1
|
Gautel M, Djinović-Carugo K. The sarcomeric cytoskeleton: from molecules to motion. ACTA ACUST UNITED AC 2016; 219:135-45. [PMID: 26792323 DOI: 10.1242/jeb.124941] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Highly ordered organisation of striated muscle is the prerequisite for the fast and unidirectional development of force and motion during heart and skeletal muscle contraction. A group of proteins, summarised as the sarcomeric cytoskeleton, is essential for the ordered assembly of actin and myosin filaments into sarcomeres, by combining architectural, mechanical and signalling functions. This review discusses recent cell biological, biophysical and structural insight into the regulated assembly of sarcomeric cytoskeleton proteins and their roles in dissipating mechanical forces in order to maintain sarcomere integrity during passive extension and active contraction. α-Actinin crosslinks in the Z-disk show a pivot-and-rod structure that anchors both titin and actin filaments. In contrast, the myosin crosslinks formed by myomesin in the M-band are of a ball-and-spring type and may be crucial in providing stable yet elastic connections during active contractions, especially eccentric exercise.
Collapse
Affiliation(s)
- Mathias Gautel
- King's College London BHF Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics, and Cardiovascular Division, New Hunt's House, London SE1 1UL, UK
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna A-1030, Austria Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, Ljubljana 1000, Slovenia
| |
Collapse
|
2
|
Gorbatyuk V, Nguyen K, Podolnikova NP, Deshmukh L, Lin X, Ugarova TP, Vinogradova O. Skelemin association with αIIbβ3 integrin: a structural model. Biochemistry 2014; 53:6766-75. [PMID: 25224262 PMCID: PMC4222533 DOI: 10.1021/bi500680s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Over the last two decades, our knowledge
concerning intracellular events that regulate integrin’s affinity
to their soluble ligands has significantly improved. However, the
mechanism of adhesion-induced integrin clustering and development
of focal complexes, which could further mature to form focal adhesions,
still remains under-investigated. Here we present a structural model
of tandem IgC2 domains of skelemin in complex with the cytoplasmic
tails of integrin αIIbβ3. The model
of tertiary assembly is generated based upon NMR data and illuminates
a potential link between the essential cell adhesion receptors and
myosin filaments. This connection may serve as a basis for generating
the mechanical forces necessary for cell migration and remodeling.
Collapse
Affiliation(s)
- Vitaliy Gorbatyuk
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs , Storrs, Connecticut 06269, United States
| | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
Skelemin, a myosin-associated protein in skeletal muscle, has been demonstrated to interact with integrin α(IIb)β(3) in nonmuscle cells during initial stages of cell spreading. The significance of this interaction and the role of skelemin in integrin signaling and cytoskeletal reorganization were investigated in this study. We established a series of Chinese hamster ovary cell lines expressing wild-type or mutant α(IIb)β(3) receptors in which skelemin binding residues at the membrane proximal region of integrin tails were mutated to alanine. Most cells displayed unimpaired adhesive capacity and spreading on immobilized fibrinogen at the early stages of cell spreading. In addition, they formed normal focal adhesions and stress fibers with no indication of impaired cell spreading. R995A/R997A/L1000A, H722A, and K716A exhibited the greatest cell spreading, which was associated with enhanced p-Src activation but was independent of FAK activation. Transfection of the cells with GFP-skelemin, containing only the C2 integrin binding domain, caused wild-type cells to round up, but had no effect on R995A/R997A/L1000A, H722A, and K716A cell spreading. Furthermore, the protrusions of the leading edge of K716A cells showed strong colocalization of talin with α(IIb)β(3) which was associated with a loss in skelemin binding. Thus, we propose that during early stages of cell spreading, skelemin exerts contractile force on cell spreading and modulates the attachment of cytoskeletal proteins and Src to integrin clusters.
Collapse
Affiliation(s)
- Xinlei Li
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada 7E3 5E5
| | | | | |
Collapse
|
4
|
Wang X, Liu X, Wang S, Luan K. Myofibrillogenesis regulator 1 induces hypertrophy by promoting sarcomere organization in neonatal rat cardiomyocytes. Hypertens Res 2012; 35:597-603. [PMID: 22418241 PMCID: PMC3368235 DOI: 10.1038/hr.2011.228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human myofibrillogenesis regulator 1, a novel 17-kDa protein, is closely involved in cardiac hypertrophy. We studied the molecular mechanism that links MR-1 to hypertrophic response. Hypertrophic hallmarks such as cell size and [3H]-leucine incorporation were significantly increased when MR-1 was transfected into cardiomyocytes for 48 h. However, sarcomere organization was promoted when MR-1 was transfected for 8 h. The finding that cardiac hypertrophy was induced long after increase of sarcomere organization indicates that the promoted sarcomere organization may be one of the crucial factors causing hypertrophy. Furthermore, when MR-1 was transfected into cardiomyocytes, the nuclear localization of myomesin-1 was shifted to the cytoplasm. Transfection with small ubiquitin-like modifier-1 (SUMO-1) mimicked the effect of MR-1 inducing translocation of myomesin-1. However, transfection with SUMO-1 in MR-1-silenced cardiomyocytes failed to induce translocation and sarcomere organization, even though SUMO-1 expression was at the same level. Overexpression of MR-1 may induce cardiomyocyte hypertrophy via myomesin-1-mediated sarcomere organization.
Collapse
Affiliation(s)
- Xiaoreng Wang
- Department of Pathophysiology, PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
5
|
Abstract
The muscle M-band protein myomesin comprises a 36-nm long filament made of repetitive immunoglobulin–helix modules that can stretch to 2.5-fold this length, demonstrating substantial molecular elasticity. Skeletal and cardiac muscles are remarkable biological machines that support and move our bodies and power the rhythmic work of our lungs and hearts. As well as producing active contractile force, muscles are also passively elastic, which is essential to their performance. The origins of both active contractile and passive elastic forces can be traced to the individual proteins that make up the highly ordered structure of muscle. In this Primer, we describe the organization of sarcomeres—the structural units that produce contraction—and the nature of the proteins that make muscle elastic. In particular, we focus on an elastic protein called myomesin, whose novel modular architecture helps explain elasticity.
Collapse
Affiliation(s)
- Larissa Tskhovrebova
- Astbury Centre for Structural Molecular Biology and Institute for Molecular and Cellular Biology, Leeds University, Leeds, United Kingdom
| | - John Trinick
- Astbury Centre for Structural Molecular Biology and Institute for Molecular and Cellular Biology, Leeds University, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
|
7
|
Will RD, Eden M, Just S, Hansen A, Eder A, Frank D, Kuhn C, Seeger TS, Oehl U, Wiemann S, Korn B, Koegl M, Rottbauer W, Eschenhagen T, Katus HA, Frey N. Myomasp/LRRC39, a heart- and muscle-specific protein, is a novel component of the sarcomeric M-band and is involved in stretch sensing. Circ Res 2010; 107:1253-64. [PMID: 20847312 DOI: 10.1161/circresaha.110.222372] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RATIONALE AND OBJECTIVE The M-band represents a transverse structure in the center of the sarcomeric A-band and provides an anchor for the myosin-containing thick filaments. In contrast to other sarcomeric structures, eg, the Z-disc, only few M-band-specific proteins have been identified to date, and its exact molecular composition remains unclear. METHODS AND RESULTS Using a bioinformatic approach to identify novel heart- and muscle-specific genes, we found a leucine rich protein, myomasp (Myosin-interacting, M-band-associated stress-responsive protein)/LRRC39. RT-PCR and Northern and Western blot analyses confirmed a cardiac-enriched expression pattern, and immunolocalization of myomasp revealed a strong and specific signal at the sarcomeric M-band. Yeast 2-hybrid screens, as well as coimmunoprecipitation experiments, identified the C terminus of myosin heavy chain (MYH)7 as an interaction partner for myomasp. Knockdown of myomasp in neonatal rat ventricular myocytes (NRVCMs) led to a significant upregulation of the stretch-sensitive genes GDF-15 and BNP. Conversely, the expression of MYH7 and the M-band proteins myomesin-1 and -2 was found to be markedly reduced. Mechanistically, knockdown of myomasp in NRVCM led to a dose-dependent suppression of serum response factor-dependent gene expression, consistent with earlier observations linking the M-band to serum response factor-mediated signaling. Finally, downregulation of myomasp/LRRC39 in spontaneously beating engineered heart tissue constructs resulted in significantly lower force generation and reduced fractional shortening. Likewise, knockdown of the myomasp/LRRC39 ortholog in zebrafish resulted in severely impaired heart function and cardiomyopathy in vivo. CONCLUSIONS These findings reveal myomasp as a previously unrecognized component of an M-band-associated signaling pathway that regulates cardiomyocyte gene expression in response to biomechanical stress.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Blotting, Northern
- Blotting, Western
- Cardiac Myosins/metabolism
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- Cardiomyopathies/physiopathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Cloning, Molecular
- Connectin
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling/methods
- Gene Expression Regulation
- Growth Differentiation Factor 15/metabolism
- Humans
- Immunohistochemistry
- Immunoprecipitation
- Leucine-Rich Repeat Proteins
- Male
- Mechanotransduction, Cellular
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscle, Skeletal/metabolism
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myosin Heavy Chains/metabolism
- Natriuretic Peptide, Brain/metabolism
- Oligonucleotide Array Sequence Analysis
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping
- Proteins/genetics
- Proteins/metabolism
- RNA Interference
- Rats
- Rats, Sprague-Dawley
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcomeres/metabolism
- Serum Response Factor/metabolism
- Stress, Mechanical
- Transfection
- Two-Hybrid System Techniques
- Zebrafish
Collapse
Affiliation(s)
- Rainer D Will
- Department of Internal Medicine III, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mouse chromosome 17 candidate modifier genes for thrombosis. Mamm Genome 2010; 21:337-49. [PMID: 20700597 PMCID: PMC2923722 DOI: 10.1007/s00335-010-9274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 06/14/2010] [Indexed: 12/14/2022]
Abstract
Two overlapping quantitative trait loci (QTLs) for clot stability, Hmtb8 and Hmtb9, were identified on mouse chromosome 17 in an F2 intercross derived from C57BL/6J (B6) and B6-Chr17(A/J) (B6-Chr17) mouse strains. The intervals were in synteny with a QTL for thrombotic susceptibility on chromosome 18 in a human study, and there were 23 homologs between mouse and human. The objective of this study was to determine whether any of these genes in the syntenic region are likely candidates as modifiers for clot stability. Seven genes, Twsg1, Zfp161, Dlgap1, Ralbp1, Myom1, Rab31, and Emilin2, of the 23 genes with single nucleotide polymorphisms (SNPs) in the mRNA-UTR had differential expression in B6 and A/J mice. Dlgap1, Ralbp1, Myom1, and Emilin2 also had nonsynonymous SNPs. In addition, two other genes had nonsynonymous SNPs, Lama1 and Ndc80. Of these nine candidate genes, Emilin2 was selected for further analysis since other EMILIN (Elastin Microfibril Interface Located Protein) proteins have known functions in vascular structure and coagulation. Differences were found between B6 and A/J mice in vessel wall architecture and EMILIN2 protein in plasma, carotid vessel wall, and thrombi formed after ferric chloride injury. In B6-Chr17(A/J) mice both clot stability and Emilin2 mRNA expression were higher compared to those in B6 and A/J mice, suggesting the exposure of epistatic interactions. Although other homologous genes in the QTL region cannot be ruled out as causative genes, further investigation of Emilin2 as a candidate gene for thrombosis susceptibility is warranted.
Collapse
|
9
|
Reddy KB, Fox JEB, Price MG, Kulkarni S, Gupta S, Das B, Smith DM. Nuclear localization of Myomesin-1: possible functions. J Muscle Res Cell Motil 2008; 29:1-8. [PMID: 18521710 DOI: 10.1007/s10974-008-9137-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/06/2008] [Indexed: 01/07/2023]
Abstract
Myomesin-I (also known as Skelemin) is a approximately 185 kDa protein, which is highly expressed in striated muscle. It contains the prototypic class-I (type-III fibronectin) and class-II (C2-immunoglobulin) motifs. Previous studies have shown the presence of Myomesin-I at the M-line of the sarcomere, where it is thought to interact with thick filament constituents. As reported previously, Myomesin-I was localized to the M-line in the adult cardiac myocytes (adult-myocytes). However, we found that Myomesin-I was also present exclusively in the nucleus of myocytes isolated from new born pups (neonatal-myocytes). In addition, the ectopically expressed Myomesin-I was primarily targeted to the nucleus, similar to the neonatal myocytes. Further investigations revealed that the nuclear-targeting signals were present within the N-terminal 256 residues. A strong consensus sequence for sumoylation is present within the N-terminal 256 residues and is implicated in the shuttling of Myomesin-I between nucleus and cytoplasm. Gene array analysis showed that the presence of Myomesin-I in the nucleus led to the differential expression of more than 42 genes. These studies show a novel and previously unknown localization and function for Myomesin-I.
Collapse
Affiliation(s)
- Kumar B Reddy
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue #NB5, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Carlsson L, Yu JG, Thornell LE. New aspects of obscurin in human striated muscles. Histochem Cell Biol 2008; 130:91-103. [PMID: 18350308 DOI: 10.1007/s00418-008-0413-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2008] [Indexed: 11/28/2022]
Abstract
Obscurin is a giant protein (700-800 kDa) present in both skeletal muscles and myocardium. According to animal studies, obscurin interacts with myofibrillar Z-discs during early muscle development, but is translocalised to be predominantly associated with the M-bands in mature muscles. The proposed function for obscurin is in the assembly and organisation of myosin into regular A-bands during formation of new sarcomeres. In the present study, the precise localisation of obscurin in developing and mature normal human striated muscle is presented for the first time. We show that obscurin surrounded myofibrils at the M-band level in both developing and mature human skeletal and heart muscles, which is partly at variance with that observed in animals. At maturity, obscurin also formed links between the peripheral myofibrils and the sarcolemma, and was a distinct component of the neuromuscular junctions. Obscurin should therefore be regarded as an additional component of the extrasarcomeric cytoskeleton. To test this function of obscurin, biopsies from subjects with exercise-induced delayed onset muscle soreness (DOMS) were examined. In these subjects, myofibrillar alterations related to sarcomerogenesis are observed. Our immunohistochemical analysis revealed that obscurin was never lacking in myofibrillar alterations, but was either preserved at the M-band level or diffusely spread over the sarcomeres. As myosin was absent in such areas but later reincorporated in the newly formed sarcomeres, our results support that obscurin also might play an important role in the formation and maintenance of A-bands.
Collapse
Affiliation(s)
- Lena Carlsson
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden.
| | | | | |
Collapse
|
11
|
Deshmukh L, Tyukhtenko S, Liu J, Fox JEB, Qin J, Vinogradova O. Structural Insight into the Interaction between Platelet Integrin αIIbβ3 and Cytoskeletal Protein Skelemin. J Biol Chem 2007; 282:32349-56. [PMID: 17804417 DOI: 10.1074/jbc.m704666200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skelemin is a large cytoskeletal protein critical for cell morphology. Previous studies have suggested that its two-tandem immunoglobulin C2-like repeats (SkIgC4 and SkIgC5) are involved in binding to integrin beta3 cytoplasmic tail (CT), providing a mechanism for skelemin to regulate integrin-mediated signaling and cell spreading. Using NMR spectroscopy, we have studied the molecular details of the skelemin IgC45 interaction with the cytoplasmic face of integrin alphaIIbbeta3. Here, we show that skelemin IgC45 domains form a complex not only with integrin beta3 CT but also, surprisingly, with the integrin alphaIIb CT. Chemical shift mapping experiments demonstrate that both membrane-proximal regions of alphaIIb and beta3 CTs are involved in binding to skelemin. NMR structural determinations, combined with homology modeling, revealed that SkIgC4 and SkIgC5 both exhibited a conserved Ig-fold and both repeats were required for effective binding to and attenuation of alphaIIbbeta3 cytoplasmic complex. These data provide the first molecular insight into how skelemin may interact with integrins and regulate integrin-mediated signaling and cell spreading.
Collapse
Affiliation(s)
- Lalit Deshmukh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, Connecticut 06269, USA
| | | | | | | | | | | |
Collapse
|
12
|
Amundson C, Tarté R. Protein Interactions in Muscle Foods. FOOD SCIENCE AND TECHNOLOGY 2005. [DOI: 10.1201/9781420028133.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Maas H, Lehti TM, Tiihonen V, Komulainen J, Huijing PA. Controlled intermittent shortening contractions of a muscle–tendon complex: muscle fibre damage and effects on force transmission from a single head of rat EDL. J Muscle Res Cell Motil 2005; 26:259-73. [PMID: 16322914 DOI: 10.1007/s10974-005-9043-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 10/12/2005] [Indexed: 12/23/2022]
Abstract
This study was performed to examine effects of prolonged (3 h) intermittent shortening (amplitude 2 mm) contractions (muscles were excited maximally) of head III of rat extensor digitorum longus muscle (EDL III) on indices of muscle damage and on force transmission within the intact anterior crural compartment. Three hours after the EDL III exercise, muscle fibre damage, as assessed by immunohistochemical staining of structural proteins (i.e. dystrophin, desmin, titin, laminin-2), was found in EDL, tibialis anterior (TA) and extensor hallucis longus (EHL) muscles. The damaged muscle fibres were not uniformly distributed throughout the muscle cross-sections, but were located predominantly near the interface of TA and EDL muscles as well as near intra- and extramuscular neurovascular tracts. In addition, changes were observed in desmin, muscle ankyrin repeat protein 1, and muscle LIM protein gene expression: significantly (P<0.01) higher (1.3, 45.5 and 2.3-fold, respectively) transcript levels compared to the contralateral muscles. Post-EDL III exercise, length-distal force characteristics of EDL III were altered significantly (P<0.05): at high EDL III lengths, active forces decreased and the length range between active slack length and optimum length increased. For all EDL III lengths tested, proximal passive and active force of EDL decreased. The slope of the EDL III length-TA+EHL force curve decreased, which indicates a decrease of the degree of intermuscular interaction between EDL III and TA+EHL. It is concluded that prolonged intermittent shortening contractions of a single head of multi-tendoned EDL muscle results in structural damage to muscle fibres as well as altered force transmission within the compartment. A possible role of myofascial force transmission is discussed.
Collapse
Affiliation(s)
- Huub Maas
- Instituut voor Fundamentele and Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit , Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Sellers JR. Fifty years of contractility research post sliding filament hypothesis. J Muscle Res Cell Motil 2005; 25:475-82. [PMID: 15630612 DOI: 10.1007/s10974-004-4239-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- James R Sellers
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Schoenauer R, Bertoncini P, Machaidze G, Aebi U, Perriard JC, Hegner M, Agarkova I. Myomesin is a molecular spring with adaptable elasticity. J Mol Biol 2005; 349:367-79. [PMID: 15890201 DOI: 10.1016/j.jmb.2005.03.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 03/11/2005] [Accepted: 03/21/2005] [Indexed: 11/19/2022]
Abstract
The M-band is a transverse structure in the center of the sarcomere, which is thought to stabilize the thick filament lattice. It was shown recently that the constitutive vertebrate M-band component myomesin can form antiparallel dimers, which might cross-link the neighboring thick filaments. Myomesin consists mainly of immunoglobulin-like (Ig) and fibronectin type III (Fn) domains, while several muscle types express the EH-myomesin splice isoform, generated by the inclusion of the unique EH-segment of about 100 amino acid residues (aa) in the center of the molecule. Here we use atomic force microscopy (AFM), transmission electron microscopy (TEM) and circular dichroism (CD) spectroscopy for the biophysical characterization of myomesin. The AFM identifies the "mechanical fingerprints" of the modules constituting the myomesin molecule. Stretching of homomeric polyproteins, constructed of Ig and Fn domains of human myomesin, produces a typical saw-tooth pattern in the force-extension curve. The domains readily refold after relaxation. In contrast, stretching of a heterogeneous polyprotein, containing several repeats of the My6-EH fragment reveals a long initial plateau corresponding to the sum of EH-segment contour lengths, followed by several My6 unfolding peaks. According to this, the EH-segment is characterized as an entropic chain with a persistence length of about 0.3nm. In TEM pictures, the EH-domain appears as a gap in the molecule, indicating a random coil conformation similar to the PEVK region of titin. CD spectroscopy measurements support this result, demonstrating a mostly non-folded conformation for the EH-segment. We suggest that similarly to titin, myomesin is a molecular spring, whose elasticity is modulated by alternative splicing. The Ig and Fn domains might function as reversible "shock absorbers" by sequential unfolding in the case of extremely high or long sustained stretching forces. These complex visco-elastic properties of myomesin might be crucial for the stability of the sarcomere.
Collapse
Affiliation(s)
- Roman Schoenauer
- Institute of Cell Biology, ETH Zürich-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
16
|
Agarkova I, Schoenauer R, Ehler E, Carlsson L, Carlsson E, Thornell LE, Perriard JC. The molecular composition of the sarcomeric M-band correlates with muscle fiber type. Eur J Cell Biol 2004; 83:193-204. [PMID: 15346809 DOI: 10.1078/0171-9335-00383] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The M-band is the transverse structure that cross-links the thick filaments in the center and provides a perfect alignment of the A-band in the activated sarcomere. The molecular composition of the M-bands in adult mouse skeletal muscle is fiber-type dependent. All M-bands in fast fibers contain M-protein while M-bands in slow fibers contain a significant proportion of the EH-myomesin isoform, previously detected only in embryonic heart muscle. This fiber-type specificity develops during the first postnatal weeks. However, the ratio between the amounts of myosin and of myomesin, taken as sum of both isoforms, remains nearly constant in all studied muscles. Ultrastructural analysis demonstrates that some of the soleus fibers show a diffuse appearance of the M-band, resembling the situation in the embryonic heart. A model is proposed to explain the functional consequence of differential M-band composition for the physiological and morphological properties of sarcomeres in different muscle types.
Collapse
Affiliation(s)
- Irina Agarkova
- Institute of Cell Biology, ETH-Zurich Hoenggerberg, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
Ehrenman K, Yang G, Hong WP, Gao T, Jang W, Brock DA, Hatton RD, Shoemaker JD, Gomer RH. Disruption of aldehyde reductase increases group size in dictyostelium. J Biol Chem 2003; 279:837-47. [PMID: 14551196 DOI: 10.1074/jbc.m310539200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developing Dictyostelium cells form structures containing approximately 20,000 cells. The size regulation mechanism involves a secreted counting factor (CF) repressing cytosolic glucose levels. Glucose or a glucose metabolite affects cell-cell adhesion and motility; these in turn affect whether a group stays together, loses cells, or even breaks up. NADPH-coupled aldehyde reductase reduces a wide variety of aldehydes to the corresponding alcohols, including converting glucose to sorbitol. The levels of this enzyme previously appeared to be regulated by CF. We find that disrupting alrA, the gene encoding aldehyde reductase, results in the loss of alrA mRNA and AlrA protein and a decrease in the ability of cell lysates to reduce both glyceraldehyde and glucose in an NADPH-coupled reaction. Counterintuitively, alrA- cells grow normally and have decreased glucose levels compared with parental cells. The alrA- cells form long unbroken streams and huge groups. Expression of AlrA in alrA- cells causes cells to form normal fruiting bodies, indicating that AlrA affects group size. alrA- cells have normal adhesion but a reduced motility, and computer simulations suggest that this could indeed result in the formation of large groups. alrA- cells secrete low levels of countin and CF50, two components of CF, and this could partially account for why alrA- cells form large groups. alrA- cells are responsive to CF and are partially responsive to recombinant countin and CF50, suggesting that disrupting alrA inhibits but does not completely block the CF signal transduction pathway. Gas chromatography/mass spectroscopy indicates that the concentrations of several metabolites are altered in alrA- cells, suggesting that the Dictyostelium aldehyde reductase affects several metabolic pathways in addition to converting glucose to sorbitol. Together, our data suggest that disrupting alrA affects CF secretion, causes many effects on cellular metabolism, and has a major effect on group size.
Collapse
Affiliation(s)
- Karen Ehrenman
- Howard Hughes Medical Institute and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
In striated muscles, the rapid production of macroscopic levels of force and displacement stems directly from highly ordered and hierarchical protein organization, with the sarcomere as the elemental contractile unit. There is now a wealth of evidence indicating that the giant elastic protein titin has important roles in controlling the structure and extensibility of vertebrate muscle sarcomeres.
Collapse
Affiliation(s)
- Larissa Tskhovrebova
- Astbury Centre for Structural Molecular Biology, and School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
19
|
Rogalski TM, Gilbert MM, Devenport D, Norman KR, Moerman DG. DIM-1, a novel immunoglobulin superfamily protein in Caenorhabditis elegans, is necessary for maintaining bodywall muscle integrity. Genetics 2003; 163:905-15. [PMID: 12663531 PMCID: PMC1462474 DOI: 10.1093/genetics/163.3.905] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The UNC-112 protein is required during initial muscle assembly in C. elegans to form dense bodies and M-lines. Loss of this protein results in arrest at the twofold stage of embryogenesis. In contrast, a missense mutation in unc-112 results in viable animals that have disorganized bodywall muscle and are paralyzed as adults. Loss or reduction of dim-1 gene function can suppress the severe muscle disruption and paralysis exhibited by these mutant hermaphrodites. The overall muscle structure in hermaphrodites lacking a functional dim-1 gene is slightly disorganized, and the myofilament lattice is not as strongly anchored to the muscle cell membrane as it is in wild-type muscle. The dim-1 gene encodes two polypeptides that contain three Ig-like repeats. The short DIM-1 protein isoform consists entirely of three Ig repeats and is sufficient for wild-type bodywall muscle structure and stability. DIM-1(S) localizes to the region of the muscle cell membrane around and between the dense bodies, which are the structures that anchor the actin filaments and may play a role in stabilizing the thin rather than the thick filament components of the sarcomere.
Collapse
Affiliation(s)
- Teresa M Rogalski
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | |
Collapse
|
20
|
Shah SB, Su FC, Jordan K, Milner DJ, Fridén J, Capetanaki Y, Lieber RL. Evidence for increased myofibrillar mobility in desmin-null mouse skeletal muscle. J Exp Biol 2002; 205:321-5. [PMID: 11854369 DOI: 10.1242/jeb.205.3.321] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
SUMMARY
Quantitative electron microscopy was used to characterize the longitudinal mobility of myofibrils during muscle extension to investigate the functional roles of skeletal muscle intermediate filaments. Extensor digitorum longus fifth toe muscles from wild-type (+/+) and desmin-null (des –/–) animals were passively stretched to varying lengths, and the horizontal displacement of adjacent Z-disks in neighboring myofibrils (Δxmyo) and average sarcomere length (SL) were calculated. At short SL (<2.20 μm), wild-type and desmin-null Δxmyo were not significantly different, although there was a trend towards greater Z-disk misalignment in muscles from knockout animals (Δxmyo 0.34±0.04 μm versus 0.22±0.09 μm; P>0.2; means ± s.e.m.). However, at higher SL (>2.90 μm), muscles from knockout animals displayed a dramatically increased Δxmyo relative to wild-type muscles (0.49±0.10 μm versus 0.25±0.07 μm; P<0.05). The results, which establish a maximum extension of the desmin network surrounding the Z-disk, provide what we believe to be the first quantitative estimation of the functional limits of the desmin intermediate filament system in the presence of an intact myofibrillar lattice. The existence of a limit on the extension of desmin suggests a mechanism for the recruitment of desmin into a network of force transmission, whether as a longitudinal load bearer or as a component in a radial force-transmission system.
Collapse
Affiliation(s)
- Sameer B Shah
- Department of Orthopaedics, Veterans Affairs Medical Center and University of California at San Diego, San Diego, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Reddy KB, Bialkowska K, Fox JE. Dynamic modulation of cytoskeletal proteins linking integrins to signaling complexes in spreading cells. Role of skelemin in initial integrin-induced spreading. J Biol Chem 2001; 276:28300-8. [PMID: 11382766 DOI: 10.1074/jbc.m102794200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently we showed that signaling across beta3-integrin leads to activation of calpain and formation of integrin clusters that are involved in Rac activation. The subsequent activation of Rac and Rho leads to the formation of focal complexes and focal adhesions, respectively. The goal of the present study was to determine whether different proteins link the integrin to the cytoskeleton in the different complexes. We show that talin is present in focal adhesions but not in the calpain-induced clusters. alpha-Actinin colocalized with integrin at various sites, including the calpain-induced clusters. Skelemin, a protein shown recently to interact with beta1- and beta3-integrin in vitro, colocalized with integrin in calpain-induced clusters but was absent from focal adhesions. Cells transiently expressing skelemin C2 motifs, which contain the integrin binding site, failed to form integrin clusters or to spread on a substrate for beta1- and beta3-integrins. These results 1) suggest a dynamic reorganization of integrin complexes during cell spreading, 2) show that different cytoskeletal proteins link integrins in different complexes, and 3) demonstrate that skelemin is responsible for linking integrin to the calpain-induced clusters, and 4) show that the integrin-skelemin interaction is essential for transmission of signals leading to the initial steps of cell spreading.
Collapse
Affiliation(s)
- K B Reddy
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
22
|
Jin JP. Titin-thin filament interaction and potential role in muscle function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 481:319-33; discussion 334-5. [PMID: 10987081 DOI: 10.1007/978-1-4615-4267-4_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Titin (connectin) is a giant polypeptide that forms a single-molecule filamental structure extending from the M-line to the Z-line in the sarcomere of striated muscle. The primary structure of titin consists mainly of repeats of two types of approximately 100-amino acid modules (fibronectin type III and immunoglobulin-like motifs, respectively) and a Pro rich segment named the PEVK domain. The I-band region of titin shows an elasticity important to the passive properties of the myofibril. To investigate the biological function of titin, we cloned cDNA segments encoding single or linked structural modules of titin into expression vectors to produce non-fusion titin fragments in E. coli. High level expression of titin fragments was achieved and effective purification procedures were developed. We also developed specific monoclonal antibodies against the titin fragments and solid-phase protein-binding assays to investigate the interaction of the titin structural modules and other sarcomeric proteins. The results show that the immunoglobin-like module that are enriched in the I-band titin binds to F-actin. In contrast to the rigid association of A-band titin with the thick filament, the relatively weak titin-actin binding suggests that the I-band titin may reversibly interact with the thin filament during muscle contraction. This hypothesis is supported by an epitope similarity between the actin-binding site of caldesmon and the immunoglobulin-like module of titin, which suggests analogous functions of caldesmon and titin in organizing the contractile proteins. Together with data from mechanical studies demonstrating that the titin-actin interaction may contribute to the passive property of cardiac muscle in a Ca(2+)-dependent manner, we speculate that the Ca(2+)-mediated thin filament regulation may coordinate the function of titin during muscle contraction and relaxation.
Collapse
Affiliation(s)
- J P Jin
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
23
|
Agarkova I, Auerbach D, Ehler E, Perriard JC. A novel marker for vertebrate embryonic heart, the EH-myomesin isoform. J Biol Chem 2000; 275:10256-64. [PMID: 10744711 DOI: 10.1074/jbc.275.14.10256] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myomesin is a structural component of the M-band that is expressed in all types of striated muscle. Its primary function may be the maintenance of the thick filament lattice and its anchoring to the elastic filament system composed of titin. Different myomesin isoforms have been described in chicken and mice, but no particular function has been assigned to them. Here we investigate the spatio-temporal expression pattern of myomesin isoforms by means of reverse transcriptase-polymerase chain reaction and isoform-specific antibodies. We find that two alternative splicing events give rise to four myomesin isoforms in chicken contrary to only one splicing event with two possible isoforms in mice. A splicing event at the C terminus results in two splice variants termed H-myomesin and S-myomesin, which represent the major myomesin species in heart and skeletal muscle of avian species, respectively. In contrast, in mammalian heart and skeletal muscle only S-myomesin is expressed. In embryonic heart of birds and mammals, alternative splicing in the central part of the molecule gives rise to the isoform that we termed EH-myomesin. It represents the major myomesin isoform at early embryonic stages of heart but is rapidly down-regulated around birth. Thus, the strict developmental regulation of the EH-myomesin makes it an ideally suited marker for embryonic heart.
Collapse
Affiliation(s)
- I Agarkova
- Institute of Cell Biology, ETH-Zürich Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
24
|
Abstract
The remarkable order of striated muscle is the result of a complex series of protein interactions at different levels of organization. Within muscle, the thick filament and its major protein myosin are classical examples of functioning protein machines. Our understanding of the structure and assembly of thick filaments and their organization into the regular arrays of the A-band has recently been enhanced by the application of biochemical, genetic, and structural approaches. Detailed studies of the thick filament backbone have shown that the myosins are organized into a tubular structure. Additional protein machines and specific myosin rod sequences have been identified that play significant roles in thick filament structure, assembly, and organization. These include intrinsic filament components, cross-linking molecules of the M-band and constituents of the membrane-cytoskeleton system. Muscle organization is directed by the multistep actions of protein machines that take advantage of well-established self-assembly relationships.
Collapse
Affiliation(s)
- J M Barral
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
25
|
Benian GM, Ayme-Southgate A, Tinley TL. The genetics and molecular biology of the titin/connectin-like proteins of invertebrates. Rev Physiol Biochem Pharmacol 1999; 138:235-68. [PMID: 10396143 DOI: 10.1007/bfb0119629] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- G M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
26
|
Fürst DO, Obermann WM, van der Ven PF. Structure and assembly of the sarcomeric M band. Rev Physiol Biochem Pharmacol 1999; 138:163-202. [PMID: 10396141 DOI: 10.1007/bfb0119627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D O Fürst
- Department of Cell Biology, University of Potsdam, Germany
| | | | | |
Collapse
|
27
|
Kenny PA, Liston EM, Higgins DG. Molecular evolution of immunoglobulin and fibronectin domains in titin and related muscle proteins. Gene 1999; 232:11-23. [PMID: 10333517 DOI: 10.1016/s0378-1119(99)00122-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The family of regulatory and structural muscle proteins, which includes the giant kinases titin, twitchin and projectin, has sequences composed predominantly of serially linked immunoglobulin I set (Ig) and fibronectin type III (FN3) domains. This paper explores the evolutionary relationships between 16 members of this family. In titin, groups of Ig and FN3 domains are arranged in a regularly repeating pattern of seven and 11 domains. The 11-domain super-repeat has its origins in the seven-domain super-repeat and a model for the duplications which gave rise to this super-repeat is proposed. A super-repeat composed solely of immunoglobulin domains is found in the skeletal muscle isoform of titin. Twitchin and projectin, which are presumed to be orthologs, have undergone significant insertion/deletion of domains since their divergence. The common ancestry of myomesin, skelemin and M-protein is shown. The relationship between myosin binding proteins (MyBPs) C and H is confirmed, and MyBP-H is proposed to have given rise to MyBP-C by the acquisition of some titin domains.
Collapse
Affiliation(s)
- P A Kenny
- Department of Biochemistry, University College, Cork, Ireland.
| | | | | |
Collapse
|
28
|
Steiner F, Weber K, Fürst DO. M band proteins myomesin and skelemin are encoded by the same gene: analysis of its organization and expression. Genomics 1999; 56:78-89. [PMID: 10036188 DOI: 10.1006/geno.1998.5682] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete exon-intron organization of the murine gene encoding sarcomeric myomesin has been determined. The gene is composed of 38 exons and 37 introns, spanning approximately 105 kb of DNA. Intron positions and phases are essentially identical to those identified in M-protein. They are related to the modular structure of myomesin, which is composed almost entirely of immunoglobulin and fibronectin type III domains. Nearly all repeats follow a two exon-one domain structure. The start and end of each domain are defined by introns in phase I, while internal introns are more divergent in position and very rarely use phase I. Genomic Southern blotting and reverse transcription-polymerase chain reaction revealed that differential splicing of a single exon gives rise to two polypeptides, described in the literature as myomesin and skelemin, respectively. A single transcriptional start point was detected in both skeletal and cardiac muscle. Analysis of the presumptive promoter region revealed several potential regulatory elements. CAT expression assays using promoter deletion constructs identified three regions that seem to be important for the muscle-specific transcriptional activation of the myomesin gene. These results provide the basis for a comparative analysis of the regulation of myomesin and M-protein genes in vivo.
Collapse
Affiliation(s)
- F Steiner
- Department of Cell Biology, University of Potsdam, Lennéstrasse 7a, Potsdam, D-14471, Germany
| | | | | |
Collapse
|
29
|
Fürst DO, Obermann WMJ, Ven PFM. Structure and assembly of the sarcomeric M Band. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
The genetics and molecular biology of the titin/connectin-like proteins of invertebrates. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Reddy KB, Gascard P, Price MG, Negrescu EV, Fox JE. Identification of an interaction between the m-band protein skelemin and beta-integrin subunits. Colocalization of a skelemin-like protein with beta1- and beta3-integrins in non-muscle cells. J Biol Chem 1998; 273:35039-47. [PMID: 9857037 DOI: 10.1074/jbc.273.52.35039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Signaling across integrins is regulated by interaction of these receptors with cytoskeletal proteins and signaling molecules. To identify molecules interacting with the cytoplasmic domain of the beta3-integrin subunit (glycoprotein IIIa), a placental cDNA library was screened in the yeast two-hybrid system. Two identical clones coding for a 96-amino acid sequence were identified. This sequence was 100% identical to a sequence in skelemin, a protein identified previously in skeletal muscle. Skelemin is a member of a superfamily of cytoskeletal proteins that contain fibronectin-type III-like motifs and immunoglobulin C2-like motifs and that regulate the organization of myosin filaments in muscle. The amino acid residues in the isolated clones encompassed C2 motifs 4 and 5 of skelemin. A recombinant skelemin protein consisting of C2 motifs 3-7 interacted with beta1- and beta3-integrin cytoplasmic domains expressed as glutathione S-transferase (GST) fusion proteins, but not with GST-beta2-integrin cytoplasmic tail or GST alone. The skelemin-binding region was in the membrane proximal cytoplasmic domains of the integrins. Full-length skelemin interacted with integrin in intact cells as demonstrated by the colocalization of hemagglutinin-tagged skelemin in Chinese hamster ovary (CHO) cells containing alphaIIbbeta3-integrin and by the finding that microinjection of C2 motif 4 of skelemin into C2C12 mouse myoblast cells caused spread cells to round up. A skelemin-like protein was detected in CHO cells, endothelial cells, and platelets, and this protein colocalized with beta1- and beta3-integrins in CHO cells. This study suggests the presence of a skelemin-like protein in non-muscle cells and provides evidence that it may be involved in linking integrins to the cytoskeleton.
Collapse
Affiliation(s)
- K B Reddy
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
32
|
Halaby DM, Mornon JP. The immunoglobulin superfamily: an insight on its tissular, species, and functional diversity. J Mol Evol 1998; 46:389-400. [PMID: 9541533 DOI: 10.1007/pl00006318] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The immunoglobulin superfamily (IgSF) is a heterogenic group of proteins built on a common fold, called the Ig fold, which is a sandwich of two beta sheets. Although members of the IgSF share a similar Ig fold, they differ in their tissue distribution, amino acid composition, and biological role. In this paper we report an up-to-date compilation of the IgSF where all known members of the IgSF are classified on the basis of their common functional role (immune system, antibiotic proteins, enzymes, cytokine receptors, etc.) and their distribution in tissue (neural system, extracellular matrix, tumor marker, muscular proteins, etc.), or in species (vertebrates, invertebrates, bacteria, viruses, fungi, and plants). The members of the family can contain one or many Ig domains, comprising two basic types: the constant domain (C), with seven strands, and the variable domain (V), with eight, nine, or ten strands. The different overviews of the IgSF led to the definition of new domain subtypes, mainly concerning the C type, based on the distribution of strands within the two sheets. The wide occurrence of the Ig fold and the much less conserved sequences could have developed from a common ancestral gene and/or from a convergent evolutionary process. Cell adhesion and pattern recognition seem to be the common feature running through the entire family.
Collapse
Affiliation(s)
- D M Halaby
- Systèmes Moléculaires et Biologie Structurale, LMCP, CNRS URA 09, Université Pierre et Marie-Curie, Paris, France.
| | | |
Collapse
|
33
|
Li Z, Mericskay M, Agbulut O, Butler-Browne G, Carlsson L, Thornell LE, Babinet C, Paulin D. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. J Cell Biol 1997; 139:129-44. [PMID: 9314534 PMCID: PMC2139820 DOI: 10.1083/jcb.139.1.129] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/1997] [Revised: 07/04/1997] [Indexed: 02/05/2023] Open
Abstract
A null mutation was introduced into the mouse desmin gene by homologous recombination. The desmin knockout mice (Des -/-) develop normally and are fertile. However, defects were observed after birth in skeletal, smooth, and cardiac muscles (Li, Z., E. Colucci-Guyon, M. Pincon-Raymond, M. Mericskay, S. Pournin, D. Paulin, and C. Babinet. 1996. Dev. Biol. 175:362-366; Milner, D.J., G. Weitzer, D. Tran, A. Bradley, and Y. Capetanaki. 1996. J. Cell Biol. 134:1255- 1270). In the present study we have carried out a detailed analysis of somitogenesis, muscle formation, maturation, degeneration, and regeneration in Des -/- mice. Our results demonstrate that all early stages of muscle differentiation and cell fusion occur normally. However, after birth, modifications were observed essentially in weight-bearing muscles such as the soleus or continually used muscles such as the diaphragm and the heart. In the absence of desmin, mice were weaker and fatigued more easily. The lack of desmin renders these fibers more susceptible to damage during contraction. We observed a process of degeneration of myofibers, accompanied by macrophage infiltration, and followed by a process of regeneration. These cycles of degeneration and regeneration resulted in a relative increase in slow myosin heavy chain (MHC) and decrease in fast MHC. Interestingly, this second wave of myofibrillogenesis during regeneration was often aberrant and showed signs of disorganization. Subsarcolemmal accumulation of mitochondria were also observed in these muscles. The lack of desmin was not compensated by an upregulation of vimentin in these mice either during development or regeneration. Absence of desmin filaments within the sarcomere does not interfere with primary muscle formation or regeneration. However, myofibrillogenesis in regenerating fibers is often abortive, indicating that desmin may be implicated in this repair process. The results presented here show that desmin is essential to maintain the structural integrity of highly solicited skeletal muscle.
Collapse
Affiliation(s)
- Z Li
- Station Centrale de Microscopie Electronique, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Alyonycheva TN, Mikawa T, Reinach FC, Fischman DA. Isoform-specific interaction of the myosin-binding proteins (MyBPs) with skeletal and cardiac myosin is a property of the C-terminal immunoglobulin domain. J Biol Chem 1997; 272:20866-72. [PMID: 9252413 DOI: 10.1074/jbc.272.33.20866] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Full-length cDNAs encoding chicken and human skeletal MyBP-H and MyBP-C have been isolated and sequenced (1-5). All are members of a protein family with repetitive immunoglobulin C2 and fibronectin type III motifs. The myosin binding domain was mapped to a single immunoglobulin motif in cardiac MyBP-C and skeletal MyBP-H. Limited alpha-chymotryptic digestion of cardiac MyBP-C generated three peptides, similar in relative mobility to those of skeletal MyBP-C: approximately 100, 40, and 15 kDa. Tryptic digestion of MyBP-H yielded two peptides: approximately 50 and 14 kDa. Partial amino acid sequences proved that the 15- and 14-kDa fragments are located at the C termini of cardiac MyBP-C and skeletal MyBP-H, respectively. Only the 14- and 15-kDa peptides bound to myosin. Thus, the myosin binding site in all three proteins resides within an homologous, C-terminal immunoglobulin domain. Binding reactions (2) between the skeletal and cardiac MyBPs and corresponding myosin isoforms demonstrated saturable binding of the MyBP proteins and their C-terminal peptides to myosin, but there are higher limiting stoichiometries with the homologous isoform partners. Evidence is presented indicating that MyBP-H and -C compete for binding to a discrete number of sites in myosin filaments.
Collapse
Affiliation(s)
- T N Alyonycheva
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
35
|
Ohira T, Nishio K, Ohe Y, Arioka H, Nishio M, Funayama Y, Ogasawara H, Fukuda M, Yazawa K, Kato H, Saijo N. Improvement by eicosanoids in cancer cachexia induced by LLC-IL6 transplantation. J Cancer Res Clin Oncol 1996; 122:711-5. [PMID: 8954167 DOI: 10.1007/bf01209117] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cachexia frequently occurs in the late stages of cancer, and is difficult to manage. We previously reported that interleukin-6 (IL-6) cDNA transfection into Lewis lung carcinoma (LLC-IL6) induced cachexia-like symptoms in C57BL/6 mice. This was thought to be a useful experimental model of cancer cachexia. We have examined the effects of two eicosanoids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in order to evaluate whether they could relieve cachexia. LLC-IL6-bearing animals were divided into three treatment groups receiving DHA, EPA or water as the control; 80-microliter samples of these compounds (purity > 95%) were administered orally by catheter daily starting 7 days after tumor transplantation. Tumor growth curves were similar in the three groups. There were no differences in water or food intake in the three groups. However, body weight, a marker of cachexia, was significantly higher in treated mice than in the control group. Sixteen days after tumor transplantation, the mean body weight was 17.45 g (P < 0.05), 17.2 g and 16.41 g in the groups receiving DHA, EPA and water respectively. The eicosanoids did not affect serum levels of IL-6. Ubiquitination of muscle protein, a marker of proteolysis coupled to cachexia, was compared in LLC-IL6- and LLC-transplanted mice. The eicosanoids prevented the ubiquitination of approximately 180 kDa protein. These results suggest that eicosanoids may prevent the cachexia mediated by IL-6.
Collapse
Affiliation(s)
- T Ohira
- Pharmacology Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bantle S, Keller S, Haussmann I, Auerbach D, Perriard E, Mühlebach S, Perriard JC. Tissue-specific isoforms of chicken myomesin are generated by alternative splicing. J Biol Chem 1996; 271:19042-52. [PMID: 8702575 DOI: 10.1074/jbc.271.32.19042] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Myomesin is a high molecular weight protein that is present in the M-band of all fiber types of cross-striated skeletal muscle and heart. We have isolated two cDNAs encoding tissue-specific isoforms of chicken myomesin with calculated molecular masses of 174 kDa in skeletal muscle and 182 kDa in heart. Distinct sequences are found at the 3'-end of the two cDNAs, giving rise to different C-terminal domains. Partial analysis of the gene structure has shown that in chicken, both isoforms are generated by alternative splicing of a composite exon. Amino acid sequences show that the main body of myomesin consists of five fibronectin type III (class I motifs) and seven immunoglobulin-like domains (class II motifs). An identical structure was found in M-protein and human 190K protein (the human counterpart of chicken myomesin), and a comparable domain arrangement occurs in the M-band-associated protein skelemin. We postulate that myomesin, M-protein, and skelemin belong to the same subfamily of high molecular weight M-band-associated proteins of the immunoglobulin superfamily and that they probably have the same ancestor in evolution.
Collapse
Affiliation(s)
- S Bantle
- Institute for Cell Biology, Swiss Federal Institute of Technology, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
37
|
Van Der Ven PF, Obermann WM, Weber K, Fürst DO. Myomesin, M-protein and the structure of the sarcomeric M-band. ADVANCES IN BIOPHYSICS 1996; 33:91-9. [PMID: 8922105 DOI: 10.1016/0065-227x(96)81666-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- P F Van Der Ven
- Department of Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | |
Collapse
|
38
|
Twitchin and related giant Ig superfamily members of C. elegans and other invertebrates. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0065-227x(96)81674-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Hattori A, Wakamatsu J, Ishii T, Kuwahara K, Tatsumi R. A novel 550-kDa protein in skeletal muscle of chick embryo: purification and localization. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1245:191-200. [PMID: 7492577 DOI: 10.1016/0304-4165(95)00096-t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have found a novel protein with a molecular mass of 550 kDa on SDS-polyacrylamide gels, which is abundant in skeletal muscle tissues at an early stage of chick embryonic development. The 550-kDa protein decreased with the progress of development, and only a slight amount of the protein was present in adult chicken skeletal muscle. The 550-kDa protein was purified from the cytoplasm of 18 day embryos by a procedure including ultracentrifugation and gel filtration. The purified 550-kDa protein was essentially free of contaminants as judged by SDS-PAGE. By immunofluorescence and immunoelectron microscopy using the antibody raised against the 550-kDa protein, this protein was shown to be localized in the peripheries of adult muscle fibers and at the Z-disks of isolated myofibrils. These findings have led us to conclude that the 550-kDa protein is a novel myofibrillar protein in chicken skeletal muscle.
Collapse
Affiliation(s)
- A Hattori
- Department of Animal Science, Faculty of Agriculture, Hokkaido University, Japan
| | | | | | | | | |
Collapse
|
40
|
Abstract
The muscle cell cytoskeleton is defined for this review as any structure or protein primarily involved in linking or connecting protein filaments to each other or to anchoring sites. In striated muscle, the M line connects thick filaments at their centers to adjacent thick filaments. Titin forms elastic filaments that extend from the M line to the Z line and may contribute to the resting tension properties of striated muscle. Nebulin forms inextensible filaments in skeletal muscle that are closely associated with thin filaments and that may provide a length template for thin filaments. Z lines anchor thin filaments from adjacent sarcomeres via the actin-binding function of alpha-actinin. Other proteins located at the Z line include Cap Z, Z-nin, Z protein, and zeugmatin. Intermediate filaments connect myofibrils to each other at the level of the Z line and to the sarcolemma at the Z- and possibly the M-line levels. Immunolocalization has identified the adhesion plaque proteins spectrin, vinculin, dystrophin, ankyrin, and talin at subsarcolemmal sites where they may be involved with filament attachment. Smooth muscle cell cytoskeletons are believed to include membrane associated dense bodies (MADBs), intermediate filaments, cytoplasmic dense bodies (CDBs), and perhaps a subset of actin filaments. MADBs contain a menu of attachment plaque proteins and anchor both thin filaments and intermediate filaments to the sarcolemma. CDBs are intracellular analogs of striated muscle Z lines and anchor thin filaments and intermediate filaments.
Collapse
Affiliation(s)
- M H Stromer
- Department of Animal Science, Iowa State University, Ames 50011-3260, USA
| |
Collapse
|
41
|
|
42
|
Ziegler C. Titin-related proteins in invertebrate muscles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1994; 109:823-33. [PMID: 7828026 DOI: 10.1016/0300-9629(94)90230-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The localization of filaments connecting the Z-line and the A-band in insect flight muscles and the identification of very large proteins as their components is reviewed. The characterization of twitchin in the obliquely striated muscles of Caenorhabditis elegans is reported and the deductions made from its amino acid sequence are considered. The characterization of mini-titins in obliquely striated molluscan muscles is compared. The identification of projectin in the muscles of Drosophila melanogaster by anti-twitchin-antibodies, its sequence analysis and the characterization of mini-titins in arthropod and mollusc fast-striated muscles are summarized. The possible biological functions of the different proteins in various invertebrate muscles are discussed.
Collapse
Affiliation(s)
- C Ziegler
- Institute of Animal Physiology, Münster, FRG
| |
Collapse
|
43
|
|
44
|
|