1
|
Rahman SMK, Hussain Z, Morito K, Takahashi N, Sikder MM, Tanaka T, Ohta KI, Ueno M, Takahashi H, Yamamoto T, Murakami M, Uyama T, Ueda N. Formation of N-acyl-phosphatidylethanolamines by cytosolic phospholipase A 2ε in an ex vivo murine model of brain ischemia. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159222. [PMID: 35988872 DOI: 10.1016/j.bbalip.2022.159222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
N-Acyl-phosphatidylethanolamines (NAPEs), a minor class of membrane glycerophospholipids, accumulate along with their bioactive metabolites, N-acylethanolamines (NAEs) during ischemia. NAPEs can be formed through N-acylation of phosphatidylethanolamine by cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) or members of the phospholipase A and acyltransferase (PLAAT) family. However, the enzyme responsible for the NAPE production in brain ischemia has not yet been clarified. Here, we investigated a possible role of cPLA2ε using cPLA2ε-deficient (Pla2g4e-/-) mice. As analyzed with brain homogenates of wild-type mice, the age dependency of Ca2+-dependent NAPE-forming activity showed a bell-shape pattern being the highest at the first week of postnatal life, and the activity was completely abolished in Pla2g4e-/- mice. However, liquid chromatography-tandem mass spectrometry revealed that the NAPE levels of normal brain were similar between wild-type and Pla2g4e-/- mice. In contrast, post-mortal accumulations of NAPEs and most species of NAEs were only observed in decapitated brains of wild-type mice. These results suggested that cPLA2ε is responsible for Ca2+-dependent formation of NAPEs in the brain as well as the accumulation of NAPEs and NAEs during ischemia, while other enzyme(s) appeared to be involved in the maintenance of basal NAPE levels.
Collapse
Affiliation(s)
- S M Khaledur Rahman
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan; Department of Pathology, McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katsuya Morito
- Department of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Naoko Takahashi
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | | | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Kagawa University School of Medicine, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Kagawa University School of Medicine, Kagawa, Japan
| | - Hiroo Takahashi
- Department of Molecular Neurobiology, Kagawa University School of Medicine, Kagawa, Japan
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Kagawa University School of Medicine, Kagawa, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan.
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan.
| |
Collapse
|
2
|
Duncan RS, Riordan SM, Hall CW, Payne AJ, Chapman KD, Koulen P. N-acylethanolamide metabolizing enzymes are upregulated in human neural progenitor-derived neurons exposed to sub-lethal oxidative stress. Front Cell Neurosci 2022; 16:902278. [PMID: 36003139 PMCID: PMC9393304 DOI: 10.3389/fncel.2022.902278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
N-acyl amides (NAAs) are a class of lipids that consist of an acyl group N-linked to an amino acid, neurotransmitter, taurine or ethanolamide group (N-acylethanolamines or NAEs) and include some endocannabinoids (eCB) such as anandamide. These lipids are synthesized in a wide variety of organisms and in multiple cell types, including neurons. NAEs are involved in numerous cellular and physiological processes and their concentrations are elevated in response to ischemia and physical trauma to play a role in neuroprotection. The neuroprotective properties of eCB NAEs make the protein targets of these compounds attractive targets for clinical intervention for a variety of conditions. The most promising of these targets include cannabinoid receptor type 1 (CB1), cannabinoid receptor type 2 (CB2), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD). Further characterization of these targets in a more contemporary model system of neurodegeneration and neuroprotection will allow us to fully describe their role and mechanism of action in neuroprotection against oxidative stress leading to better utilization in the clinical setting. Human stem cell-derived or human neural progenitor cell-derived cells, such as ReN cells, have become more utilized for the study of human neuronal development and neurodegenerative diseases. ReN cells can be easily differentiated thereby circumventing the need for using transformed cell lines and primary neurons as cell model systems. In this study, we determined whether ReN cells, a superior cell model system for studying neurodevelopment, differentiation, and neuroprotection, express proteins involved in canonical eCB NAE signaling and whether oxidative stress can induce their expression. We determined that sublethal oxidative stress upregulates the expression of all eCB proteins tested. In addition, we determined that oxidative stress increases the nuclear localization of FAAH, and to a lesser extent, NAAA and NAPE-PLD. This study is a first step toward determining how oxidative stress affects CB1, CB2, FAAH, NAAA, and NAPE-PLD expression and their potential defense against oxidative stress. As such, our data is important for further determining the role of eCB metabolizing proteins and eCB receptors against oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Sean M. Riordan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Conner W. Hall
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Andrew J. Payne
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Kent D. Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
3
|
Binte Mustafiz SS, Uyama T, Morito K, Takahashi N, Kawai K, Hussain Z, Tsuboi K, Araki N, Yamamoto K, Tanaka T, Ueda N. Intracellular Ca 2+-dependent formation of N-acyl-phosphatidylethanolamines by human cytosolic phospholipase A 2ε. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158515. [PMID: 31473348 DOI: 10.1016/j.bbalip.2019.158515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/16/2022]
Abstract
N-Acyl-phosphatidylethanolamines (NAPEs) are known to be precursors of bioactive N-acylethanolamines (NAEs), including the endocannabinoid arachidonoylethanolamide (anandamide) and anti-inflammatory palmitoylethanolamide. In mammals, NAPEs are produced by N-acyltransferases, which transfer an acyl chain from the sn-1 position of glycerophospholipid to the amino group of phosphatidylethanolamine (PE). Recently, the ɛ isoform of cytosolic phospholipase A2 (cPLA2ɛ) was found to be Ca2+-dependent N-acyltransferase. However, it was poorly understood which types of phospholipids serve as substrates in living cells. In the present study, we established a human embryonic kidney 293 cell line, in which doxycycline potently induces human cPLA2ɛ, and used these cells to analyze endogenous substrates and products of cPLA2ɛ with liquid chromatography-tandem mass spectrometry. When treated with doxycycline and Ca2+ ionophore, the cells produced various species of diacyl- and alkenylacyl-types of NAPEs as well as NAEs in large quantities. Moreover, the levels of diacyl- and alkenylacyl-types of PEs and diacyl-phosphatidylcholines (PCs) decreased, while those of lysophosphatidylethanolamines and lysophosphatidylcholines increased. These results suggested that cPLA2ɛ Ca2+-dependently produces NAPEs by utilizing endogenous diacyl- and alkenylacyl-types of PEs as acyl acceptors and diacyl-type PCs and diacyl-type PEs as acyl donors.
Collapse
Affiliation(s)
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Katsuya Morito
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Naoko Takahashi
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Katsuhisa Kawai
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Kei Yamamoto
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan; PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Tamotsu Tanaka
- Institute of Biomedical Sciences, Tokushima University Graduate School, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
4
|
Gouilleux B, Christensen NV, Malmos KG, Vosegaard T. Analytical Evaluation of Low-Field 31P NMR Spectroscopy for Lipid Analysis. Anal Chem 2019; 91:3035-3042. [PMID: 30657309 DOI: 10.1021/acs.analchem.8b05416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the potential of 31P NMR with simple, maintenance-free benchtop spectrometers to probe phospholipids in complex mixtures. 31P NMR-based lipidomics has become an important topic in a wide range of applications in food- and health-sciences, and the continuous improvements of compact, maintenance- and cryogen-free instruments opens new opportunities for NMR routine analyses. A prior milestone is the evaluation of the analytical performance provided by 31P NMR at low magnetic field. To address this, we assess the ability of state-of-the-art benchtop NMR spectrometers to detect, identify, and quantify several types of phospholipids in mixtures. Relying on heteronuclear cross-polarization experiments, phospholipids can be detected in 2 h with a limit of detection of 0.5 mM at 1 T and 0.2 mM at 2 T, while the headgroups of phosphatidylcholine (PC), phosphatidyl-ethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and phosphatidyl-glycerol (PG) can be unambiguously assigned based on 2D 1H-31P total correlated spectroscopy (TOCSY) spectra. Furthermore, two quantitative methods to obtain absolute concentrations are proposed and discussed, and the performance is evaluated regarding precision and accuracy.
Collapse
Affiliation(s)
- Boris Gouilleux
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Nichlas Vous Christensen
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Kirsten G Malmos
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center and Department of Chemistry , Aarhus University , Gustav Wieds Vej 14 , DK-8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Li J, Vosegaard T, Guo Z. Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Prog Lipid Res 2017; 68:37-56. [PMID: 28911967 DOI: 10.1016/j.plipres.2017.09.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/25/2017] [Accepted: 09/11/2017] [Indexed: 02/01/2023]
Abstract
The role of lipids in cell, tissue, and organ physiology is crucial; as many diseases, including cancer, diabetes, neurodegenerative, and infectious diseases, are closely related to absorption and metabolism of lipids. Mass spectrometry (MS) based methods are the most developed powerful tools to study the synthetic pathways and metabolic networks of cellular lipids in biological systems; leading to the birth of an emerging subject lipidomics, which has been extensively reviewed. Nuclear magnetic resonance (NMR), another powerful analytical tool, which allows the visualization of single atoms and molecules, is receiving increasing attention in lipidomics analyses. However, very little work focusing on lipidomic studies using NMR has been critically reviewed. This paper presents a first comprehensive summary of application of 1H, 13C &31P NMR in lipids and lipidomics analyses. The scientific basis, principles and characteristic diagnostic peaks assigned to specific atoms/molecular structures of lipids are presented. Applications of 2D NMR in mapping and monitoring of the components and their changes in complex lipids systems, as well as alteration of lipid profiling over disease development are also reviewed. The applications of NMR lipidomics in diseases diagnosis and food adulteration are exemplified.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Engineering, Faculty of Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark.
| | - Thomas Vosegaard
- Danish Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Zheng Guo
- Department of Engineering, Faculty of Science, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark.
| |
Collapse
|
6
|
Mass spectrometry imaging of biomarker lipids for phagocytosis and signalling during focal cerebral ischaemia. Sci Rep 2016; 6:39571. [PMID: 28004822 PMCID: PMC5177920 DOI: 10.1038/srep39571] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
Focal cerebral ischaemia has an initial phase of inflammation and tissue injury followed by a later phase of resolution and repair. Mass spectrometry imaging (desorption electrospray ionization and matrix assisted laser desorption ionization) was applied on brain sections from mice 2 h, 24 h, 5d, 7d, and 20d after permanent focal cerebral ischaemia. Within 24 h, N-acyl-phosphatidylethanolamines, lysophosphatidylcholine, and ceramide accumulated, while sphingomyelin disappeared. At the later resolution stages, bis(monoacylglycero)phosphate (BMP(22:6/22:6)), 2-arachidonoyl-glycerol, ceramide-phosphate, sphingosine-1-phosphate, lysophosphatidylserine, and cholesteryl ester appeared. At day 5 to 7, dihydroxy derivates of docosahexaenoic and docosapentaenoic acid, some of which may be pro-resolving mediators, e.g. resolvins, were found in the injured area, and BMP(22:6/22:6) co-localized with the macrophage biomarker CD11b, and probably with cholesteryl ester. Mass spectrometry imaging can visualize spatiotemporal changes in the lipidome during the progression and resolution of focal cerebral inflammation and suggests that BMP(22:6/22:6) and N-acyl-phosphatidylethanolamines can be used as biomarkers for phagocytizing macrophages/microglia cells and dead neurones, respectively.
Collapse
|
7
|
Kleberg K, Hassing HA, Hansen HS. Classical endocannabinoid-like compounds and their regulation by nutrients. Biofactors 2014; 40:363-72. [PMID: 24677570 DOI: 10.1002/biof.1158] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/08/2022]
Abstract
Endocannabinoid-like compounds are structurally related to the true endocannabinoids but do not contain highly unsaturated fatty acids, and they do not bind the cannabinoid receptors. The classical endocannabinoid-like compounds include N-acylethanolamines and 2-monoacylglycerols, and their structural resemblance to the endocannabinoids makes them players in the endocannabinoid system, where they can interfere with the actions of the true endocannabinoids, because they in several cases engage the same synthesizing and degrading enzymes. In addition they have pharmacological actions of their own, which are particularly interesting in a nutritional and metabolic context. Exogenously supplied oleoylethanolamide, palmitoylethanolamide, and linoleoylethanolamide have anorexic effects, and the endogenous formation of these N-acylethanolamines in the small intestine may serve an important role in regulating food intake, through signaling via PPARα and the vagus nerve to the brain appetite center. A chronic high-fat diet will decrease intestinal levels of these anorectic N-acylethanolamines and this may contribute to the hyperphagic effect of high-fat diet; 2-monoacylglycerols mediate endocrine responses in the small intestine; probably trough activation of GPR119 on enteroendocrine cells, and diet-derived 2-monoacylglycerols, for example, 2-oleoylglycerol and 2-palmitoylglycerol might be important for intestinal fat sensing. Whether these 2-monoacylglycerols have signaling functions in other tissues is unclear at present.
Collapse
Affiliation(s)
- Karen Kleberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Esposito E, Cordaro M, Cuzzocrea S. Roles of fatty acid ethanolamides (FAE) in traumatic and ischemic brain injury. Pharmacol Res 2014; 86:26-31. [PMID: 24874648 DOI: 10.1016/j.phrs.2014.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/30/2022]
Abstract
Ethanolamides of long-chain fatty acids are a class of endogenous lipid mediators generally referred to as N-acylethanolamines (NAEs). NAEs include anti-inflammatory and analgesic palmitoylethanolamide, anorexic oleoylethanolamide, stearoylethanolamide, and the endocannabinoid anandamide. Traumatic brain injury (TBI), associated with a high morbidity and mortality and no specific therapeutic treatment, has become a pressing public health and medical problem. TBI is a complex process evoking systemic immune responses as well as direct local responses in the brain tissues. The direct (primary) damage disrupts the blood-brain barrier (BBB), injures the neurons and initiates a cascade of inflammatory reactions including chemokine production and activation of resident immune cells. The effect of TBI is not restricted to the brain; it can cause multi-organ damage and evoke systemic immune response with cytokine and chemokine production. This facilitates the recruitment of immune cells to the site of injury and progression of the inflammatory reaction. Depending on severity, TBI induces immediate neuropathologic effects that, for the mildest form, may be transient; however, with increasing severity, these injuries cause cumulative neural damage and degeneration. Moreover, TBI leads to increased catabolism of phospholipids, resulting in a series of phospholipid breakdown products, some of which have potent biological activity. Ischemia-reperfusion (I/R) injury resulting from stroke leads to metabolic distress, oxidative stress and neuroinflammation, making it likely that multiple therapeutic intervention strategies may be needed for successful treatment. Current therapeutic strategies for stroke need complimentary neuroprotective treatments to provide a better outcome. Prior studies on NAEs have demonstrated neurotrophic/neuroprotective activities across a broad spectrum of cellular and animal models of neurodegenerative and acute cerebrovascular disorders. The present review will summarize our knowledge of the biological role of these lipid signaling molecules in brain and highlights their therapeutic effect from multipotential actions on neuronal cell death and neuroinflammatory pathways.
Collapse
Affiliation(s)
- Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
9
|
Wellner N, Diep TA, Janfelt C, Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:652-62. [DOI: 10.1016/j.bbalip.2012.08.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/22/2022]
|
10
|
Ahmad A, Genovese T, Impellizzeri D, Crupi R, Velardi E, Marino A, Esposito E, Cuzzocrea S. Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats. Brain Res 2012; 1477:45-58. [PMID: 23046519 DOI: 10.1016/j.brainres.2012.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
Abstract
Stroke is the third leading cause of death and the leading cause of long-term disability in adults. Current therapeutic strategies for stroke, including thrombolytic drugs, such as tissue plasminogen activator offer great promise for the treatment, but complimentary neuroprotective treatments are likely to provide a better outcome. To counteract the ischemic brain injury in mice, a new therapeutic approach has been employed by using palmitoylethanolamide (PEA). PEA is one of the members of N-acyl-ethanolamine family maintain not only redox balance but also inhibit the mechanisms of secondary injury on ischemic brain injury. Treatment of the middle cerebral artery occlusion (MCAo)-induced animals with PEA reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride (TTC) staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level (assayed by Bax and Bcl-2) further support the efficacy of PEA therapy. We demonstrated that PEA treatment blocked infiltration of astrocytes and restored MCAo-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, growth factors (BDNF and GDNF) and GFAP. PEA also inhibited the MCAo-mediated increased expression of pJNK, NF-κB, and degradation of IκB-α. PEA-treated injured animals improved neurobehavioral functions as evaluated by motor deficits. Based on these findings we propose that PEA would be useful in lowering the risk of damage or improving function in ischemia-reperfusion brain injury-related disorders.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Janfelt C, Wellner N, Leger P, Kokesch‐Himmelreich J, Hansen SH, Charriaut‐Marlangue C, Hansen HS. Visualization by mass spectrometry of 2‐dimensional changes in rat brain lipids, including
N
‐acylphosphatidylethanolamines, during neonatal brain ischemia. FASEB J 2012; 26:2667-73. [DOI: 10.1096/fj.11-201152] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Christian Janfelt
- Department of Pharmaceutics and Analytical ChemistryUniversity of CopenhagenDenmark
| | - Niels Wellner
- Department of Pharmacology and PharmacotherapyFaculty of Pharmaceutical SciencesUniversity of CopenhagenDenmark
| | - Pierre‐Louis Leger
- Institut National de la Santé et de la Recherche Médicale (INSERM) U676Hôpital Robert DebréUniversite‐Denis Diderot‐Paris 7ParisFrance
| | | | - Steen Honoré Hansen
- Department of Pharmaceutics and Analytical ChemistryUniversity of CopenhagenDenmark
| | - Christiane Charriaut‐Marlangue
- Institut National de la Santé et de la Recherche Médicale (INSERM) U676Hôpital Robert DebréUniversite‐Denis Diderot‐Paris 7ParisFrance
| | - Harald Severin Hansen
- Department of Pharmacology and PharmacotherapyFaculty of Pharmaceutical SciencesUniversity of CopenhagenDenmark
| |
Collapse
|
12
|
Garg P, Duncan RS, Kaja S, Zabaneh A, Chapman KD, Koulen P. Lauroylethanolamide and linoleoylethanolamide improve functional outcome in a rodent model for stroke. Neurosci Lett 2011; 492:134-8. [PMID: 21296126 DOI: 10.1016/j.neulet.2011.01.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/26/2011] [Accepted: 01/28/2011] [Indexed: 11/19/2022]
Abstract
Ischemic stroke is a significant health problem affecting over 6 million people in the United States alone. In addition to surgical and thrombolytic therapeutic strategies for stroke, neuroprotective therapies may offer additional benefit. N-acylethanolamines (NAEs) are signaling lipids whose synthesis is upregulated in response to ischemia, suggesting that they may be neuroprotective. To date only three NAEs, arachidonylethanolamide (NAE 20:4), palmitoylethanolamide (NAE 16:0) and oleoylethanolamide (NAE 18:1) have shown to exert neuroprotective effect in animal models for stroke. Here, we describe neuroprotective effects of the hitherto uncharacterized NAEs, lauroylethanolamide (NAE 12:0) and linoleoylethanolamide (NAE 18:2) in a middle cerebral artery occlusion model of stroke. Pretreatment with NAE 18:2 prior to ischemia/reperfusion (I/R) injury resulted in both significantly reduced cortical infarct volume and improved functional outcome as determined using the neurological deficit score. NAE 12:0 improved neurological deficits without a significant reduction lesion size. Our results suggest that NAEs, as a whole, provide neuroprotection during I/R injury and may have therapeutic benefit when used as complementary treatment with other therapies to improve stroke outcome.
Collapse
Affiliation(s)
- Puja Garg
- Vision Research Center and Department of Ophthalmology, School of Medicine, University of Missouri - Kansas City, Kansas City, MO 64108, United States
| | | | | | | | | | | |
Collapse
|
13
|
Zaccagnino P, Corcelli A, Baronio M, Lorusso M. Anandamide inhibits oxidative phosphorylation in isolated liver mitochondria. FEBS Lett 2010; 585:429-34. [PMID: 21187088 DOI: 10.1016/j.febslet.2010.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 01/08/2023]
Abstract
A study on the effect of anandamide (AEA) in energy coupling of rat liver mitochondria is presented. Micromolar concentrations of AEA, while almost ineffective on substrate supported oxygen consumption rate and on uncoupler stimulated respiration, strongly inhibited the respiratory state III. AEA did not change the rate and the extent of substrate generated membrane potential, but markedly delayed rebuilding by respiration of the potential collapsed by ADP addition. Overall, these data suggest that anandamide inhibits the oxidative phosphorylation process. Direct measurement of the F(o)F(1) ATP synthase activity showed that the oligomycin sensitive ATP synthesis was inhibited by AEA, (IC(50), 2.5 μM), while the ATP hydrolase activity was unaffected. Consistently, AEA did not change the membrane potential generated by ATP hydrolysis.
Collapse
Affiliation(s)
- Patrizia Zaccagnino
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Policlinico, Bari, Italy
| | | | | | | |
Collapse
|
14
|
Hansen HS. Palmitoylethanolamide and other anandamide congeners. Proposed role in the diseased brain. Exp Neurol 2010; 224:48-55. [PMID: 20353771 DOI: 10.1016/j.expneurol.2010.03.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
Acylethanolamides are formed in the brain "on demand" from membrane phospholipids called N-acylated phosphatidylethanolamines. The acylethanolamides are signaling molecules of lipid nature, and this lipofilicity suggests an autocrine function. The acylethanolamides include palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamide (SEA), and several other quantitative minor species including anandamide (= arachidonoylethanolamide). PEA and OEA can activate several different receptors and inhibit some ion channels, e.g., PPARalpha, vanilloid receptor, K(+) channels (Kv4.3, Kv1.5), and OEA can activate GPR119 and inhibit ceramidases. Targets for SEA are less clear, but it has some cannabimimetic actions in rats in vivo. All acylethanolamides accumulate during neuronal injury, and injected OEA has neuroprotective effects, and PEA has anti-inflammatory effects as studied in the peripheral system. Several of the pharmacological effects seem to be mediated via activation of PPARalpha. Recently, injected OEA has been found to consolidate memories in rats. Inhibitors of the acylethanolamide-degrading enzyme FAAH can increase levels of all acylethanolamides including annandamide, and some of the pharmacological effects caused by these inhibitors may be explained by increased cerebral levels of OEA and PEA, e.g., suppression of nicotine-induced activation of dopamine neurons. Furthermore, through activation of PPARalpha, OEA and PEA may stimulate neurosteroid synthesis, thereby modulating several biological functions mediated by GABA(A) receptors. The existence of acylethanolamides in the mammalian brain has been known for decades, but it is first within the last few years that the putative biological functions of the three most abundant acylethanolamides species are starting to emerge.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Pharmacology & Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
15
|
Intracellular mechanisms of N-acylethanolamine-mediated neuroprotection in a rat model of stroke. Neuroscience 2009; 166:252-62. [PMID: 19963043 DOI: 10.1016/j.neuroscience.2009.11.069] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/11/2009] [Accepted: 11/29/2009] [Indexed: 11/23/2022]
Abstract
N-acyl ethanolamines (NAEs) are endogenous lipids that are synthesized in response to tissue injury, including ischemia and stroke, suggesting they may exhibit neuroprotective properties. We hypothesized that NAE 16:0 (palmitoylethanolamine) is neuroprotective against ischemia-reperfusion injury in rats, a widely employed model of stroke, and that neuroprotection is mediated through an intracellular mechanism independent of known NAE receptors. Administration of NAE 16:0 from 30 min before to 2 h after stroke significantly reduced cortical and subcortical infarct volume, and correlated with an improvement of the neurological phenotype, as assessed by the neurological deficit score. We here show that NAE 16:0-mediated neuroprotection was independent of cannabinoid (CB1) and vanilloid (VR1) receptor activation, known NAE receptors on the plasma membrane, as determined by inclusion of specific inhibitors. The inclusion of an NAE uptake inhibitor (AM404), however, completely reversed NAE 16:0-mediated neuroprotection, suggesting that NAE 16:0s effects are through an intracellular mechanism. NAE 16:0 produced a significant reduction in the number of cells undergoing apoptosis and reversed ischemia-induced upregulation of several proteins, including inducible nitric oxide synthase and transcription factor NFkappaB. Our findings suggest that NAE 16:0-mediated neuroprotection is due to the reduction of neuronal apoptosis and inflammation in the brain.
Collapse
|
16
|
Hansen HS, Diep TA. N-acylethanolamines, anandamide and food intake. Biochem Pharmacol 2009; 78:553-60. [PMID: 19413995 DOI: 10.1016/j.bcp.2009.04.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 02/06/2023]
Abstract
Anandamide and the other N-acylethanolamines, e.g. oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and linoleoylethanolamide (LEA), may be formed by several enzymatic pathways from their precursors, which are the N-acylated ethanolamine phospholipids. The exact enzymatic pathways involved in their biosynthesis in specific tissues are not clarified. It has been suggested that endogenous anandamide could stimulate food intake by activation of cannabinoid receptors in the brain and/or in the intestinal tissue. On the other hand, endogenous OEA and PEA have been suggested to inhibit food intake by acting on receptors in the intestine. At present, there is no clear role for endogenous anandamide in controlling food intake via cannabinoid receptors, neither centrally nor in the gastrointestinal tract. However, OEA, PEA and perhaps also LEA may be involved in regulation of food intake by selective prolongation of feeding latency and post-meal interval. These N-acylethanolamines seem to be formed locally in the intestine, where they can activate PPARalpha located in close proximity to their site of synthesis. The rapid onset of OEA response and its reliance on an intact vagus nerve suggests that activation of PPARalpha does not result in formation of a transcription-dependent signal but must rely on an unidentified non-genomic signal that translates to activation of vagal afferents. Whether GPR119, TRPV1 and/or intestinal ceramide levels also contribute to the anorectic and weight-reducing effect of exogenous OEA is less clear. Prolonged intake of dietary fat (45 energy%) may promote over-consumption of food by decreasing the endogenous levels of OEA, PEA and LEA in the intestine.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Pharmacology & Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
17
|
Butt C, Alptekin A, Shippenberg T, Oz M. Endogenous cannabinoid anandamide inhibits nicotinic acetylcholine receptor function in mouse thalamic synaptosomes. J Neurochem 2008; 105:1235-43. [PMID: 18194436 DOI: 10.1111/j.1471-4159.2008.05225.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of the endogenous cannabinoid anandamide [arachidonylethanolamide (AEA)] on the function of nicotinic acetylcholine receptor (nAChR) were investigated using the 86Rb+ efflux assay in thalamic synaptosomes. AEA reversibly inhibited 86Rb+ efflux induced by 300 microM ACh with an IC50 value of 0.9 +/- 2 microM. Pre-treatment with the cannabinoid (CB1) receptor antagonist SR141716A (1 microM), the CB2 receptor antagonist SR144528 (1 microM), or pertussis toxin (0.2 mg/mL) did not alter the inhibitory effects of AEA, suggesting that known CB receptors are not involved in AEA inhibition of nAChRs. AEA inhibition of 86Rb+ efflux was not reversed by increasing acetylcholine (ACh) concentrations. In radioligand binding studies, the specific binding of [3H]-nicotine was not altered in the presence of AEA, indicating that AEA inhibits the function of nAChR in a non-competitive manner. Neither the amidohydrolase inhibitor phenylmethylsulfonyl fluoride (0.2 mM) nor the cyclooxygenase inhibitor, indomethacin, (5 microM) affected AEA inhibition of nAChRs, suggesting that the effect of AEA is not mediated by its metabolic products. Importantly, the extent of AEA inhibition of 86Rb+ efflux was significantly attenuated by the absence of 1% fatty acid free bovine serum albumin pre-treatment, supporting previous findings that fatty acid-like compounds modulate the activity of nAChRs. Collectively, the results indicate that AEA inhibits the function of nAChRs in thalamic synaptosomes via a CB-independent mechanism and that the background activity of these receptors is affected by fatty acids and AEA.
Collapse
Affiliation(s)
- Christopher Butt
- Neuroscience Discovery, Martek Biosciences, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
18
|
Astarita G, Ahmed F, Piomelli D. Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. J Lipid Res 2008; 49:48-57. [DOI: 10.1194/jlr.m700354-jlr200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Saito M, Chakraborty G, Mao RF, Wang R, Cooper TB, Vadasz C, Saito M. Ethanol alters lipid profiles and phosphorylation status of AMP-activated protein kinase in the neonatal mouse brain. J Neurochem 2007; 103:1208-18. [DOI: 10.1111/j.1471-4159.2007.04836.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Kamlekar RK, Satyanarayana S, Marsh D, Swamy MJ. Miscibility and phase behavior of N-acylethanolamine/diacylphosphatidylethanolamine binary mixtures of matched acyl chainlengths (N=14, 16). Biophys J 2007; 92:3968-77. [PMID: 17369415 PMCID: PMC1868988 DOI: 10.1529/biophysj.106.096610] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The miscibility and phase behavior of hydrated binary mixtures of two N-acylethanolamines (NAEs), N-myristoylethanolamine (NMEA), and N-palmitoylethanolamine (NPEA), with the corresponding diacyl phosphatidylethanolamines (PEs), dimyristoylphosphatidylethanolamine (DMPE), and dipalmitoylphosphatidylethanolamine (DPPE), respectively, have been investigated by differential scanning calorimetry (DSC), spin-label electron spin resonance (ESR), and (31)P-NMR spectroscopy. Temperature-composition phase diagrams for both NMEA/DMPE and NPEA/DPPE binary systems were established from high sensitivity DSC. The structures of the phases involved were determined by (31)P-NMR spectroscopy. For both systems, complete miscibility in the fluid and gel phases is indicated by DSC and ESR, up to 35 mol % of NMEA in DMPE and 40 mol % of NPEA in DPPE. At higher contents of the NAEs, extensive solid-fluid phase separation and solid-solid immiscibility occur depending on the temperature. Characterization of the structures of the mixtures formed with (31)P-NMR spectroscopy shows that up to 75 mol % of NAE, both DMPE and DPPE form lamellar structures in the gel phase as well as up to at least 65 degrees C in the fluid phase. ESR spectra of phosphatidylcholine spin labeled at the C-5 position in the sn-2 acyl chain present at a probe concentration of 1 mol % exhibit strong spin-spin broadening in the low-temperature region for both systems, suggesting that the acyl chains pack very tightly and exclude the spin label. However, spectra recorded in the fluid phase do not exhibit any spin-spin broadening and indicate complete miscibility of the two components. The miscibility of NAE and diacyl PE of matched chainlengths is significantly less than that found earlier for NPEA and dipalmitoylphosphatidylcholine, an observation that is consistent with the notion that the NAEs are most likely stored as their precursor lipids (N-acyl PEs) and are generated only when the system is subjected to membrane stress.
Collapse
|
21
|
|
22
|
Kamlekar RK, Swamy MJ. Molecular packing and intermolecular interactions in two structural polymorphs of N-palmitoylethanolamine, a type 2 cannabinoid receptor agonist. J Lipid Res 2006; 47:1424-33. [PMID: 16609146 DOI: 10.1194/jlr.m600043-jlr200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular structure, packing properties, and intermolecular interactions of two structural polymorphs of N-palmitoylethanolamine (NPEA) have been determined by single-crystal X-ray diffraction. Polymorphs alpha and beta crystallized in monoclinic space group P2(1)/c and orthorhombic space group Pbca, respectively. In both polymorphs, NPEA molecules are organized in a tail-to-tail manner, resembling a bilayer membrane. Although the molecular packing in polymorph alpha is similar to that in N-myristoylethanolamine and N-stearoylethanolamine, polymorph beta is a new form. The acyl chains in both polymorphs are tilted by approximately 35 degrees with respect to the bilayer normal, with their hydrocarbon moieties packed in an orthorhombic subcell. In both structures, the hydroxy group of NPEA forms two hydrogen bonds with the hydroxy groups of molecules in the opposite leaflet, resulting in extended, zig-zag type H-bonded networks along the b-axis in polymorph alpha and along the a-axis in polymorph beta. Additionally, the amide N-H and carbonyl groups of adjacent molecules are involved in N-H...O hydrogen bonds that connect adjacent molecules along the b-axis and a-axis, respectively, in alpha and beta. Whereas in polymorph alpha the L-shaped NPEA molecules in opposite layers are arranged to yield a Z-like organization, in polymorph beta one of the two NPEA molecules is rotated 180 degrees , leading to a W-like arrangement. Lattice energy calculations indicate that polymorph alpha is more stable than polymorph beta by approximately 2.65 kcal/mol.
Collapse
|
23
|
Ueda N, Okamoto Y, Morishita J. N-acylphosphatidylethanolamine-hydrolyzing phospholipase D: a novel enzyme of the beta-lactamase fold family releasing anandamide and other N-acylethanolamines. Life Sci 2006; 77:1750-8. [PMID: 15949819 DOI: 10.1016/j.lfs.2005.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-acylethanolamines (NAEs) are a lipid class present in brain and other animal tissues and contains anandamide (an endocannabinoid) and other bioactive substances. NAEs are formed from N-acylphosphatidylethanolamines (NAPEs) by a phospholipase D (PLD)-type enzyme abbreviated to NAPE-PLD. Although this enzyme has been recognized for more than 20 years, its molecular cloning has only recently been achieved by us. We highly purified NAPE-PLD from the particulate fraction of rat heart, and on the basis of peptide sequences with the purified enzyme cloned its cDNA from mouse, rat and human. The deduced primary structures revealed no homology with any PLDs so far reported, but was suggested to belong to the beta-lactamase fold family. When overexpressed in COS-7 cells, the NAPE-PLD activity increased about 1000-fold in comparison with the endogenous activity. The recombinant enzyme generated various long-chain NAEs including anandamide from their corresponding NAPEs at similar rates. However, the enzyme was inactive with phosphatidylethanolamine and phosphatidylcholine and did not catalyze transphosphatidylation, a reaction characteristic of PLD. The enzyme was widely expressed in murine organs with higher levels in brain, testis and kidney. The existence of NAPE-PLD specifically hydrolyzing NAPEs to NAEs emphasizes physiological significance of NAEs including anandamide in brain and other tissues.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | | | | |
Collapse
|
24
|
Wasilewski M, Wojtczak L. Effects ofN-acylethanolamines on the respiratory chain and production of reactive oxygen species in heart mitochondria. FEBS Lett 2005; 579:4724-8. [PMID: 16099457 DOI: 10.1016/j.febslet.2005.07.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 06/27/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Long-chain N-acylethanolamines (NAEs) have been found to uncouple oxidative phosphorylation and to inhibit uncoupled respiration of rat heart mitochondria [Wasilewski, M., Wieckowski, M.R., Dymkowska, D. and Wojtczak, L. (2004) Biochim. Biophys. Acta 1657, 151-163]. The aim of the present work was to investigate in more detail the mechanism of the inhibitory effects of NAEs on the respiratory chain. In connection with this, we also investigated a possible action of NAEs on the generation of reactive oxygen species (ROS) by respiring rat heart mitochondria. It was found that unsaturated NAEs, N-oleoylethanolamine (N-Ole) and, to a greater extent, N-arachidonoylethanolamine (N-Ara), inhibited predominantly complex I of the respiratory chain, with a much weaker effect on complexes II and III, and no effect on complex IV. Saturated N-palmitoylethanolamine had a much smaller effect compared to unsaturated NAEs. N-Ara and N-Ole were found to decrease ROS formation, apparently due to their uncoupling action. However, under specific conditions, N-Ara slightly but significantly stimulated ROS generation in uncoupled conditions, probably due to its inhibitory effect on complex I. These results may contribute to our better understanding of physiological roles of NAEs in protection against ischemia and in induction of programmed cell death.
Collapse
Affiliation(s)
- Michał Wasilewski
- Nencki Institute of Experimental Biology, Pasteura 3, PL-02-093 Warsaw, Poland
| | | |
Collapse
|
25
|
Wasilewski M, Wieckowski MR, Dymkowska D, Wojtczak L. Effects of N-acylethanolamines on mitochondrial energetics and permeability transition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1657:151-63. [PMID: 15238272 DOI: 10.1016/j.bbabio.2004.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 05/10/2004] [Accepted: 05/11/2004] [Indexed: 11/26/2022]
Abstract
Effects of N-acylethanolamines (NAEs): N-arachidonoylethanolamine (anandamide), N-oleoylethanolamine and N-palmitoylethanolamine, on energy coupling and permeability of rat heart mitochondria were investigated. In nominally Ca2+-free media, these compounds exerted a weak protonophoric effect manifested by dissipation of the transmembrane potential and stimulation of resting state respiration. The strongest action was exhibited by N-arachidonoylethanolamine, followed by N-oleoylethanolamine, whereas N-palmitoylethanolamine was almost inactive. These protonophoric effects were resistant to cyclosporin A (CsA) and were much weaker than those of corresponding nonesterified fatty acids. In uncoupled mitochondria N-arachidonoylethanolamine and N-oleoylethanolamine partly inhibited mitochondrial respiration with glutamate and succinate but not with tetramethyl-p-phenylenediamine (TMPD) plus ascorbate as respiratory substrates. In mitochondria preloaded with small amounts of Ca2+, NAEs produced a much stronger dissipation of the membrane potential and a release of accumulated calcium, both effects being inhibited by CsA, indicative for opening of the mitochondrial permeability transition pore (PTP). Again, the potency of this action was N-arachidonoylethanolamine>N-oleoylethanolamine>N-palmitoylethanolamine. However, in spite of making the matrix space accessible to external [14C]sucrose, N-arachidonoylethanolamine and N-oleoylethanolamine resulted in only a limited swelling of mitochondria and diminished the rate of swelling produced by high Ca2+ load.
Collapse
Affiliation(s)
- Michał Wasilewski
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, PL-02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
26
|
Berger C, Schmid PC, Schabitz WR, Wolf M, Schwab S, Schmid HHO. Massive accumulation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia? J Neurochem 2004; 88:1159-67. [PMID: 15009671 DOI: 10.1046/j.1471-4159.2003.02244.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated levels and compositions of N-acylethanolamines (NAEs) and their precursors, N-acyl phosphatidylethanolamines (N-acyl PEs), in a rat stroke model applying striatal microdialysis for glutamate assay. Rats (n = 18) were treated with either intravenous saline (control), NMDA receptor antagonist MK801 (1 mg/kg), or CB1 receptor antagonist SR141716A (1 mg/kg) 30 min after permanent middle cerebral artery occlusion (MCAO). MK801 significantly attenuated the release of glutamate in the infarcted striatum (79 +/- 22 micromol/L) as compared with controls (322 +/- 104 micromol/L). The administration of CB1 antagonist SR141716A had no statistically significant effect on glutamate release (340 +/- 89 micromol/L), but reduced infarct volume at 5 h after MCAO significantly by approximately 40%, whereas MK801 treatment resulted in a non-significant (18%) reduction of infarct volume. In controls, striatal and cortical NAE concentrations were about 30-fold higher in the infarcted than in the non-infarcted hemisphere, whereas ipsilateral N-acyl phosphatidylethanolamine (N-acyl PE) levels exceeded contralateral levels by only a factor of two to three. Treatment with MK801 or SR141716A, or glutamate release in the infarcted tissue, had no significant effect on these levels. NAE accumulation during acute stroke may be due to increased synthesis as well as decreased degradation, possibly by inhibition of fatty acid amide hydrolase (FAAH).
Collapse
|
27
|
van der Stelt M, Hansen HH, Veldhuis WB, Bär PR, Nicolay K, Veldink GA, Vliegenthart JFG, Hansen HS. Biosynthesis of endocannabinoids and their modes of action in neurodegenerative diseases. Neurotox Res 2003; 5:183-200. [PMID: 12835123 DOI: 10.1007/bf03033139] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocannabinoids are thought to function as retrograde messengers, which modulate neurotransmitter release by activating presynaptic cannabinoid receptors. Anandamide and 2-arachidonoylglycerol (2-AG) are the two best studied endogenous lipids which can act as endocannabinoids. Together with the proteins responsible for their biosynthesis, inactivation and the cannabinoid receptors, these lipids constitute the endocannabinoid system. This system is proposed to be involved in various neurodegenerative diseases such as Parkinson's and Huntington's diseases as well as Multiple Sclerosis. It has been demonstrated that the endocannabinoid system can protect neurons against glutamate excitotoxicity and acute neuronal damage in both in vitro and in vivo models. In this paper we review the data concerning the involvement of the endocannabinoid system in neurodegenerative diseases in which neuronal cell death may be elicited by excitotoxicity. We focus on the biosynthesis of endocannabinoids and on their modes of action in animal models of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Mario van der Stelt
- Department of Bio-organic Chemistry, Bijvoet Center for Biomolecular Science, Padualaan 8, NL-3584 CH Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fowler CJ. Plant-derived, synthetic and endogenous cannabinoids as neuroprotective agents. Non-psychoactive cannabinoids, 'entourage' compounds and inhibitors of N-acyl ethanolamine breakdown as therapeutic strategies to avoid pyschotropic effects. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 41:26-43. [PMID: 12505646 DOI: 10.1016/s0165-0173(02)00218-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is good evidence that plant-derived and synthetic cannabinoids possess neuroprotective properties. These compounds, as a result of effects upon CB(1) cannabinoid receptors, reduce the release of glutamate, and in addition reduce the influx of calcium following NMDA receptor activation. The major obstacle to the therapeutic utilization of such compounds are their psychotropic effects, which are also brought about by actions on CB(1) receptors. However, synthesis of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol, which also have neuroprotective properties, are increased under conditions of severe inflammation and ischemia, raising the possibility that compounds that prevent their metabolism may be of therapeutic utility without having the drawback of producing psychotropic effects. In this review, the evidence indicating neuroprotective actions of plant-derived, synthetic and endogenous cannabinoids is presented. In addition, the pharmacological properties of endogenous anandamide-related compounds that are not active upon cannabinoid receptors, but which are also produced during conditions of severe inflammation and ischemia and may contribute to a neuroprotective action are reviewed.
Collapse
Affiliation(s)
- Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
29
|
Hansen HS, Moesgaard B, Petersen G, Hansen HH. Putative neuroprotective actions of N-acyl-ethanolamines. Pharmacol Ther 2002; 95:119-26. [PMID: 12182959 DOI: 10.1016/s0163-7258(02)00251-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
N-Acyl-ethanolamines (NAEs) and their precursors, N-acyl-ethanolamine phospholipids (NAPEs), are present in the mammalian brain at levels of a few hundred picomoles/gram tissue and a few nanomoles/gram tissue, respectively. NAE-containing arachidonic acid is called anandamide, and it has attracted particular attention since it is a partial agonist for the cannabinoid receptors, for which 2-arachidonoylglycerol is the full agonist. In addition, anandamide may also activate the vanilloid receptor. Anandamide usually amounts to 1-10% of NAEs, as the vast majority of N-acyl groups are saturated and monounsaturated fatty acids. Formation of NAPE and NAE is catalyzed by an N-acyltransferase and an NAPE-hydrolyzing phospholipase D, respectively, two enzymes that have been characterized only preliminary. Interestingly, NAPEs and NAEs accumulate in the brain in response to neurodegenerative insults at a time when other phospholipids are subjected to rapid degradation. This is an important biosynthetic aspect of NAPE and NAE, as NAEs may be neuroprotective by a number of different mechanisms involving both receptor activation and non-receptor-mediated effects, e.g. by binding to cannabinoid receptors and interfering with ceramide turnover, respectively.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Pharmacology, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
30
|
Moesgaard B, Petersen G, Mortensen SA, Hansen HS. Substantial species differences in relation to formation and degradation of N-acyl-ethanolamine phospholipids in heart tissue: an enzyme activity study. Comp Biochem Physiol B Biochem Mol Biol 2002; 131:475-82. [PMID: 11959029 DOI: 10.1016/s1096-4959(02)00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The formation of N-acyl-ethanolamines (NAEs), including the cannabinoid receptor ligand anandamide, and their precursors N-acyl-ethanolamine phospholipids (NAPEs) are catalyzed by NAPE-hydrolyzing phospholipase D (NAPE-PLD) and N-acyl-transferase, respectively. NAPE and NAE are suggested to have beneficial effects on the heart, but in the literature there are indications of species differences in the activity of these enzymes. We have examined heart microsomes from rats, mice, guinea pigs, rabbits, frogs, cows, dogs, cats, mini pigs and human beings for activities of these two enzymes. N-Acyl-transferase activity was very high in dogs and cats (>13 pmol/min/mg protein) whereas it was very low to barely detectable in the other species (<3 pmol/min/mg protein). NAPE-PLD activity was very high in rats and guinea pigs (>45 pmol/min/mg protein) whereas it was 9 pmol/min/mg protein in frogs and below that in the other species. The ratio of activity between the two enzymes varied from 0.002 to 15 in the investigated species. The activity of the two enzymes in rat hearts as opposed to rat brain did not change during development. These results indicate that there may be substantial species differences in the generation of anandamide and other NAEs as well as NAPEs in heart tissues.
Collapse
Affiliation(s)
- Birthe Moesgaard
- Department of Pharmacology, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100, Copenhagen, Denmark
| | | | | | | |
Collapse
|
31
|
Schmid HHO, Berdyshev EV. Cannabinoid receptor-inactive N-acylethanolamines and other fatty acid amides: metabolism and function. Prostaglandins Leukot Essent Fatty Acids 2002; 66:363-76. [PMID: 12052050 DOI: 10.1054/plef.2001.0348] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although it is now generally accepted that long-chain N-acylethanolamines and their precursors, N-acylethanolamine phospholipids, exist as trace constituents in virtually all vertebrate cells and tissues, their possible biological functions are just emerging. While anandamide (N-arachidonoylethanolamine) has received much attention due to its ability to bind to and activate cannabinoid receptors, the saturated and monounsaturated N-acylethanolamines, which usually represent the vast majority, are cannabinoid receptor-inactive but appear to interact with endocannabinoids and to have other signaling functions as well. Also, primary fatty acid amides, including the amide of oleic acid, which acts as a sleep-inducing agent, do not interact with cannabinoid receptors but are catabolically related to endocannabinoids. Here we review published information on the occurrence, metabolism, and possible signaling functions of the cannabinoid receptor-inactive N-acylethanolamines and primary fatty acid amides.
Collapse
Affiliation(s)
- H H O Schmid
- The Hormel Institute, University of Minnesota, 801-16th Avenue NE, Austin, MN 55912, USA.
| | | |
Collapse
|
32
|
Rawyler AJ, Braendle RA. N-Acylphosphatidylethanolamine accumulation in potato cells upon energy shortage caused by anoxia or respiratory inhibitors. PLANT PHYSIOLOGY 2001; 127:240-251. [PMID: 11553752 PMCID: PMC117980 DOI: 10.1104/pp.127.1.240] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2001] [Revised: 05/21/2001] [Accepted: 06/13/2001] [Indexed: 05/23/2023]
Abstract
A minor phospholipid was isolated from potato (Solanum tuberosum L. cv Bintje) cells, chromatographically purified, and identified by electrospray ionization mass spectrometry as N-acylphosphatidylethanolamine (NAPE). The NAPE level was low in unstressed cells (13 +/- 4 nmol g fresh weight(-1)). According to acyl chain length, only 16/18/18 species (group II) and 18/18/18 species (group III) were present. NAPE increased up to 13-fold in anoxia-stressed cells, but only when free fatty acids (FFAs) started being released, after about 10 h of treatment. The level of groups II and III was increased by unspecific N-acylation of phosphatidylethanolamine, and new 16/16/18 species (group I) appeared via N-palmitoylation. NAPE also accumulated in aerated cells treated with NaN(3) plus salicylhydroxamate. N-acyl patterns of NAPE were dominated by 18:1, 18:2, and 16:0, but never reflected the FFA composition. Moreover, they did not change greatly after the treatments, in contrast with O-acyl patterns. Anoxia-induced NAPE accumulation is rooted in the metabolic homeostasis failure due to energy deprivation, but not in the absence of O(2), and is part of an oncotic death process. The acyl composition of basal and stress-induced NAPE suggests the existence of spatially distinct FFA and phosphatidylethanolamine pools. It reflects the specificity of NAPE synthase, the acyl composition, localization and availability of substrates, which are intrinsic cell properties, but has no predictive value as to the type of stress imposed. Whether NAPE has a physiological role depends on the cell being still alive and its compartmentation maintained during the stress period.
Collapse
Affiliation(s)
- A J Rawyler
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland.
| | | |
Collapse
|
33
|
Abstract
Recent studies performed in our laboratory have shown that a brief period of preculture prior to cryopreservation improves the postthaw viability of hepatocytes. The purpose of this investigation is to characterize specific metabolic and biochemical characteristics of the hepatocytes (both frozen and nonfrozen) to help elucidate the role of preculture on the postthaw viability. Fresh and thawed hepatocytes were cultured in a bioartificial liver (BAL) to determine albumin secretion as a function of time in culture. In addition, cell extracts were analyzed using nuclear magnetic resonance (NMR) spectroscopy to quantify changes in cell membrane composition and energetics as a function of time in culture prefreeze and postthaw. The results of these studies showed an increase in albumin concentration in the culture medium with time in culture for the period tested for both fresh and frozen and thawed hepatocytes. NMR spectroscopy of lipid extracts indicates that in vitro culture of hepatocytes results in an increase in cholesterol relative to membrane phospholipid. Moreover, the NMR results also indicate phospholipid interconversion, via specific lipases in cultured hepatocytes, and these changes are consistent with water permeability measurements performed previously. Significant changes in phosphoenergetics were also observed, with the net energy charge for the cells increasing significantly with time in culture. In addition, NMR spectra show increased levels of 6-phosphogluconate, another indicator of the cellular response to the stresses of isolation and ex vivo culture. These results suggest that energetic considerations may be a significant factor in the ability of hepatocytes to survive the stresses of freezing and thawing. Significant shifts in membrane phospholipids may also influence membrane permeability and postthaw survival.
Collapse
Affiliation(s)
- A Hubel
- Department of Laboratory Medicine and Pathology, University of Minnesota, Mayo Mail Code 609, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
34
|
Hansen HH, Ikonomidou C, Bittigau P, Hansen SH, Hansen HS. Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death. J Neurochem 2001; 76:39-46. [PMID: 11145976 DOI: 10.1046/j.1471-4159.2001.00006.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been demonstrated that the endogenous cannabinoid receptor ligand, anandamide, and other N-acylethanolamines (NAEs), accumulate during neuronal injury in vitro, a process that may be linked to the neuroprotective effects of NAEs. The crucial step for generation of NAEs is the synthesis of the corresponding precursors, N-acylethanolamine phospholipids (NAPEs). However, it is unknown whether this key event for NAE formation is regulated differently in the context of insults causing necrotic or apoptotic neuronal death. To address this question, we monitored a range of cortical NAPE species in three infant rat models of in vivo neurodegeneration: (i) necrosis caused by intrastriatal injection of NMDA (25 nmol); (ii) apoptosis induced by systemic administration of the NMDA-receptor antagonist (+)MK-801 (3 x 0.5 mg/kg, i.p.); and (iii) apoptosis following focal necrosis triggered by concussive head trauma. A marked increase of all NAPE species was observed in both hemispheres 4 and 24 h after NMDA-induced injury, with a relatively larger increase in N-stearoyl-containing NAPE species. Thus, the percentage of the anandamide precursor fell from 1.1 to 0.5 mol %. In contrast, administration of (+)MK-801 did not alter cortical NAPE levels. Concussion head trauma resulted in a similar but less pronounced upregulation of NAPE levels at both 4 and 24 h as compared to NMDA injections. Increased levels of NAPE 24 h post-trauma possibly reflect that necrosis is still ongoing at this time point. Consequently, our data suggest that excitotoxic necrotic mechanisms of neurodegeneration, as opposed to apoptotic neurodegeneration, have a profound effect on in vivo NAE precursor homeostasis.
Collapse
Affiliation(s)
- H H Hansen
- Department of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
35
|
Hansen HS, Moesgaard B, Hansen HH, Petersen G. N-Acylethanolamines and precursor phospholipids - relation to cell injury. Chem Phys Lipids 2000; 108:135-50. [PMID: 11106787 DOI: 10.1016/s0009-3084(00)00192-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The present review focuses on the relationship between formation of N-acylethanolamine phospholipids (NAPEs) and N-acyletransferase (NAEs) catalyzed by N-acyltranferase and NAPE-hydrolyzing phospholipase D, respectively, and cell injury in tissues like brain, heart, and testis. A number of mechanisms are proposed by which these two groups of lipids may have cytoprotective properties. The mechanisms may involve activation of cannabinoid receptors, as well as non-receptor-mediated effects such as stabilization of membrane bilayers, antioxidant mechanisms, inhibition of calcium leakage from mitochondria, and direct inhibition of ceramidase. Anandamide (20:4-NAE) is formed as a minor component along with other NAEs during cell injury. Whether 20:4-NAE has a separate physiological role is at present not known, but some data suggest that 20:4-NAE may be formed, e.g. in the uterus, by a more selective mechanism without being accompanied by a vast majority of saturated and monounsaturated NAEs.
Collapse
Affiliation(s)
- H S Hansen
- Department of Pharmacology, The Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
36
|
Hansen HH, Hansen SH, Schousboe A, Hansen HS. Determination of the phospholipid precursor of anandamide and other N-acylethanolamine phospholipids before and after sodium azide-induced toxicity in cultured neocortical neurons. J Neurochem 2000; 75:861-71. [PMID: 10899965 DOI: 10.1046/j.1471-4159.2000.0750861.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phospholipase D-mediated hydrolysis of N-acylethanolamine phospholipids (NAPEs) releases anandamide and other N-acylethanolamines, resulting in different actions at cellular targets in the CNS. Recently, we have demonstrated that these N-acyl lipids accumulate in cultured neocortical neurons subjected to sodium azide-induced cell injury. We here extend the information on the NAPE response, reporting on the composition of N-acylspecies of NAPE, employing a new methodological approach of HPLC-coupled electrospray ionization mass spectrometry. Exposure to sodium azide (5 mM) increased the total amount of NAPE threefold over control levels; however, no alteration of the relative composition of NAPE species was detected. The anandamide precursor (20 : 4-NAPE) constituted only 0.1% of all NAPEs detected in the neurons. Total NAPE species in control cells amounted to 956-1,060 pmol/10(7) cells. Moreover, we detected the presence of an unknown NAPE species with molecular weight identical to 20 : 4-NAPE. This may suggest the presence of a putative stereoisomer of the anandamide precursor with at least one trans-configured double bond in the N-arachidonoyl moiety. These results show that with the present method, neuronal NAPE species can be identified and quantified with respect to N-acyl composition, including a trans-isomer of the anandamide precursor. The anandamide precursor is up-regulated to the same extent as other NAPEs upon neuronal injury.
Collapse
Affiliation(s)
- H H Hansen
- Department of Pharmacology, Royal Danish School of Pharmacy, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
37
|
Farooqui AA, Horrocks LA, Farooqui T. Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 2000; 106:1-29. [PMID: 10878232 DOI: 10.1016/s0009-3084(00)00128-6] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neural membranes contain several classes of glycerophospholipids which turnover at different rates with respect to their structure and localization in different cells and membranes. The glycerophospholipid composition of neural membranes greatly alters their functional efficacy. The length of glycerophospholipid acyl chain and the degree of saturation are important determinants of many membrane characteristics including the formation of lateral domains that are rich in polyunsaturated fatty acids. Receptor-mediated degradation of glycerophospholipids by phospholipases A(l), A(2), C, and D results in generation of second messengers such as arachidonic acid, eicosanoids, platelet activating factor and diacylglycerol. Thus, neural membrane phospholipids are a reservoir for second messengers. They are also involved in apoptosis, modulation of activities of transporters, and membrane-bound enzymes. Marked alterations in neural membrane glycerophospholipid composition have been reported to occur in neurological disorders. These alterations result in changes in membrane fluidity and permeability. These processes along with the accumulation of lipid peroxides and compromised energy metabolism may be responsible for the neurodegeneration observed in neurological disorders.
Collapse
Affiliation(s)
- A A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Avenue, 465 Hamilton Hall, 43210, Columbus, OH, USA
| | | | | |
Collapse
|
38
|
Moesgaard B, Petersen G, Jaroszewski JW, Hansen HS. Age dependent accumulation of N-acyl-ethanolamine phospholipids in ischemic rat brain: a 31P NMR and enzyme activity study. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32041-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
39
|
Hansen HH, Hansen SH, Bjørnsdottir I, Hansen HS. Electrospray ionization mass spectrometric method for the determination of cannabinoid precursors: N-acylethanolamine phospholipids (NAPEs). JOURNAL OF MASS SPECTROMETRY : JMS 1999; 34:761-767. [PMID: 10407361 DOI: 10.1002/(sici)1096-9888(199907)34:7<761::aid-jms832>3.0.co;2-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
N-Acylethanolamine phospholipids (NAPEs) serve as endogenous precursors of N-acylethanolamines (NAEs), e.g. N-arachidonoylethanolamine (anandamide) and N-palmitoylethanolamine that are endogenous ligands of cannabinoid receptors. Under physiological conditions, NAPE is found in very low concentrations in mammalian tissue (3-12 nmol g(-1)). However, pathophysiological conditions may increase the endogenous NAPE levels, which again may cause an increase in endocannabinoid concentrations. This paper presents a simple and selective method for the determination of NAPE standards using negative electrospray ionization mass spectrometry (ESI-MS). The procedure provides complete positioning of all acyl and alkenyl groups contained in each NAPE species. The calibration curve for standard NAPE was linear over the range 100 fmol-50 pmol (0.1-50 ng) per injection. The lower limit of detection (signal-to-noise ratio of 3) was 100 fmol, implying that this method is superior to previous methods for the determination of NAPE. These results suggest that this ESI-MS method can be used to identify and quantify NAPE species in mammalian tissues and provide information on the corresponding NAEs to be released from the endogenous NAPE pool.
Collapse
Affiliation(s)
- H H Hansen
- Department of Pharmacology, Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|