed in HEK293T cells. This phosphorylation appears to enhance the interaction between p250GAP and Fyn. Furthermore, the level of tyrosine phosphorylation of p250GAP increases upon differentiation of the oligodendrocyte cell line CG4. Given that Fyn activity is up-regulated during oligodendrocyte maturation, the results argue that p250GAP is phosphorylated by Fyn in oligodendrocytes. Tyrosine phosphorylation of p250GAP by Fyn would regulate its RhoGAP activity, subcellular localization, or interactions with other proteins, leading to morphological and phenotypic changes of oligodendrocytes.
Collapse
Affiliation(s)
- Sachiko Taniguchi
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Koike K, Kogawa K, Takayama T, Yoshizaki N, Muramatsu H, Nakamura K, Sakamaki S, Niitsu Y. Enhanced expression of type IV collagen-binding protein (p29) in Fyn-transfected murine fibrosarcoma cells. Jpn J Cancer Res 2002; 93:1090-9. [PMID: 12417038 PMCID: PMC5926876 DOI: 10.1111/j.1349-7006.2002.tb01210.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We investigated the mechanism of the enhancement of metastatic potential induced by transfection of the fyn gene, a member of the src family. We employed two murine fyn cDNA-transfected clones, ML-SN1 and ML-SN2, which were previously established from an ML-01 low-metastatic clone of Meth A sarcoma of BALB / c mice and were proven to have higher metastatic ability than ML-01 and the mock-transfected clone ML-MT-neo (Takayama et al., 1993). Our present investigation revealed that the two transfectants showed higher metastatic ability and higher rates of adherence to type IV collagen than ML-MT-neo. However, no difference was found in in vitro or in vivo growth rates, attachment to laminin or endothelial cells or cell motility through a reconstituted basement membrane. Analysis of surface membrane proteins labeled with (125)I on SDS-PAGE showed that a 29 kD band specifically bound to type IV collagen-coupled beads was more intense in ML-SN2 than in ML-MT-neo. Genistein, a protein tyrosine kinase inhibitor, dramatically reduced protein tyrosine kinase (PTK) activity of ML-SN2 in a dose-dependent fashion, corresponding to the reduction of adhesiveness to type IV collagen. The expression of the type IV collagen-binding protein (p29) of ML-SN2 was also reduced significantly by genistein treatment. These results suggested that the fyn product in Meth A cells augments the expression of a type IV collagen-binding protein through elevation of the PTK activity of the membrane fraction and thus facilitates the metastasis of Meth A.
Collapse
Affiliation(s)
- Kazuhiko Koike
- The Fourth Department of Internal Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Rao N, Miyake S, Reddi AL, Douillard P, Ghosh AK, Dodge IL, Zhou P, Fernandes ND, Band H. Negative regulation of Lck by Cbl ubiquitin ligase. Proc Natl Acad Sci U S A 2002; 99:3794-9. [PMID: 11904433 PMCID: PMC122603 DOI: 10.1073/pnas.062055999] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Cbl-family ubiquitin ligases function as negative regulators of activated receptor tyrosine kinases by facilitating their ubiquitination and subsequent targeting to lysosomes. Cbl associates with the lymphoid-restricted nonreceptor tyrosine kinase Lck, but the functional relevance of this interaction remains unknown. Here, we demonstrate that T cell receptor and CD4 coligation on human T cells results in enhanced association between Cbl and Lck, together with Lck ubiquitination and degradation. A Cbl(-/-) T cell line showed a marked deficiency in Lck ubiquitination and increased levels of kinase-active Lck. Coexpression in 293T cells demonstrated that Lck kinase activity and Cbl ubiquitin ligase activity were essential for Lck ubiquitination and negative regulation of Lck-dependent serum response element-luciferase reporter activity. The Lck SH3 domain was pivotal for Cbl-Lck association and Cbl-mediated Lck degradation, with a smaller role for interactions mediated by the Cbl tyrosine kinase-binding domain. Finally, analysis of a ZAP-70-deficient T cell line revealed that Cbl inhibited Lck-dependent mitogen-activated protein kinase activation, and an intact Cbl RING finger domain was required for this functional effect. Our results demonstrate a direct, ubiquitination-dependent, negative regulatory role of Cbl for Lck in T cells, independent of Cbl-mediated regulation of ZAP-70.
Collapse
Affiliation(s)
- Navin Rao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shima T, Okumura N, Takao T, Satomi Y, Yagi T, Okada M, Nagai K. Interaction of the SH2 domain of Fyn with a cytoskeletal protein, beta-adducin. J Biol Chem 2001; 276:42233-40. [PMID: 11526103 DOI: 10.1074/jbc.m102699200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fyn is a Src family tyrosine kinase expressed abundantly in neurons and believed to have specific functions in the brain. To understand the function of Fyn tyrosine kinase, we attempted to identify Fyn Src homology 2 (SH2) domain-binding proteins from a Nonidet P-40-insoluble fraction of the mouse brain. beta-Adducin, an actin filament-associated cytoskeletal protein, was isolated by two-dimensional gel electrophoresis and identified by tandem mass spectrometry. beta-Adducin was tyrosine phosphorylated by coexpression with wild type but not with a kinase-negative form of Fyn in COS-7 cells. Cell staining analysis showed that coexpression of beta-adducin with Fyn induced translocation of beta-adducin from the cytoplasm to the periphery of the cells where it was colocalized with actin filaments and Fyn. These findings suggest that tyrosine-phosphorylated beta-adducin associates with the SH2 domain of Fyn and colocalizes under plasma membranes.
Collapse
Affiliation(s)
- T Shima
- Divisions of Protein Metabolism and Organic Chemistry, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Song Y, Cohler AN, Weinstein DC. Regulation of Laloo by the Xenopus C-terminal Src kinase (Xcsk) during early vertebrate development. Oncogene 2001; 20:5210-4. [PMID: 11526510 DOI: 10.1038/sj.onc.1204672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2001] [Revised: 05/04/2001] [Accepted: 05/30/2001] [Indexed: 11/09/2022]
Abstract
Mesoderm formation in the frog, Xenopus laevis, is dependent on the activity of one or more members of the Src family kinases; the molecular interactions underlying this requirement are not well understood. The C-terminal Src Kinase (Csk) is a potent inhibitor of Src activity, and is required for normal mammalian development; here we report the characterization of Xenopus Csk (Xcsk). Xcsk is widely expressed during early development, physically interacts with the Src kinase Laloo, and inhibits the generation of mesoderm by the Src kinases. Xcsk activity requires a functional kinase domain; furthermore, a kinase-inactive Xcsk mutant potently synergizes with Laloo during early vertebrate development, suggesting a fundamental role for the Src kinase-Csk regulatory circuit during mesoderm induction, in vivo.
Collapse
Affiliation(s)
- Y Song
- Department of Pharmacology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
34
|
Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, Yamamoto T. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem 2001; 276:693-9. [PMID: 11024032 DOI: 10.1074/jbc.m008085200] [Citation(s) in RCA: 392] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The N-methyl-d-aspartate (NMDA) receptors play critical roles in synaptic plasticity, neuronal development, and excitotoxicity. Tyrosine phosphorylation of NMDA receptors by Src-family tyrosine kinases such as Fyn is implicated in synaptic plasticity. To precisely address the roles of NMDA receptor tyrosine phosphorylation, we identified Fyn-mediated phosphorylation sites on the GluR epsilon 2 (NR2B) subunit of NMDA receptors. Seven out of 25 tyrosine residues in the C-terminal cytoplasmic region of GluR epsilon 2 were phosphorylated by Fyn in vitro. Of these 7 residues, Tyr-1252, Tyr-1336, and Tyr-1472 in GluR epsilon 2 were phosphorylated in human embryonic kidney fibroblasts when co-expressed with active Fyn, and Tyr-1472 was the major phosphorylation site in this system. We then generated rabbit polyclonal antibodies specific to Tyr-1472-phosphorylated GluR epsilon 2 and showed that Tyr-1472 of GluR epsilon 2 was indeed phosphorylated in murine brain using the antibodies. Importantly, Tyr-1472 phosphorylation was greatly reduced in fyn mutant mice. Moreover, Tyr-1472 phosphorylation became evident when hippocampal long term potentiation started to be observed, and its magnitude became larger in murine brain. Finally, Tyr-1472 phosphorylation was significantly enhanced after induction of long term potentiation in the hippocampal CA1 region. These data suggest that Tyr-1472 phosphorylation of GluR epsilon 2 is important for synaptic plasticity.
Collapse
Affiliation(s)
- T Nakazawa
- Department of Oncology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ishino M, Aoto H, Sasaski H, Suzuki R, Sasaki T. Phosphorylation of Hic-5 at tyrosine 60 by CAKbeta and Fyn. FEBS Lett 2000; 474:179-83. [PMID: 10838081 DOI: 10.1016/s0014-5793(00)01597-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hic-5 is a CAKbeta-binding protein localized at focal adhesions. Here we show that overexpression of CAKbeta or Fyn, but not FAK, enhanced the tyrosine phosphorylation of coexpressed Hic-5 in COS-7 cells. These phosphorylations were further augmented by stimulating cells with osmotic stress. The Y60F mutant of Hic-5 was not phosphorylated, and Hic-5 phosphorylated on tyrosine 60 was bound specifically to the SH2 domain of Csk. Coexpression experiments revealed that the phosphorylation of Hic-5 by CAKbeta required the kinase activation of CAKbeta and binding of Hic-5 by CAKbeta. Specific phosphorylation of Hic-5 by CAKbeta and Fyn may activate a signaling pathway mediated by Hic-5.
Collapse
Affiliation(s)
- M Ishino
- Department of Biochemistry, Cancer Research Institute, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-Ku, 060-8556, Sapporo, Japan
| | | | | | | | | |
Collapse
|
36
|
Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J Biol Chem 2000; 275:16167-73. [PMID: 10748123 DOI: 10.1074/jbc.m909302199] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutamate receptor (GluR) delta2 is selectively expressed in cerebellar Purkinje cells and plays a crucial role in cerebellum-dependent motor learning. Although GluRdelta2 belongs to an ionotropic GluR family, little is known about its pharmacological features and downstream signaling cascade. To study molecular mechanisms underlying GluRdelta2-dependent motor learning, we employed yeast two-hybrid screening to isolate GluRdelta2-interacting molecules and identified protein-tyrosine phosphatase PTPMEG. PTPMEG is a family member of band 4.1 domain-containing protein-tyrosine phosphatases and is expressed prominently in brain. Here, we showed by in situ hybridization analysis that the PTPMEG mRNA was enriched in mouse thalamus and Purkinje cells. We also showed that PTPMEG interacted with GluRdelta2 as well as with N-methyl-d-aspartate receptor GluRepsilon1 in cultured cells and in brain. PTPMEG bound to the putative C-terminal PDZ target sequence of GluRdelta2 and GluRepsilon1 via its PDZ domain. Examination of the effect of PTPMEG on tyrosine phosphorylation of GluRepsilon1 unexpectedly revealed that PTPMEG enhanced Fyn-mediated tyrosine phosphorylation of GluRepsilon1 in its PTPase activity-dependent manner. Thus, we conclude that PTPMEG associates directly with GluRdelta2 and GluRepsilon1. Moreover, our data suggest that PTPMEG plays a role in signaling downstream of the GluRs and/or in regulation of their activities through tyrosine dephosphorylation.
Collapse
Affiliation(s)
- K Hironaka
- Department of Oncology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
37
|
Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, Nakauchi H, Shibuya A. Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 1999; 11:615-23. [PMID: 10591186 DOI: 10.1016/s1074-7613(00)80136-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Whereas ligation of the DNAM-1 adhesion molecule triggers cytotoxicity mediated by normal NK and T cells, this function was defective in NK cell clones from leukocyte adhesion deficiency syndrome. However, genetic reconstitution of cell surface expression of LFA-1 restored the ability of DNAM-1 to initiate anti-DNAM-1 mAb-induced cytotoxicity, indicating a functional relationship between DNAM-1 and LFA-1. Further studies demonstrated that LFA-1 physically associates with DNAM-1 in NK cells and anti-CD3 mAb stimulated T cells, for which serine phosphorylation of DNAM-1 plays a critical role. In addition, cross-linking of LFA-1 induces tyrosine phosphorylation of DNAM-1, for which the Fyn protein tyrosine kinase is responsible. These results indicate that DNAM-1 is involved in the LFA-1-mediated intracellular signals.
Collapse
Affiliation(s)
- K Shibuya
- Department of Immunology, Institute of Basic Medical Sciences, Center for TARA, University of Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Tezuka T, Umemori H, Akiyama T, Nakanishi S, Yamamoto T. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci U S A 1999; 96:435-40. [PMID: 9892651 PMCID: PMC15154 DOI: 10.1073/pnas.96.2.435] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fyn, a member of the Src-family protein-tyrosine kinase (PTK), is implicated in learning and memory that involves N-methyl-D-aspartate (NMDA) receptor function. In this study, we examined how Fyn participates in synaptic plasticity by analyzing the physical and functional interaction between Fyn and NMDA receptors. Results showed that tyrosine phosphorylation of NR2A, one of the NMDA receptor subunits, was reduced in fyn-mutant mice. NR2A was tyrosine-phosphorylated in 293T cells when coexpressed with Fyn. Therefore, NR2A would be a substrate for Fyn in vivo. Results also showed that PSD-95, which directly binds to and coclusters with NMDA receptors, promotes Fyn-mediated tyrosine phosphorylation of NR2A. Different regions of PSD-95 associated with NR2A and Fyn, respectively, and so PSD-95 could mediate complex formation of Fyn with NR2A. PSD-95 also associated with other Src-family PTKs, Src, Yes, and Lyn. These results suggest that PSD-95 is critical for regulation of NMDA receptor activity by Fyn and other Src-family PTKs, serving as a molecular scaffold for anchoring these PTKs to NR2A.
Collapse
Affiliation(s)
- T Tezuka
- Department of Oncology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
39
|
Analysis of the T cell activation signaling pathway during ELF magnetic field exposure, p56lck and [Ca2+]i-measurements. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(98)00063-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Abstract
Src family protein tyrosine kinases are activated following engagement of many different classes of cellular receptors and participate in signaling pathways that control a diverse spectrum of receptor-induced biological activities. While several of these kinases have evolved to play distinct roles in specific receptor pathways, there is considerable redundancy in the functions of these kinases, both with respect to the receptor pathways that activate these kinases and the downstream effectors that mediate their biological activities. This chapter reviews the evidence implicating Src family kinases in specific receptor pathways and describes the mechanisms leading to their activation, the targets that interact with these kinases, and the biological events that they regulate.
Collapse
Affiliation(s)
- S M Thomas
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
41
|
Kasahara K, Watanabe Y, Yamamoto T, Sanai Y. Association of Src family tyrosine kinase Lyn with ganglioside GD3 in rat brain. Possible regulation of Lyn by glycosphingolipid in caveolae-like domains. J Biol Chem 1997; 272:29947-53. [PMID: 9368072 DOI: 10.1074/jbc.272.47.29947] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Association of gangliosides with specific proteins in the central nervous system was examined by co-immunoprecipitation with anti-ganglioside antibody. Protein kinase activity was detected in precipitates with monoclonal antibody to ganglioside GD3 (R24) from membranal fraction of rat brain. Using in vitro kinase assay, several phosphorylated proteins of 40, 53, 56, and 80 kDa were isolated by gel electrophoresis. Of these proteins, the proteins of 53 and 56 kDa (p53/56) were identified as two isoforms of Src family tyrosine kinase Lyn, based on co-migration during gel electrophoresis, comparative peptide mapping, and sequential immunoprecipitation with anti-Lyn antibody. The identification was confirmed using a cDNA expression system in Chinese hamster ovary (CHO) cells, which express solely ganglioside GM3, the enzymatic substrate of GD3 synthase. In co-transfection with GD3 synthase and Lyn expression plasmids, R24 immunoprecipitated Lyn and anti-Lyn antibody immunoprecipitated GD3. R24 treatment of rat primary cerebellar cultures induced Lyn activation and rapid tyrosine phosphorylation of several substrates including mitogen-activated protein kinases. Furthermore, sucrose density gradient analysis showed that Lyn of cerebellum and CHO transfectants were detected in a low density light-scattering band, i.e. the caveolae membrane fraction. R24 immunoprecipitated caveolin from Triton X-100 extract of CHO transfectants. These observations suggest that GD3 may regulate Lyn in a caveolae-like domain on brain cell membranes.
Collapse
Affiliation(s)
- K Kasahara
- Department of Biochemical Cell Research, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113, Japan.
| | | | | | | |
Collapse
|
42
|
Uddin S, Sher DA, Alsayed Y, Pons S, Colamonici OR, Fish EN, White MF, Platanias LC. Interaction of p59fyn with interferon-activated Jak kinases. Biochem Biophys Res Commun 1997; 235:83-88. [PMID: 9196040 DOI: 10.1006/bbrc.1997.6741] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During IFN alpha stimulation, p59(fyn) associates with the Type I IFNR-associated Tyk-2 kinase in several human hematopoietic cell lines in vivo. This interaction is direct, and is mediated by the SH2 domain in p59(fyn), as shown by binding studies using glutathione-S-transferase fusion proteins and far western blots. Furthermore, in response to IFN alpha-treatment of cells, the SH2 domain of Fyn interacts with the Tyk-2-associated c-cbl proto-oncogene product. In a similar manner, during IFN gamma stimulation, p59(fyn) associates via its SH2 domain with the activated form of the IFN gamma-dependent Jak-2 kinase. These data suggest that p59(fyn) is a common element in IFN alpha and IFN gamma signaling, and is selectively engaged by the Type I or II IFN receptors via specific interactions with distinct Jak kinases.
Collapse
Affiliation(s)
- S Uddin
- Department of Medicine, University of Illinois at Chicago and West Side Veterans Affairs Hospital, 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yamanashi Y, Fukuda T, Nishizumi H, Inazu T, Higashi K, Kitamura D, Ishida T, Yamamura H, Watanabe T, Yamamoto T. Role of tyrosine phosphorylation of HS1 in B cell antigen receptor-mediated apoptosis. J Exp Med 1997; 185:1387-92. [PMID: 9104825 PMCID: PMC2196252 DOI: 10.1084/jem.185.7.1387] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 75-kD HS1 protein is highly tyrosine-phosphorylated during B cell antigen receptor (BCR)-mediated signaling. Owing to low expression of HS1, WEHI-231-derived M1 cells, unlike the parental cells, are insensitive to BCR-mediated apoptosis. Here, we show that BCR-associated tyrosine kinases Lyn and Syk synergistically phosphorylate HS1, and that Tyr-378 and Tyr-397 of HS1 are the critical residues for its BCR-induced phosphorylation. In addition, unlike wild-type HS1, a mutant HS1 carrying the mutations Phe-378 and Phe-397 was unable to render M1 cells sensitive to apoptosis. Wild-type HS1, but not the mutant, localized to the nucleus under the synergy of Lyn and Syk. Thus, tyrosine phosphorylation of HS1 is required for BCR-induced apoptosis and nuclear translocation of HS1 may be a prerequisite for B cell apoptosis.
Collapse
Affiliation(s)
- Y Yamanashi
- Department of Oncology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Iwabuchi K, Hatakeyama S, Takahashi A, Ato M, Okada M, Kajino Y, Kajino K, Ogasawara K, Takami K, Nakagawa H, Onoé K. Csk overexpression reduces several monokines and nitric oxide productions but enhances prostaglandin E2 production in response to lipopolysaccharide in the macrophage cell line J774A.1. Eur J Immunol 1997; 27:742-9. [PMID: 9079817 DOI: 10.1002/eji.1830270324] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The catalytic activity of src-family protein tyrosine kinases (src-PTK) is suppressed when a C-terminal tyrosine is phosphorylated by an intracellular PTK, C-terminal Src kinase (Csk). In the present report, to study the regulatory functions of the Csk in cells of monocyte/macrophage lineage, we transfected a eukaryotic expression vector containing rat csk cDNA in a macrophage cell line, J774A.1, and examined alterations of the response to lipopolysaccharide (LPS) in the transfectants which overexpressed Csk. Csk overexpression resulted primarily in a down-regulation of Fgr activity, an src-PTK expressed in J774A.1, and hyperphosphorylation of several cellular proteins of 35, 57, 66, 97 and 120-130 kDa. Furthermore, in these Csk transfectants, production of interleukin (IL)-1alpha, IL-6, tumor necrosis factor-alpha, and nitric oxide (NO) following LPS stimulation were reduced compared with those in parental J774A.1 or J774A.1 transfected with the vector alone. The extent of reduction paralleled the amounts of Csk proteins expressed in the Csk-transfected J774A.1. The reduced NO production in these cells was associated with low levels of mRNA of inducible NO synthetase. On the other hand, an enhancement of prostaglandin E2 production was observed in the Csk-transfected J774A.1 cells upon stimulation with LPS, which appeared to result from the high level of prostaglandin-H synthetase in the transfectants. The present findings indicate that overexpression of Csk has differential effects on the regulation of production of chemical mediators and monokines, probably via modulation of signal transduction downstream of LPS-mediated signals.
Collapse
Affiliation(s)
- K Iwabuchi
- Institute of Immunological Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Src is the best understood member of a family of 9 tyrosine kinases that regulates cellular responses to extracellular stimuli. Activated mutants of Src are oncogenic. Using Src as an example, and referring to other Src family members where appropriate, this review describes the structure of Src, the functions of the individual domains, the regulation of Src kinase activity in the cell, the selection of substrates, and the biological functions of Src. The review concentrates on developments in the last 6-7 years, and cites data resulting from the isolation and characterization of Src mutants, crystallographic studies of the structures of SH2, SH3 and tyrosine kinase domains, biochemical studies of Src kinase activity and binding properties, and the biology of transgenic and knockout mouse strains.
Collapse
Affiliation(s)
- M T Brown
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | |
Collapse
|
46
|
Sun XJ, Pons S, Asano T, Myers MG, Glasheen E, White MF. The Fyn tyrosine kinase binds Irs-1 and forms a distinct signaling complex during insulin stimulation. J Biol Chem 1996; 271:10583-7. [PMID: 8631859 DOI: 10.1074/jbc.271.18.10583] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Irs-proteins link the receptors for insulin/IGF-1, growth hormones, and several interleukins and interferons to signaling proteins that contain Src homology-2 (SH2). To identify new Irs-1-binding proteins, we screened a mouse embryo expression library with recombinant [32P]Irs-1, which revealed a specific association between p59fyn and Irs-1. The SH2 domain in p59fyn bound to phosphorylated Tyr895 and Tyr1172, which are located in YXX(L/I) motifs. Mutation of p59fyn at the COOH-terminal tyrosine phosphorylation site (Tyr531) enhanced its binding to Irs-1 during insulin stimulation. Binding experiments with various SH2 protein revealed that Grb-2 was largely excluded from Irs-1 complexes containing p59fyn, whereas Grb-2 and p85 occurred in the same Irs-1 complex. By comparison with the insulin receptor, p59fyn kinase phosphorylated a unique cohort of tyrosine residues in Irs-1. These results outline a role for p59fyn or other related Src-kinases during insulin and cytokine signaling.
Collapse
Affiliation(s)
- X J Sun
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
47
|
Catipović B, Schneck JP, Brummet ME, Marsh DG, Rafnar T. Csk is constitutively associated with a 60-kDa tyrosine-phosphorylated protein in human T cells. J Biol Chem 1996; 271:9698-703. [PMID: 8621646 DOI: 10.1074/jbc.271.16.9698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The protein-tyrosine kinase Csk is one of the main down-regulators of the Src family of kinases. Csk may be involved in the down-regulation of T cell receptor (TCR) signaling by C-terminal tyrosine phosphorylation of Lck and Fyn; however, it is not known how Csk activity is regulated or how it targets these Src family members. We used Jurkat T cells and normal human T cells to examine proteins that bind to the SH2 domain of Csk. In both Jurkat and normal T cells, the Src homology 2 (SH2) domain of Csk bound constitutively to a tyrosine-phosphorylated protein of 60 kDa (p60). The 60-kDa protein was detected in Csk immunoprecipitates from both unstimulated and CD3-stimulated cells. In addition to p60, a protein of 190 kDa coprecipitated with Csk, and both proteins were phosphorylated on tyrosine residues by the immunocomplex. Small amounts of GTPase-activating protein (GAP) were detected in anti-Csk immunoprecipitates, suggesting that p60 may be a GAP-associated protein. Our data demonstrate that the SH2 domain of Csk specifically associates with at least two tyrosine-phosphorylated proteins in normal human T cells, that this association is independent of TCR/CD3 activation, and that Csk may be a part of a multiprotein complex containing GAP.
Collapse
Affiliation(s)
- B Catipović
- Division of Clinical Immunology, Johns Hopkins Asthma and Allergy Center, The John Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
48
|
Orchansky PL, Ng DH, Johnson P, Teh HS. Increase in the specific activity of p50csk in proliferating T cells correlates with decreased specific activity of p56lck and p59fyn and reduced phosphorylation of CD3 subunits. Mol Immunol 1996; 33:531-40. [PMID: 8700169 DOI: 10.1016/0161-5890(96)00006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Depending on their prior antigen recognition history, mature T cells respond with different functional outcomes to T cell receptor (TCR) stimulation. These functional outcomes include proliferation, anergy and cell death. The biochemical basis underlying differential responses by mature T cells at different stages of their developmental pathway to TCR stimulation remains to be determined. We have previously shown that proliferating but not naive T cells were susceptible to apoptosis after TCR stimulation and that the tyrosine phosphorylation of TCR zeta, CD3 gamma, and CD3 epsilon in proliferating T cells was decreased after TCR stimulation. In this study. We determined whether differences in phosphorylation between naive and proliferating T cells were due to altered regulation of p56lck (Lck) or p59fyn (Fyn) by their positive or negative regulators, CD45 or p5Ocsk (Csk), respectively. We found that Lck was expressed at the same level and had the same phosphotyrosine content in naive and proliferating T cells. However, its autophosphorylation activity was lower in proliferating cells, corresponding to a 2-fold decrease in its specific kinase activity. Similarly, the specific kinase activity of Fyn was also decreased by about 2-fold in proliferating T cells. In contrast, although Csk was expressed at the same level in both cell types its specific kinase activity was increased by 6-fold in proliferating T cells. The tyrosine phosphatase CD45, a positive regulator of src-family kinases, was overexpressed by 3- to 6-fold in proliferating cells. However, the specific activity of CD45 in naive and proliferating T cells was the same. Therefore, although the protein expression level of CD45 was increased in proliferating T cells it only partially compensated for the hyperactivity of Csk resulting in a 2-fold reduction in the specific activity of Lck and Fyn in proliferating T cells.
Collapse
Affiliation(s)
- P L Orchansky
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
49
|
Bougeret C, Delaunay T, Romero F, Jullien P, Sabe H, Hanafusa H, Benarous R, Fischer S. Detection of a physical and functional interaction between Csk and Lck which involves the SH2 domain of Csk and is mediated by autophosphorylation of Lck on tyrosine 394. J Biol Chem 1996; 271:7465-72. [PMID: 8631775 DOI: 10.1074/jbc.271.13.7465] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The COOH-terminal Src kinase (Csk) is responsible for the phosphorylation of the conserved, negative regulatory, carboxyl-terminal tyrosine of most of the Src family protein tyrosine kinases. Up to now, no stable binding of Csk to Src kinases has been detected. We therefore decided to analyze this interaction using two systems which allow detection of transient interaction. We produced and purified recombinant proteins in the glutathione S-transferase prokaryotic expression system. First, using real-time biospecific interaction analysis (BIAcore(TM)), we detected in vitro a specific interaction between Csk and one of its substrates Lck, a lymphocyte-specific member of the Src family. This interaction requires the autophosphorylation of Lck on tyrosine 394 (the phosphorylation of which is correlated with an increase of the kinase activity) and involves a functional Csk SH2 domain. Second, using the yeast two-hybrid system, we confirmed in vivo the physical interaction between Csk and Lck. Furthermore, in vitro we showed that autophosphorylation of Lck on tyrosine 394 enhances the phosphorylation of Lck by Csk on the negative regulatory site, tyrosine 505, suggesting that activated Lck serves preferentially as substrate for Csk. These findings might explain the mechanism(s) by which Csk interacts with most of Src kinases to down-regulate their kinase activity.
Collapse
Affiliation(s)
- C Bougeret
- INSERM, Institut Cochin de Génétique Moleculaire/Université Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kuramochi S, Matsuda S, Matsuda Y, Saitoh T, Ohsugi M, Yamamoto T. Molecular cloning and characterization of Byp, a murine receptor-type tyrosine phosphatase similar to human DEP-1. FEBS Lett 1996; 378:7-14. [PMID: 8549806 DOI: 10.1016/0014-5793(95)01415-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Novel murine cDNAs encoding a receptor-like protein tyrosine phosphatase, termed Byp (HPTP beta-like tyrosine phosphatase) were cloned. The putative Byp protein consists of 1238 amino acids, which possesses a single catalytic domain in the cytoplasmic region. The extracellular region comprises eight repeats of a fibronectin type III module and contains multiple N-glycosylation sites. The byp mRNA was 7.7-kb long and expressed in every tissue examined, its level being high in the brain and kidney. Transfection of the byp cDNA expression plasmid into COS7 cells resulted in the expression of a 220-kDa tyrosine phosphorylated protein. Furthermore, co-expression of Byp and the Src family kinase Fyn increased the level of tyrosine phosphorylation of Byp, suggesting that Byp was tyrosine-phosphorylated by Fyn. Finally, the byp gene was located to mouse chromosome 2E1-2 and rat chromosome 3q32-33.
Collapse
Affiliation(s)
- S Kuramochi
- Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|