1
|
Hossain FMA, Bappy MNI, Robin TB, Ahmad I, Patel H, Jahan N, Rabbi MGR, Roy A, Chowdhury W, Ahmed N, Prome AA, Rani NA, Khan P, Zinnah KMA. A review on computational studies and bioinformatics analysis of potential drugs against monkeypox virus. J Biomol Struct Dyn 2024; 42:6091-6107. [PMID: 37403283 DOI: 10.1080/07391102.2023.2231542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Monkeypox, a viral disease that is caused by monkeypox virus and occurs mainly in central and western Africa. However, recently it is spreading worldwide and took the focus of the scientific world towards it. Therefore, we made an attempt to cluster all the related information that may make it easy for the researchers to get the information easily and carry out their research smoothly to find prophylaxis against this emerging virus. There are very few researches found available on monkeypox. Almost all the studies were focused on smallpox virus and the recommended vaccines and therapeutics for monkeypox virus were originally developed for smallpox virus. Though these are recommended for emergency cases, they are not fully effective and specific against monkeypox. For this, here we also took the help of bioinformatics tools to screen potential drug candidates against this growing burden. Some potential antiviral plant metabolites, inhibitors and available drugs were scrutinized that can block the essential survival proteins of this virus. All the compounds Amentoflavone, Pseudohypericin, Adefovirdipiboxil, Fialuridin, Novobiocin and Ofloxacin showed elite binding efficiency with suitable ADME properties and Amentoflavone and Pseudohypericin showed stability in MD simulation study indicating their potency as probable drugs against this emerging virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Science, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Dairy Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Division of Computer Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Nusrat Jahan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Gulam Rabbany Rabbi
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Anindita Roy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Wasima Chowdhury
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Parvez Khan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kazi Md Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
2
|
Krause M, Samolej J, Yakimovich A, Kriston-Vizi J, Huttunen M, Lara-Reyna S, Frickel EM, Mercer J. Vaccinia virus subverts xenophagy through phosphorylation and nuclear targeting of p62. J Cell Biol 2024; 223:e202104129. [PMID: 38709216 PMCID: PMC11076808 DOI: 10.1083/jcb.202104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/13/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024] Open
Abstract
Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.
Collapse
Affiliation(s)
- Melanie Krause
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jerzy Samolej
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Artur Yakimovich
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Moona Huttunen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Eva-Maria Frickel
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
The Vaccinia Virus B12 Pseudokinase Represses Viral Replication via Interaction with the Cellular Kinase VRK1 and Activation of the Antiviral Effector BAF. J Virol 2021; 95:JVI.02114-20. [PMID: 33177193 DOI: 10.1128/jvi.02114-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 11/20/2022] Open
Abstract
The poxviral B1 and B12 proteins are a homologous kinase-pseudokinase pair, which modulates a shared host pathway governing viral DNA replication and antiviral defense. While the molecular mechanisms involved are incompletely understood, B1 and B12 seem to intersect with signaling processes mediated by their cellular homologs termed the vaccinia-related kinases (VRKs). In this study, we expand upon our previous characterization of the B1-B12 signaling axis to gain insights into B12 function. We begin our studies by demonstrating that modulation of B12 repressive activity is a conserved function of B1 orthologs from divergent poxviruses. Next, we characterize the protein interactome of B12 using multiple cell lines and expression systems and discover that the cellular kinase VRK1 is a highly enriched B12 interactor. Using complementary VRK1 knockdown and overexpression assays, we first demonstrate that VRK1 is required for the rescue of a B1-deleted virus upon mutation of B12. Second, we find that VRK1 overexpression is sufficient to overcome repressive B12 activity during B1-deleted virus replication. Interestingly, we also evince that B12 interferes with the ability of VRK1 to phosphoinactivate the host defense protein BAF. Thus, B12 restricts vaccinia virus DNA accumulation in part by repressing the ability of VRK1 to inactivate BAF. Finally, these data establish that a B12-VRK1-BAF signaling axis forms during vaccinia virus infection and is modulated via kinases B1 and/or VRK2. These studies provide novel insights into the complex mechanisms that poxviruses use to hijack homologous cellular signaling pathways during infection.IMPORTANCE Viruses from diverse families encode both positive and negative regulators of viral replication. While their functions can sometimes be enigmatic, investigation of virus-encoded, negative regulators of viral replication has revealed fascinating aspects of virology. Studies of poxvirus-encoded genes have largely concentrated on positive regulators of their replication; however, examples of fitness gains attributed to poxvirus gene loss suggests that negative regulators of poxvirus replication also impact infection dynamics. This study focuses on the vaccinia B12 pseudokinase, a protein capable of inhibiting vaccinia DNA replication. Here, we elucidate the mechanisms by which B12 inhibits vaccinia DNA replication, demonstrating that B12 activates the antiviral protein BAF by inhibiting the activity of VRK1, a cellular modulator of BAF. Combined with previous data, these studies provide evidence that poxviruses govern their replication by employing both positive and negative regulators of viral replication.
Collapse
|
4
|
Wang TY, Zhao J, Savas AC, Zhang S, Feng P. Viral pseudoenzymes in infection and immunity. FEBS J 2020; 287:4300-4309. [PMID: 32889786 PMCID: PMC7605207 DOI: 10.1111/febs.15545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are proteins that are evolutionarily related to active enzymes, but lack relevant catalytic activity. As obligate intracellular pathogens, viruses complete their life cycle fully dependent on the cellular supplies of macromolecule and energy. Traditionally, studies of viral proteins sharing high homology with host counterparts reveal insightful mechanisms by which host signaling pathways are delicately regulated. Recent investigations into the action of cellular pseudoenzymes elucidate diverse molecular means how enzymes are differentially controlled under various physiological conditions, hinting to the potential that pathogens may exploit these regulatory modalities. To date, there have been three types of viral pseudoenzymes reported and our understanding concerning their mechanism of regulation is rudimentary at best. However, it is clear that viral pseudoenzymes are emerging with surprising functions in infection and immunity, and we are only at the beginning to understand this new group of enzyme regulators. In this review, we will summarize current knowledge in viral pseudoenzymes and provide a perspective for future research.
Collapse
Affiliation(s)
- Ting-Yu Wang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Jun Zhao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
The Vaccinia Virus (VACV) B1 and Cellular VRK2 Kinases Promote VACV Replication Factory Formation through Phosphorylation-Dependent Inhibition of VACV B12. J Virol 2019; 93:JVI.00855-19. [PMID: 31341052 DOI: 10.1128/jvi.00855-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/16/2019] [Indexed: 01/08/2023] Open
Abstract
Comparative examination of viral and host protein homologs reveals novel mechanisms governing downstream signaling effectors of both cellular and viral origin. The vaccinia virus B1 protein kinase is involved in promoting multiple facets of the virus life cycle and is a homolog of three conserved cellular enzymes called vaccinia virus-related kinases (VRKs). Recent evidence indicates that B1 and VRK2 mediate a common pathway that is largely uncharacterized but appears independent of previous VRK substrates. Interestingly, separate studies described a novel role for B1 in inhibiting vaccinia virus protein B12, which otherwise impedes an early event in the viral lifecycle. Herein, we characterize the B1/VRK2 signaling axis to better understand their shared functions. First, we demonstrate that vaccinia virus uniquely requires VRK2 for viral replication in the absence of B1, unlike other DNA viruses. Employing loss-of-function analysis, we demonstrate that vaccinia virus's dependence on VRK2 is only observed in the presence of B12, suggesting that B1 and VRK2 share a pathway controlling B12. Moreover, we substantiate a B1/VRK2/B12 signaling axis by examining coprecipitation of B12 by B1 and VRK2. Employing execution point analysis, we reveal that virus replication proceeds normally through early protein translation and uncoating but stalls at replication factory formation in the presence of B12 activity. Finally, structure/function analyses of B1 and VRK2 demonstrate that enzymatic activity is essential for B1 or VRK2 to inhibit B12. Together, these data provide novel insights into B1/VRK signaling coregulation and support a model in which these enzymes modulate B12 in a phosphorylation-dependent manner.IMPORTANCE Constraints placed on viral genome size require that these pathogens must employ sophisticated, yet parsimonious mechanisms to effectively integrate with host cell signaling pathways. Poxviruses are no exception and employ several methods to balance these goals, including encoding single proteins that impact multiple downstream pathways. This study focuses on the vaccinia virus B1 protein kinase, an enzyme that promotes virus replication at multiple phases of the viral lifecycle. Herein, we demonstrate that in addition to its previously characterized functions, B1 inhibits vaccinia virus B12 protein via a phosphorylation-dependent mechanism and that this function of B1 can be complemented by the cellular B1 homolog VRK2. Combined with previous data implicating functional overlap between B1 and an additional cellular B1 homolog, VRK1, these data provide evidence of how poxviruses can be multifaceted in their mimicry of cellular proteins through the consolidation of functions of both VRK1 and VRK2 within the viral B1 protein kinase.
Collapse
|
6
|
Olson AT, Wang Z, Rico AB, Wiebe MS. A poxvirus pseudokinase represses viral DNA replication via a pathway antagonized by its paralog kinase. PLoS Pathog 2019; 15:e1007608. [PMID: 30768651 PMCID: PMC6395007 DOI: 10.1371/journal.ppat.1007608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 01/31/2019] [Indexed: 12/26/2022] Open
Abstract
Poxviruses employ sophisticated, but incompletely understood, signaling pathways that engage cellular defense mechanisms and simultaneously ensure viral factors are modulated properly. For example, the vaccinia B1 protein kinase plays a vital role in inactivating the cellular antiviral factor BAF, and likely orchestrates other pathways as well. In this study, we utilized experimental evolution of a B1 deletion virus to perform an unbiased search for suppressor mutations and identify novel pathways involving B1. After several passages of the ΔB1 virus we observed a robust increase in viral titer of the adapted virus. Interestingly, our characterization of the adapted viruses reveals that mutations correlating with a loss of function of the vaccinia B12 pseudokinase provide a striking fitness enhancement to this virus. In support of predictions that reductive evolution is a driver of poxvirus adaptation, this is clear experimental evidence that gene loss can be of significant benefit. Next, we present multiple lines of evidence demonstrating that expression of full length B12 leads to a fitness reduction in viruses with a defect in B1, but has no apparent impact on wild-type virus or other mutant poxviruses. From these data we infer that B12 possesses a potent inhibitory activity that can be masked by the presence of the B1 kinase. Further investigation of B12 attributes revealed that it primarily localizes to the nucleus, a characteristic only rarely found among poxviral proteins. Surprisingly, BAF phosphorylation is reduced under conditions in which B12 is present in infected cells without B1, indicating that B12 may function in part by enhancing antiviral activity of BAF. Together, our studies of B1 and B12 present novel evidence that a paralogous kinase-pseudokinase pair can exhibit a unique epistatic relationship in a virus, perhaps serving to enhance B1 conservation during poxvirus evolution and to orchestrate yet-to-be-discovered nuclear events during infection.
Collapse
Affiliation(s)
- Annabel T. Olson
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States of America
| | - Zhigang Wang
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
| | - Amber B. Rico
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States of America
| | - Matthew S. Wiebe
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE, United States of America
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States of America
| |
Collapse
|
7
|
Danismazoglu M, Nalcacioglu R, Muratoglu H, Demirbag Z. The protein-protein interactions between Amsacta moorei entomopoxvirus (AMEV) protein kinases (PKs) and all viral proteins. Virus Res 2018; 248:31-38. [PMID: 29471050 DOI: 10.1016/j.virusres.2018.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/17/2022]
Abstract
Entomopoxviruses are an important group of viruses infecting only insects. They belong to Poxviridae which infect both invertebrates and vertebrates, including humans. Protein kinases are known to have roles at virus morphogenesis, host selectivity, the regulation of cell division and apoptosis in some vertebrate poxviruses. In this study, 2 protein kinases (PKs) (AMV153 and AMV197) of Amsacta moorei entomopoxvirus (AMEV) were investigated for the interactions among 230 viral proteins using yeast two-hybrid system (Y2H). For this purpose, two protein kinases and 230 viral genes were cloned into the bait and prey vectors, respectively. Bait vectors were introduced into Saccharomyces cerevisiae AH109. Expression of the bait genes were confirmed by western blot analysis. Both yeast strains of bait were transformed individually with each prey clone and grown on a selective medium (minimal synthetic defined) to determine the protein-protein interactions between bait and prey proteins. Transformations identified totally 16 interactions among AMEV protein kinases and all viral proteins of which 5 belong to AMV153 and 11 belong to AMV197. One of the five interactions detected for AMV153 protein kinase is self-association. Its other four interactions are with two virus entry complex proteins (AMV035 and AMV083), a membrane protein (AMV165) and a subunit of RNA polymerase (AMV230). The other protein kinase, AMV197, interacted with two virus entry complex proteins (AMV035 and AMV083) as AMV153, a caspase-2 enzyme (AMV063), a Holliday junction resolvase (AMV162), a membrane protein (AMV165), a subunit of RNA polymerase (AMV230) and five other hypothetical proteins (AMV026, AMV040, AMV062, AMV069, AMV120) encoded by AMEV genome. Glutathione S-transferase (GST) pull-down assay was used to confirm all interactions described by Y2H analysis. In addition, the theoretical structures of the two of 16 interactions were interpreted by docking analysis. Consistent with Y2H and pull down assays, docking analysis also showed the interactions of AMV063 with AMV153 and AMV197. Detected interactions of the AMEV viral proteins with viral protein kinases could lead to the understanding of the regulation of the viral activities of interacted viral proteins.
Collapse
Affiliation(s)
- Mehtap Danismazoglu
- Karadeniz Technical University, Faculty of Science, Department of Biology, Trabzon, Turkey; Artvin Coruh University, Health Services Vocational High School, Department of Medical Laboratory Techniques, Artvin, Turkey
| | - Remziye Nalcacioglu
- Karadeniz Technical University, Faculty of Science, Department of Biology, Trabzon, Turkey
| | - Hacer Muratoglu
- Karadeniz Technical University, Faculty of Science, Department of Molecular Biology and Genetics, Trabzon, Turkey.
| | - Zihni Demirbag
- Karadeniz Technical University, Faculty of Science, Department of Biology, Trabzon, Turkey
| |
Collapse
|
8
|
Vaccinia Virus B1 Kinase Is Required for Postreplicative Stages of the Viral Life Cycle in a BAF-Independent Manner in U2OS Cells. J Virol 2015. [PMID: 26223647 DOI: 10.1128/jvi.01252-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED The vaccinia virus B1R gene encodes a highly conserved protein kinase that is essential for the poxviral life cycle. As demonstrated in many cell types, B1 plays a critical role during viral DNA replication when it inactivates the cellular host defense effector barrier to autointegration factor (BAF or BANF1). To better understand the role of B1 during infection, we have characterized the growth of a B1-deficient temperature-sensitive mutant virus (Cts2 virus) in U2OS osteosarcoma cells. In contrast to all other cell lines tested to date, we found that in U2OS cells, Cts2 viral DNA replication is unimpaired at the nonpermissive temperature. However, the Cts2 viral yield in these cells was reduced more than 10-fold, thus indicating that B1 is required at another stage of the vaccinia virus life cycle. Our results further suggest that the host defense function of endogenous BAF may be absent in U2OS cells but can be recovered through either overexpression of BAF or fusion of U2OS cells with mouse cells in which the antiviral function of BAF is active. Interestingly, examination of late viral proteins during Cts2 virus infection demonstrated that B1 is required for optimal processing of the L4 protein. Finally, execution point analyses as well as electron microscopy studies uncovered a role for B1 during maturation of poxviral virions. Overall, this work demonstrates that U2OS cells are a novel model system for studying the cell type-specific regulation of BAF and reveals a role for B1 beyond DNA replication during the late stages of the viral life cycle. IMPORTANCE The most well characterized role for the vaccinia virus B1 kinase is to facilitate viral DNA replication by phosphorylating and inactivating BAF, a cellular host defense responsive to foreign DNA. Additional roles for B1 later in the viral life cycle have been postulated for decades but are difficult to examine directly due to the importance of B1 during DNA replication. Here, we demonstrate that in U2OS cells, a B1 mutant virus escapes the block in DNA replication observed in other cell types and, instead, this mutant virus exhibits impaired late protein accumulation and incomplete maturation of new virions. These data provide the clearest evidence to date that B1 is needed for multiple critical junctures in the poxviral life cycle in a manner that is both dependent on and independent of BAF.
Collapse
|
9
|
|
10
|
Matson J, Chou W, Ngo T, Gershon PD. Static and dynamic protein phosphorylation in the Vaccinia virion. Virology 2014; 452-453:310-23. [PMID: 24606709 DOI: 10.1016/j.virol.2014.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/02/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022]
Abstract
To the best of our knowledge, two phosphorylation sites have been reported previously, among 11 known Vaccinia virus phosphoproteins. Here, via phosphopeptide mass spectrometry, up to 189 phosphorylation sites were identified among 48 proteins in preparations of purified Vaccinia mature virus (MV). 8.5% of phospho-residues were pTyr. Viral phosphoproteins were found in diverse functional classes, including structural proteins, membrane proteins and RNA polymerase subunits. Among the nine identified membrane phosphoproteins, the sites in just one, namely A14L, were deduced to be internal with respect to the accompanying membrane. Examination of sites in known substrates of the Vaccinia-encoded protein kinase VPK2, indicated VPK2 to be a proline-dependent kinase. The MV phosphoproteome was enriched in potential substrates of cellular kinases belonging to the CDK2/CDK3, CK2, and p38 groups. Quantitative mass spectrometry identified several sites that became phosphorylated during intravirion kinase activation in vitro, each showing one of two distinct pH-dependency profiles.
Collapse
Affiliation(s)
- J Matson
- University of North Carolina, Chapel Hill, NC, United States
| | - W Chou
- Department of Molecular Biology and Biochemistry, UC-Irvine, Irvine, CA 92697, United States
| | - T Ngo
- Department of Molecular Biology and Biochemistry, UC-Irvine, Irvine, CA 92697, United States
| | - P D Gershon
- Department of Molecular Biology and Biochemistry, UC-Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
11
|
Ibrahim N, Wicklund A, Jamin A, Wiebe MS. Barrier to autointegration factor (BAF) inhibits vaccinia virus intermediate transcription in the absence of the viral B1 kinase. Virology 2013; 444:363-73. [PMID: 23891157 DOI: 10.1016/j.virol.2013.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/01/2013] [Accepted: 07/02/2013] [Indexed: 11/16/2022]
Abstract
Barrier to autointegration factor (BAF/BANF1) is a cellular DNA-binding protein found in the nucleus and cytoplasm. Cytoplasmic BAF binds to foreign DNA and can act as a defense against vaccinia DNA replication. To evade BAF, vaccinia expresses the B1 kinase, which phosphorylates BAF and blocks its ability to bind DNA. Interestingly, B1 is also needed for viral intermediate gene expression via an unknown mechanism. Therefore, we evaluated the impact of B1-BAF signaling on vaccinia transcription. Strikingly, the decrease in vaccinia transcription caused by loss of B1 can be rescued by depletion of BAF. The repressive action of BAF is greatest on a viral promoter, and is more modest when non-vaccinia promoters are employed, which suggests BAF acts in a gene specific manner. These studies expand our understanding of the role of the B1 kinase during infection and provide the first evidence that BAF is a defense against viral gene expression.
Collapse
Affiliation(s)
- Nouhou Ibrahim
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, USA
| | | | | | | |
Collapse
|
12
|
Sèle C, Gabel F, Gutsche I, Ivanov I, Burmeister WP, Iseni F, Tarbouriech N. Low-resolution structure of vaccinia virus DNA replication machinery. J Virol 2013; 87:1679-89. [PMID: 23175373 PMCID: PMC3554141 DOI: 10.1128/jvi.01533-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/14/2012] [Indexed: 11/20/2022] Open
Abstract
Smallpox caused by the poxvirus variola virus is a highly lethal disease that marked human history and was eradicated in 1979 thanks to a worldwide mass vaccination campaign. This virus remains a significant threat for public health due to its potential use as a bioterrorism agent and requires further development of antiviral drugs. The viral genome replication machinery appears to be an ideal target, although very little is known about its structure. Vaccinia virus is the prototypic virus of the Orthopoxvirus genus and shares more than 97% amino acid sequence identity with variola virus. Here we studied four essential viral proteins of the replication machinery: the DNA polymerase E9, the processivity factor A20, the uracil-DNA glycosylase D4, and the helicase-primase D5. We present the recombinant expression and biochemical and biophysical characterizations of these proteins and the complexes they form. We show that the A20D4 polymerase cofactor binds to E9 with high affinity, leading to the formation of the A20D4E9 holoenzyme. Small-angle X-ray scattering yielded envelopes for E9, A20D4, and A20D4E9. They showed the elongated shape of the A20D4 cofactor, leading to a 150-Å separation between the polymerase active site of E9 and the DNA-binding site of D4. Electron microscopy showed a 6-fold rotational symmetry of the helicase-primase D5, as observed for other SF3 helicases. These results favor a rolling-circle mechanism of vaccinia virus genome replication similar to the one suggested for tailed bacteriophages.
Collapse
Affiliation(s)
- Céleste Sèle
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| | - Frank Gabel
- Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, Grenoble, France
| | - Irina Gutsche
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| | - Ivan Ivanov
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| | - Wim P. Burmeister
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| | - Frédéric Iseni
- Institut de Recherche Biomédicale des Armées, La Tronche, France
| | - Nicolas Tarbouriech
- UJF Grenoble 1-EMBL-CNRS UMI 3265, Unit for Virus Host-Cell Interactions, Grenoble, France
| |
Collapse
|
13
|
Pereira ACTC, Soares-Martins JAP, Leite FGG, Da Cruz AFP, Torres AA, Souto-Padrón T, Kroon EG, Ferreira PCP, Bonjardim CA. SP600125 inhibits Orthopoxviruses replication in a JNK1/2 -independent manner: Implication as a potential antipoxviral. Antiviral Res 2011; 93:69-77. [PMID: 22068148 PMCID: PMC7114308 DOI: 10.1016/j.antiviral.2011.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/15/2011] [Accepted: 10/24/2011] [Indexed: 11/24/2022]
Abstract
The pharmacological inhibitor SP600125 [anthra(1,9-cd)pyrazol-6(2H)-one 1,9-pyrazoloanthrone] has been largely employed as a c-JUN N-terminal kinase (JNK1/2) inhibitor. In this study, we evaluated whether pretreatment with SP600125 was able to prevent Orthopoxviruses Vaccinia virus (VACV), Cowpox virus (CPXV) and modified Vaccinia virus Ankara (MVA) replication. We found that incubation with SP600125 not only blocked virus-stimulated JNK phosphorylation, but also, significantly reduced virus production. We observed 1-3 log decline in viral yield depending on the cell line infected (A31, BSC-40 or BHK-21). The reduction in viral yield correlated with a dramatic impact on virus morphogenesis progress, intracellular mature viruses (IMV) were barely detected. Despite the fact that SP600125 can act as an efficient anti-orthopoxviral compound, we also provide evidence that this antiviral effect is not specifically exerted through JNK1/2 inhibition. This conclusion is supported by the fact that viral titers measured after infections of JNK1/2 knockout cells were not altered as compared to those of wild-type cells. In contrast, a decline in viral titers was verified when the infection of KO cells was carried out in the presence of the pharmacological inhibitor. SP600125 has been the focus of recent studies that have evaluated its action on diverse viral infections including DNA viruses. Our data support the notion that SP600125 can be regarded as a potential antipoxviral compound.
Collapse
Affiliation(s)
- Anna C T C Pereira
- Grupo de Transdução de Sinal/Orthopoxvirus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Boyle KA, Stanitsa ES, Greseth MD, Lindgren JK, Traktman P. Evaluation of the role of the vaccinia virus uracil DNA glycosylase and A20 proteins as intrinsic components of the DNA polymerase holoenzyme. J Biol Chem 2011; 286:24702-13. [PMID: 21572084 PMCID: PMC3137046 DOI: 10.1074/jbc.m111.222216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/09/2011] [Indexed: 01/04/2023] Open
Abstract
The vaccinia virus DNA polymerase is inherently distributive but acquires processivity by associating with a heterodimeric processivity factor comprised of the viral A20 and D4 proteins. D4 is also an enzymatically active uracil DNA glycosylase (UDG). The presence of an active repair protein as an essential component of the polymerase holoenzyme is a unique feature of the replication machinery. We have shown previously that the A20-UDG complex has a stoichiometry of ∼1:1, and our data suggest that A20 serves as a bridge between polymerase and UDG. Here we show that conserved hydrophobic residues in the N' terminus of A20 are important for its binding to UDG. Our data argue against the assembly of D4 into higher order multimers, suggesting that the processivity factor does not form a toroidal ring around the DNA. Instead, we hypothesize that the intrinsic, processive DNA scanning activity of UDG tethers the holoenzyme to the DNA template. The inclusion of UDG as an essential holoenzyme component suggests that replication and base excision repair may be coupled. Here we show that the DNA polymerase can utilize dUTP as a substrate in vitro. Moreover, uracil moieties incorporated into the nascent strand during holoenzyme-mediated DNA synthesis can be excised by the viral UDG present within this holoenzyme, leaving abasic sites. Finally, we show that the polymerase stalls upon encountering an abasic site in the template strand, indicating that, like many replicative polymerases, the poxviral holoenzyme cannot perform translesion synthesis across an abasic site.
Collapse
Affiliation(s)
- Kathleen A. Boyle
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Eleni S. Stanitsa
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Matthew D. Greseth
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jill K. Lindgren
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Paula Traktman
- From the Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
15
|
Shin J, Chakraborty G, Bharatham N, Kang C, Tochio N, Koshiba S, Kigawa T, Kim W, Kim KT, Yoon HS. NMR solution structure of human vaccinia-related kinase 1 (VRK1) reveals the C-terminal tail essential for its structural stability and autocatalytic activity. J Biol Chem 2011; 286:22131-8. [PMID: 21543316 DOI: 10.1074/jbc.m110.200162] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Vaccinia-related kinase 1 (VRK1) is one of the mitotic kinases that play important roles in cell cycle, nuclear condensation, and transcription regulation. Kinase domain structures of two other VRK family members (VRK2 and VRK3) have been determined previously. However, the structure of VRK1, the most extensively studied and constitutively active VRK member, is yet to be characterized. Here, we present the nuclear magnetic resonance (NMR) solution structure of a catalytically active form of human VRK1 with its extended C-terminal tail (residues 1-361). The NMR structure of human VRK1 reveals that the C-terminal tail orients toward the catalytic site and forms a number of interactions that are critical for structural stability and catalysis. The role of this unique C-terminal tail was further investigated by deletion mutant studies where deletion of the terminal tail resulted in a dramatic reduction in the autocatalytic activity of VRK1. NMR titration studies carried out with ATP or an ATP analog confirm that ATP/ATP analogs interact with all of the crucial residues present in important motifs of the protein kinase such as the hinge region, catalytic loop, DYG motif, and thereby suggest that the catalytic domain of VRK1 is not atypical. In addition to the conventional interactions, some of the residues present on the extended C-terminal tail also interact with the ligands. These observations also substantiate the role of the extended C-terminal tail in the biological activity of VRK1.
Collapse
Affiliation(s)
- Joon Shin
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Phosphorylation represents one the most abundant and important posttranslational modifications of proteins, including viral proteins. Virus-encoded serine/threonine protein kinases appear to be a feature that is unique to large DNA viruses. Although the importance of these kinases for virus replication in cell culture is variable, they invariably play important roles in virus virulence. The current review provides an overview of the different viral serine/threonine protein kinases of several large DNA viruses and discusses their function, importance, and potential as antiviral drug targets.
Collapse
|
17
|
Transcriptional and structural analyses of Amsacta moorei entomopoxvirus protein kinase gene (AMV197, pk). ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0082-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Inhibition of vaccinia virus replication by peptide aptamers. Antiviral Res 2009; 82:134-40. [DOI: 10.1016/j.antiviral.2009.02.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/22/2009] [Accepted: 02/16/2009] [Indexed: 11/17/2022]
|
19
|
Webb TJR, Litavecz RA, Khan MA, Du W, Gervay-Hague J, Renukaradhya GJ, Brutkiewicz RR. Inhibition of CD1d1-mediated antigen presentation by the vaccinia virus B1R and H5R molecules. Eur J Immunol 2006; 36:2595-600. [PMID: 16981180 DOI: 10.1002/eji.200636024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Vaccinia virus (VV) has been most commonly used as the vaccine to protect individuals against the causative agent of smallpox (variola virus), but it also uses a number of strategies meant to evade or blunt the host's antiviral immune response. Natural killer T (NKT) cells are a subset of immunoregulatory CD1d-restricted T lymphocytes believed to bridge the innate and adaptive immune responses. It is shown here that the VV-encoded molecules, B1R and H5R, play a role in the ability of VV to inhibit CD1d-mediated antigen presentation to NKT cells. These are the first poxvirus-encoded molecules identified that can play such a role in the evasion of an important component of the innate immune response.
Collapse
Affiliation(s)
- Tonya J Roberts Webb
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Boyle KA, Arps L, Traktman P. Biochemical and genetic analysis of the vaccinia virus d5 protein: Multimerization-dependent ATPase activity is required to support viral DNA replication. J Virol 2006; 81:844-59. [PMID: 17093187 PMCID: PMC1797480 DOI: 10.1128/jvi.02217-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The vaccinia virus-encoded D5 protein is an essential ATPase involved in viral DNA replication. We have expanded the genotypic and phenotypic analysis of six temperature-sensitive (ts) D5 mutants (Cts17, Cts24, Ets69, Dts6389 [also referred to as Dts38], Dts12, and Dts56) and shown that at nonpermissive temperature all of the tsD5 viruses exhibit a dramatic reduction in DNA synthesis and virus production. For Cts17 and Cts24, this restriction reflects the thermolability of the D5 proteins. The Dts6389, Dts12, and Dts56 D5 proteins become insoluble at 39.7 degrees C, while the Ets69 D5 protein remains stable and soluble and retains the ability to oligomerize and hydrolyze ATP when synthesized at 39.7 degrees C. To investigate which structural features of D5 are important for its biological and biochemical activities, we generated targeted mutations in invariant residues positioned within conserved domains found within D5. Using a transient complementation assay that assessed the ability of D5 variants to sustain ongoing DNA synthesis during nonpermissive Cts24 infections, only a wtD5 allele supported DNA synthesis. Alleles of D5 containing targeted mutations within the Walker A or B domains, the superfamily III helicase motif C, or the AAA+ motif lacked biological competency. Furthermore, purified preparations of these variant proteins revealed that they all were defective in ATP hydrolysis. Multimerization of D5 appeared to be a prerequisite for enzymatic activity and required the Walker B domain, the AAA+ motif, and a region located upstream of the catalytic core. Finally, although multimerization and enzymatic activity are necessary for the biological competence of D5, they are not sufficient.
Collapse
Affiliation(s)
- Kathleen A Boyle
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., BSB-273, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
21
|
Li LY, Liu MY, Shih HM, Tsai CH, Chen JY. Human cellular protein VRK2 interacts specifically with Epstein-Barr virus BHRF1, a homologue of Bcl-2, and enhances cell survival. J Gen Virol 2006; 87:2869-2878. [PMID: 16963744 DOI: 10.1099/vir.0.81953-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BHRF1, an early gene product of Epstein-Barr virus (EBV), is structurally and functionally homologous to Bcl-2, a cellular anti-apoptotic protein. BHRF1 has been shown to protect cells from apoptosis induced by numerous external stimuli. Nasopharyngeal carcinoma is an epithelial cancer associated closely with EBV infection. Specific proteins that might interact with and modulate the BHRF1 anti-apoptotic activity in normal epithelial cells are of interest. Therefore, a cDNA library derived from normal human foreskin keratinocytes was screened by the yeast two-hybrid system and a cellular gene encoding human vaccinia virus B1R kinase-related kinase 2 (VRK2) was isolated. Interaction between the cellular VRK2 and viral BHRF1 proteins was further demonstrated by glutathione S-transferase pull-down assays, confocal laser-scanning microscopy and co-immunoprecipitation. Analyses of VRK2-deletion mutants revealed that a 108 aa fragment at the C terminus was important for VRK2 to interact with BHRF1. For BHRF1, aa 1-18 and 89-142 were crucial in interacting with VRK2 and these two regions are counterparts of Bcl-2 homology domains 4 and 1. Overexpressed VRK2 alone showed a modest effect in anti-apoptosis and appeared to enhance cell survival in the presence of BHRF1. However, this enhancement was not observed when VRK2 was co-expressed with Bcl-2. The results indicate that human VRK2 interacts specifically with EBV BHRF1 and that the interaction is involved in protecting cells from apoptosis.
Collapse
Affiliation(s)
- Long-Yuan Li
- Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Mei-Ying Liu
- Department of General Education, National Taipei College of Nursing, Taipei 112, Taiwan
- Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsiu-Ming Shih
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Taipei 115, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jen-Yang Chen
- Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
22
|
Takemura M. Evolutionary history of the retinoblastoma gene from archaea to eukarya. Biosystems 2005; 82:266-72. [PMID: 16181730 DOI: 10.1016/j.biosystems.2005.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
The retinoblastoma gene product (Rb protein) has a role in progression through the cell cycle, regulating the activities of several transcription factors such as E2F. Since its functional loss results in impaired differentiation in the nervous, hematopoietic, and muscular systems, the Rb protein is very important for cell regulation in multicellular eukaryotes. To gain an insight into the evolutionary history of the Rb gene, I have compared the amino acid sequences of Rb proteins in multicellular eukaryotes and unicellular organisms including yeast, archaeotes, and viruses. Two short amino acid sequences, in the N-terminal and pocket A regions of human Rb protein, found to be well conserved, also in a single protein of Saccharomyces cerevisiae. These sequences were also found in proteins of two archaeotes, Archaeoglobus fulgidus and Methanococcus jannaschii. Further, the most conserved sequence in the pocket B region among multicellular eukaryotic Rb proteins was also conserved in several poxviruses. From these data, I conclude that the pocket A and B regions, backbones of the Rb protein, are derived from different organisms, respectively, the ancestors of archaeote and poxvirus, and that the ancestral pocket B region has been lost during evolutionary history of unicellular eukaryotes.
Collapse
Affiliation(s)
- Masaharu Takemura
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
23
|
Punjabi A, Traktman P. Cell biological and functional characterization of the vaccinia virus F10 kinase: implications for the mechanism of virion morphogenesis. J Virol 2005; 79:2171-90. [PMID: 15681420 PMCID: PMC546551 DOI: 10.1128/jvi.79.4.2171-2190.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus F10 protein is one of two virally encoded protein kinases. A phenotypic analysis of infections involving a tetracycline-inducible recombinant (vDeltaiF10) indicated that F10 is involved in the early stages of virion morphogenesis, as previously reported for the mutants ts28 and ts15. The proteins encoded by ts28 and ts15 have primary defects in enzymatic activity and thermostability, respectively. Using a transient complementation assay, we demonstrated that the enzymatic activity of F10 is essential for its biological function and that both its enzymatic and biological functions depend upon N-terminal sequences that precede the catalytic domain. An execution point analysis indicated that in addition to its role at the onset of morphogenesis, F10 is also required at later stages, when membrane crescents surround virosomal contents and develop into immature virions. The F10 protein is phosphorylated in vivo, appears to be tightly associated with intracellular membranes, and can bind to specific phosphoinositides in vitro. When F10 is repressed or impaired, the phosphorylation of several cellular and viral proteins appears to increase in intensity, suggesting that F10 may normally intersect with cellular signaling cascades via the activation of a phosphatase or the inhibition of another kinase. These cascades may drive the F10-induced remodeling of membranes that accompanies virion biogenesis. Upon the release of ts28-infected cultures from a 40 degrees C-induced block, a synchronous resumption of morphogenesis that culminates in the production of infectious virus can be observed. The pharmacological agents H89 and cerulenin, which are inhibitors of endoplasmic reticulum exit site formation and de novo lipid synthesis, respectively, block this recovery.
Collapse
Affiliation(s)
- Almira Punjabi
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Rd., BSB-273, Milwaukee, WI 53226, USA
| | | |
Collapse
|
24
|
De Silva FS, Moss B. Origin-independent plasmid replication occurs in vaccinia virus cytoplasmic factories and requires all five known poxvirus replication factors. Virol J 2005; 2:23. [PMID: 15784143 PMCID: PMC1079961 DOI: 10.1186/1743-422x-2-23] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 03/22/2005] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Replication of the vaccinia virus genome occurs in cytoplasmic factory areas and is dependent on the virus-encoded DNA polymerase and at least four additional viral proteins. DNA synthesis appears to start near the ends of the genome, but specific origin sequences have not been defined. Surprisingly, transfected circular DNA lacking specific viral sequences is also replicated in poxvirus-infected cells. Origin-independent plasmid replication depends on the viral DNA polymerase, but neither the number of additional viral proteins nor the site of replication has been determined. RESULTS Using a novel real-time polymerase chain reaction assay, we detected a >400-fold increase in newly replicated plasmid in cells infected with vaccinia virus. Studies with conditional lethal mutants of vaccinia virus indicated that each of the five proteins known to be required for viral genome replication was also required for plasmid replication. The intracellular site of replication was determined using a plasmid containing 256 repeats of the Escherichia coli lac operator and staining with an E. coli lac repressor-maltose binding fusion protein followed by an antibody to the maltose binding protein. The lac operator plasmid was localized in cytoplasmic viral factories delineated by DNA staining and binding of antibody to the viral uracil DNA glycosylase, an essential replication protein. In addition, replication of the lac operator plasmid was visualized continuously in living cells infected with a recombinant vaccinia virus that expresses the lac repressor fused to enhanced green fluorescent protein. Discrete cytoplasmic fluorescence was detected in cytoplasmic juxtanuclear sites at 6 h after infection and the area and intensity of fluorescence increased over the next several hours. CONCLUSION Replication of a circular plasmid lacking specific poxvirus DNA sequences mimics viral genome replication by occurring in cytoplasmic viral factories and requiring all five known viral replication proteins. Therefore, small plasmids may be used as surrogates for the large poxvirus genome to study trans-acting factors and mechanism of viral DNA replication.
Collapse
Affiliation(s)
- Frank S De Silva
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| |
Collapse
|
25
|
da Fonseca FG, Weisberg AS, Caeiro MF, Moss B. Vaccinia virus mutants with alanine substitutions in the conserved G5R gene fail to initiate morphogenesis at the nonpermissive temperature. J Virol 2004; 78:10238-48. [PMID: 15367589 PMCID: PMC516429 DOI: 10.1128/jvi.78.19.10238-10248.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial characterization of the product of the vaccinia virus G5R gene, which is conserved in all poxviruses sequenced to date, is described. The G5 protein was detected in the core fraction of purified virions, and transcription and translation of the G5R open reading frame occurred early in infection, independently of DNA replication. Attempts to delete the G5R gene and isolate a replication-competent virus were unsuccessful, suggesting that G5R encodes an essential function. We engineered vaccinia virus mutants with clusters of charged amino acids changed to alanines and determined that several were unable to replicate at 40 degrees C but grew well at 37 degrees C. At the nonpermissive temperature, viral gene expression and DNA replication and processing were unperturbed. However, tyrosine phosphorylation and proteolytic cleavage of the A17 membrane protein and proteolytic cleavage of core proteins were inhibited at 40 degrees C, suggesting an assembly defect. The cytoplasm of cells that had been infected at the nonpermissive temperature contained large granular areas devoid of cellular organelles or virus structures except for occasional short crescent-shaped membranes and electron-dense lacy structures. The temperature-sensitive phenotype of the G5R mutants closely resembled the phenotypes of vaccinia virus mutants carrying conditionally lethal F10R protein kinase and H5R mutations. F10, although required for phosphorylation of A17 and viral membrane formation, was synthesized by the G5R mutants under nonpermissive conditions. An intriguing possibility is that G5 participates in the formation of viral membranes, a poorly understood event in poxvirus assembly.
Collapse
Affiliation(s)
- Flavio G da Fonseca
- Laboratory of Viral Diseases, National Institutes of Health, 4 Center Dr., MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | | | |
Collapse
|
26
|
Boyle KA, Traktman P. Members of a novel family of mammalian protein kinases complement the DNA-negative phenotype of a vaccinia virus ts mutant defective in the B1 kinase. J Virol 2004; 78:1992-2005. [PMID: 14747564 PMCID: PMC369515 DOI: 10.1128/jvi.78.4.1992-2005.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperature-sensitive (ts) mutants of vaccinia virus defective in the B1 kinase demonstrate a conditionally lethal defect in DNA synthesis. B1 is the prototypic member of a new family of protein kinases (vaccinia virus-related kinases, or VRK) that possess distinctive B1-like sequence features within their catalytic motifs (R. J. Nichols and P. Traktman, J. Biol. Chem., in press). Given the striking sequence similarity between B1 and the VRK enzymes, we proposed that they might share overlapping substrate specificity. We therefore sought to determine whether the human and mouse VRK1 enzymes (hVRK1 and mVRK1, respectively) could complement a B1 deficiency in vivo. Recombinant ts2 viruses expressing hVRK1, mVRK1, or wild-type B1 were able to synthesize viral DNA at high temperature, but those expressing the more distantly related human casein kinase 1 alpha 2 could not. Complementation required the enzymatic activity of hVRK1, since a catalytically inactive allele of hVRK1 was unable to confer a temperature-insensitive phenotype. Interestingly, rescue of viral DNA synthesis was not coupled to the ability to phosphorylate H5, the only virus-encoded protein shown to be a B1 substrate in vivo. Expression of hVRK1 during nonpermissive ts2 infections restored virus production and plaque formation, whereas expression of mVRK1 resulted in an intermediate level of rescue. Taken together, these observations indicate that enzymatically active cellular VRK1 kinases can perform the function(s) of B1 required for genome replication, most likely due to overlapping specificity for cellular and/or viral substrates.
Collapse
Affiliation(s)
- Kathleen A Boyle
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
27
|
Nichols RJ, Traktman P. Characterization of three paralogous members of the Mammalian vaccinia related kinase family. J Biol Chem 2003; 279:7934-46. [PMID: 14645249 DOI: 10.1074/jbc.m310813200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the novel vaccinia related kinase (VRK) protein family are characterized by notable sequence homology to the vaccinia virus-encoded B1 kinase (vvB1). vvB1 plays an essential role in viral DNA replication, and Boyle and Traktman have demonstrated that VRK1 enzymes complement the replication defect of a temperature-sensitive viral mutant defective in vvB1 (Boyle, K., and Traktman, P. (2004) J. Virol. 78, 1992-2005). This mammalian kinase family comprises three members, VRK1, VRK2, and VRK3. We have annotated the gene structure for the members of this family and have characterized the enzyme activity and subcellular localization for the human and mouse proteins. VRK1 enzymes show robust autophosphorylation activity and will phosphorylate casein; VRK2 enzymes show modest autophosphorylation activity and will also phosphorylate casein. The VRK3 proteins have key amino acid substitutions that disrupt invariant motifs required for catalytic activity, rendering them enzymatically inert. The VRK1 and VRK2 proteins contain COOH-terminal extracatalytic sequences that mediate intracellular localization. VRK1 proteins possess a basic nuclear localization signal and are indeed nuclear; the extreme C termini of the VRK2 proteins are highly hydrophobic, and the proteins are membrane-associated and colocalize with markers of the endoplasmic reticulum. The NH(2)-terminal region of the VRK3s contains a bipartite nuclear localization signal, which directs these proteins to the nucleus. Our findings provide the basis for further studies of the structure and function of this newly discovered family of protein kinases.
Collapse
Affiliation(s)
- R Jeremy Nichols
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
28
|
Abstract
Vaccinia virus replication takes place in the cytoplasm of the host cell. The nearly 200 kbp genome owes part of its complexity to encoding most of the proteins involved in genome and mRNA synthesis. The multisubunit vaccinia virus RNA polymerase requires a separate set of virus-encoded proteins for the transcription of the early, intermediate and late classes of genes. Cell fractionation studies have provided evidence for a role for host cell proteins in the initiation and termination of vaccinia virus intermediate and late gene transcription. Vaccinia virus resembles nuclear DNA viruses in the integration of viral and host proteins for viral mRNA synthesis, yet is markedly less reliant on host proteins than its nuclear counterparts.
Collapse
Affiliation(s)
- Steven S Broyles
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| |
Collapse
|
29
|
Ishii K, Moss B. Mapping interaction sites of the A20R protein component of the vaccinia virus DNA replication complex. Virology 2002; 303:232-9. [PMID: 12490386 DOI: 10.1006/viro.2002.1721] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vaccinia virus A20R protein is required for DNA replication, is associated with the processive form of the viral DNA polymerase, and directly interacts with the viral proteins encoded by the D4R, D5R, and H5R open reading frames as determined by a genome-wide yeast two-hybrid analysis. The purpose of the present study was to further analyze the latter protein-protein interactions. Association of an epitope-tagged A20R protein with an epitope-tagged D4R or H5R protein, expressed in vaccinia virus-infected cells, was demonstrated by binding the complex to one mAb followed by Western blotting with another. Interaction between the A20R and D5R proteins, which was weakest in the yeast two-hybrid analysis, could not be demonstrated by this method. A panel of N- and C-terminal truncated forms of the A20R protein was tested for interaction with the D4R, H5R, and D5R proteins using the yeast two-hybrid system. These studies revealed that nonoverlapping regions of A20R comprising amino acids 1 to 25, 26 to 76, and 201 to 251 were required for binding of D4R, H5R, and D5R, respectively. By contrast, no interaction of A20R with D4R could be detected after deletion of only 25 codons from either end of the latter open reading frame. A fusion protein containing either full-length A20R or only the N-terminal 25 amino acids of A20R was sufficient to capture the D4R protein, whereas the fusion protein containing A20R amino acids 26 to 426 was not, confirming the results of the yeast two-hybrid analysis. The distinct protein binding domains of the A20R protein may contribute to the assembly or stability of the multiprotein DNA replication complex.
Collapse
Affiliation(s)
- Koji Ishii
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | |
Collapse
|
30
|
Liu WJ, Yu HT, Peng SE, Chang YS, Pien HW, Lin CJ, Huang CJ, Tsai MF, Huang CJ, Wang CH, Lin JY, Lo CF, Kou GH. Cloning, characterization, and phylogenetic analysis of a shrimp white spot syndrome virus gene that encodes a protein kinase. Virology 2001; 289:362-77. [PMID: 11689058 DOI: 10.1006/viro.2001.1091] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An open reading frame (ORF) that encodes a 715-amino-acid polypeptide was found in an 8421-bp EcoRI fragment of the shrimp white spot syndrome virus (WSSV) genome. The polypeptide shows significant homology to eukaryotic serine/threonine protein kinase (PK) and contains the major conserved subdomains for eukaryotic protein kinases. Coupled in vitro transcription and translation generated a protein having an apparent molecular mass of about 87 kDa according to sodium dodecyl sulfate-polyacrylamide gel electrophoresis. For transcriptional analysis of the pk gene, total RNA was isolated from WSSV-infected shrimp at different times after infection. Northern blot analysis with pk-specific riboprobe found a major and a minor transcript of 2.7 and 5.7 kb, respectively. Rapid amplification of the 5' cDNA ends of the major 2.7-kb pk transcript showed that there were two transcriptional initiation sites located at nucleotide residues -38(G) and -39(G) relative to the ATG translational start codon. Temporal expression analysis by RT-PCR indicated that the transcription of the pk gene started 2 h after infection and continued for at least 60 h. Phylogenetic analysis showed that WSSV protein kinase does not have any close relatives and does not fall into any of the major protein kinase groups.
Collapse
Affiliation(s)
- W J Liu
- Department of Zoology, National Taiwan University, Taipei, 106, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jakob NJ, Müller K, Bahr U, Darai G. Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology 2001; 286:182-96. [PMID: 11448171 DOI: 10.1006/viro.2001.0963] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chilo iridescent virus (CIV), the type species of the genus Iridovirus, a member of the Iridoviridae family, is highly pathogenic for a variety of insect larvae. The virions contain a single linear ds DNA molecule that is circularly permuted and terminally redundant. The coding capacity and strategy of the CIV genome was elucidated by the analysis of the complete DNA nucleotide sequence of the viral genome (212,482 bp) using cycle sequencing by primer walking technology. Both DNA strands were sequenced independently and the average redundancy for each nucleotide was found to be 1.85. The base composition of the viral genomic DNA sequence was found to be 71.37% A+T and 28.63% G+C. The CIV genome contains 468 open reading frames (ORFs). The size of the individual viral gene products ranges between 40 and 2432 amino acids. The analysis of the coding capacity of the CIV genome revealed that 50% (234 ORFs) of all identified ORFs were nonoverlapping. The comparison of the deduced amino acid sequences to entries in protein data banks led to the identification of several genes with significant homologies, such as the two major subunits of the DNA-dependent RNA polymerase, DNA polymerase, protein kinase, thymidine and thymidylate kinase, thymidylate synthase, ribonucleoside-diphosphate reductase, major capsid protein, and others. The highest homologies were detected between putative viral gene products of CIV and lymphocystis disease virus of fish (LCDV). Although many CIV putative gene products showed significant homologies to the corresponding viral proteins of LCDV, no colinearity was detected when the coding strategies of the CIV and LCDV-1 were compared to each other. An intriguing result was the detection of a viral peptide of 53 amino acid residues (ORF 160L) showing high homology (identity/similarity: 60.0%/30.0%) to sillucin, an antibiotic peptide encoded by Rhizomucor pusillus. Iridovirus homologs of cellular genes possess particular implications for the molecular evolution of large DNA viruses.
Collapse
Affiliation(s)
- N J Jakob
- Institut für Medizinische Virologie, Universität Heidelberg, Im Neuenheimer Feld 324, Heidelberg, D-69120, Federal Republic of Germany
| | | | | | | |
Collapse
|
32
|
Kovacs GR, Vasilakis N, Moss B. Regulation of viral intermediate gene expression by the vaccinia virus B1 protein kinase. J Virol 2001; 75:4048-55. [PMID: 11287554 PMCID: PMC114150 DOI: 10.1128/jvi.75.9.4048-4055.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The B1 gene of vaccinia virus encodes a serine/threonine protein kinase that is expressed early after infection. Under nonpermissive conditions, temperature-sensitive mutants (ts2 and ts25) that map to B1 fail to efficiently replicate viral DNA. Our goal was to extend studies on the function of B1 by determining if the kinase is required for intermediate or late gene expression, two events that ordinarily depend on viral DNA replication. First, we established that early viral gene expression occurred at the nonpermissive temperature. By using a transfection procedure that circumvents the viral DNA replication requirement, we found that reporter genes regulated by an intermediate promoter were transcribed only under conditions permissive for expression of active B1. To assay late gene expression, the T7 RNA polymerase gene was inserted into the genome of ts25 to form ts25/T7. A DNA replication-independent late gene transcription system was established by cotransfecting plasmids containing T7 promoter-driven late gene transcription factors and a late promoter reporter gene into ts25/T7-infected cells. Late genes, unlike intermediate genes, were expressed at the nonpermissive temperature. Last, we showed that overexpression of B1 stimulated intermediate but inhibited late gene expression in cells infected with wild-type virus.
Collapse
Affiliation(s)
- G R Kovacs
- Department of Viral Vaccine Research, Wyeth-Lederle Vaccines, Pearl River, New York 10965, USA.
| | | | | |
Collapse
|
33
|
Lopez-Borges S, Lazo PA. The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene 2000; 19:3656-64. [PMID: 10951572 DOI: 10.1038/sj.onc.1203709] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumour suppressor p53 protein integrates multiple signals regulating cell cycle progression and apoptosis. This regulation is mediated by several kinases that phosphorylate specific residues in the different functional domains of the p53 molecule. The human VRK1 protein is a new kinase related to a poxvirus kinase, and more distantly to the casein kinase 1 family. We have characterized the biochemical properties of human VRK1 from HeLa cells. VRK1 has a strong autophosphorylating activity in several Ser and Thr residues. VRK-1 phosphorylates acidic proteins, such as phosvitin and casein, and basic proteins such as histone 2b and myelin basic protein. Because some transcription factors are regulated by phosphorylation, we tested as substrates the N-transactivation domains of p53 and c-Jun fused to GST. Human c-Jun is not phosphorylated by VRK1. VRK1 phosphorylates murine p53 in threonine 18. This threonine is within the p53 hydrophobic loop (residues 13-23) required for the interaction of p53 with the cleft of its inhibitor mdm-2. The VRK1 C-terminus domain (residues 268-396) that contains a nuclear localization signal targets the protein to the nucleus, as determined by using fusion proteins with the green fluorescent protein. We conclude that VRK1 is an upstream regulator of p53 that belongs to a new signalling pathway.
Collapse
Affiliation(s)
- S Lopez-Borges
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Spain
| | | |
Collapse
|
34
|
Traktman P, Liu K, DeMasi J, Rollins R, Jesty S, Unger B. Elucidating the essential role of the A14 phosphoprotein in vaccinia virus morphogenesis: construction and characterization of a tetracycline-inducible recombinant. J Virol 2000; 74:3682-95. [PMID: 10729144 PMCID: PMC111878 DOI: 10.1128/jvi.74.8.3682-3695.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported the construction and characterization of vindH1, an inducible recombinant in which expression of the vaccinia virus H1 phosphatase is regulated experimentally by IPTG (isopropyl-beta-D-thiogalactopyranoside) (35). In the absence of H1 expression, the transcriptional competence and infectivity of nascent virions are severely compromised. We have sought to identify H1 substrates by characterizing proteins that are hyperphosphorylated in H1-deficient virions. Here, we demonstrate that the A14 protein, a component of the virion membrane, is indeed an H1 phosphatase substrate in vivo and in vitro. A14 is hyperphosphorylated on serine residues in the absence of H1 expression. To enable a genetic analysis of A14's function during the viral life cycle, we have adopted the regulatory components of the tetracycline (TET) operon and created new reagents for the construction of TET-inducible vaccinia virus recombinants. In the context of a virus expressing the TET repressor (tetR), insertion of the TET operator between the transcriptional and translational start sites of a late viral gene enables its expression to be tightly regulated by TET. We constructed a TET-inducible recombinant for the A14 gene, vindA14. In the absence of TET, vindA14 fails to form plaques and the 24-h yield of infectious progeny is reduced by 3 orders of magnitude. The infection arrests early during viral morphogenesis, with the accumulation of large numbers of vesicles and the appearance of "empty" crescents that appear to adhere only loosely to virosomes. This phenotype corresponds closely to that observed for an IPTG-inducible A14 recombinant whose construction and characterization were reported while our work was ongoing (47). The consistency in the phenotypes seen for the IPTG- and TET-inducible recombinants confirms the efficacy of the TET-inducible system and reinforces the value of having a second, independent system available for generating inducible recombinants.
Collapse
Affiliation(s)
- P Traktman
- Department of Microbiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
35
|
DeMasi J, Traktman P. Clustered charge-to-alanine mutagenesis of the vaccinia virus H5 gene: isolation of a dominant, temperature-sensitive mutant with a profound defect in morphogenesis. J Virol 2000; 74:2393-405. [PMID: 10666270 PMCID: PMC111721 DOI: 10.1128/jvi.74.5.2393-2405.2000] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus H5 gene encodes a 22.3-kDa phosphoprotein that is expressed during both the early and late phases of viral gene expression. It is a major component of virosomes and has been implicated in viral transcription and, as a substrate of the B1 kinase, may participate in genome replication. To enable a genetic analysis of the role of H5 during the viral life cycle, we used clustered charge-to-alanine mutagenesis in an attempt to create a temperature-sensitive (ts) virus with a lesion in the H5 gene. Five mutant viruses were isolated, with one of them, tsH5-4, having a strong ts phenotype as assayed by plaque formation and measurements of 24-h viral yield. Surprisingly, no defects in genome replication or viral gene expression were detected at the nonpermissive temperature. By electron microscopy, we observed a profound defect in the early stages of virion morphogenesis, with arrest occurring prior to the formation of crescent membranes or immature particles. Nonfunctional, "curdled" virosomes were detected in tsH5-4 infections at the nonpermissive temperature. These structures appeared to revert to functional virosomes after a temperature shift to permissive conditions. We suggest an essential role for H5 in normal virosome formation and the initiation of virion morphogenesis. By constructing recombinant genomes containing two H5 alleles, wild type and H5-4, we determined that H5-4 exerted a dominant phenotype. tsH5-4 is the first example of a dominant ts mutant isolated and characterized in vaccinia virus.
Collapse
Affiliation(s)
- J DeMasi
- Program in Molecular Biology, Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
36
|
Chen N, Buller RM, Wall EM, Upton C. Analysis of host response modifier ORFs of ectromelia virus, the causative agent of mousepox. Virus Res 2000; 66:155-73. [PMID: 10725549 DOI: 10.1016/s0168-1702(99)00135-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
From the right-hand end of the ectromelia virus (strain Moscow) genome, 32318 bps have been sequenced, and characterized to include a total of 18 open reading frames (ORFs) and six regions which apparently no longer code for functional proteins. At least six of the ORFs appear to be involved in blocking the inflammatory/immune host response to infection, and therefore probably contribute significantly to the virulence of this virus in its natural host, the mouse. One of these genes encoded an isolog of the poxvirus chemokine binding protein, and was shown to be the most abundant protein secreted from ectromelia virus infected cells. Two regions were found to have significant similarity to poxvirus genes encoding tumor necrosis factor (TNF) binding proteins. Both are distinct from cytokine response modifier (crm)B and crmC but only one is predicted to encode a functional TNF binding protein. A novel similarity between the C-terminal domain of poxvirus TNF binding proteins and several other poxvirus proteins is also presented. The results are discussed in the context of ectromelia virus pathogenesis of mice.
Collapse
Affiliation(s)
- N Chen
- Department of Molecular Microbiology and Immunology, Saint Louis University Health Sciences Center, 1402 South Grand Boulevard, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
37
|
Derrien M, Punjabi A, Khanna M, Grubisha O, Traktman P. Tyrosine phosphorylation of A17 during vaccinia virus infection: involvement of the H1 phosphatase and the F10 kinase. J Virol 1999; 73:7287-96. [PMID: 10438817 PMCID: PMC104254 DOI: 10.1128/jvi.73.9.7287-7296.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus encodes two protein kinases (B1 and F10) and a dual-specificity phosphatase (VH1), suggesting that phosphorylation and dephosphorylation of substrates on serine/threonine and tyrosine residues are important in regulating diverse aspects of the viral life cycle. Using a recombinant in which expression of the H1 phosphatase can be regulated experimentally (vindH1), we have previously demonstrated that repression of H1 leads to the maturation of noninfectious virions that contain several hyperphosphorylated substrates (K. Liu et al., J. Virol. 69:7823-7834). In this report, we demonstrate that among these is a 25-kDa protein that is phosphorylated on tyrosine residues in H1-deficient virions and can be dephosphorylated by recombinant H1. We demonstrate that the 25-kDa phosphoprotein represents the product of the A17 gene and that A17 is phosphorylated on serine, threonine, and tyrosine residues during infection. Detection of phosphotyrosine within A17 is abrogated when Tyr(203) (but not Tyr(3), Tyr(6), or Tyr(7)) is mutated to phenylalanine, suggesting strongly that this amino acid is the site of tyrosine phosphorylation. Phosphorylation of A17 fails to occur during nonpermissive infections performed with temperature-sensitive mutants defective in the F10 kinase. Our data suggest that this enzyme, which was initially characterized as a serine/threonine kinase, might in fact have dual specificity. This hypothesis is strengthened by the observation that Escherichia coli induced to express F10 contain multiple proteins which are recognized by antiphosphotyrosine antiserum. This study presents the first evidence for phosphotyrosine signaling during vaccinia virus infection and implicates the F10 kinase and the H1 phosphatase as the dual-specificity enzymes that direct this cycle of reversible phosphorylation.
Collapse
Affiliation(s)
- M Derrien
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
38
|
Shchelkunov SN, Safronov PF, Totmenin AV, Petrov NA, Ryazankina OI, Gutorov VV, Kotwal GJ. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology 1998; 243:432-60. [PMID: 9568042 DOI: 10.1006/viro.1998.9039] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sequencing and computer analysis of the left (52,283 bp) and right (49,649 bp) variable DNA regions of the cowpox virus strain GRI-90 (CPV-GRI) has revealed 51 and 37 potential open reading frames (ORFs), respectively. Comparison of the structure-function organization of these DNA regions of CPV-GRI with those previously published for corresponding regions of genomes of vaccinia virus, strains Copenhagen (VAC-COP) and Western Reserve (VAC-WR); and variola major virus, strains India-1967 (VAR-IND), Bangladesh-1975 (VAR-BSH); and alastrim variola minor virus, strain Garcia-1966 (VAR-GAR), was performed. Within the left terminal region under study, an extended DNA sequence (14,171 bp), unique to CPV, has been found. Within the right region of the CPV-GRI genome two segments, which are unique to CPV DNA (1579 and 3585 bp) have been found. Numerous differences have been revealed in the genetic structure of CPV-GRI DNA regions, homologous to fragments of the genomes of the above-mentioned orthopoxvirus strains. A cluster of ORFs with structural similarity ot immunomodulatory and host range function of other poxviruses have also been detected. A comparison of the sequences of ORF B, crmA, crmB, crmC, IMP, and CHO hr genes of CPV Brighton strain (CPV-BRI) with the corresponding genes in strain GRI-90 have revealed an identity at the amino acid level ranging from 82 to 96% between the two strains. The findings are significant in light of the recent demonstration of CPV as an important poxvirus model system to probe the precise in vivo role(s) of the unique virally encoded immunomodulatory proteins. Also, the presence of a complete and intact repertoire of immunomodulatory proteins, ring canal proteins family, and host range genes indicates that CPV may have been the most ancient of all studied orthopoxviruses.
Collapse
Affiliation(s)
- S N Shchelkunov
- Department of Molecular Biology of Genomes, State Research Center of Virology and Biotechnology Vector Koitsovo, Novosibirsk Region, Russia
| | | | | | | | | | | | | |
Collapse
|
39
|
Zelko I, Kobayashi R, Honkakoski P, Negishi M. Molecular cloning and characterization of a novel nuclear protein kinase in mice. Arch Biochem Biophys 1998; 352:31-6. [PMID: 9521809 DOI: 10.1006/abbi.1998.0582] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned cDNAs which encode a mouse liver nuclear protein with an apparent molecular mass of 51 kDa, using sequences derived from a purified protein as the basis for designing specific primers. The deduced amino acid sequences revealed that the 51-kDa protein contains characteristic subdomain structures of a protein kinase. The bacterially expressed recombinant 51-kDa protein catalyzed phosphorylation of general substrates such as casein and was autophosphorylated at serine residue(s). This 51-kDa protein kinase, designated 51PK, is 40% identical to the 34-kDa protein kinase encoded by the vaccinia virus B1 gene and 25% identical to the casein kinase I isoforms, including yeast HRR25. The 51PK mRNA was expressed as two splice variants and the 51PK protein was exclusively localized in nuclei. Northern hybridization showed that 51PK mRNA was expressed in various tissues, with highest levels in testis, spleen, lung, and liver. These results, therefore, indicate that 51PK is a nuclear serine/threonine kinase and a novel distinct member of the protein kinase superfamily.
Collapse
Affiliation(s)
- I Zelko
- Laboratory of Reproductive and Developmental Toxicology, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
40
|
Nezu J, Oku A, Jones MH, Shimane M. Identification of two novel human putative serine/threonine kinases, VRK1 and VRK2, with structural similarity to vaccinia virus B1R kinase. Genomics 1997; 45:327-31. [PMID: 9344656 DOI: 10.1006/geno.1997.4938] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cDNA library enriched for human fetal-specific liver genes was constructed by suppressive subtractive hybridization. EST fls223 generated from this library was found to represent a novel putative serine/threonine (Ser/Thr) kinase. A full-length clone isolated for this gene encodes a protein of 396 amino acids. The amino acid sequence has 40% identity over 305 amino acids with the B1R Ser/Thr protein kinase of vaccinia virus. This gene has therefore been named VRK1 (vaccinia virus B1R kinase related kinase). VRK1 was also found to have sequence identity (62.0% over 481 nucleotides) to a database EST. A full-length clone for this EST was isolated and sequenced. Conceptual translation predicts a protein of 508 amino acids that, like VRK1, has similarity to B1R kinase (38.7% identity over 300 amino acids). This gene has been named VRK2. Comparison of VRK1 with VRK2 indicates that they encode structurally related putative Ser/Thr protein kinases. Northern analysis shows that expression of both genes is widespread and elevated in highly proliferative cells, such as testis, thymus, and fetal liver. B1R kinase is reported to be essential for DNA replication of vaccinia virus. The similarity of VRK1 and VRK2 to B1R indicates that these genes may have similar functions.
Collapse
Affiliation(s)
- J Nezu
- Gene Search Program, Chugai Research Institute for Molecular Medicine, 153-2 Nagai, Niihari, Ibaraki, 300-41, Japan.
| | | | | | | |
Collapse
|
41
|
Abstract
An open reading frame (ORF) with strong homology to eukaryotic serine/threonine protein kinases was found in the two Chlorella viruses SC-1A and PBCV-1. The deduced molecular weights of each putative protein kinase were 35 kDa and the predicted amino acid sequences of the two proteins were 95% identical. The ORF encoding the SC-1A protein kinase was over-expressed as a fusion protein in Escherichia coli. The recombinant fusion protein had autophosphorylation activity and could phosphorylate certain exogenous proteins. Antiserum against the recombinant fusion protein reacted with a 35 kDa protein plus three larger proteins from virus infected cells. The 35 kDa protein was a late protein; however, the 35 kDa protein was not packaged in the virion, even though virions contain protein kinase activity.
Collapse
Affiliation(s)
- Q Que
- Department of Plant Pathology, University of Nebraska, Lincoln 68583-0722, USA
| | | |
Collapse
|
42
|
Abstract
Comparison of the genomic organization of variola and vaccinia viruses has been carried out. Molecular factors of virulence of these viruses is the focus of this review. Possible roles of the genes of soluble cytokine receptors, complement control proteins, factors of virus replication, and dissemination in vivo for variola virus pathogenesis are discussed. The existence of "buffer" genes in the vaccinia virus genome is proposed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology, Vector, Koltsovo, Russia
| |
Collapse
|
43
|
Mossman K, Ostergaard H, Upton C, McFadden G. Myxoma virus and Shope fibroma virus encode dual-specificity tyrosine/serine phosphatases which are essential for virus viability. Virology 1995; 206:572-82. [PMID: 7831813 DOI: 10.1016/s0042-6822(95)80074-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sequence analysis of the genomes of the Leporipoxviruses myxoma virus and Shope fibroma virus (SFV) led to the discovery of open reading frames homologous to the vaccinia H1L gene encoding a soluble protein phosphatase with dual tyrosine/serine specificity. These viral phosphatase genes were subsequently localized to the myxoma BamHI-I fragment and the SFV BamHI-M fragment, and the resulting encoded proteins were designated I1L and M1L, respectively. The localization and orientation of the myxoma I1L and SFV M1L open reading frames within the well conserved central core of the viral genomes closely mirror that of the Orthopoxviruses vaccinia virus and variola virus. The myxoma I1L and SFV M1L phosphatases each contain the conserved tyrosine phosphatase signature sequence motif, (I/V)HCXAGXXR(S/T)G, including the active site cysteine, found previously to be essential for phosphotyrosine dephosphorylation. The vaccinia H1L phosphatase was originally shown to have the ability to dephosphorylate phosphotyrosyl and phosphoseryl residues in vitro. To assess whether this is a common feature of poxvirus phosphatases, myxoma I1L was expressed as a GST-fusion protein, purified, and shown to dephosphorylate substrates containing tyrosine and serine phosphorylated residues, in a similar fashion to vaccinia H1L. A myxoma I1L variant, in which the active site cysteine 110 was mutated to serine, was expressed in a parallel fashion to the wild-type I1L protein and found to be completely deficient in its ability to dephosphorylate both phosphotyrosine and phosphoserine amino acids. In an attempt to ascertain the biological requirement for the myxoma I1L phosphatase, we constructed a recombinant myxoma virus containing a disrupted I1L open reading frame. This I1L mutant virus was able to successfully propagate in tissue culture only in the presence of a wild-type complementing gene, and pure virus clones containing only the disrupted allele were not viable. Thus, we conclude that the myxoma I1L dual specificity phosphatase is an essential factor for virus viability.
Collapse
Affiliation(s)
- K Mossman
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
44
|
Metzger C, Michel D, Schneider K, Lüske A, Schlicht HJ, Mertens T. Human cytomegalovirus UL97 kinase confers ganciclovir susceptibility to recombinant vaccinia virus. J Virol 1994; 68:8423-7. [PMID: 7966639 PMCID: PMC237316 DOI: 10.1128/jvi.68.12.8423-8427.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We analyzed whether the phosphotransferase encoded by the UL97 open reading frame of human cytomegalovirus (HCMV) alone is sufficient to confer ganciclovir (GCV) susceptibility to a foreign virus. Two vaccinia virus recombinants (T1 and A5) containing the UL97 open reading frames from a GCV-sensitive HCMV and from a GCV-resistant strain were constructed. T1 exhibited a GCV-sensitive phenotype in plaque reduction assays, whereas A5 did not. Moreover, T1-infected cell cultures showed a strongly increased incorporation of [14C]GCV triphosphate into macromolecular DNA, compared with recombinant A5 or vaccinia virus controls, which could be inhibited by the addition of guanosine. This shows that UL97 kinase is the only additional gene product required to make vaccinia virus susceptible to GCV, and guanosine seems to be one natural substrate for the enzyme. The system described here should be very helpful for fast and detailed functional analyses of UL97 mutations found in GCV-resistant HCMV isolates.
Collapse
Affiliation(s)
- C Metzger
- Department of Virology, University of Ulm, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Shchelkunov SN, Blinov VM, Resenchuk SM, Totmenin AV, Olenina LV, Chirikova GB, Sandakhchiev LS. Analysis of the nucleotide sequence of 53 kbp from the right terminus of the genome of variola major virus strain India-1967. Virus Res 1994; 34:207-36. [PMID: 7856312 DOI: 10.1016/0168-1702(94)90125-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sequencing and computer analysis of a variola major virus strain India-1967 (VAR-IND) genome segment (53,018 bp) from the right terminal region has been carried out. Fifty-nine potential open reading frames (ORFs) of over 60 amino acid residues were identified. Structure-function organization of the VAR-IND DNA segment was compared with the previously reported sequences from the analogous genomic regions of vaccinia virus strains Copenhagen (VAC-COP) and Western Reserve (VAC-WR) and variola virus strain Harvey (VAR-HAR). Multiple differences between VAR-IND and the strains of VAC but the high identity of VAR-IND with VAR-HAR in the genetic maps are revealed. Possible functions of the predicted viral proteins and the effect of their differences on the features of orthopoxviruses are discussed.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Molecular Biology, Russian State Research Center NPO Vector, Koltsovo, Novosibirsk region
| | | | | | | | | | | | | |
Collapse
|
46
|
Lurain NS, Spafford LE, Thompson KD. Mutation in the UL97 open reading frame of human cytomegalovirus strains resistant to ganciclovir. J Virol 1994; 68:4427-31. [PMID: 8207815 PMCID: PMC236367 DOI: 10.1128/jvi.68.7.4427-4431.1994] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The same point mutation in the human cytomegalovirus UL97 open reading frame was found in three independently isolated ganciclovir-resistant mutants of strain AD169. Point mutations in the DNA polymerase genes of these strains have been previously identified (N.S. Lurain, K.D. Thompson, E.W. Holmes, and G.S. Read, J. Virol. 66:7146-7152, 1992). All three strains are, therefore, double mutants. To determine the contribution of the UL97 mutation to the high ganciclovir resistance of these mutants, the mutation from the ganciclovir-resistant strain D6/3/1 was transferred to the wild-type strain AD169 to produce the recombinant R6HS. The ganciclovir resistance of R6HS is 4-fold lower than that of D6/3/1 but 10-fold higher than that of AD169. R6HS, like AD169, is sensitive to the nucleotide analogs (S)-1-[(3-hydroxy-2-phosphonylmethoxy) propyl]adenine and (S)-1-[(3-hydroxy-2-phosphonylmethoxy)propyl]cytosine. Ganciclovir phosphorylation in R6HS-infected cells was at the same reduced level as that found in cells infected with the parental mutant D6/3/1. The same G-to-T transversion at nucleotide 1380 in the UL97 coding sequence is present in both R6HS and D6/3/1. This mutation results in the substitution of isoleucine for methionine at amino acid residue 460. In an alignment of the R6HS UL97 amino acid sequence with the amino acid sequences of a wide range of protein kinase family members, methionine 460 lies within a highly conserved region which may function in nucleotide binding and phosphate transfer.
Collapse
Affiliation(s)
- N S Lurain
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153
| | | | | |
Collapse
|
47
|
Roberts PC, Lu Z, Kutish GF, Rock DL. Three adjacent genes of African swine fever virus with similarity to essential poxvirus genes. Arch Virol 1993; 132:331-42. [PMID: 8397501 DOI: 10.1007/bf01309543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleotide sequencing of the right end of the SalIj fragment of the highly virulent Malawi Lil20/1 strain of African swine fever virus (ASFV) has revealed three adjacent genes with similarity to: serine-threonine protein kinases; members of the putative helicase superfamily SF2; and the vaccinia virus 56 kDa abortive late protein. All three genes are transcribed to the left with respect to the orientation of the ASFV genome. Gene L19IL predicts a protein similar to serine-threonine protein kinases including vaccinia virus gene B1R. Gene L19KL predicts a protein that is likely to be a nucleic acid-dependent ATPase, as it has similarity to both the poxvirus 70 kDa early transcription factor subunit and the poxvirus nucleoside triphosphatase I gene. Gene L19LL has extensive similarity to the vaccinia virus 56 kDa abortive late protein.
Collapse
Affiliation(s)
- P C Roberts
- Plum Island Animal Disease Center, USDA, ARS, NAA, Greenport, New York
| | | | | | | |
Collapse
|
48
|
Abstract
Certain large DNA viruses (e.g. herpesviruses and poxviruses) encode proteins related to cellular protein-serine/threonine kinases, and Hepatitis B virus and vesicular stomatitis virus may encode structurally different protein kinases. Other viruses activate cellular protein kinases, e.g. interferon-induced eukaryotic initiation factor-2 kinase, growth factor-induced kinases and protein kinases that regulate mitosis. Protein phosphatases are encoded by vaccinia virus and bacteriophage lambda and must also play a role in viral infection--as do cellular protein phosphatases. The functions of many of these viral enzymes remain to be determined, but they represent possible new targets for anti-viral therapy.
Collapse
Affiliation(s)
- D P Leader
- Department of Biochemistry, University of Glasgow, U.K
| |
Collapse
|
49
|
Baylis SA, Banham AH, Vydelingum S, Dixon LK, Smith GL. African swine fever virus encodes a serine protein kinase which is packaged into virions. J Virol 1993; 67:4549-56. [PMID: 8331722 PMCID: PMC237839 DOI: 10.1128/jvi.67.8.4549-4556.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nucleotide sequencing of the SalI j region of the virulent Malawi (LIL20/1) strain of African swine fever virus (ASFV) identified an open reading frame (ORF), designated j9L, with extensive similarity to the family of protein kinases. This ORF encodes a 35.1-kDa protein of 299 amino acids which shares 24.6% amino acid identity with the human pim-1 proto-oncogene and 21.0% identity with the vaccinia virus B1R-encoded protein kinase. The ASFV ORF contains the motifs characteristic of serine-threonine protein kinases, with the exception of the presumed ATP-binding site, which is poorly conserved. The ORF was expressed to high levels in Escherichia coli, and the recombinant enzyme phosphorylated a calf thymus histone protein on serine residues in vitro. An antibody raised to an amino-terminal peptide of the ASFV protein kinase was reactive with the recombinant protein in Western immunoblot analyses and was used to demonstrate the presence of the protein kinase in ASF virions.
Collapse
Affiliation(s)
- S A Baylis
- Sir William Dunn School of Pathology, University of Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Graves P, Haas D, Hagedorn C, DePaoli-Roach A, Roach P. Molecular cloning, expression, and characterization of a 49-kilodalton casein kinase I isoform from rat testis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53265-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|