1
|
Michaeloudes C, Christodoulides S, Christodoulou P, Kyriakou TC, Patrikios I, Stephanou A. Variability in the Clinical Effects of the Omega-3 Polyunsaturated Fatty Acids DHA and EPA in Cardiovascular Disease-Possible Causes and Future Considerations. Nutrients 2023; 15:4830. [PMID: 38004225 PMCID: PMC10675410 DOI: 10.3390/nu15224830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular disease (CVD) that includes myocardial infarction and stroke, is the leading cause of mortality worldwide. Atherosclerosis, the primary underlying cause of CVD, can be controlled by pharmacological and dietary interventions, including n-3 polyunsaturated fatty acid (PUFA) supplementation. n-3 PUFA supplementation, primarily consisting of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), has shown promise in reducing atherosclerosis by modulating risk factors, including triglyceride levels and vascular inflammation. n-3 PUFAs act by replacing pro-inflammatory fatty acid types in cell membranes and plasma lipids, by regulating transcription factor activity, and by inducing epigenetic changes. EPA and DHA regulate cellular function through shared and differential molecular mechanisms. Large clinical studies on n-3 PUFAs have reported conflicting findings, causing confusion among the public and health professionals. In this review, we discuss important factors leading to these inconsistencies, in the context of atherosclerosis, including clinical study design and the differential effects of EPA and DHA on cell function. We propose steps to improve clinical and basic experimental study design in order to improve supplement composition optimization. Finally, we propose that understanding the factors underlying the poor response to n-3 PUFAs, and the development of molecular biomarkers for predicting response may help towards a more personalized treatment.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus; (S.C.); (P.C.); (T.-C.K.); (I.P.); (A.S.)
| | | | | | | | | | | |
Collapse
|
2
|
Fjære E, Secher Myrmel L, Rasinger JD, Bernhard A, Frøyland L, Madsen L. Refined mackerel oil increases hepatic lipid accumulation and reduces choline and choline-containing metabolites in the liver tissue in mice fed a Western diet. Food Res Int 2023; 173:113450. [PMID: 37803779 DOI: 10.1016/j.foodres.2023.113450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
In this study, we aimed to evaluate the impact of consuming refined mackerel oil (MO) from rest raw material on hepatic fat accumulation, glucose tolerance, and metabolomic changes in the liver from male C57BL/6N mice. The mice were fed either a Western diet (WD) or a chow diet, with 30 g or 60 g MO per kg of diet (3% or 6%) for 13 weeks. Body weight, energy intake, and feed efficiency were monitored throughout the experiment. A glucose tolerance test was conducted after 11 weeks, and metabolomic analyses of the liver were performed at termination. Inclusion of MO in the WD, but not in the chow diet, led to increased liver weight, hepatic lipid accumulation, elevated fasting blood glucose, reduced glucose tolerance, and insulin sensitivity. Hepatic levels of eicosapentaenoic and docosahexaenoic acid increased, but no changes in levels of saturated and monounsaturated fatty acids were observed. The liver metabolomic profile was different between mice fed a WD with or without MO, with a reduction in choline ether lipids, phosphatidylcholines, and sphingomyelins in mice fed MO. This study demonstrates that supplementing the WD, but not the chow diet, with refined MO accelerates accumulation of hepatic fat droplets and negatively affects blood glucose regulation. The detrimental effects of supplementing a WD with MO were accompanied by increased fat digestibility and overall energy intake, and lower levels of choline and choline-containing metabolites in liver tissue.
Collapse
Affiliation(s)
- Even Fjære
- Institute of Marine Research, Bergen, Norway.
| | | | | | | | | | - Lise Madsen
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
3
|
Shangguan R, Hu Z, Luo Y, Chen M, Lai X, Sun J, Chen S. Intramuscular mitochondrial and lipid metabolic changes of rats after regular high-intensity interval training (HIIT) of different training periods. Mol Biol Rep 2023; 50:2591-2601. [PMID: 36626064 DOI: 10.1007/s11033-022-08205-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND High-intensity Interval Training (HIIT) is a time-efficient form of exercise and has gained popularity in recent years. However, at molecular level, the understanding about the effects of HIIT is not comprehensive, and even less is elucidated about HIIT of different training duration cycles, although different durations always lead to different post-training consequences. METHOD In this study, by training SD rats using HIIT protocols lasting for different training duration cycles, we investigated the adaptive response of intramuscular triglyceride abundance as well as mitochondrial and lipid metabolic changes after HIIT training (2, 4, 6, 8, and 10 weeks). We selected 72 h after the last session of training as the time point of sacrifice. RESULTS The suppressed activation of the cAMP-PKA pathway indicates that skeletal muscle was in the recovery phase at this time point. Intramuscular triglyceride abundance was significantly elevated after 2, 4, and 10 weeks of HIIT. However, the lipid metabolism-related proteins inconsistently changed in a chaotic trend (see Table 1). The expression levels of PGC1-α and COX IV decreased after 2 and 4 weeks of training and raised after 6 and 8 weeks of training. The expression level of citrate synthase (CS) decreased after 2, 4, 8, and 10 weeks of training, and showed an upward trend after 6 weeks of training. While the activity of CS decreased after 2 and 8 weeks of training and showed an upward trend after 6 weeks of HIIT. CONCLUSION Given the abovementioned changing trends, we propose two speculations: (A) the damaged mitochondria oxidation capacity might be one of the causes of IMTG accumulation observed after 2 and 4 weeks of HIIT. This phase might be similar to the condition of type 2 diabetes. (B) after 6-week HIIT, mitochondria function and biogenesis might be improved and the IMTG contents declined to baseline. This might be explained as: mitochondrial enhancement increased the capacity of lipid oxidation and then offset the increase in IMTG achieved during the first 4 weeks. For HIIT Rat Modelling, if the aim is to observe HIIT-induced positive effects, caution should be exercised when considering 2 and 4 weeks of training under our HIIT frame. Also, implementing six-week training is at least effective for mitochondrial enhancement when using similar HIIT frame of this study.
Collapse
Affiliation(s)
- Ruonan Shangguan
- Department of Physical Education, Chengdu University, 610106, Chengdu, People's Republic of China
| | - Zhiqiang Hu
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yuzhen Luo
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Min Chen
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Xiangdeng Lai
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Jingquan Sun
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China.,Department of Physical Education, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Siyu Chen
- Institute of Sports Science, Sichuan University, Section 1, Southern Frist Ring Rd, Chengdu, Sichuan Province, 610041, People's Republic of China.
| |
Collapse
|
4
|
Sun J, Li H, Luo X, Lu R, Ji H. Identification and characterization of two isoforms of acyl-coenzyme A oxidase 1 gene and their expression in fasting-induced grass carp Ctenopharyngodon idella adipocyte lipolysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1645-1652. [PMID: 32601856 DOI: 10.1007/s10695-020-00816-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Acyl-coenzyme A oxidases 1 (ACOX1) is the first rate-limiting enzyme responsible for peroxisomal β-oxidation. In the present study, two mRNA variants, ACOX1a and ACOX1b, transcribed from a single gene, were for the first time isolated and characterized from grass carp Ctenopharyngodon idella, both encoding putative peptides of 660 amino acids. Analysis of the exon-intron structures clarified that grass carp ACOX1a and ACOX1b comprise 14 coding exons and correspond to 3a and 3b isoforms of exon 3 splicing variants. Both ACOX1a and ACOX1b mRNAs were expressed in a wide range of tissues, but the abundance of each ACOX1 mRNA showed the tissue-dependent expression patterns. Time-course analysis of ACOX1 expressions indicated that the level of ACOX1a mRNA reached an almost maximal level at day 2, while that of ACOX1b mRNA reached an almost maximal level at day 8 during grass carp primary preadipocyte differentiation. In fasting-induced adipocyte lipolysis, only ACOX1a showed a significant increase in adipocyte, indicating that two ACOX1 isoforms may serve somewhat different roles in the peroxisomal β-oxidation. These results suggested that grass carp ACOX1a and ACOX1b were differently modulated by fasting in adipocyte. In addition, we found that mitochondrial β-oxidation might dominate at the early stage of fasting in adipocytes, indicating that mitochondria and peroxisomes might possess different capacities in fasting-induced adipocytes fatty acid oxidation.
Collapse
Affiliation(s)
- Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Handong Li
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Xiaolong Luo
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
5
|
Lipid Deposition and Mobilisation in Atlantic Salmon Adipocytes. Int J Mol Sci 2020; 21:ijms21072332. [PMID: 32230940 PMCID: PMC7177889 DOI: 10.3390/ijms21072332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to elucidate how Atlantic salmon adipocytes pre-enriched with palmitic (16:0, PA), oleic (18:1n−9, OA), or eicosapentaenoic (20:5n−3, EPA) acid respond to a fasting condition mimicked by nutrient deprivation and glucagon. All experimental groups were supplemented with radiolabeled PA to trace secreted lipids and distribution of radioactivity in different lipid classes. There was a higher content of intracellular lipid droplets in adipocytes pre-enriched with OA than in adipocytes pre-enriched with PA or EPA. In the EPA group, the radiolabeled PA was mainly esterified in phospholipids and triacylglycerols, whereas in the OA and PA groups, the radioactivity was mainly recovered in phospholipids and cholesterol-ester. By subjecting the experimental groups to nutrient-deprived media supplemented with glucagon, lipolysis occurred in all groups, although to a lower extent in the OA group. The lipids were mainly secreted as esterified lipids in triacylglycerols and phospholipids, indicating mobilization in lipoproteins. A significant proportion was secreted as free fatty acids and glycerol. Leptin secretion was reduced in all experimental groups in response to fasting, while the mitochondria area responded to changes in the energy supply and demand by increasing after 3 h of fasting. Overall, different lipid classes in adipocytes influenced their mobilization during fasting.
Collapse
|
6
|
Mu H, Wei C, Zhang Y, Zhou H, Pan Y, Chen J, Zhang W, Mai K. Impacts of replacement of dietary fish oil by vegetable oils on growth performance, anti-oxidative capacity, and inflammatory response in large yellow croaker Larimichthys crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:231-245. [PMID: 31734894 DOI: 10.1007/s10695-019-00712-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
A 12-week feeding trial was conducted to evaluate the effects of replacement of dietary fish oil by palm and linseed oils on the growth performance, anti-oxidative capacity, and inflammatory responses of large yellow croaker (initial body weight: 36.82 ± 0.29 g). The control diet was designed to contain 6.5% of fish oil, and named as FO. On the basis of the control diet, the fish oil was 100% replaced by palm and linseed oils, and these two diets were named as PO and LO, respectively. Results showed that the specific growth rate significantly reduced in the PO and LO groups. Crude lipid content in liver of fish fed FO was significantly lower than that in the PO and LO groups. Fatty acid composition in liver reflected the dietary input. Compared with the FO group, palm oil inclusion significantly decreased expressions of superoxide dismutase 1, catalase, and nuclear factor erythroid 2-related factor 2 in liver, while linseed oil inclusion significantly increased expressions of above genes. However, both of the PO and LO groups had a significantly lower total anti-oxidative capacity in liver than the fish fed FO. Dietary palm and linseed oils significantly decreased expressions of arginase I and interleukin 10, and increased expressions of tumor necrosis factor α, interleukin 1β, toll-like receptor 22, and myeloid differentiation factor 88 in liver. In conclusion, total replacement of dietary fish oil by palm and linseed oils could suppress growth performance and liver anti-oxidative capacity, and induce inflammatory responses of large yellow croaker.
Collapse
Affiliation(s)
- Hua Mu
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Chaoqing Wei
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Yanjiao Zhang
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Huihui Zhou
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
| | - Ying Pan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, Fujian, China
| | - Jia Chen
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352103, Fujian, China
| | - Wenbing Zhang
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Mariculture, Ministry of Education; The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
7
|
Effective Food Ingredients for Fatty Liver: Soy Protein β-Conglycinin and Fish Oil. Int J Mol Sci 2018; 19:ijms19124107. [PMID: 30567368 PMCID: PMC6321427 DOI: 10.3390/ijms19124107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/15/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity is prevalent in modern society because of a lifestyle consisting of high dietary fat and sucrose consumption combined with little exercise. Among the consequences of obesity are the emerging epidemics of hepatic steatosis and nonalcoholic fatty liver disease (NAFLD). Sterol regulatory element-binding protein-1c (SREBP-1c) is a transcription factor that stimulates gene expression related to de novo lipogenesis in the liver. In response to a high-fat diet, the expression of peroxisome proliferator-activated receptor (PPAR) γ2, another nuclear receptor, is increased, which leads to the development of NAFLD. β-Conglycinin, a soy protein, prevents NAFLD induced by diets high in sucrose/fructose or fat by decreasing the expression and function of these nuclear receptors. β-Conglycinin also improves NAFLD via the same mechanism as for prevention. Fish oil contains n-3 polyunsaturated fatty acids such as eicosapentaenoic acid and docosahexaenoic acid. Fish oil is more effective at preventing NAFLD induced by sucrose/fructose because SREBP-1c activity is inhibited. However, the effect of fish oil on NAFLD induced by fat is controversial because fish oil further increases PPARγ2 expression, depending upon the experimental conditions. Alcohol intake also causes an alcoholic fatty liver, which is induced by increased SREBP-1c and PPARγ2 expression and decreased PPARα expression. β-Conglycinin and fish oil are effective at preventing alcoholic fatty liver because β-conglycinin decreases the function of SREBP-1c and PPARγ2, and fish oil decreases the function of SREBP-1c and increases that of PPARα.
Collapse
|
8
|
Fauske KR, Bernhard A, Fjære E, Myrmel LS, Frøyland L, Kristiansen K, Liaset B, Madsen L. Effects of Frozen Storage on Phospholipid Content in Atlantic Cod Fillets and the Influence on Diet-Induced Obesity in Mice. Nutrients 2018; 10:nu10060695. [PMID: 29848963 PMCID: PMC6024676 DOI: 10.3390/nu10060695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/29/2022] Open
Abstract
A large fraction of the n-3 polyunsaturated fatty acids (PUFAs) in cod fillet is present in the form of phospholipids (PLs). Freezing initiates hydrolysis of the PLs present in the fillet. Here, we compared the effects of Western diets based on frozen cod, fresh cod or pork with a diet based on casein in male C57BL/6J mice fed for 12 weeks at thermoneutrality. Diets based on fresh cod contained more PL-bound n-3 PUFAs (3.12 mg/g diet) than diets based on frozen cod (1.9 mg/g diet). Mice fed diets containing pork and fresh cod, but not frozen cod, gained more body and fat mass than casein-fed mice. Additionally, the bioavailability of n-3 PUFAs present in the cod fillets was not influenced by storage conditions. In a second experiment, diets with pork as the protein source were supplemented with n-3 PUFAs in the form of PL or triacylglycerol (TAG) to match the levels of the diet containing fresh cod. Adding PL-bound, but not TAG-bound, n-3 PUFAs, to the pork-based diet increased body and fat mass gain. Thus, supplementation with PL-bound n-3 PUFAs did not protect against, but rather promoted, obesity development in mice fed a pork-based diet.
Collapse
Affiliation(s)
- Kristin Røen Fauske
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | - Annette Bernhard
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
| | - Even Fjære
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
| | | | - Livar Frøyland
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway.
| | | | - Bjørn Liaset
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
| | - Lise Madsen
- Institute of Marine Research, P.O. Box 7800, 5020 Bergen, Norway.
- Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
Jump DB. Dietary polyunsaturated fatty acid regulation of hepatic gene transcription. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/11026480213022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Donald B. Jump
- Departments of Physiology, Biochemistry and Molecular Biology, 3165 Biomedical and Physical Sciences Building, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
FFAR4 (GPR120) Signaling Is Not Required for Anti-Inflammatory and Insulin-Sensitizing Effects of Omega-3 Fatty Acids. Mediators Inflamm 2016; 2016:1536047. [PMID: 27999451 PMCID: PMC5143742 DOI: 10.1155/2016/1536047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/13/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022] Open
Abstract
Free fatty acid receptor-4 (FFAR4), also known as GPR120, has been reported to mediate the beneficial effects of omega-3 polyunsaturated fatty acids (ω3-PUFAs) by inducing an anti-inflammatory immune response. Thus, activation of FFAR4 has been reported to ameliorate chronic low-grade inflammation and insulin resistance accompanying obesity. However, conflicting reports on the role of FFAR4 in mediating the effects of ω3-PUFAs are emerging, suggesting that FFAR4 may not be the sole effector. Hence analyses of the importance of this receptor in relation to other signaling pathways and prominent effects of ω3-PUFAs remain to be elucidated. In the present study, we used Ffar4 knockouts (KO) and heterozygous (HET) mice fed either low fat, low sucrose reference diet; high fat, high sucrose ω3-PUFA; or high fat, high sucrose ω6-PUFA diet for 36 weeks. We demonstrate that both KO and HET mice fed ω3-PUFAs were protected against obesity, hepatic triacylglycerol accumulation, and whole-body insulin resistance. Moreover, ω3-PUFA fed mice had increased circulating protein levels of the anti-inflammatory adipokine, adiponectin, decreased fasting insulin levels, and decreased mRNA expression of several proinflammatory molecules within visceral adipose tissue. In conclusion, we find that FFAR4 signaling is not required for the reported anti-inflammatory and insulin-sensitizing effects mediated by ω3-PUFAs.
Collapse
|
11
|
Chouinard-Watkins R, Pinçon A, Coulombe JD, Spencer R, Massenavette L, Plourde M. A Diet Rich in Docosahexaenoic Acid Restores Liver Arachidonic Acid and Docosahexaenoic Acid Concentrations in Mice Homozygous for the Human Apolipoprotein E ε4 Allele. J Nutr 2016; 146:1315-21. [PMID: 27306896 DOI: 10.3945/jn.116.230052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolism of long-chain polyunsaturated fatty acids (LC-PUFAs) is disturbed in carriers of the apolipoprotein E (APOE) ε4 allele (APOE4). More specifically, APOE4 carriers are lower responders to ω-3 (n-3) LC-PUFA supplementation; this might be because LC-PUFA transport into cells or β-oxidation is disturbed. However, high doses of dietary docosahexaenoic acid (DHA) seem to restore DHA homeostasis in APOE4 carriers, but the contribution of hepatic fatty acid (FA) transporters is unknown. OBJECTIVES With the use of mice carrying human APOE isoforms, we sought to investigate whether a DHA-rich diet could restore DHA homeostasis in APOE4 mice and whether this involved hepatic FA transporters. METHODS Male and female mice homozygous for the APOE ε2 allele, APOE ε3 allele (APOE3), and APOE4 were fed either a diet enriched with DHA (0.7 g DHA/100 g diet) or a control diet for 8 mo and were killed at 12 mo of age. Liver and plasma FA profiles were measured by GC, and FA transporter expression was evaluated by Western immunoblotting. RESULTS There was a significant genotype × diet interaction for hepatic concentrations of arachidonic acid (AA) and DHA (P = 0.005 and P = 0.002, respectively) and a trend toward an interaction for liver expression of fatty acid binding protein 1 (FABP1) (P-interaction = 0.05). APOE4 mice had 60-100% higher liver AA, DHA, and FABP1 than did APOE3 mice, but only when fed the control diet. Independent of diet, APOE4 mice had 20-30% lower plasma concentrations of AA and DHA than did APOE3 mice. Overall, mice fed the DHA diet had 50% lower concentrations of liver total FAs than did mice fed the control diet. CONCLUSIONS These findings in transgenic mice suggest that a long-term diet rich in DHA suppresses the APOE4-specific disturbances in hepatic transport and concentration of AA and DHA and also reduces hepatic total FA concentrations, regardless of genotype.
Collapse
Affiliation(s)
- Raphaël Chouinard-Watkins
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Pharmacology-Physiology and
| | - Anthony Pinçon
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Pharmacology-Physiology and
| | - Jean-Denis Coulombe
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Pharmacology-Physiology and
| | - Riley Spencer
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and
| | - Laurence Massenavette
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Pharmacology-Physiology and
| | - Mélanie Plourde
- Research Center on Aging, Health and Social Services Centre, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Canada; and Department of Medicine, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
12
|
Schroeder F, McIntosh AL, Martin GG, Huang H, Landrock D, Chung S, Landrock KK, Dangott LJ, Li S, Kaczocha M, Murphy EJ, Atshaves BP, Kier AB. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids 2016; 51:655-76. [PMID: 27117865 PMCID: PMC5408584 DOI: 10.1007/s11745-016-4155-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA.
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Sarah Chung
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Kerstin K Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Lawrence J Dangott
- Department of Biochemistry and Biophysics, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| | - Shengrong Li
- Avanti Polar Lipids, 700 Industrial Park Dr., Alabaster, AL, 35007-9105, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Eric J Murphy
- Department of Pharmacology, Physiology, and Therapeutics and Chemistry, University of North Dakota, Grand Forks, ND, 58202-9037, USA
| | - Barbara P Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843-4466, USA
| |
Collapse
|
13
|
Ferramosca A, Conte A, Guerra F, Felline S, Rimoli MG, Mollo E, Zara V, Terlizzi A. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma? Biochem Biophys Res Commun 2016; 473:1133-1138. [PMID: 27091429 DOI: 10.1016/j.bbrc.2016.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/22/2022]
Abstract
The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy.
| | - Annalea Conte
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Flora Guerra
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Serena Felline
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | | | - Ernesto Mollo
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Vincenzo Zara
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Antonio Terlizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|
14
|
Karakas SE, Perroud B, Kind T, Palazoglu M, Fiehn O. Changes in plasma metabolites and glucose homeostasis during omega-3 polyunsaturated fatty acid supplementation in women with polycystic ovary syndrome. BBA CLINICAL 2016; 5:179-85. [PMID: 27182493 PMCID: PMC4857160 DOI: 10.1016/j.bbacli.2016.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 01/22/2023]
Abstract
Background Both fish (FO) and flaxseed oils (FLX) are n-3 polyunsaturated fatty acids (PUFA). Fish oil contains long chain while FLX contains essential n-3 PUFA. We demonstrated that FO altered insulin secretion and resistance in polycystic ovary syndrome (PCOS) women but FLX did not. Surprisingly, the effects of FO were similar to those of the n-6 PUFA-rich soybean oil (SBO). Since increased branched chain (BCAA) and aromatic amino acids (AA) affect insulin secretion and resistance, we investigated whether FO, FLX and /or SBO affect plasma metabolites, especially AA. Methods and findings In this six-week, randomized, 3-parallel arm, double-blinded study, 54 women received 3.5 g/day FO, FLX or SBO. In 51 completers (17 from each arm), fasting plasma metabolites were measured at the beginning and at the end. As compared to FLX, FO and SBO increased insulin response and resistance as well as several BCAA and aromatic AA. Pathway analysis indicated that FO exerted the largest biochemical impact, affecting AA degradation and biosynthesis, amine, polyamine degradation and alanine, glycine, l-carnitine biosynthesis and TCA cycle, while FLX had minimal impact affecting only alanine biosynthesis and l-cysteine degradation. Conclusion Effects of FO and SBO on plasma AA were similar and differed significantly from those of the FLX. The primary target of dietary PUFA is not known. Dietary PUFA may influence insulin secretion and resistance directly and alter plasma AA indirectly. Alternatively, as a novel concept, dietary PUFA may directly affect AA metabolism and the changes in insulin secretion and resistance may be secondary. Increased serum branched chain amino acids (BCAA) and aromatic amino acids are associated with insulin resistance and type 2 diabetes. Although both fish oil (FO) and flaxseed oil (FLX) are n-3 PUFA, FO contains the long chain, while FLX contains the essential n-3 PUFA. We compared the effects of different PUFAs on plasma metabolites in women with insulin resistance. Fish oil, but not FLX, increased plasma BCAA, and insulin resistance and secretion, indicating differential effects of essential vs. long chain n-3 PUFA. It is possible that effects of FO on insulin resistance and secretion may have been indirect, through its actions on BCAA metabolism.
Collapse
Affiliation(s)
- Sidika E Karakas
- The University of California at Davis, Department of Internal Medicine, Division of Endocrinology, Clinical Nutrition and Vascular Medicine, Davis, CA, United States; Department of Veterans Affairs Northern California Health Care System, Mather, CA, United States
| | - Bertrand Perroud
- University of California at Davis Genome Center, Davis, CA, United States
| | - Tobias Kind
- University of California at Davis Genome Center, Davis, CA, United States
| | - Mine Palazoglu
- University of California at Davis Genome Center, Davis, CA, United States
| | - Oliver Fiehn
- University of California at Davis Genome Center, Davis, CA, United States
| |
Collapse
|
15
|
Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity and improves plasma lipid profile in male C57BL/6J mice. Amino Acids 2015; 46:1659-71. [PMID: 24658997 PMCID: PMC4055845 DOI: 10.1007/s00726-014-1715-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 01/13/2023]
Abstract
High-protein diets induce alterations in metabolism that may prevent diet-induced obesity. However, little is known as to whether different protein sources consumed at normal levels may affect diet-induced obesity and associated co-morbidities. We fed obesity-prone male C57BL/6J mice high-fat, high-sucrose diets with protein sources of increasing endogenous taurine content, i.e., chicken, cod, crab and scallop, for 6 weeks. The energy intake was lower in crab and scallop-fed mice than in chicken and cod-fed mice, but only scallop-fed mice gained less body and fat mass. Liver mass was reduced in scallop-fed mice, but otherwise no changes in lean body mass were observed between the groups. Feed efficiency and apparent nitrogen digestibility were reduced in scallop-fed mice suggesting alterations in energy utilization and metabolism. Overnight fasted plasma triacylglyceride, non-esterified fatty acids, glycerol and hydroxy-butyrate levels were significantly reduced, indicating reduced lipid mobilization in scallop-fed mice. The plasma HDL-to-total-cholesterol ratio was higher, suggesting increased reverse cholesterol transport or cholesterol clearance in scallop-fed mice in both fasted and non-fasted states. Dietary intake of taurine and glycine correlated negatively with body mass gain and total fat mass, while intake of all other amino acids correlated positively. Furthermore taurine and glycine intake correlated positively with improved plasma lipid profile, i.e., lower levels of plasma lipids and higher HDL-to-total-cholesterol ratio. In conclusion, dietary scallop protein completely prevents high-fat, high-sucrose-induced obesity whilst maintaining lean body mass and improving the plasma lipid profile in male C57BL/6J mice.
Collapse
|
16
|
Qi Y, Jiang C, Tanaka N, Krausz KW, Brocker CN, Fang ZZ, Bredell BX, Shah YM, Gonzalez FJ. PPARα-dependent exacerbation of experimental colitis by the hypolipidemic drug fenofibrate. Am J Physiol Gastrointest Liver Physiol 2014; 307:G564-G573. [PMID: 25035112 PMCID: PMC4154119 DOI: 10.1152/ajpgi.00153.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023]
Abstract
Fibrates, such as fenofibrate, are peroxisome proliferator-activated receptor-α (PPARα) agonists and have been used for several decades as hypolipidemic agents in the clinic. However, contradictory observations exist on the role of fibrates in host response to acute inflammation, with unclear mechanisms. The role of PPARα in colitis was assessed using fenofibrate and Ppara-null mice. Wild-type or Ppara-null mice were subjected to acute colitis under three distinct protocols, dextran sulfate sodium, trinitrobenzenesulfonic acid, and Salmonella Typhi. Serum and colon lipidomics were analyzed to characterize the metabolic profiles by ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Messenger RNAs of PPARα target genes and genes involved in inflammation were determined by qunatitative PCR analysis. Fenofibrate treatment exacerbated inflammation and tissue injury in acute colitis, and this was dependent on PPARα activation. Lipidomics analysis revealed that bioactive sphingolipids, including sphingomyelins (SM) and ceramides, were significantly increased in the colitis group compared with the control group; this was further potentiated following fenofibrate treatment. In the colon, fenofibrate did not reduce the markedly increased expression of mRNA encoding TNFα found in the acute colitis model, while it decreased hydrolysis and increased synthesis of SM, upregulated RIPK3-dependent necrosis, and elevated mitochondrial fatty acid β-oxidation, which were possibly related to the exacerbated colitis.
Collapse
Affiliation(s)
- Yunpeng Qi
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Changtao Jiang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Naoki Tanaka
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Kristopher W Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Chad N Brocker
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Zhong-Ze Fang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Bryce X Bredell
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
17
|
Balogun KA, Randunu RS, Cheema SK. The effect of dietary omega-3 polyunsaturated fatty acids on plasma lipids and lipoproteins of C57BL/6 mice is age and sex specific. Prostaglandins Leukot Essent Fatty Acids 2014; 91:39-47. [PMID: 24935799 DOI: 10.1016/j.plefa.2014.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/15/2014] [Accepted: 05/20/2014] [Indexed: 12/31/2022]
Abstract
There is clear evidence of the effects of sex and age on the prevalence of cardiovascular disease. We investigated the interactions of dietary omega (n)-3 polyunsaturated fatty acids (PUFA), sex, and age on plasma lipids and lipoproteins in the offspring of C57BL/6 mice exposed to high, medium, or low n-3 PUFA at weaning and 16 weeks postweaning. There was an increase in plasma triglycerides from weaning to 16 weeks in male and female offspring; however, the high n-3 PUFA group showed a reduction in triglycerides in both sexes at 16 weeks. High n-3 PUFA caused an increase in plasma LDL-cholesterol from weaning to 16 weeks in male offspring; however, the LDL particle size was significantly larger in the high n-3 PUFA group. Plasma from male mice showed higher cholesterol efflux compared to females; high n-3 PUFA increased cholesterol efflux. Thus the effects of n-3 PUFA are age and sex dependent.
Collapse
Affiliation(s)
- K A Balogun
- Department of Biochemistry, Memorial University, St. John׳s, NL, Canada
| | - R S Randunu
- Department of Biochemistry, Memorial University, St. John׳s, NL, Canada
| | - S K Cheema
- Department of Biochemistry, Memorial University, St. John׳s, NL, Canada.
| |
Collapse
|
18
|
Primavera-Tirol YH, Coloso RM, Quinitio GF, Ordonio-Aguilar R, Laureta LV. Ultrastructure of the anterior intestinal epithelia of the orange-spotted grouper Epinephelus coioides larvae under different feeding regimes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:607-624. [PMID: 24085635 DOI: 10.1007/s10695-013-9870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/23/2013] [Indexed: 06/02/2023]
Abstract
Enterocytes of the anterior to midsection of the intestine in grouper Epinephelus coioides larvae were compared among different treatments: unfed to the point-of-no-return (PNR), fed natural food only, and co-fed natural food and artificial diet. On day 3, the nutritional condition of unfed grouper larvae regressed with its reduced enterocyte heights which were further degraded on day 4, the PNR, when all the enterocytes were in advanced stages of apoptosis. The apoptosis appeared to be internally directed via the mitochondria. Among day 3 fed larvae, enterocyte heights of those fed artificial diet did not differ from those fed natural food only. Dietary phospholipid deficiency was indicated in larvae co-fed artificial diet on day 3 with an unusually large chylomicron opening into the inter-enterocyte space, and on days 6 and 33 by intestinal steatosis. On day 19, scant to absent lipid droplets in enterocytes of larvae disclosed heightened nutritional requirement preparatory to metamorphosis. As observed in unfed day 3 and premetamorphic day 19 E. coioides, larvae undergoing critical periods and starvation during development employ apoptosis to dispose of degenerated enterocytes that are phagocytosed by adjacent healthy enterocytes without causing inflammatory distress. Upon metamorphosis, grouper larval gut develops better immunity fitness with eosinophilic granule cells observed in the intestinal epithelia of day 33 larvae. Future studies on grouper larval nutrition may consider the appropriate dietary phospholipid levels and larval competence to biosynthesize highly unsaturated fatty acid from linoleic acid vis-à-vis the use of plant ingredients in artificial diet formulations. In vivo challenge tests may validate appropriate dietary nutrient supplementation and lead to better feed formulation, matching the varying energetic demands and digestive capacities of developing E. coioides larvae.
Collapse
Affiliation(s)
- Y H Primavera-Tirol
- Southeast Asian Fisheries Development Center-Aquaculture Department, 5021, Tigbauan, Iloilo, Philippines,
| | | | | | | | | |
Collapse
|
19
|
Höper AC, Salma W, Sollie SJ, Hafstad AD, Lund J, Khalid AM, Raa J, Aasum E, Larsen TS. Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice. J Nutr 2014; 144:164-9. [PMID: 24285691 DOI: 10.3945/jn.113.182501] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We showed previously that dietary supplementation with oil from the marine zooplankton Calanus finmarchicus (Calanus oil) attenuates obesity, inflammation, and glucose intolerance in mice. More than 80% of Calanus oil consists of wax esters, i.e., long-chain fatty alcohols linked to long-chain fatty acids. In the present study, we compared the metabolic effects of Calanus oil-derived wax esters (WE) with those of purified eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) ethyl esters (E/D) in a mouse model of diet-induced obesity. C57BL/6J mice received a high-fat diet (HFD; 45% energy from fat). After 7 wk, the diet was supplemented with either 1% (wt:wt) WE or 0.2% (wt:wt) E/D. The amount of EPA + DHA in the E/D diet was matched to the total amount of n-3 (ω-3) polyunsaturated fatty acids (PUFAs) in the WE diet. A third group was given an unsupplemented HFD throughout the entire 27-wk feeding period. WE reduced body weight gain, abdominal fat, and liver triacylglycerol by 21%, 34%, and 52%, respectively, and significantly improved glucose tolerance and aerobic capacity. In abdominal fat depots, WE reduced macrophage infiltration by 74% and downregulated expression of proinflammatory genes (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1), whereas adiponectin expression was significantly upregulated. By comparison, E/D primarily suppressed the expression of proinflammatory genes but had less influence on glucose tolerance than WE. E/D affected obesity parameters, aerobic capacity, or adiponectin expression by <10%. These results show that the wax ester component of Calanus oil can account for the biologic effects shown previously for the crude oil. However, these effects cannot exclusively be ascribed to the content of n-3 PUFAs in the wax ester fraction.
Collapse
Affiliation(s)
- Anje C Höper
- Cardiovascular Research Group, Institute of Medical Biology, Faculty of Health Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Martin GG, McIntosh AL, Huang H, Gupta S, Atshaves BP, Landrock KK, Landrock D, Kier AB, Schroeder F. The human liver fatty acid binding protein T94A variant alters the structure, stability, and interaction with fibrates. Biochemistry 2013; 52:9347-57. [PMID: 24299557 PMCID: PMC3930105 DOI: 10.1021/bi401014k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although the human liver fatty acid binding protein (L-FABP) T94A variant arises from the most commonly occurring single-nucleotide polymorphism in the entire FABP family, there is a complete lack of understanding regarding the role of this polymorphism in human disease. It has been hypothesized that the T94A substitution results in the complete loss of ligand binding ability and function analogous to that seen with L-FABP gene ablation. This possibility was addressed using the recombinant human wild-type (WT) T94T and T94A variant L-FABP and cultured primary human hepatocytes. Nonconservative replacement of the medium-sized, polar, uncharged T residue with a smaller, nonpolar, aliphatic A residue at position 94 of the human L-FABP significantly increased the L-FABP α-helical structure content at the expense of β-sheet content and concomitantly decreased the thermal stability. T94A did not alter the binding affinities for peroxisome proliferator-activated receptor α (PPARα) agonist ligands (phytanic acid, fenofibrate, and fenofibric acid). While T94A did not alter the impact of phytanic acid and only slightly altered that of fenofibrate on the human L-FABP secondary structure, the active metabolite fenofibric acid altered the T94A secondary structure much more than that of the WT T94T L-FABP. Finally, in cultured primary human hepatocytes, the T94A variant exhibited a significantly reduced extent of fibrate-mediated induction of PPARα-regulated proteins such as L-FABP, FATP5, and PPARα itself. Thus, while the T94A substitution did not alter the affinity of the human L-FABP for PPARα agonist ligands, it significantly altered the human L-FABP structure, stability, and conformational and functional response to fibrate.
Collapse
Affiliation(s)
- Gregory G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| | - Avery L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| | - Huan Huang
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| | - Shipra Gupta
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Barbara P. Atshaves
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824
| | - Kerstin K. Landrock
- Department of Pathobiology, Texas A&M University, TVMC College Station, TX 77843-4467
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC College Station, TX 77843-4467
| | - Ann B. Kier
- Department of Pathobiology, Texas A&M University, TVMC College Station, TX 77843-4467
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX 77843-4466
| |
Collapse
|
21
|
Parameter trajectory analysis to identify treatment effects of pharmacological interventions. PLoS Comput Biol 2013; 9:e1003166. [PMID: 23935478 PMCID: PMC3731221 DOI: 10.1371/journal.pcbi.1003166] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 06/18/2013] [Indexed: 11/29/2022] Open
Abstract
The field of medical systems biology aims to advance understanding of molecular mechanisms that drive disease progression and to translate this knowledge into therapies to effectively treat diseases. A challenging task is the investigation of long-term effects of a (pharmacological) treatment, to establish its applicability and to identify potential side effects. We present a new modeling approach, called Analysis of Dynamic Adaptations in Parameter Trajectories (ADAPT), to analyze the long-term effects of a pharmacological intervention. A concept of time-dependent evolution of model parameters is introduced to study the dynamics of molecular adaptations. The progression of these adaptations is predicted by identifying necessary dynamic changes in the model parameters to describe the transition between experimental data obtained during different stages of the treatment. The trajectories provide insight in the affected underlying biological systems and identify the molecular events that should be studied in more detail to unravel the mechanistic basis of treatment outcome. Modulating effects caused by interactions with the proteome and transcriptome levels, which are often less well understood, can be captured by the time-dependent descriptions of the parameters. ADAPT was employed to identify metabolic adaptations induced upon pharmacological activation of the liver X receptor (LXR), a potential drug target to treat or prevent atherosclerosis. The trajectories were investigated to study the cascade of adaptations. This provided a counter-intuitive insight concerning the function of scavenger receptor class B1 (SR-B1), a receptor that facilitates the hepatic uptake of cholesterol. Although activation of LXR promotes cholesterol efflux and -excretion, our computational analysis showed that the hepatic capacity to clear cholesterol was reduced upon prolonged treatment. This prediction was confirmed experimentally by immunoblotting measurements of SR-B1 in hepatic membranes. Next to the identification of potential unwanted side effects, we demonstrate how ADAPT can be used to design new target interventions to prevent these. A driving ambition of medical systems biology is to advance our understanding of molecular processes that drive the progression of complex diseases such as Type 2 Diabetes and cardiovascular disease. This insight is essential to enable the development of therapies to effectively treat diseases. A challenging task is to investigate the long-term effects of a treatment, in order to establish its applicability and to identify potential side effects. As such, there is a growing need for novel approaches to support this research. Here, we present a new computational approach to identify treatment effects. We make use of a computational model of the biological system. The model is used to describe the experimental data obtained during different stages of the treatment. To incorporate the long-term/progressive adaptations in the system, induced by changes in gene and protein expression, the model is iteratively updated. The approach was employed to identify metabolic adaptations induced by a potential anti-atherosclerotic and anti-diabetic drug target. Our approach identifies the molecular events that should be studied in more detail to establish the mechanistic basis of treatment outcome. New biological insight was obtained concerning the metabolism of cholesterol, which was in turn experimentally validated.
Collapse
|
22
|
High glucose potentiates L-FABP mediated fibrate induction of PPARα in mouse hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1412-25. [PMID: 23747828 DOI: 10.1016/j.bbalip.2013.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/17/2013] [Accepted: 05/30/2013] [Indexed: 01/22/2023]
Abstract
Although liver fatty acid binding protein (L-FABP) binds fibrates and PPARα in vitro and enhances fibrate induction of PPARα in transformed cells, the functional significance of these findings is unclear, especially in normal hepatocytes. Studies with cultured primary mouse hepatocytes show that: 1) At physiological (6mM) glucose, fibrates (bezafibrate, fenofibrate) only weakly activated PPARα transcription of genes in LCFA β-oxidation; 2) High (11-20mM) glucose, but not maltose (osmotic control), significantly potentiated fibrate-induction of mRNA of these and other PPARα target genes to increase LCFA β-oxidation. These effects were associated with fibrate-mediated redistribution of L-FABP into nuclei-an effect prolonged by high glucose-but not with increased de novo fatty acid synthesis from glucose; 3) Potentiation of bezafibrate action by high glucose required an intact L-FABP/PPARα signaling pathway as shown with L-FABP null, PPARα null, PPARα inhibitor-treated WT, or PPARα-specific fenofibrate-treated WT hepatocytes. High glucose alone in the absence of fibrate was ineffective. Thus, high glucose potentiation of PPARα occurred through FABP/PPARα rather than indirectly through other PPARs or glucose induced signaling pathways. These data indicated L-FABP's importance in fibrate-induction of hepatic PPARα LCFA β-oxidative genes, especially in the context of high glucose levels.
Collapse
|
23
|
McIntosh AL, Atshaves BP, Landrock D, Landrock KK, Martin GG, Storey SM, Kier AB, Schroeder F. Liver fatty acid binding protein gene-ablation exacerbates weight gain in high-fat fed female mice. Lipids 2013; 48:435-48. [PMID: 23539345 DOI: 10.1007/s11745-013-3777-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/19/2013] [Indexed: 12/30/2022]
Abstract
Loss of liver fatty acid binding protein (L-FABP) decreases long chain fatty acid uptake and oxidation in primary hepatocytes and in vivo. On this basis, L-FABP gene ablation would potentiate high-fat diet-induced weight gain and weight gain/energy intake. While this was indeed the case when L-FABP null (-/-) mice on the C57BL/6NCr background were pair-fed a high-fat diet, whether this would also be observed under high-fat diet fed ad libitum was not known. Therefore, this possibility was examined in female L-FABP (-/-) mice on the same background. L-FABP (-/-) mice consumed equal amounts of defined high-fat or isocaloric control diets fed ad libitum. However, on the ad libitum-fed high-fat diet the L-FABP (-/-) mice exhibited: (1) decreased hepatic long chain fatty acid (LCFA) β-oxidation as indicated by lower serum β-hydroxybutyrate level; (2) decreased hepatic protein levels of key enzymes mitochondrial (rate limiting carnitine palmitoyl acyltransferase A1, CPT1A; HMG-CoA synthase) and peroxisomal (acyl CoA oxidase 1, ACOX1) LCFA β-oxidation; (3) increased fat tissue mass (FTM) and FTM/energy intake to the greatest extent; and (4) exacerbated body weight gain, weight gain/energy intake, liver weight, and liver weight/body weight to the greatest extent. Taken together, these findings showed that L-FABP gene-ablation exacerbated diet-induced weight gain and fat tissue mass gain in mice fed high-fat diet ad libitum--consistent with the known biochemistry and cell biology of L-FABP.
Collapse
Affiliation(s)
- Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dietary eicosapentaenoic acid supplementation accentuates hepatic triglyceride accumulation in mice with impaired fatty acid oxidation capacity. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:291-9. [DOI: 10.1016/j.bbalip.2012.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/29/2012] [Accepted: 10/10/2012] [Indexed: 12/20/2022]
|
25
|
Eckert GP, Lipka U, Muller WE. Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot Essent Fatty Acids 2013; 88:105-14. [PMID: 22727983 DOI: 10.1016/j.plefa.2012.05.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction represents a common early pathological event in brain aging and in neurodegenerative diseases, e.g., in Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD), as well as in ischemic stroke. In vivo and ex vivo experiments using animal models of aging and AD, PD, and HD mainly showed improvement of mitochondrial function after treatment with polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA). Thereby, PUFA are particular beneficial in animals treated with mitochondria targeting toxins. However, DHA showed adverse effects in a transgenic PD mouse model and it is not clear if a diet high or low in PUFA might provide neuroprotective effects in PD. Post-treatment with PUFA revealed conflicting results in ischemic animal models, but intravenous administered DHA provided neuroprotective efficacy after acute occlusion of the middle cerebral artery. In summary, the majority of preclinical data indicate beneficial effects of n-3 PUFA in neurodegenerative diseases, whereas most controlled clinical trials did not meet the expectations. Because of the high half-life of DHA in the human brain clinical studies may have to be initiated much earlier and have to last much longer to be more efficacious.
Collapse
Affiliation(s)
- Gunter P Eckert
- Department of Pharmacology, Biocenter, Campus Riedberg, Goethe-University, Frankfurt, Biocentre Geb. N260, R.1.09, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany.
| | | | | |
Collapse
|
26
|
Trigueros L, Peña S, Ugidos AV, Sayas-Barberá E, Pérez-Álvarez JA, Sendra E. Food ingredients as anti-obesity agents: a review. Crit Rev Food Sci Nutr 2013; 53:929-42. [PMID: 23768185 DOI: 10.1080/10408398.2011.574215] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overweight and obesity have a major impact on global health; their prevalence has rapidly increased in all industrialized countries in the past few decades and diabetes and hypertension are their direct consequences. Pharmacotherapy provides reinforcement for obesity treatment, but should be an adjunctive support to diet, exercise, and lifestyle modification. At present, only orlistat and sibutramine have been approved by the US Food and Drug Administration for long-term use, but sibutramine was withdrawn for sale by the European Medicines Agency. The development of functional foods for the prevention and/or treatment of obesity suppose an opportunity for the food market and involve the knowledge of the mechanisms of appetite and energy expenditure as well as the metabolic sensation of satiety. Strategies for weight control management affect gut hormones as potential targets for the appetite metabolic regulation, stimulation of energy expenditure (thermogenesis), and modifications in the metabolic activity of the gut microbiota. Functional foods for obesity may also include bioactive fatty acids, phenolic compounds, soybean, plant sterols, dietary calcium, and dietary fiber. This review intends to offer an overview of the present situation of the anti-obesity agents currently used in dietary therapy as well as some functional food ingredients with potentially anti-obesity effects.
Collapse
Affiliation(s)
- L Trigueros
- IPOA Research Group UMH-1 and REVIV_ Generalitat Valenciana, Departamento de Tecnología Agroalimentaria, Universidad Miguel Hernández, Ctra. de Beniel km 3.2, 03312, Orihuela, Alicante, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Fatty Acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int J Endocrinol 2013; 2013:361895. [PMID: 23762050 PMCID: PMC3677644 DOI: 10.1155/2013/361895] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/26/2023] Open
Abstract
Endocannabinoids and their G-protein coupled receptors (GPCR) are a current research focus in the area of obesity due to the system's role in food intake and glucose and lipid metabolism. Importantly, overweight and obese individuals often have higher circulating levels of the arachidonic acid-derived endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) and an altered pattern of receptor expression. Consequently, this leads to an increase in orexigenic stimuli, changes in fatty acid synthesis, insulin sensitivity, and glucose utilisation, with preferential energy storage in adipose tissue. As endocannabinoids are products of dietary fats, modification of dietary intake may modulate their levels, with eicosapentaenoic and docosahexaenoic acid based endocannabinoids being able to displace arachidonic acid from cell membranes, reducing AEA and 2-AG production. Similarly, oleoyl ethanolamide, a product of oleic acid, induces satiety, decreases circulating fatty acid concentrations, increases the capacity for β -oxidation, and is capable of inhibiting the action of AEA and 2-AG in adipose tissue. Thus, understanding how dietary fats alter endocannabinoid system activity is a pertinent area of research due to public health messages promoting a shift towards plant-derived fats, which are rich sources of AEA and 2-AG precursor fatty acids, possibly encouraging excessive energy intake and weight gain.
Collapse
Affiliation(s)
- Shaan S. Naughton
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Michael L. Mathai
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Deanne H. Hryciw
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew J. McAinch
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- *Andrew J. McAinch:
| |
Collapse
|
28
|
Gil-Mohapel JM. Screening of therapeutic strategies for Huntington's disease in YAC128 transgenic mice. CNS Neurosci Ther 2012; 18:77-86. [PMID: 21501423 DOI: 10.1111/j.1755-5949.2011.00246.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by an unstable expansion of cytosine-adenine-guanine (CAG) repeats in the HD gene. The symptoms include cognitive dysfunction and severe motor impairment with loss of voluntary movement coordination that is later replaced by bradykinesia and rigidity. The neuropathology is characterized by neuronal loss mainly in the striatum and cortex, and the appearance of neuronal intranuclear inclusions of mutant huntingtin. The mechanisms responsible for neurodegeneration are still not fully understood although excitotoxicity and a consequent increase in intracellular calcium concentration as well as the activation of caspases and calapins are known to play a key role. There is currently no satisfactory treatment or cure for this disease. The YAC128 transgenic mice express the full-length human HD gene with 128 CAG repeats and constitute a unique model for the study of HD as they replicate the slow and biphasic progression of behavioral deficits characteristic of the human condition and show striatal neuronal loss. As such, these transgenic mice have been an invaluable model not only for the elucidation of the neurodegenerative pathways in HD, but also for the screening and development of new therapeutic approaches. Here, I will review the unique characteristics of this transgenic HD model and will provide a summary of the therapies that have been tested in these mice, namely: potentiation of the protective roles of wild-type huntingtin and mutant huntingtin aggregation, transglutaminase inhibition, inhibition of glutamate- and dopamine-induced toxicity, apoptosis inhibition, use of essential fatty acids, and the novel approach of intrabody gene therapy. The insights obtained from these and future studies will help identify potential candidates for clinical trials and will ultimately contribute to the discovery of a successful treatment for this devastating neurodegenerative disorder.
Collapse
Affiliation(s)
- Joana M Gil-Mohapel
- Division of Medical Sciences, Island Medical Program, University of Victoria, British Columbia, Canada.
| |
Collapse
|
29
|
Hao Q, Lillefosse HH, Fjaere E, Myrmel LS, Midtbø LK, Jarlsby RH, Ma T, Jia B, Petersen RK, Sonne SB, Chwalibog A, Frøyland L, Liaset B, Kristiansen K, Madsen L. High-glycemic index carbohydrates abrogate the antiobesity effect of fish oil in mice. Am J Physiol Endocrinol Metab 2012; 302:E1097-112. [PMID: 22338077 DOI: 10.1152/ajpendo.00524.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fish oil rich in n-3 polyunsaturated fatty acids is known to attenuate diet-induced obesity and adipose tissue inflammation in rodents. Here we aimed to investigate whether different carbohydrate sources modulated the antiobesity effects of fish oil. By feeding C57BL/6J mice isocaloric high-fat diets enriched with fish oil for 6 wk, we show that increasing amounts of sucrose in the diets dose-dependently increased energy efficiency and white adipose tissue (WAT) mass. Mice receiving fructose had about 50% less WAT mass than mice fed a high fish oil diet supplemented with either glucose or sucrose, indicating that the glucose moiety of sucrose was responsible for the obesity-promoting effect of sucrose. To investigate whether the obesogenic effect of sucrose and glucose was related to stimulation of insulin secretion, we combined fish oil with high and low glycemic index (GI) starches. Mice receiving the fish oil diet containing the low-GI starch had significantly less WAT than mice fed high-GI starch. Moreover, inhibition of insulin secretion by administration of nifedipine significantly reduced WAT mass in mice fed a high-fish oil diet in combination with sucrose. Our data show that the macronutrient composition of the diet modulates the effects of fish oil. Fish oil combined with sucrose, glucose, or high-GI starch promotes obesity, and the reported anti-inflammatory actions of fish oil are abrogated. In conclusion, our data indicate that glycemic control of insulin secretion modulates metabolic effects of fish oil by demonstrating that high-GI carbohydrates attenuate the antiobesity effects of fish oil.
Collapse
Affiliation(s)
- Qin Hao
- Department of Biology, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sivananthan SN, Leavitt BR. Cystamine and ethyl-eicosapentaenoic acid treatment fail to prevent malonate-induced striatal toxicity in mice. Neurobiol Aging 2011; 32:2326.e1-4. [PMID: 21741126 DOI: 10.1016/j.neurobiolaging.2011.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 04/19/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
Cystamine has demonstrated neuroprotective activity in a variety of studies, and is currently being evaluated in a human clinical trial in Huntington's disease (HD). Cystamine treatment of various genetic models of HD demonstrated protection against neurodegeneration and/or improvement in behavior. Given the need for a rapid screening tool for HD therapeutics, we assessed the potential therapeutic benefits of cystamine in a short-term acute toxicity murine model of striatal cell death. Cystamine did not provide neuroprotection against bilateral intrastriatal malonate injections in mice as measured by lesion size, loss of striatal volume, or decreased striatal neuronal counts. Similar results were obtained for treatment with another potential therapeutic agent that was protective in genetic mouse models of HD, the essential fatty acid ethyl-eicosapentaenoic acid. Our findings suggest that this toxic model is not reflective or predictive of findings in genetic mouse models, and may not be useful as a preclinical screen for HD therapeutics.
Collapse
Affiliation(s)
- Saskia N Sivananthan
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, University of British Columbia, British Columbia, Vancouver, Canada
| | | |
Collapse
|
31
|
Sucrose counteracts the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice. PLoS One 2011; 6:e21647. [PMID: 21738749 PMCID: PMC3125273 DOI: 10.1371/journal.pone.0021647] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 06/04/2011] [Indexed: 01/17/2023] Open
Abstract
Background Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance. Methodology/Principal Findings We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state. Conclusions/Significance The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.
Collapse
|
32
|
Block RC, Dorsey ER, Beck CA, Brenna JT, Shoulson I. Altered cholesterol and fatty acid metabolism in Huntington disease. J Clin Lipidol 2011; 4:17-23. [PMID: 20802793 DOI: 10.1016/j.jacl.2009.11.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Huntington disease is an autosomal dominant neurodegenerative disorder characterized by behavioral abnormalities, cognitive decline, and involuntary movements that lead to a progressive decline in functional capacity, independence, and ultimately death. The pathophysiology of Huntington disease is linked to an expanded trinucleotide repeat of cytosine-adenine-guanine (CAG) in the IT-15 gene on chromosome 4. There is no disease-modifying treatment for Huntington disease, and novel pathophysiological insights and therapeutic strategies are needed. Lipids are vital to the health of the central nervous system, and research in animals and humans has revealed that cholesterol metabolism is disrupted in Huntington disease. This lipid dysregulation has been linked to specific actions of the mutant huntingtin on sterol regulatory element binding proteins. This results in lower cholesterol levels in affected areas of the brain with evidence that this depletion is pathologic. Huntington disease is also associated with a pattern of insulin resistance characterized by a catabolic state resulting in weight loss and a lower body mass index than individuals without Huntington disease. Insulin resistance appears to act as a metabolic stressor attending disease progression. The fish-derived omega-3 fatty acids, eicosapentaenoic acid and docosahexaenoic acid, have been examined in clinical trials of Huntington disease patients. Drugs that combat the dysregulated lipid milieu in Huntington disease may help treat this perplexing and catastrophic genetic disease.
Collapse
Affiliation(s)
- Robert C Block
- Division of Epidemiology, Department of Community and Preventive Medicine and Preventive Cardiology Unit, Box 644, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14620, USA.
| | | | | | | | | |
Collapse
|
33
|
Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). Br J Nutr 2011; 106:633-47. [PMID: 21535902 DOI: 10.1017/s0007114511000729] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to study whether lipid metabolism may be affected by maximum replacement of dietary fish oil and fish meal with vegetable oils (VO) and plant proteins (PP), Atlantic salmon (Salmo salar L.) smolts were fed a control diet containing fish oil and fish meal or one of three plant-based diets through the seawater production phase for 12 months. Diets were formulated to meet all known nutrient requirements. The whole-body lipid storage pattern was measured after 12 months, as well as post-absorptive plasma, VLDL and liver TAG. To further understand the effects on lipid metabolism, expression of genes encoding for proteins involved in VLDL assembly (apoB100), fatty acid uptake (FATP1, cd36, LPL and FABP3, FABP10 and FABP11) were measured in liver and visceral adipose tissue. Maximum dietary VO and PP increased visceral lipid stores, liver TAG, and plasma VLDL and TAG concentrations. Increased plasma TAG correlated with an increased expression of apoB100, indicating increased VLDL assembly in the liver of fish fed the high-plant protein- and VO-based diet. Atlantic salmon fed intermediate replacement levels of VO or PP did not have increased body fat or visceral mass. Overall, the present results demonstrate an interaction between dietary lipids and protein on lipid metabolism, increasing overall adiposity and TAG in the body when fish meal and fish oil are replaced concomitantly at maximised levels of VO and PP.
Collapse
|
34
|
The Later Effects of DHA in Diet on Regulating Transcription of Lipid Genes of Broiler. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60043-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Hosomi R, Fukunaga K, Arai H, Kanda S, Nishiyama T, Yoshida M. Effect of combination of dietary fish protein and fish oil on lipid metabolism in rats. Journal of Food Science and Technology 2011; 50:266-74. [PMID: 24425916 DOI: 10.1007/s13197-011-0343-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/31/2011] [Accepted: 03/13/2011] [Indexed: 10/18/2022]
Abstract
This study examined the effects of fish protein in combination with fish oil on rat lipid metabolism. Male Wistar rats were divided into four groups and fed an AIN93G-based diet with casein (20%) + soybean oil (7%), casein (10%) + fish protein (10%) + soybean oil (7%), casein (20%) + soybean oil (5%) + fish oil (2%), and casein (10%) + fish protein (10%) + soybean oil (5%) + fish oil (2%) for 4 weeks. The dietary combination of fish protein and fish oil decreased the contents of serum triacylglycerol, serum cholesterol, liver triacylglycerol and liver cholesterol in addition to altering liver lipid fatty acid composition. These effects are partly due to the increase in fecal cholesterol, bile acid excretion, and increased enzyme activities of fatty acid β-oxidation in the liver. These data suggest that combined intake of fish protein and fish oil lead to both hypocholesterolemic and hypotriglyceridemic in serum and the liver, while sole intake of fish protein or fish oil decrease only cholesterol and triglyceride levels, respectively. These results suggest that combined intake of fish protein and fish oil may play beneficial roles in the prevention of lifestyle-related diseases as compared with sole fish protein intake.
Collapse
Affiliation(s)
- Ryota Hosomi
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680 Japan
| | - Kenji Fukunaga
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680 Japan
| | - Hirofumi Arai
- Division of Biotechnology and Environmental Chemistry, Kitami Institute of Technology, Kitami, Hokkaido 090-8507 Japan
| | - Seiji Kanda
- Department of Public Health, Kansai Medical University, Moriguchi, Osaka 570-8506 Japan
| | - Toshimasa Nishiyama
- Department of Public Health, Kansai Medical University, Moriguchi, Osaka 570-8506 Japan
| | - Munehiro Yoshida
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680 Japan
| |
Collapse
|
36
|
Experimental Models of HD and Reflection on Therapeutic Strategies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:419-81. [DOI: 10.1016/b978-0-12-381328-2.00016-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
37
|
Bonnet N, Ferrari SL. Effects of long-term supplementation with omega-3 fatty acids on longitudinal changes in bone mass and microstructure in mice. J Nutr Biochem 2010; 22:665-72. [PMID: 21036590 DOI: 10.1016/j.jnutbio.2010.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/21/2010] [Accepted: 05/19/2010] [Indexed: 11/13/2022]
Abstract
A diet rich in omega-3s has previously been suggested to prevent bone loss. However, evidence for this has been limited by short exposure to omega-3 fatty acids (FAs). We investigated whether a diet enriched in eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for the entire adult life of mice could improve bone microstructure and strength. Thirty female mice received a diet enriched in DHA or EPA or an isocaloric control diet from 3 to 17 months of age. Changes in bone microstructure were analyzed longitudinally and biomechanical properties were analysed by a three-point bending test. Bone remodelling was evaluated by markers of bone turnover and histomorphometry. Trabecular bone volume in caudal vertebrae was improved by EPA or DHA at 8 months (+26.6% and +17.2%, respectively, compared to +3.8% in controls, P=.01), but not thereafter. Trabecular bone loss in the tibia was not prevented by omega-3 FAs (BV/TV -94%, -93% and -97% in EPA, DHA and controls, respectively). EPA improved femur cortical bone volume (+8.1%, P<.05) and thickness (+4.4%, P<.05) compared to controls. EPA, but not DHA, reduced age-related decline of osteocalcin (-70% vs. -83% in controls, P<.05). EPA and DHA increased leptin levels (7.3±0.7 and 8.5±0.5 ng ml⁻¹, respectively, compared to 4.5±0.9 ng ml⁻¹ in controls, P=.001); however, only EPA further increased IGF-1 levels (739±108 ng ml⁻¹, compared to 417±58 ng ml⁻¹ in controls, P=.04). These data suggest that long-term intake of omega-3 FA, particularly EPA, may modestly improve the structural and mechanical properties of cortical bone by an increase in leptin and IGF-1 levels, without affecting trabecular bone loss.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, WHO Collaborating Center for Osteoporosis Prevention, Geneva University Hospital, 1211 Geneva 14, Switzerland.
| | | |
Collapse
|
38
|
Catalá A. A synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. Biochem Biophys Res Commun 2010; 399:318-23. [DOI: 10.1016/j.bbrc.2010.07.087] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/25/2010] [Indexed: 10/19/2022]
|
39
|
Du Z, Araujo P, Stubhaug I, Frøyland L. Unbound DHA causes a high blank value in β‐oxidation assay: a concern for
in vitro
studies. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhen‐Yu Du
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N‐5817 Bergen, Norway
| | - Pedro Araujo
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N‐5817 Bergen, Norway
| | - Ingunn Stubhaug
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N‐5817 Bergen, Norway
- Present address: Skretting Aquaculture Research Center AS, 1103 Stavanger, Norway
| | - Livar Frøyland
- National Institute of Nutrition and Seafood Research (NIFES), P.O. Box 2029 Nordnes, N‐5817 Bergen, Norway
| |
Collapse
|
40
|
Arai T, Kim HJ, Chiba H, Matsumoto A. Anti-obesity effect of fish oil and fish oil-fenofibrate combination in female KK mice. J Atheroscler Thromb 2010; 16:674-83. [PMID: 19907107 DOI: 10.5551/jat.1313] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The aim of our study is to elucidate the effects of EPA- or DHA-rich fish oil, and of the latter plus fenofibrate, on lipid metabolism in female KK mice. METHODS Female KK mice were fed purified experimental diets containing lard/safflower oil (4:6, Lard/SO), EPA-rich fish oil (EPA), DHA-rich fish oil (DHA), or DHA-rich fish oil plus 0.2% (w/w) fenofibrate (DHA+FF) for 8 weeks. At the end of the experiments, we measured levels of plasma lipids, hepatic triglycerides, and cholesterol, as well as the hepatic mRNA expression of lipogenic and lipidolytic genes. RESULTS The final body weight of EPA- and DHA-fed groups was significantly lower than that of the Lard/SO-fed group, and that of the DHA+FF-fed group was the lowest. All three fish oil treatments significantly reduced plasma insulin levels. Hepatic lipid levels significantly decreased in all three of these groups compared with the Lard/SO-fed group. Plasma adiponectin increased in both the EPA-and DHA-fed groups, but the increase was suppressed in the DHA+FF-fed group. Hepatocytes of Lard/SO-fed mice were filled with numerous fat droplets, but fat accumulation was inhibited in both EPA- and DHA-fed mice and was significantly prevented by fenofibrate treatment. SREBP-1c mRNA levels were decreased by about half in EPA- and DHA-fed mice compared with Lard/SO-fed mice. FAS, Insig-1, HMG-CoA reductase, and LDL-receptor mRNA levels also markedly decreased in both EPA- and DHA-fed mice, but there was no additional decrease in DHA+FF fed mice. Fenofibrate treatment significantly induced mRNA expression of AOX and UCP-2, but not of PPARalpha. CONCLUSION These data suggest that fish oil inhibited body weight gain and exhibited an anti-obesity effect through the inhibition of lipid synthesis in female KK mice. Furthermore, fenofibrate treatment markedly inhibited body weight gain by the induction of fatty acid oxidation. Plasma adiponectin levels did not increase in mice fed DHA-rich fish oil with fenofibrate, although white adipose tissue (WAT) weight significantly decreased. We considered that adiponectin sensitivity increased more in mice fed DHA-rich fish oil with fenofibrate than in mice fed DHA-rich fish oil alone.
Collapse
Affiliation(s)
- Takeshi Arai
- Faculty of Pharmaceutical Sciences, Josai University, Japan
| | | | | | | |
Collapse
|
41
|
Arai T, Kim HJ, Chiba H, Matsumoto A. Interaction of fenofibrate and fish oil in relation to lipid metabolism in mice. J Atheroscler Thromb 2009; 16:283-91. [PMID: 19556727 DOI: 10.5551/jat.e463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM The aim of our study is to elucidate the interactive effects on lipid metabolism of fenofibrate and two fish oils with EPA and DHA contents in mice. METHODS Female C57BL/6J mice were fed purified experimental diets containing safflower oil (SO), EPA-rich menhaden oil (MO) or DHA-rich tuna oil (TO) with or without 0.1% fenofibrate for 8 weeks. At the end of the experiments, we measured plasma lipids and hepatic triglycerides and cholesterol, and the hepatic mRNA expression of lipogenic and lipidolytic genes. RESULTS Plasma TG levels fell in the group fed MO or TO alone and fell significantly in all fenofibrate-treated groups. Although plasma total cholesterol levels fell significantly in fish oil-fed groups, fenofibrate treatments increased significantly plasma total cholesterol levels in these fish oil groups, but not in the group fed SO alone; however, hepatic triglyceride and total cholesterol levels markedly decreased in MO-or TO-fed mice. In lipid synthesis, the hepatic mRNA level of SREBP-1c was not reduced in either fish oil group; however, Insig-1 mRNA decreased in MO and TO feeding groups by about half and FAS or SCD-1 mRNA decreased significantly in MO and TO feeding groups, compared with the SO feeding group. In both fish oil groups, SREBP-2 mRNA decreased significantly and HMG-CoA reductase mRNA also decreased with/without fenofibrate. On the other hand, fenofibrate supplementation significantly induced the mRNA expression of AOX and UCP-2, which play a role in lipid catabolism, in all diets. CYP7A1 mRNA increased markedly in mice fed MO diet with fenofibrate, compared with TO diet with fenofibrate. CONCLUSION These data suggest that differences in dietary contents of EPA and DHA do not influence the inhibition of lipogenesis, and that fenofibrate supplementation stimulates fatty acid oxidation, regardless of the oil type; however, cholesterol catabolism was induced by a combination of EPA-rich fish oil and fenofibrate, which suggests that EPA has a greater synergistic ability for cholesterol catabolism induction by fenofibrate than DHA.
Collapse
Affiliation(s)
- Takeshi Arai
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | | | | | | |
Collapse
|
42
|
Marine n-3 fatty acids promote size reduction of visceral adipose depots, without altering body weight and composition, in male Wistar rats fed a high-fat diet. Br J Nutr 2009; 102:995-1006. [DOI: 10.1017/s0007114509353210] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We evaluated the effects of partly substituting lard with marine n-3 fatty acids (FA) on body composition and weight, adipose tissue distribution and gene expression in five adipose depots of male Wistar rats fed a high-fat diet. Rats were fed diets including lard (19·5 % lard) or n-3 FA (9·1 % lard and 10·4 % Triomar™) for 7 weeks. Feed consumption and weight gain were similar, whereas plasma lipid concentrations were lower in the n-3 FA group. Magnetic resonance imaging revealed smaller visceral (mesenteric, perirenal and epididymal) adipose depots in the n-3 FA-fed animals (35, 44 and 32 % reductions, respectively). n-3 FA feeding increased mRNA expression of cytokines as well as chemokines in several adipose depots. Expression of Adipoq and Pparg was enhanced in the mesenteric adipose depots of the n-3 FA-fed rats, and fasting plasma insulin levels were lowered. Expression of the lipogenic enzymes Acaca and Fasn was increased in the visceral adipose depots, whereas Dgat1 was reduced in the perirenal and epididymal depots. Cpt2 mRNA expression was almost doubled in the mesenteric depot and liver. Carcass analyses showed similar body fat (%) in the two feeding groups, indicating that n-3 FA feeding led to redistribution of fat away from the visceral compartment.
Collapse
|
43
|
Cellular and molecular effects of n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin Sci (Lond) 2009; 116:1-16. [PMID: 19037880 DOI: 10.1042/cs20070456] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipose tissue and its secreted products, adipokines, have a major role in the development of obesity-associated metabolic derangements including Type 2 diabetes. Conversely, obesity and its metabolic sequelae may be counteracted by modulating metabolism and secretory functions of adipose tissue. LC-PUFAs (long-chain polyunsaturated fatty acids) of the n-3 series, namely DHA (docosahexaenoic acid; C(22:6n-3)) and EPA (eicosapentaenoic acid; C(20:5n-3)), exert numerous beneficial effects, such as improvements in lipid metabolism and prevention of obesity and diabetes, which partially result from the metabolic action of n-3 LC-PUFAs in adipose tissue. Recent studies highlight the importance of mitochondria in adipose tissue for the maintenance of systemic insulin sensitivity. For instance, both n-3 LC-PUFAs and the antidiabetic drugs TZDs (thiazolidinediones) induce mitochondrial biogenesis and beta-oxidation. The activation of this 'metabolic switch' in adipocytes leads to a decrease in adiposity. Both n-3 LC-PUFAs and TZDs ameliorate a low-grade inflammation of adipose tissue associated with obesity and induce changes in the pattern of secreted adipokines, resulting in improved systemic insulin sensitivity. In contrast with TZDs, which act as agonists of PPARgamma (peroxisome-proliferator-activated receptor-gamma) and promote differentiation of adipocytes and adipose tissue growth, n-3 LC-PUFAs affect fat cells by different mechanisms, including the transcription factors PPARalpha and PPARdelta. Some of the effects of n-3 LC-PUFAs on adipose tissue depend on their active metabolites, especially eicosanoids. Thus treatments affecting adipose tissue by multiple mechanisms, such as combining n-3 LC-PUFAs with either caloric restriction or antidiabetic/anti-obesity drugs, should be explored.
Collapse
|
44
|
Todorčević M, Kjær MA, Djaković N, Vegusdal A, Torstensen BE, Ruyter B. N-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue. Comp Biochem Physiol B Biochem Mol Biol 2009; 152:135-43. [DOI: 10.1016/j.cbpb.2008.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 12/12/2022]
|
45
|
Li JJ, Huang CJ, Xie D. Anti-obesity effects of conjugated linoleic acid, docosahexaenoic acid, and eicosapentaenoic acid. Mol Nutr Food Res 2008; 52:631-45. [PMID: 18306430 DOI: 10.1002/mnfr.200700399] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Obesity has become a prevailing epidemic throughout the globe. Effective therapies for obesity become attracting. Food components with beneficial effects on "weight loss" have caught increasing attentions. Conjugated linoleic acid (CLA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) belong to different families of polyunsaturated fatty acids (PUFA). However, they have similar effects on alleviating obesity and/or preventing from obesity. They influence the balance between energy intake and expenditure; and reduce body weight and/or fat deposition in animal models, but show little effect in healthy human subjects. They inhibit key enzymes responsible for lipid synthesis, such as fatty acid synthase and stearoyl-CoA desaturase-1, enhance lipid oxidation and thermogenesis, and prevent free fatty acids from entering adipocytes for lipogenesis. PUFA also exert suppressive effects on several key factors involved in adipocyte differentiation and fat storage. Despite their similar effects and shared mechanisms, they display differences in the regulation of lipid metabolism. Moreover, DHA and EPA exhibit "anti-obesity" effect as well as improving insulin sensitivity, while CLA induces insulin resistance and fatty liver in most cases. A deeper and more detailed investigation into the complex network of anti-obesity regulatory pathways by different PUFA will improve our understanding of the mechanisms of body weight control and reduce the prevalence of obesity.
Collapse
Affiliation(s)
- Jing-Jing Li
- Institutes for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P. R. China
| | | | | |
Collapse
|
46
|
Hypolipidaemic effects of fenofibrate and fasting in the herbivorous grass carp ( Ctenopharyngodon idella) fed a high-fat diet. Br J Nutr 2008; 100:1200-12. [PMID: 18445306 DOI: 10.1017/s0007114508986840] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated whether the hypolipidaemic effect of fenofibrate and fasting observed in most omnivorous mammals may also apply to herbivorous fish. Grass carp (Ctenopharyngodon idella) fed a high-fat (8 %) diet exhibited a marked increase in blood lipids and body fat after 6 weeks. They were then treated with fenofibrate (100 mg/kg body weight) in the same high-fat diet for 2 weeks, followed by fasting for 1 week. Plasma lipid concentration, body fat amount, fatty acid composition, plasma thiobarbituric acid-reactive substances and some parameters related to hepatic fatty acid oxidation were measured, and liver samples were stained for histological examination. Fenofibrate treatment decreased TAG and cholesterol concentrations in plasma, total lipids of the whole body and liver, and EPA and DHA contents in tissues. Further, a mobilisation of mesenteric fat concomitant with an increase in hepatic peroxisomal fatty acid oxidation and lipid peroxidation was observed. Compared with fenofibrate treatment, fasting decreased body weight and plasma TAG, but not plasma cholesterol. It also reduced the fat content of the whole body and increased the EPA and DHA contents in the liver and other tissues. Fatty acid oxidation was stimulated by fasting in mitochondria, but not in peroxisomes. These data suggest that fenofibrate and fasting regulate the lipid metabolism in grass carp through different metabolic pathways. The grass carp is moderately responsive to a fibrate derivative in comparison with the well-known excess responsiveness of the rat model, and so it could be used for the study of lipid abnormalities as a herbivorous model.
Collapse
|
47
|
|
48
|
Stack EC, Ferrante RJ. Huntington's disease: progress and potential in the field. Expert Opin Investig Drugs 2007; 16:1933-53. [DOI: 10.1517/13543784.16.12.1933] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Yang Q, Nagano T, Shah Y, Cheung C, Ito S, Gonzalez FJ. The PPAR alpha-humanized mouse: a model to investigate species differences in liver toxicity mediated by PPAR alpha. Toxicol Sci 2007; 101:132-9. [PMID: 17690133 PMCID: PMC2197159 DOI: 10.1093/toxsci/kfm206] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine the impact of the species difference between rodents and humans in response to peroxisome proliferators (PPs) mediated by peroxisome proliferator-activated receptor (PPAR)alpha, PPAR alpha-humanized transgenic mice were generated using a P1 phage artificial chromosome (PAC) genomic clone bred onto a ppar alpha-null mouse background, designated hPPAR alpha PAC. In hPPAR alpha PAC mice, the human PPAR alpha gene is expressed in tissues with high fatty acid catabolism and induced upon fasting, similar to mouse PPAR alpha in wild-type (Wt) mice. Upon treatment with the PP fenofibrate, hPPAR alpha PAC mice exhibited responses similar to Wt mice, including peroxisome proliferation, lowering of serum triglycerides, and induction of PPAR alpha target genes encoding enzymes involved in fatty acid metabolism in liver, kidney, and heart, suggesting that human PPAR alpha (hPPAR alpha) functions in the same manner as mouse PPAR alpha in regulating fatty acid metabolism and lowering serum triglycerides. However, in contrast to Wt mice, treatment of hPPAR alpha PAC mice with fenofibrate did not cause significant hepatomegaly and hepatocyte proliferation, thus indicating that the mechanisms by which PPAR alpha affects lipid metabolism are distinct from the hepatocyte proliferation response, the latter of which is only induced by mouse PPAR alpha. In addition, a differential regulation of several genes, including the oncogenic let-7C miRNA by PPs, was observed between Wt and hPPAR alpha PAC mice that may contribute to the inherent difference between mouse and human PPAR alpha in activation of hepatocellular proliferation. The hPPAR alpha PAC mouse model provides an in vivo platform to investigate the species difference mediated by PPAR alpha and an ideal model for human risk assessment PPs exposure.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank J. Gonzalez
- To whom correspondence should be addressed. Frank J. Gonzalez, Building 37, Room 3106, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892. Fax: (301) 496-8419. E-mail:
| |
Collapse
|
50
|
McKenney JM, Sica D. Role of prescription omega-3 fatty acids in the treatment of hypertriglyceridemia. Pharmacotherapy 2007; 27:715-28. [PMID: 17461707 DOI: 10.1592/phco.27.5.715] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A prescription form of omega-3 fatty acids has been approved by the United States Food and Drug Administration as an adjunct to diet for the treatment of very high triglyceride levels. The active ingredients of omega-3 fatty acids are eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are responsible for the triglyceride lowering. The prescription product contains a total of 0.84 g of these two active ingredients in every 1-g capsule of omega-3 fatty acids. The total EPA and DHA dose recommended for triglyceride lowering is approximately 2-4 g/day. Fish oil products containing EPA and DHA are available without a prescription, but the American Heart Association advises that therapy with EPA and DHA to lower very high triglyceride levels should be used only under a physician's care. In patients with triglyceride levels above 500 mg/dl, approximately 4 g/day of EPA and DHA reduces triglyceride levels 45% and very low-density lipoprotein cholesterol levels by more than 50%. Low-density lipoprotein cholesterol levels may increase depending on the baseline triglyceride level, but the net effect of EPA and DHA therapy is a reduction in non-high-density lipoprotein cholesterol level. Alternatively, patients may receive one of the fibrates (gemfibrozil or fenofibrate) or niacin for triglyceride lowering if their triglyceride levels are higher than 500 mg/dl. In controlled trials, prescription omega-3 fatty acids were well tolerated, with a low rate of both adverse events and treatment-associated discontinuations. The availability of prescription omega-3 fatty acids, which ensures consistent quality and purity, should prove to be valuable for the medical management of hypertriglyceridemia.
Collapse
Affiliation(s)
- James M McKenney
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | |
Collapse
|