1
|
Becknell B, El-Harakeh M, Rodriguez-Tirado F, Grounds KM, Li B, Kercsmar M, Wang X, Jackson AR. Keratin 5 basal cells are temporally regulated developmental and tissue repair progenitors in bladder urothelium. Am J Physiol Renal Physiol 2024; 326:F1078-F1090. [PMID: 38634130 PMCID: PMC11386981 DOI: 10.1152/ajprenal.00378.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Urothelium forms a distensible yet impermeable barrier, senses and transduces stimuli, and defends the urinary tract from mechanical, chemical, and bacterial injuries. Biochemical and genetic labeling studies support the existence of one or more progenitor populations with the capacity to rapidly regenerate the urothelium following injury, but slow turnover, a low mitotic index, and inconsistent methodologies obscure progenitor identity. The progenitor properties of basal keratin 5 urothelial cells (K5-UCs) have been previously investigated, but those studies focused on embryonic or adult bladder urothelium. Urothelium undergoes desquamation and apoptosis after birth, which requires postnatal proliferation and restoration. Therefore, we mapped the fate of bladder K5-UCs across postnatal development/maturation and following administration of cyclophosphamide to measure homeostatic and reparative progenitor capacities, respectively. In vivo studies demonstrate that basal K5-UCs are age-restricted progenitors in neonates and juveniles, but not in adult mice. Neonatal K5-UCs retain a superior progenitor capacity in vitro, forming larger and more differentiated urothelial organoids than adult K5-UCs. Accordingly, K5-UC transcriptomes are temporally distinct, with enrichment of transcripts associated with cell proliferation and differentiation in neonates. Induction of urothelial proliferation is sufficient to restore adult K5-UC progenitor capacity. Our findings advance the understanding of urothelial progenitors and support a linear model of urothelial formation and regeneration, which may have significant impact on therapeutic development or tissue engineering strategies.NEW & NOTEWORTHY Fate mapping reveals an important linear relationship, whereby bladder basal urothelial cells give rise to intermediate and superficial cells in an age-restricted manner and contribute to tissue repair. Neonatal basal cells reprise their role as superior progenitors in vitro and display distinct transcriptional signatures, which suggest progenitor function is at least partially cell intrinsic. However, the urothelium progenitor niche cannot be overlooked, since FGF7 rescues adult basal cell progenitor function.
Collapse
Affiliation(s)
- Brian Becknell
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Mohammad El-Harakeh
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Felipe Rodriguez-Tirado
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Kelly M Grounds
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Birong Li
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Macie Kercsmar
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Xin Wang
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Ashley R Jackson
- Kidney and Urinary Tract Center, Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, Ohio, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| |
Collapse
|
2
|
Prospective use of amniotic mesenchymal stem cell metabolite products for tissue regeneration. J Biol Eng 2023; 17:11. [PMID: 36759827 PMCID: PMC9912508 DOI: 10.1186/s13036-023-00331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Chronic disease can cause tissue and organ damage constituting the largest obstacle to therapy which, in turn, reduces patients' quality-adjusted life-year. Degenerative diseases such as osteoporosis, Alzheimer's disease, Parkinson's disease, and infectious conditions such as hepatitis, cause physical injury to organs. Moreover, damage resulting from chronic conditions such as diabetes can also culminate in the loss of organ function. In these cases, organ transplantation constitutes the therapy of choice, despite the associated problems of immunological rejection, potential disease transmission, and high morbidity rates. Tissue regeneration has the potential to heal or replace tissues and organs damaged by age, disease, or trauma, as well as to treat disabilities. Stem cell use represents an unprecedented strategy for these therapies. However, product availability and mass production remain challenges. A novel therapeutic alternative involving amniotic mesenchymal stem cell metabolite products (AMSC-MP) has been developed using metabolites from stem cells which contain cytokines and growth factors. Its potential role in regenerative therapy has recently been explored, enabling broad pharmacological applications including various gastrointestinal, lung, bladder and renal conditions, as well as the treatment of bone wounds, regeneration and skin aging due to its low immunogenicity and anti-inflammatory effects. The various kinds of growth factors present in AMSC-MP, namely bFGF, VEGF, TGF-β, EGF and KGF, have their respective functions and activities. Each growth factor is formed by different proteins resulting in molecules with various physicochemical properties and levels of stability. This knowledge will assist in the manufacture and application of AMSC-MP as a therapeutic agent.
Collapse
|
3
|
Shantha Kumara HMC, Shah A, Miyagaki H, Yan X, Cekic V, Hedjar Y, Whelan RL. Plasma Levels of Keratinocyte Growth Factor Are Significantly Elevated for 5 Weeks After Minimally Invasive Colorectal Resection Which May Promote Cancer Recurrence and Metastasis. Front Surg 2021; 8:745875. [PMID: 34820416 PMCID: PMC8606552 DOI: 10.3389/fsurg.2021.745875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Human Keratinocyte Growth Factor (KGF) is an FGF family protein produced by mesenchymal cells. KGF promotes epithelial cell proliferation, plays a role in wound healing and may also support tumor growth. It is expressed by some colorectal cancers (CRC). Surgery's impact on KGF levels is unknown. This study's purpose was to assess plasma KGF levels before and after minimally invasive colorectal resection (MICR) for CRC. Aim: To determine plasma KGF levels before and after minimally invasive colorectal resection surgery for cancer pathology. Method: CRC MICR patients (pts) in an IRB approved data/plasma bank were studied. Pre-operative (pre-op) and post-operative (post-op) plasma samples were taken/stored. Late samples were bundled into 7 day blocks and considered as single time points. KGF levels (pg/ml) were measured via ELISA (mean ± SD). The Wilcoxon paired t-test was used for statistical analysis. Results: Eighty MICR CRC patients (colon 61%; rectal 39%; mean age 65.8 ± 13.3) were studied. The mean incision length was 8.37 ± 3.9 and mean LOS 6.5 ± 2.6 days. The cancer stage breakdown was; I (23), II (26), III (27), and IV (4). The median pre-op KGF level was 17.1 (95 %CI: 14.6-19.4; n = 80); significantly elevated (p < 0.05) median levels (pg/ml) were noted on post-op day (POD) 1 (23.4 pg/ml; 95% CI: 21.4-25.9; n = 80), POD 3 (22.5 pg/ml; 95% CI: 20.7-25.9; n = 76), POD 7-13 (21.8 pg/ml; 95% CI: 17.7-25.4; n = 50), POD 14-20 (20.1 pg/ml; 95% CI: 17.1-23.9; n = 33), POD 21-27 (19.6 pg/ml; 95% CI: 15.2-24.9; n = 15) and on POD 28-34 (16.7 pg/ml; 95% CI: 14.0-25.8; n = 12). Conclusion: Plasma KGF levels were significantly elevated for 5 weeks after MICR for CRC. The etiology of these changes is unclear, surgical trauma related acute inflammatory response and wound healing process may play a role. These changes, may stimulate angiogenesis in residual tumor deposits after surgery.
Collapse
Affiliation(s)
- H M C Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Abhinit Shah
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | | | - Xiaohong Yan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Yanni Hedjar
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Richard L Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
4
|
Liu C, Zhou J, Li Y, Lu Y, Lu H, Wei W, Wu M, Yi X. Urine-based regenerative RNA biomarkers for urinary bladder wound healing. Regen Med 2021; 16:709-718. [PMID: 34334016 DOI: 10.2217/rme-2021-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: This study aimed to investigate the expression of regeneration-related genes in canine urine during bladder repair. Materials & methods: Canine urine samples were collected after partial cystectomy. Regenerative mRNA of hypoxia-inducible factor (HIF), vascular endothelial growth factor (VEGF), key stem cell transcription factors and cholinergic signals were detected. Results: HIF-1α, VEGF, CD44, IL-6 and prominin-1 expression in canine urine after partial cystectomy exhibited two similar peaks at ∼2 weeks. HIF-1α and VEGF expression were higher in the afternoon than the morning. The expression of key stem cell transcription factors and cholinergic signals also exhibited a rhythm along with bladder healing. Conclusions: The expression of HIF-1α, VEGF, key stem cell transcription factors and cholinergic signals exhibited a time curve distribution during canine bladder healing. The expression trend of some regenerative genes was similar during bladder healing, and a cooperative effect may exist.
Collapse
Affiliation(s)
- Chanzhen Liu
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - Juan Zhou
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - You Li
- Life Science Institute of East China Normal University, Shanghai, 200241, PR China
| | - Yulei Lu
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - Haoyuan Lu
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - Wei Wei
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| | - Mingsong Wu
- School of Stomatology, Zunyi Medical University, Zunyi, 563006, PR China.,Special Key Laboratory of Oral Disease Research of Higher Education Institution of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Xianlin Yi
- GuangxiMedical University Cancer Hospital & Guangxi Cancer Research Institute, Nanning, 530021, PR China
| |
Collapse
|
5
|
Chamorro CI, Reinfeldt Engberg G, Fossum M. Molecular and histological studies of bladder wound healing in a rodent model. Wound Repair Regen 2020; 28:293-306. [PMID: 32011053 DOI: 10.1111/wrr.12797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/27/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
The field of regenerative medicine encounters different challenges. The success of tissue-engineered implants is dependent on proper wound healing. Today, the process of normal urinary bladder wound healing is poorly characterized. We aspired to explore and elucidate the natural response to injury in an in vivo model in order to further optimize tissue regeneration in future studies. In this study, we aimed to characterize histological and molecular changes during normal healing in a rat model by performing a standardized incisional wound followed by surgical closure. We used a rodent model (n = 40) to follow the healing process in the urinary bladder for 28 days. Surgical exposure of the bladder without incision (n = 40) was performed in controls. Histological characterization and western blot analyses of proteins was carried out using specific staining and markers for inflammation, proliferation, angiogenesis, and tissue maturation. For the molecular characterization of gene expression total RNA was collected for RT2 -PCR in wound healing pathway arrays. Analysis of histology revealed distinct, but overlapping, phases of healing with a local inflammatory response (days 1-8) simultaneous with a rapid formation of granulation tissue and proliferation (days 2-8). We also identified significant changes in gene expression related to inflammation, proliferation, and extracellular matrix formation. Healing of an incisional wound in a rodent urinary bladder demonstrated that all the classical phases of wound healing: hemostasis, inflammation, proliferation followed by tissue maturation were present. Our data suggest that the bladder and the skin share similar molecular signaling during wound healing, although we noted differences in the duration of each phase compared to previous studies in rat skin. Further studies will address whether our findings can be extrapolated to the human bladder.
Collapse
Affiliation(s)
- Clara I Chamorro
- Department of Women's and Children's Health, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Surgical Clinic C, Copenhagen University Hospital Rigshospitalet, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Gisela Reinfeldt Engberg
- Department of Women's and Children's Health, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatric Surgery, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Magdalena Fossum
- Department of Women's and Children's Health, Center of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Highly Specialized Pediatric Surgery and Medicine, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.,Department of Pediatric Surgery, Surgical Clinic C, Copenhagen University Hospital Rigshospitalet, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
6
|
Phillips S, Quigley BL, Aziz A, Bergen W, Booth R, Pyne M, Timms P. Antibiotic treatment of Chlamydia-induced cystitis in the koala is linked to expression of key inflammatory genes in reactive oxygen pathways. PLoS One 2019; 14:e0221109. [PMID: 31415633 PMCID: PMC6695219 DOI: 10.1371/journal.pone.0221109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/30/2019] [Indexed: 11/18/2022] Open
Abstract
Chlamydial-induced cystitis in the koala (Phascolarctos cinereus) is currently treated by antibiotics. However, while reducing the chlamydial load, this treatment can also lead to gastrointestinal complications and death. Development of alternative treatments, such as a therapeutic chlamydial vaccine, are hindered by the lack of detailed understanding of the innate immune response to chlamydial clearance and disease regression during antibiotic treatment. Through clinical, microbiological and transcriptomic approaches, disease regression, bacterial clearance and innate immune responses were mapped in koalas with signs of chlamydial-induced cystitis while receiving anti-chlamydial antibiotics. Significant reduction in the signs of cystitis were observed during and post antibiotic treatment. This was observed as a thinning of the bladder wall and complete reversal of urinary incontinence. Transcriptomic analysis before treatment, at the end of treatment and prior to release identified significant down-regulation of specific genes involved in 21 biological pathways. Of these, the chemokine receptor signalling and NOD-like receptor signalling pathways where identified as important markers of inflammation. Specific genes within these pathways (NCF1 and NOX2) were significantly down-regulated, suggesting a decrease in reactive oxygen species production. Through the monitoring of specific clinical and transcriptomic markers, these findings allow detailed profiling of the clinical response to therapeutic vaccination in koalas with current signs of disease. This also adds to our understanding of innate immune responses to chlamydial infections and indicates that chlamydial-induced cystitis in the koala is linked to the regulation of reactive oxygen pathways.
Collapse
Affiliation(s)
- Samuel Phillips
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
- * E-mail:
| | - Bonnie L. Quigley
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Ammar Aziz
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Wendy Bergen
- Australia Zoo Wildlife Hospital, Steve Irwin Way, Queensland, Australia
| | - Rosemary Booth
- Australia Zoo Wildlife Hospital, Steve Irwin Way, Queensland, Australia
| | - Michael Pyne
- Currumbin Wildlife Hospital, Currumbin, Queensland, Australia
| | - Peter Timms
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
7
|
Kim BS, Tae BS, Ku JH, Kwak C, Kim HH, Jeong CW. Rate and association of lower urinary tract infection with recurrence after transurethral resection of bladder tumor. Investig Clin Urol 2018; 59:10-17. [PMID: 29333509 PMCID: PMC5754576 DOI: 10.4111/icu.2018.59.1.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/10/2017] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To evaluate the rate of pyuria and bacteriuria after transurethral resection of bladder tumor (TURBT). MATERIALS AND METHODS We retrospectively evaluated data obtained from 363 patients who underwent TURBT between October 2012 and December 2013 at Seoul National University Hospital. Urinalysis and urine culture were assessed at 3, 6, 12, and 24 months postoperatively. Primary endpoint was the rate of bacteriuria (≥105/mL in a midstream) and pyuria (white blood cells ≥5/high-power field). RESULTS We analyzed 306 patients who were eligible for the study. Pyuria was present in 23.5% of patients in the 3rd postoperative month and in 31.7% of patients in the 24th postoperative month. Bacteriuria was present in 1.3% of patients in the 3rd postoperative month and in 2.6% of patients in the 24th postoperative month. Among urothelial carcinoma patients (n=220), 24.1% showed pyuria and 1.8% showed bacteriuria at the 3rd postoperative month. We found that 31.8% showed pyuria and 3.2% showed bacteriuria at the 24th postoperative month. There was no significant difference in the rate of pyuria and bacteriuria between the intravesical treatment group and the no-treatment group. Multivariate analysis demonstrated that pyuria in the 3rd postoperative month (odd ratio [OR], 2.254; p=0.039), tumor multiplicity (OR, 3.331; p=0.001), and the absence of intravesical treatment (OR, 4.927; p=0.001) increases the risk of tumor recurrence. CONCLUSIONS A significant proportion of patients showed pyuria after TURBT during the follow-up period. Additionally, presence of pyuria in the short-term follow-up period after TURBT constitutes a risk factor for recurrence of bladder cancer.
Collapse
Affiliation(s)
- Byung Soo Kim
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Bum Sik Tae
- Department of Urology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
8
|
Aboutaleb H, Gawish M. Correlation of Bladder Histopathologic Changes Due to Double-J Stenting to the Period of Stenting: A Preliminary Study. J Endourol 2017; 31:705-710. [PMID: 28467731 DOI: 10.1089/end.2017.0113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To study the histopathologic changes in the urinary bladder associated with Double-J (DJ) stenting and the correlation between these changes and the period of stenting. METHODS In a 2-year period, a retrospective study was carried out on 30 patients indicated for DJ stenting. These patients underwent cold-cup cystoscopic biopsies from the ipsilateral ureteral orifice at the time of removal of DJ stents. RESULTS The mean age of the 30 patients included in our study was 43.6 ± 8.6 years (range 26-74 years). The stent size used was 4.7 and 6F. The stent duration was 2 weeks in 2 patients, 4 to 6 weeks in 18 patients, 6 to 12 weeks in 6 patients, and more than 12 weeks in the remaining 4 patients. Stent placement was optimum in all patients. The histopathologic study of 30 biopsies showed mild, acute eosinophilic inflammatory reactions with edema in patients with stenting less than 14 days. Acute lymphocytic eosinophilic cystitis with edema was found with stents of 2 to 6 weeks. Brunn's nests were reported with stents more than 6 weeks. Cystitis cystica was seen in those who had stents more than 12 weeks. CONCLUSIONS Our study shows that acute and chronic allergic inflammatory changes can be seen around the bladder coil of the DJ stents. It is of major importance for the urologist to limit the use of DJ stents to highly indicated cases only and for a short interval.
Collapse
Affiliation(s)
- Hamdy Aboutaleb
- 1 Department of Urology, Menoufia University Hospital , Menoufia, Egypt
| | - Maher Gawish
- 2 Department of Urology, Al Azhar University Hospital , Cairo, Egypt
| |
Collapse
|
9
|
Balsara ZR, Li X. Sleeping beauty: awakening urothelium from its slumber. Am J Physiol Renal Physiol 2017; 312:F732-F743. [PMID: 28122714 PMCID: PMC5407074 DOI: 10.1152/ajprenal.00337.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/18/2022] Open
Abstract
The bladder urothelium is essentially quiescent but regenerates readily upon injury. The process of urothelial regeneration harkens back to the process of urothelial development whereby urothelial stem/progenitor cells must proliferate and terminally differentiate to establish all three urothelial layers. How the urothelium regulates the level of proliferation and the timing of differentiation to ensure the precise degree of regeneration is of significant interest in the field. Without a carefully-orchestrated process, urothelial regeneration may be inadequate, thereby exposing the host to toxins or pathogens. Alternatively, regeneration may be excessive, thereby setting the stage for tumor development. This review describes our current understanding of urothelial regeneration. The current controversies surrounding the identity and location of urothelial progenitor cells that mediate urothelial regeneration are discussed and evidence for each model is provided. We emphasize the factors that have been shown to be crucial for urothelial regeneration, including local growth factors that stimulate repair, and epithelial-mesenchymal cross talk, which ensures feedback regulation. Also highlighted is the emerging concept of epigenetic regulation of urothelial regeneration, which additionally fine tunes the process through transcriptional regulation of cell cycle genes and growth and differentiation factors. Finally, we emphasize how several of these pathways and/or programs are often dysregulated during malignant transformation, further corroborating their importance in directing normal urothelial regeneration. Together, evidence in the field suggests that any attempt to exploit regenerative programs for the purposes of enhanced urothelial repair or replacement must take into account this delicate balance.
Collapse
Affiliation(s)
- Zarine R Balsara
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xue Li
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Al-Kurdi B. Hierarchical transcriptional profile of urothelial cells development and differentiation. Differentiation 2017; 95:10-20. [PMID: 28135607 DOI: 10.1016/j.diff.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 11/27/2022]
Abstract
The urothelial lining of the lower urinary tract is the most efficient permeability barrier in animals, exhibiting a highly differentiated phenotype and a remarkable regenerative capacity upon wounding. During development and possibly during repair, cells undergo a sequence of hierarchical transcriptional events that mark the transition of these cells from the least differentiated urothelial phenotype characteristic of the basal cell layer, to the most differentiated cellular phenotype characteristic of the superficial cell layer. Unraveling normal urothelial differentiation program is essential to uncover the underlying causes of many congenital abnormalities and for the development of an appropriate differentiation niche for stem cells, for future use in urinary tract tissue engineering and organ reconstruction. Kruppel like factor-5 appears to be at the top of the hierarchy activating several downstream transcription factors, the most prominent of which is peroxisome proliferator activator receptor-γ. Eventually those lead to the activation of transcription factors that directly regulate the expression of uroplakin proteins along with other proteins that mediate the permeability function of the urothelium. In this review, we discuss the most recent findings in the area of urothelial cellular differentiation and transcriptional regulation, aiming for a comprehensive overview that aids in a refined understanding of this process.
Collapse
Affiliation(s)
- Ban Al-Kurdi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.
| |
Collapse
|
11
|
Jerman UD, Kreft ME, Veranič P. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:521-30. [PMID: 26066408 DOI: 10.1089/ten.teb.2014.0678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| | - Peter Veranič
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
12
|
El-Taji OMS, Khattak AQ, Hussain SA. Bladder reconstruction: The past, present and future. Oncol Lett 2015; 10:3-10. [PMID: 26170968 DOI: 10.3892/ol.2015.3161] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/26/2015] [Indexed: 12/28/2022] Open
Abstract
Ileal conduit urinary diversion is the gold standard treatment for urinary tract reconstruction following cystectomy. This procedure uses gastrointestinal segments for bladder augmentation, a technique that is often associated with significant complications. The substantial progression in the fields of tissue engineering and regenerative medicine over the previous two decades has resulted in the development of techniques that may lead to the construction of functional de novo urinary bladder substitutes. The present review identifies and discusses the complications associated with current treatment options post-cystectomy. The current techniques, achievements and perspectives of the use of biomaterials and stem cells in the field of urinary bladder reconstruction are also reviewed.
Collapse
Affiliation(s)
- Omar M S El-Taji
- Department of Surgical Oncology, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | - Altaf Q Khattak
- Department of Urology, St. Helen's & Knowsley NHS Teaching Hospitals, University of Liverpool, Prescot L35 5DR, United Kingdom
| | - Syed A Hussain
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, United Kingdom
| |
Collapse
|
13
|
Bouhout S, Goulet F, Bolduc S. A Novel and Faster Method to Obtain a Differentiated 3-Dimensional Tissue Engineered Bladder. J Urol 2015; 194:834-41. [PMID: 25758608 DOI: 10.1016/j.juro.2015.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE We report what is to our knowledge a novel approach that led to the rapid development of a 3-dimensional bladder model, including a differentiated urothelium reconstructed without a period of exposure to the air-liquid interface. MATERIALS AND METHODS Bilayered bladder constructs were produced using anchored mesenchymal cell seeded collagen gels to create the mesenchymal layer. Gels were coated with urine for 20 minutes before urothelial cell seeding. The 3-dimensional bladder models were cultured under submerged conditions for 15 days. RESULTS Pure urine coating of the collagen matrix surface combined with its intermittent presence during urothelial development was found to be best to maintain urothelial cell properties. Immunohistological and ultrastructural analyses showed the formation of a pseudostratified urothelium devoid of abnormal K14 expression, allowing for uroplakin trafficking and forming an asymmetrical unit membrane at the apical surface. CONCLUSIONS Such tissues could be adapted for clinical applications, including bladder repair. In the context of basic science this model could serve as a good alternative to animal use for fundamental and pharmacological studies of normal or pathological bladder tissues.
Collapse
Affiliation(s)
- Sara Bouhout
- Centre de recherche en organogénèse expérimentale de l'Université Laval/Laboratoire d'organogénèse experimentale, Faculté de médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada.
| | - Francine Goulet
- Centre de recherche en organogénèse expérimentale de l'Université Laval/Laboratoire d'organogénèse experimentale, Faculté de médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Stéphane Bolduc
- Centre de recherche en organogénèse expérimentale de l'Université Laval/Laboratoire d'organogénèse experimentale, Faculté de médecine, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| |
Collapse
|
14
|
Ninan N, Thomas S, Grohens Y. Wound healing in urology. Adv Drug Deliv Rev 2015; 82-83:93-105. [PMID: 25500273 DOI: 10.1016/j.addr.2014.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 12/20/2022]
Abstract
Wound healing is a dynamic and complex phenomenon of replacing devitalized tissues in the body. Urethral healing takes place in four phases namely inflammation, proliferation, maturation and remodelling, similar to dermal healing. However, the duration of each phase of wound healing in urology is extended for a longer period when compared to that of dermatology. An ideal wound dressing material removes exudate, creates a moist environment, offers protection from foreign substances and promotes tissue regeneration. A single wound dressing material shall not be sufficient to treat all kinds of wounds as each wound is distinct. This review includes the recent attempts to explore the hidden potential of growth factors, stem cells, siRNA, miRNA and drugs for promoting wound healing in urology. The review also discusses the different technologies used in hospitals to treat wounds in urology, which make use of innovative biomaterials synthesised in regenerative medicines like hydrogels, hydrocolloids, foams, films etc., incorporated with growth factors, drug molecules or nanoparticles. These include surgical zippers, laser tissue welding, negative pressure wound therapy, and hyperbaric oxygen treatment.
Collapse
|
15
|
Finch PW, Mark Cross LJ, McAuley DF, Farrell CL. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models. J Cell Mol Med 2014; 17:1065-87. [PMID: 24151975 PMCID: PMC4118166 DOI: 10.1111/jcmm.12091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023] Open
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin.
Collapse
|
16
|
Sunagawa M, Wolf-Johnston A, Nomiya M, Sawada N, Andersson KE, Hisamitsu T, Birder LA. Urinary bladder mucosal responses to ischemia. World J Urol 2014; 33:275-80. [PMID: 24728265 DOI: 10.1007/s00345-014-1298-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022] Open
Abstract
PURPOSE The objectives of this study were to examine the expression of various cellular proteins within the urothelium (UT) and lamina propria (LP) following chronic bladder ischemia in the rat urinary bladder. MATERIALS AND METHODS Urinary bladders were removed from adult Sprague-Dawley rats 8 weeks after creation of bladder ischemia and from sham controls. Immunocytochemistry was used to examine distribution of LP-vimentin-immunoreactive (IR) cells and connexins (Cx26; Cx43), and western immunoblotting or ELISA for proteins involved in UT barrier and sensory functions. RESULTS Ischemia was associated with a significant increase in LP-vimentin-IR cells and increased expression of the gap junction proteins Cx26 and Cx43 within the bladder UT as compared to sham control. Ischemia also resulted in an increased (p < 0.05) expression level of the junctional marker (ZO-1) and non-significantly increased expressions of the trophic factor nerve growth factor as well as norepinephrine. CONCLUSIONS Our findings reveal that chronic ischemia alters a number of proteins within the UT and underlying LP. These proteins are involved in barrier function, remodeling, repair as well as intercellular communication. The increased expression of LP-vimentin-IR cells suggests that changes in cell-cell interactions could play a role in ischemia-induced changes in bladder activity.
Collapse
Affiliation(s)
- Masataka Sunagawa
- Departments of Medicine, University of Pittsburgh School of Medicine, A 1217 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Zhidkova OV, Petrov NS, Popov BV. Preparation and characteristics of growth and marker properties of urinary bladder mesenchymal stem cells. J EVOL BIOCHEM PHYS+ 2013. [DOI: 10.1134/s0022093013010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
19
|
Ho PL, Kurtova A, Chan KS. Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nat Rev Urol 2012; 9:583-94. [PMID: 22890301 DOI: 10.1038/nrurol.2012.142] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most epithelial tissues contain self-renewing stem cells that mature into downstream progenies with increasingly limited differentiation potential. It is not surprising that cancers arising from such hierarchically organized epithelial tissues retain features of cellular differentiation. Accumulating evidence suggests that the urothelium of the urinary bladder is a hierarchically organized tissue, containing tissue-specific stem cells that are important for both normal homeostasis and injury response. The phenotypic and functional properties of cancer stem cells (CSCs; also known as tumour-initiating cells) from bladder cancer tissue have been studied in detail. Urothelial CSCs are not isolated by a 'one-marker-fits-all' approach; instead, various cell surface marker combinations (possibly reflecting the cell-of-origin) are used to isolate CSCs from distinct differentiation subtypes of urothelial carcinomas. Additional CSC markers, including cytokeratin 14 (CK14), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), and tumour protein 63 (p63), have revealed prognostic value for urothelial carcinomas. Signalling pathways involved in normal stem cell self-renewal and differentiation are implicated in the malignant transformation of different subsets of urothelial carcinomas. Early expansion of primitive CK14+ cells--driven by genetic pathways such as STAT3--can lead to the development of carcinoma in situ, and CSC-enriched urothelial carcinomas are associated with poor clinical outcomes. Given that bladder CSCs are the proposed root of malignancy and drivers of cancer initiation and progression for urothelial carcinomas, these cells are ideal targets for anticancer therapies.
Collapse
Affiliation(s)
- Philip Levy Ho
- Scott Department of Urology, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
20
|
Ceccarelli S, Romano F, Angeloni A, Marchese C. Potential dual role of KGF/KGFR as a target option in novel therapeutic strategies for the treatment of cancers and mucosal damages. Expert Opin Ther Targets 2012; 16:377-93. [PMID: 22443411 DOI: 10.1517/14728222.2012.671813] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Keratinocyte growth factor (KGF) and its receptor KGFR play a pivotal role in regulating cell proliferation, migration, differentiation and survival, in response to injury and tissue repair. Altered expression of this pathway in cancer opened the way to the development of targeted therapy to achieve KGFR inhibition. Nevertheless, KGF administration has been demonstrated to ameliorate oral mucositis resulting from chemoradiotherapy, besides protecting epithelial cells against radiation-induced damage. AREAS COVERED This review focuses on the potential therapeutic interest of KGF/KGFR in two different areas: selective inhibition of KGFR signaling for the treatment of cancers characterized by upregulation of this pathway and administration of KGF to protect epithelial cells from induced damage. The review presents an overview of therapeutic strategies in both directions. EXPERT OPINION KGF/KGFR signaling can contribute to enhancing the malignant potential of epithelial cells and to promoting tumorigenesis. On the other hand, the therapeutic use of KGF in cancer patients provides epithelial protection, reducing chemotherapy side effects. FGFRs have become attractive antitumor targets and various inhibitors have been used to contrast tumor cell growth. The identification of KGFR-specific molecules might represent a promising therapeutic strategy that could increase the window of available agents and treatment methods.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Sapienza University of Rome, Department of Experimental Medicine, Roma, Italy
| | | | | | | |
Collapse
|
21
|
When urothelial differentiation pathways go wrong: implications for bladder cancer development and progression. Urol Oncol 2011; 31:802-11. [PMID: 21924649 DOI: 10.1016/j.urolonc.2011.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/23/2022]
Abstract
Differentiation is defined as the ability of a cell to acquire full functional behavior. For instance, the function of bladder urothelium is to act as a barrier to the diffusion of solutes into or out of the urine after excretion by the kidney. The urothelium also serves to protect the detrusor muscle from toxins present in stored urine. A major event in the initiation and progression of bladder cancer is loss of urothelial differentiation. This is important because less differentiated urothelial tumors (higher histologic tumor grade) are typically associated with increased biologic and clinical aggressiveness. The differentiation status of urothelial carcinomas can be assessed by histopathologic examination and is reflected in the assignment of a histologic grade (low-grade or high-grade). Although typically limited to morphologic evaluation in most routine diagnostic practices, tumor grade can also be assessed using biochemical markers. Indeed, current pathological analysis of tumor specimens is increasingly reliant on molecular phenotyping. Thus, high priorities for bladder cancer research include identification of (1) biomarkers that will enable the identification of high grade T1 tumors that pose the most threat and require the most aggressive treatment; (2) biomarkers that predict the likelihood that a low grade, American Joint Committee on Cancer stage pTa bladder tumor will progress into an invasive carcinoma with metastatic potential; (3) biomarkers that indicate which pTa tumors are most likely to recur, thus enabling clinicians to prospectively identify patients who require aggressive treatment; and (4) how these markers might contribute to biological processes that underlie tumor progression and metastasis, potentially through loss of terminal differentiation. This review will discuss the proteins associated with urothelial cell differentiation, with a focus on those implicated in bladder cancer, and other proteins that may be involved in neoplastic progression. It is hoped that ongoing discoveries associated with the study of these differentiation-promoting proteins can be translated into the clinic to positively impact patient care.
Collapse
|
22
|
Ling S, Chang X, Schultz L, Lee TK, Chaux A, Marchionni L, Netto GJ, Sidransky D, Berman DM. An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res 2011; 71:3812-21. [PMID: 21512138 PMCID: PMC3107391 DOI: 10.1158/0008-5472.can-10-3072] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like many carcinomas, urothelial carcinoma (UroCa) is associated with chronic injury. A better understanding of this association could inform improved strategies for preventing and treating this disease. We investigated the expression, regulation, and function of the transcriptional regulator SRY-related high-mobility group box 9 (Sox9) in urothelial development, injury repair, and cancer. In mouse bladders, Sox9 levels were high during periods of prenatal urothelial development and diminished with maturation after birth. In adult urothelial cells, Sox9 was quiescent but was rapidly induced by a variety of injuries, including exposure to the carcinogen cyclophosphamide, culture with hydrogen peroxide, and osmotic stress. Activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was required for Sox9 induction in urothelial injury and resulted from activation of the epidermal growth factor receptor (Egfr) by several Egfr ligands that were dramatically induced by injury. In UroCa cell lines, SOX9 expression was constitutively upregulated and could be suppressed by EGFR or ERK1/2 blockade. Gene knockdown showed a role for SOX9 in cell migration and invasion. Accordingly, SOX9 protein levels were preferentially induced in invasive human UroCa tissue samples (n = 84) compared with noninvasive cancers (n = 56) or benign adjacent urothelium (n = 49). These results identify a novel, potentially oncogenic signaling axis linking urothelial injury to UroCa. Inhibiting this axis is feasible through a variety of pharmacologic approaches and may have clinical utility.
Collapse
Affiliation(s)
- Shizhang Ling
- Departments of Pathology and Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaofei Chang
- Department of Otolaryngology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luciana Schultz
- Departments of Pathology and Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas K. Lee
- Departments of Pathology and Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alcides Chaux
- Departments of Pathology and Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luigi Marchionni
- Departments of Pathology and Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George J. Netto
- Departments of Pathology and Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David Sidransky
- Department of Otolaryngology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David M. Berman
- Departments of Pathology and Oncology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Amann T, Bataille F, Spruss T, Dettmer K, Wild P, Liedtke C, Mühlbauer M, Kiefer P, Oefner PJ, Trautwein C, Bosserhoff AK, Hellerbrand C. Reduced expression of fibroblast growth factor receptor 2IIIb in hepatocellular carcinoma induces a more aggressive growth. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1433-42. [PMID: 20093481 DOI: 10.2353/ajpath.2010.090356] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibroblast growth factor receptor 2 isoform b (FGFR2-IIIb) is highly expressed in hepatocytes and plays an important role in liver homeostasis and regeneration. Here, we analyzed the expression and function of FGFR2-IIIb in hepatocellular carcinoma (HCC). FGFR2-IIIb expression in HCC tissues and cell lines was lower than in primary human hepatocytes and nontumorous tissue. FGFR2-IIIb-negative HCCs showed a significantly higher Ki-67 labeling index, and loss of FGFR2-IIIb expression correlated significantly with vascular invasion and more advanced tumor stages. A decrease in FGFR-2IIIb expression in HCC cell lines was not related to promoter hypermethylation. However, PCR analysis indicated that chromosomal deletion at 10q accounted for the loss of FGFR2 expression in a subset of HCC cells. FGFR2-IIIb re-expression in stable transfected HCC cell lines induced a higher basal apoptosis rate and a significantly reduced proliferation and migratory potential in vitro. In nude mice, FGFR2-IIIb re-expressing HCC cells grew significantly slower, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay revealed higher apoptosis rates. The antitumorigenic effects of FGFR2-IIIb expression in HCC cells were not affected by keratinocyte growth factor or an inhibitor of FGFR-phosphorylation, indicating that they are independent of tyrosine kinase activation. In conclusion, our data indicate that FGFR2-IIIb inhibits tumorigenicity of HCC cells. Identification of the molecular mechanisms promoting regeneration in normal tissue while suppressing malignancy may lead to novel therapeutic targets of this highly aggressive tumor.
Collapse
Affiliation(s)
- Thomas Amann
- University of Regensburg, Department of Internal Medicine I, D-93042 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Elwood CN, Lange D, Nadeau R, Seney S, Summers K, Chew BH, Denstedt JD, Cadieux PA. Novel in vitro model for studying ureteric stent-induced cell injury. BJU Int 2009; 105:1318-23. [PMID: 19888977 DOI: 10.1111/j.1464-410x.2009.09001.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To develop a novel in vitro model for the study of bladder and kidney epithelial cell injury akin to stent movement, as ureteric stents are associated with urinary tract complications that can significantly add to patient morbidity. These sequelae may be linked to inflammation triggered by stent-mediated mechanical injury to the urinary tract. MATERIALS AND METHODS T24 bladder and A498 kidney cell line monolayers were damaged mechanically by segments of either Percuflex Plus (PP) or Triumph (triclosan-eluting) stents (both from Boston Scientific Corporation Inc. Natick, MA, USA) and the resulting expression profiles of several pro-inflammatory cytokines and growth factors were analysed. RESULTS After control injury using the PP stent, supernatants of both cell lines had significantly increased levels of interleukin (IL)-6, IL-8, basic fibroblast growth factor and platelet-derived growth factor BB, and A498 cells also had increased tumour necrosis factor alpha. In almost all cases, the presence of triclosan within the media abrogated the pro-inflammatory cytokine increases, while its effects on growth factors varied. CONCLUSION This study suggests that stent-related symptoms in the bladder and kidney may be partially due to a local inflammatory response to epithelial damage caused by the presence and movement of the stent. Future stent design should take these inflammatory responses, with respect to physical injury, into consideration, using either more biocompatible materials or anti-inflammatory compounds such as triclosan.
Collapse
Affiliation(s)
- Chelsea N Elwood
- Lawson Health Research Institute, University of Western Ontario, London, Canada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8:235-53. [PMID: 19247306 DOI: 10.1038/nrd2792] [Citation(s) in RCA: 1455] [Impact Index Per Article: 90.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The family of fibroblast growth factors (FGFs) regulates a plethora of developmental processes, including brain patterning, branching morphogenesis and limb development. Several mitogenic, cytoprotective and angiogenic therapeutic applications of FGFs are already being explored, and the recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in bile acid, glucose and phosphate homeostasis has sparked renewed interest in the pharmacological potential of this family. This Review discusses traditional applications of recombinant FGFs and small-molecule FGF receptor kinase inhibitors in the treatment of cancer and cardiovascular disease and their emerging potential in the treatment of metabolic syndrome and hypophosphataemic diseases.
Collapse
Affiliation(s)
- Andrew Beenken
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016, USA.
| | | |
Collapse
|
26
|
Thomas JC, Oottamasathien S, Makari JH, Honea L, Sharif-Afshar AR, Wang Y, Adams C, Wills ML, Bhowmick NA, Adams MC, Brock JW, Hayward SW, Matusik RJ, Pope JC. Temporal-Spatial Protein Expression in Bladder Tissue Derived From Embryonic Stem Cells. J Urol 2008; 180:1784-9. [DOI: 10.1016/j.juro.2008.03.098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Indexed: 11/26/2022]
Affiliation(s)
- John C. Thomas
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Urology, Monroe Carell Jr. Vanderbilt Children's Hospital, Nashville, Tennessee
| | - Siam Oottamasathien
- Division of Pediatric Urology, Primary Children's Medical Center, Salt Lake City, Utah
| | - John H. Makari
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Urology, Monroe Carell Jr. Vanderbilt Children's Hospital, Nashville, Tennessee
| | - Lindsay Honea
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ali-Reza Sharif-Afshar
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yongqing Wang
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cyrus Adams
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcia L. Wills
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Neil A. Bhowmick
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Urology, Monroe Carell Jr. Vanderbilt Children's Hospital, Nashville, Tennessee
| | - Mark C. Adams
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Urology, Monroe Carell Jr. Vanderbilt Children's Hospital, Nashville, Tennessee
| | - John W. Brock
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Urology, Monroe Carell Jr. Vanderbilt Children's Hospital, Nashville, Tennessee
| | - Simon W. Hayward
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Robert J. Matusik
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John C. Pope
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Pediatric Urology, Monroe Carell Jr. Vanderbilt Children's Hospital, Nashville, Tennessee
| |
Collapse
|
27
|
Bolenz C, Ikinger EM, Ströbel P, Trojan L, Steidler A, Fernández MI, Honeck P, Gabriel U, Weiss C, Grobholz R, Alken P, Michel MS. Topical chemotherapy in human urothelial carcinoma explants: a novel translational tool for preclinical evaluation of experimental intravesical therapies. Eur Urol 2008; 56:504-11. [PMID: 18691807 DOI: 10.1016/j.eururo.2008.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 07/18/2008] [Indexed: 12/17/2022]
Abstract
BACKGROUND Urothelial carcinoma (UC) is associated with a high local recurrence rate despite intravesical therapy. There is a lack of representative preclinical models for standardized testing of novel experimental therapies. OBJECTIVE To develop an ex vivo model for human UC and to evaluate its ability to generate reproducible and reliable results when testing cytotoxic agents. DESIGN, SETTING, AND PARTICIPANTS Normal human urothelium (NHU) and bladder UC explants were collected from patients treated at our institution. A total of 195 surgical explants were cultured on a gelatine matrix. Tissue viability was regularly assessed using nicotinamide adenine dinucleotide (NADH) diaphorase enzymehistochemistry. Topical paclitaxel (PTX) or mitomycin C (MMC) chemotherapy was performed in a subset of 45 UC specimens. INTERVENTION All patients underwent radical cystectomy (RC) or primary transurethral resection (TUR) of a bladder UC. MEASUREMENTS Triple immunofluorescence (pan-cytokeratin [pan-CK]; 4',6-diamidin-2'-phenylindol-dihydrochloride [DAPI]; terminal deoxynucleotidyl transferase biotin-dUTP nick-end labelling [TUNEL]) and caspase-3 staining of paraffin sections was performed. Proliferation rates were assessed using Ki-67 labelling indices. Apoptosis (percent) was quantified in representative tissue areas to characterize culture stability and to assess antineoplastic effects. RESULTS AND LIMITATIONS No signs of necrosis and no significant changes in apoptosis were observed during the first 12 d of culture. Of all explants, 88.5% were vital after 20 d. In a highly reproducible fashion, topical chemotherapy resulted in significantly increased apoptosis (37.4% [19.0-75.0%] for PTX and 36.2% [18.8-46.7%] for MMC) compared with controls (7.5% [3.0-26.8%]; p<0.001]). No statistically significant difference was observed regarding the effects of the two chemotherapeutic agents (p=0.119). CONCLUSIONS The presented human ex vivo model takes UC heterogeneity into account and serves as a valuable translational tool. It offers an attractive alternative to preclinical cell line experiments or animal models and may even be used for prospective toxicity and drug efficacy tests in individual patients.
Collapse
Affiliation(s)
- Christian Bolenz
- Department of Urology, Mannheim Medical Centre, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Effects of PPAR agonists on proliferation and differentiation in human urothelium. ACTA ACUST UNITED AC 2008; 60:435-41. [PMID: 18571911 DOI: 10.1016/j.etp.2008.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 04/30/2008] [Indexed: 11/20/2022]
Abstract
Systemic treatment of rats with peroxisome proliferator-activated receptor (PPAR) agonists (mainly of dual alpha/gamma activity) has indicated that they may invoke non-genotoxic carcinogenesis in the epithelial lining of the urinary tract (urothelium). Although there is evidence in the male rat to support an indirect effect via a crystaluria-induced urothelial damage response, there is other evidence to indicate a direct signalling effect on the urothelium and hence the full implication for using these drugs in man is unclear. Numerous reports have demonstrated that PPARs are expressed within the urothelium of different species, including man, and from an early developmental stage. We have developed methods to maintain normal human urothelial (NHU) cells in culture, where the cells retain PPAR expression and express a highly proliferative phenotype, mediated via autocrine stimulation of the epidermal growth factor (EGF) receptor. We have shown that specific activation of PPARgamma results in a programme of gene expression changes associated with late/terminal cytodifferentiation, including induction of cytokeratins CK13 and CK20, tight junction-associated claudin 3, and uroplakins UPK1a and UPK2, but this is dependent upon inhibition of the signalling cascade downstream of the EGF receptor. This indicates a subtle balance in the regulation of proliferation and differentiation in urothelium, with PPARgamma agonists promoting differentiation. Our data indicate that human urothelium is a target tissue for PPARgamma signalling, but it has yet to be determined whether dual agonists could have a modulatory effect on the proliferation/differentiation balance.
Collapse
|
29
|
Yongzhi L, Benkang S, Jianping Z, Lingxia R, Wei B, Yaofeng Z, Keqin Z, Laudon V. Expression of transforming growth factor β1 gene, basic fibroblast growth factor gene and hydroxyproline in diabetes-induced bladder dysfunction in a rat model. Neurourol Urodyn 2008; 27:254-9. [PMID: 17763394 DOI: 10.1002/nau.20489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIMS To investigate the content of hydroxyproline (Hyp) and the expression of transforming growth factor beta1 (TGF beta1) and basic fibroblast growth factor (bFGF) in the bladder 8 weeks after diabetes induction. METHODS Thirty wistar rats were divided into three groups: control (n = 10), streptozotocin-induced diabetic group (n = 10), TAD group (n = 10; diabetic rats were fed with Tadenan 100 mg kg(-1) day(-1)). Eight weeks later, the bladders were dissected. RT-PCR, immunohistochemistry, and ELISA were used to detect the expression of TGF beta1 and bFGF in the bladder. Also hydroxyproline (Hyp) was measured using a method based on alkaline hydrolysis. RESULTS The content of hydroxyproline in the diabetic group was greater than that of control group (P < 0.05); we found significantly increased expression of TGF beta1 mRNA and bFGF mRNA in the bladder from the diabetic group compared with the control group; immunohistochemical and ELISA studies showed a statistically significant increased expression of TGF beta1 protein and bFGF protein in the bladder from the diabetic group compared with the control group (P < 0.05). The content of hydroxyproline in TAD group was less than that of diabetic group (P < 0.05); mRNA expression of TGF beta1 and bFGF greatly decreased in TAD group compared with that of the diabetic group; immunohistochemical and ELISA studies showed decreased levels of TGF beta1 protein and bFGF protein in the bladder from TAD group compared with the diabetic group (P < 0.05). CONCLUSIONS Rats with streptozoticin-induced diabetes mellitus showed significant increase in hydroxyproline, TGF beta1 and bFGF levels in their bladders, which may be an important mechanism inducing diabetic cystopathy. Tadenan could effectively reduce hydroxyproline, TGF beta1, and bFGF levels.
Collapse
Affiliation(s)
- Li Yongzhi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Lendvay TS, Sweet R, Han CH, Soygur T, Cheng JF, Plaire JC, Charleston JS, Charleston LB, Bagai S, Cochrane K, Rubio E, Bassuk JA. Compensatory paracrine mechanisms that define the urothelial response to injury in partial bladder outlet obstruction. Am J Physiol Renal Physiol 2007; 293:F1147-56. [PMID: 17609292 DOI: 10.1152/ajprenal.00006.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diseases and conditions affecting the lower urinary tract are a leading cause of dysfunctional sexual health, incontinence, infection, and kidney failure. The growth, differentiation, and repair of the bladder's epithelial lining are regulated, in part, by fibroblast growth factor (FGF)-7 and -10 via a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the receptor for FGF-7 and -10 within the transitional epithelium (urothelium). The FGF-7 gene is located at the 15q15-q21.1 locus on chromosome 15 and four exons generate a 3.852-kb mRNA. Five duplicated FGF-7 gene sequences that localized to chromosome 9 were predicted not to generate functional protein products, thus validating the use of FGF-7-null mice as an experimental model. Recombinant FGF-7 and -10 induced proliferation of human urothelial cells in vitro and transitional epithelium of wild-type and FGF-7-null mice in vivo. To determine the extent that induction of urothelial cell proliferation during the bladder response to injury is dependent on FGF-7, an animal model of partial bladder outlet obstruction was developed. Unbiased stereology was used to measure the percentage of proliferating urothelial cells between obstructed groups of wild-type and FGF-7-null mice. The stereological analysis indicated that a statistical significant difference did not exist between the two groups, suggesting that FGF-7 is not essential for urothelial cell proliferation in response to partial outlet obstruction. In contrast, a significant increase in FGF-10 expression was observed in the obstructed FGF-7-null group, indicating that the compensatory pathway that functions in this model results in urothelial repair.
Collapse
Affiliation(s)
- Thomas S Lendvay
- Program in Human Urothelial Biology, Seattle Children's Hospital Research Institute, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Seifert HH, Meyer A, Cronauer MV, Hatina J, Müller M, Rieder H, Hoffmann MJ, Ackermann R, Schulz WA. A new and reliable culture system for superficial low-grade urothelial carcinoma of the bladder. World J Urol 2007; 25:297-302. [PMID: 17440731 DOI: 10.1007/s00345-007-0166-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 03/08/2007] [Indexed: 11/28/2022] Open
Abstract
Several bladder cancer culture systems have been developed in recent years. However, reports about successful primary cultures of superficial urothelial carcinomas (UC) are sparse. Based on the specific growth requirements of UC described previously, we developed a new and reliable culture system for superficial low-grade UC. Between November 2002 and April 2006, 64 primary cultures of bladder cancer specimens were performed. After incubating the specimens overnight in 0.1% ethylenediaminetetraacetic acid solution, tumour cells could easily be separated from the submucosal tissue. Subsequently, cells were seeded in a low-calcium culture medium supplemented with 1% serum, growth factors, non-essential amino acids and glycine. The malignant origin of the cultured cells was demonstrated by spectral karyotyping. Overall culture success rate leading to a homogenous tumour cell population without fibroblast contamination was 63%. Culture success could be remarkably enhanced by the addition of glycine to the culture medium. Interestingly, 86.4% of pTa tumours were cultured successfully compared to only 50% of the pT1 and 38% of advanced stage tumours, respectively. G1 and G2 tumours grew significantly better than G3 tumours (86, 73 and 41%, respectively). Up to three passages of low-grade UC primary cultures were possible. We describe a new and reliable culture system, which is highly successful for primary culture and passage of low-grade UC of the bladder. Therefore, this culture system can widely be used for functional experiments on early stage bladder cancer.
Collapse
Affiliation(s)
- Hans-Helge Seifert
- Department of Urology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Braun S, Krampert M, Bodó E, Kümin A, Born-Berclaz C, Paus R, Werner S. Keratinocyte growth factor protects epidermis and hair follicles from cell death induced by UV irradiation, chemotherapeutic or cytotoxic agents. J Cell Sci 2006; 119:4841-9. [PMID: 17090603 DOI: 10.1242/jcs.03259] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Owing to its potent cytoprotective properties for epithelial cells, keratinocyte growth factor (KGF) is successfully used for the treatment of chemotherapy- and radiotherapy-induced oral mucositis in cancer patients. It is therefore of major interest to determine possible clinical applications of KGF in other organs and in different stress situations and to unravel common and organ-specific mechanisms of KGF action. Here we show that KGF protects human keratinocytes from the toxicity of xenobiotics with electrophilic and oxidative properties and reduces the cell death induced by UV irradiation. In contrast to other cell types, cytoprotection of keratinocytes by KGF is not a direct anti-apoptotic effect but requires de novo protein synthesis. The in vitro findings are clinically relevant because KGF protected keratinocytes in organ-cultured human scalp hair follicles from the toxicity of the xenobiotic menadione. Moreover, injection of KGF into murine back skin markedly reduced cell death in the epidermis after UVB irradiation. This activity is dependent on FGF receptor signaling because it was abrogated in transgenic mice expressing a dominant-negative FGF receptor mutant in keratinocytes. Taken together, our results encourage the use of KGF for skin protection from chemical and physical insults.
Collapse
Affiliation(s)
- Susanne Braun
- Institute of Cell Biology, Department of Biology, ETH Zurich, Honggerberg, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
33
|
Doherty SC, McKeown SR, Lopez JA, Walsh IK, McKelvey-Martin VJ. Gene Expression in Normal Urothelium Depends on Location within the Bladder: A Possible Link to Bladder Carcinogenesis. Eur Urol 2006; 50:290-301. [PMID: 16455181 DOI: 10.1016/j.eururo.2006.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 01/10/2006] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Clinical studies have shown that more than 70% of primary bladder tumours arise in the area around the ureteric orifice. In this study a genomic approach was taken to explore the molecular mechanisms that may influence this phenomenon. METHODS RNA was isolated from each individual normal ureteric orifice and the dome biopsy from 33 male patients. Equal amounts of the pooled ureteric orifice and dome mRNAs were labelled with Cy3 and Cy5, respectively before hybridising to the gene chip (UniGEM 2.0, Incyte Genomics Inc., Wilmington, Delaware, USA). RESULTS Significant changes (more than a twofold difference) in gene expression were observed in 3.1% (312) of the 10,176 gene array: 211 genes upregulated and 101 downregulated. Analysis of Cdc25B, TK1, PKM, and PDGFra with RT-PCR supported the reliability of the microarray result. Seladin-1 was the most upregulated gene in the ureteric orifice: 8.3-fold on the microarray and 11.4-fold by real time PCR. CONCLUSIONS Overall, this study suggests significant altered gene expression between these two anatomically distinct areas of the normal human bladder. Of particular note is Seladin-1, whose significance in cancer is yet to be clarified. Further studies of the genes discovered by this work will help clarify which of these differences influence primary bladder carcinogenesis.
Collapse
Affiliation(s)
- Sharon C Doherty
- Cancer and Ageing Research Group, Biomedical Sciences Research Institute, University of Ulster, Coleraine, Northern Ireland, UK BT52 1SA.
| | | | | | | | | |
Collapse
|
34
|
Bush KT, Vaughn DA, Li X, Rosenfeld MG, Rose DW, Mendoza SA, Nigam SK. Development and differentiation of the ureteric bud into the ureter in the absence of a kidney collecting system. Dev Biol 2006; 298:571-84. [PMID: 16934795 DOI: 10.1016/j.ydbio.2006.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/30/2006] [Accepted: 07/10/2006] [Indexed: 02/06/2023]
Abstract
Six1-/- mice were found to have apparently normal ureters in the absence of a kidney, suggesting that the growth and development of the unbranched ureter is largely independent of the more proximal portions of the UB which differentiates into the highly branched renal collecting system. Culture of isolated urinary tracts (from normal and mutant mice) on Transwell filters was employed to study the morphogenesis of this portion of the urogenital system. Examination of the ureters revealed the presence of a multi-cell layered tubule with a lumen lined by cells expressing uroplakin (a protein exclusively expressed in the epithelium of the lower urinary tract). Cultured ureters of both the wild-type and Six1 mutant become contractile and undergo peristalsis, an activity preceded by the expression of alpha-smooth muscle actin (alphaSMA). Treatment with a number of inhibitors of signaling molecules revealed that inhibition of PI3 kinase dissociates the developmental expression of alphaSMA from ureter growth and elongation. Epidermal growth factor also perturbed smooth muscle differentiation in culture. Moreover, the peristalsis of the ureter in the absence of the kidney in the Six1-/- mouse indicates that the development of this clinically important function of ureter (peristaltic movement of urine) is not dependent on fluid flow through the ureter. In keeping with this, isolated ureters cultured in the absence of surrounding tissues elongate, differentiate and undergo peristalsis when cultured on a filter and undergo branching morphogenesis when cultured in 3-dimensional extracellular matrix gels in the presence of a conditioned medium derived from a metanephric mesenchyme (MM) cell line. In addition, ureters of Six1-/- urinary tracts (i.e., lacking a kidney) displayed budding structures from their proximal ends when cultured in the presence of GDNF and FGFs reminiscent of UB budding from the wolffian duct. Taken together with the above data, this indicates that, although the distal ureter (at least early in its development) retains some of the characteristics of the more proximal UB, the growth and differentiation (i.e., development of smooth muscle actin, peristalsis and uroplakin expression) of the distal non-branching ureter are inherent properties of this portion of the UB, occurring independently of detectable influences of either the undifferentiated MM (unlike the upper portion of the ureteric bud) or more differentiated metanephric kidney. Thus, the developing distal ureter appears to be a unique anatomical structure which should no longer be considered as simply the non-branching portion of the ureteric bud. In future studies, the ability to independently analyze and study the portion of the UB that becomes the renal collecting system and that which becomes the ureter should facilitate distinguishing the developmental nephrome (renal ontogenome) from the ureterome.
Collapse
Affiliation(s)
- Kevin T Bush
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, and Urological Diseases Research Center, Department of Urology, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Finch PW, Rubin JS. Keratinocyte growth factor expression and activity in cancer: implications for use in patients with solid tumors. J Natl Cancer Inst 2006; 98:812-24. [PMID: 16788155 DOI: 10.1093/jnci/djj228] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Keratinocyte growth factor (KGF) is a locally acting epithelial mitogen that is produced by cells of mesenchymal origin and has an important role in protecting and repairing epithelial tissues. Use of recombinant human KGF (palifermin) in patients with hematologic malignancies reduces the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. These results suggest that KGF may be useful in the treatment of patients with other kinds of tumors, including those of epithelial origin. However, its application in this context raises issues that were not pertinent to its use in hematologic cancer because epithelial tumor cells, unlike blood cells, often express the KGF receptor (FGFR2b). Thus, it is important to examine whether KGF could promote the growth of epithelial tumors or protect such tumor cells from the effects of chemotherapy agents. Analyses of KGF and FGFR2b expression in tumor specimens and of KGF activity on transformed cells in vitro and in vivo do not indicate a definitive role for KGF in tumorigenesis. On the contrary, restoring FGFR2b expression to certain malignant cells can induce cell differentiation or apoptosis. However, other observations suggest that, in specific situations, KGF may contribute to epithelial tumorigenesis. Thus, further studies are warranted to examine the nature and extent of KGF involvement in these settings. In addition, clinical trials in patients with solid tumors are underway to assess the potential benefits of using KGF to protect normal tissue from the adverse effects of chemoradiotherapy and its possible impact on clinical outcome.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Building 37, Room 2042, 37 Convent Drive, MSC 4256, Bethesda, MD 20892-4256, USA
| | | |
Collapse
|
36
|
Alpdogan O, Hubbard VM, Smith OM, Patel N, Lu S, Goldberg GL, Gray DH, Feinman J, Kochman AA, Eng JM, Suh D, Muriglan SJ, Boyd RL, van den Brink MRM. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 2005; 107:2453-60. [PMID: 16304055 PMCID: PMC1895735 DOI: 10.1182/blood-2005-07-2831] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor family that mediates epithelial cell proliferation and differentiation in a variety of tissues, including the thymus. We studied the role of KGF in T-cell development with KGF-/- mice and demonstrated that thymic cellularity and the distribution of thymocyte subsets among KGF-/-, wildtype (WT), and KGF+/- mice were similar. However, KGF-/- mice are more vulnerable to sublethal irradiation (450 cGy), and a significant decrease was found in thymic cellularity after irradiation. Defective thymopoiesis and peripheral T-cell reconstitution were found in KGF-/- recipients of syngeneic or allogeneic bone marrow transplant, but using KGF-/- mice as a donor did not affect T-cell development after transplantation. Despite causing an early developmental block in the thymus, administration of KGF to young and old mice enhanced thymopoiesis. Exogenous KGF also accelerated thymic recovery after irradiation, cyclophosphamide, and dexamethasone treatment. Finally, we found that administering KGF before bone marrow transplantation (BMT) resulted in enhanced thymopoiesis and peripheral T-cell numbers in middle-aged recipients of an allogeneic BM transplant. We conclude that KGF plays a critical role in postnatal thymic regeneration and may be useful in treating immune deficiency conditions.
Collapse
Affiliation(s)
- Onder Alpdogan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Grellner W, Vieler S, Madea B. Transforming growth factors (TGF-α and TGF-β1) in the determination of vitality and wound age: immunohistochemical study on human skin wounds. Forensic Sci Int 2005; 153:174-80. [PMID: 16139107 DOI: 10.1016/j.forsciint.2004.08.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Accepted: 08/31/2004] [Indexed: 12/20/2022]
Abstract
In continuation of former investigations on proinflammatory cytokines, in the present study the relevance of the transforming growth factors TGF-alpha and TGF-beta1 was evaluated for the diagnosis of vitality and wound age. Paraffin sections from human skin wounds due to sharp force influence, which had been collected in operations and autopsies, were investigated using immunohistochemistry. The wound age varied from a few minutes to a maximum of 6 weeks with focus on the early post-traumatic interval up to 5h. Samples from uninjured skin were available as controls. TGF-alpha (n=74) was weakly expressed in normal skin and showed a marked increase in epidermal reactivity after a wound age of approximately 10 min. The maximum was between 30 and 60 min. TGF-beta1 (n=51) revealed constitutional expression only in connective tissue. An increase of immunohistochemical reaction was partially detected even in classical stab wounds (wound age of several minutes). The immunohistochemically detectable signal concerned--presumably due to an infiltration with TGF-beta-rich thrombocytes--large parts of the traumatized skin and also the epidermal layers (cellular and interstitial marking). TGF-beta1 peaked after a post-traumatic interval of 30-60 min. Both factors, especially TGF-beta1, remained detectable in elevated levels also in older wounds with an age of days to weeks (network in granulation tissue). TGF-alpha and TGF-beta1 can efficiently contribute to the estimation of vitality and wound age based on the evaluation of cytokine patterns. In particular, this applies to TGF-beta1 because of its easier evaluation and rapid up-regulation. Similar to other cytokines, the parallel investigation of control skin from the same individual must be recommended to eliminate variation in the basal expression.
Collapse
Affiliation(s)
- W Grellner
- Institute of Forensic Medicine, University of Mainz, Am Pulverturm 3, D-55131 Mainz, Germany.
| | | | | |
Collapse
|
38
|
Varley C, Hill G, Pellegrin S, Shaw NJ, Selby PJ, Trejdosiewicz LK, Southgate J. Autocrine regulation of human urothelial cell proliferation and migration during regenerative responses in vitro. Exp Cell Res 2005; 306:216-29. [PMID: 15878346 DOI: 10.1016/j.yexcr.2005.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/09/2005] [Accepted: 02/10/2005] [Indexed: 10/25/2022]
Abstract
Regeneration of the urothelium is rapid and effective in order to maintain a barrier to urine following tissue injury. Whereas normal human urothelial (NHU) cells are mitotically quiescent and G0 arrested in situ, they rapidly enter the cell cycle upon seeding in primary culture and show reversible growth arrest at confluency. We have used this as a model to investigate the role of EGF receptor signaling in urothelial regeneration and wound-healing. Transcripts for HER-1, HER-2, and HER-3 were expressed by quiescent human urothelium in situ. Expression of HER-1 was upregulated in proliferating cultures, whereas HER-2 and HER-3 were more associated with a growth-arrested phenotype. NHU cells could be propagated in the absence of exogenous EGF, but autocrine signaling through HER-1 via the MAPK and PI3-kinase pathways was essential for proliferation and migration during urothelial wound repair. HB-EGF was expressed by urothelium in situ and HB-EGF, epiregulin, TGF-alpha, and amphiregulin were expressed by proliferating NHU cells. Urothelial wound repair in vitro was attenuated by neutralizing antibodies against HER-1 ligands, particularly amphiregulin. By contrast, the same ligands applied exogenously promoted migration, but inhibited proliferation, implying that HER-1 ligands provoke differential effects in NHU cells depending upon whether they are presented as soluble or juxtacrine ligands. We conclude that proliferation and migration during wound healing in NHU cells are mediated through an EGFR autocrine signalling loop and our results implicate amphiregulin as a key mediator.
Collapse
Affiliation(s)
- Claire Varley
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Staack A, Hayward SW, Baskin LS, Cunha GR. Molecular, cellular and developmental biology of urothelium as a basis of bladder regeneration. Differentiation 2005; 73:121-33. [PMID: 15901280 DOI: 10.1111/j.1432-0436.2005.00014.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Urinary bladder malfunction and disorders are caused by congenital diseases, trauma, inflammation, radiation, and nerve injuries. Loss of normal bladder function results in urinary tract infection, incontinence, renal failure, and end-stage renal dysfunction. In severe cases, bladder augmentation is required using segments of the gastrointestinal tract. However, use of gastrointestinal mucosa can result in complications such as electrolyte imbalance, stone formation, urinary tract infection, mucous production, and malignancy. Recent tissue engineering techniques use acellular grafts, cultured cells combined with biodegradable scaffolds, and cell sheets. These techniques are not all currently applicable for human bladder reconstruction. However, new avenues for bladder reconstruction maybe facilitated by a better understanding of urogenital development, the cellular and molecular biology of urothelium, and cell-cell interactions, which modulate tissue repair, homeostasis, and disease progression.
Collapse
Affiliation(s)
- Andrea Staack
- Department of Urology, University Medical Center Charité, Humboldt University, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
40
|
Finch PW, Rubin JS. Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 2004; 91:69-136. [PMID: 15327889 DOI: 10.1016/s0065-230x(04)91003-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Keratinocyte growth factor (KGF) is a paracrine-acting, epithelial mitogen produced by cells of mesenchymal origin. It is a member of the fibroblast growth factor (FGF) family, and acts exclusively through a subset of FGF receptor isoforms (FGFR2b) expressed predominantly by epithelial cells. The upregulation of KGF after epithelial injury suggested it had an important role in tissue repair. This hypothesis was reinforced by evidence that intestinal damage was worse and healing impaired in KGF null mice. Preclinical data from several animal models demonstrated that recombinant human KGF could enhance the regenerative capacity of epithelial tissues and protect them from a variety of toxic exposures. These beneficial effects are attributed to multiple mechanisms that collectively act to strengthen the integrity of the epithelial barrier, and include the stimulation of cell proliferation, migration, differentiation, survival, DNA repair, and induction of enzymes involved in the detoxification of reactive oxygen species. KGF is currently being evaluated in clinical trials to test its ability to ameliorate severe oral mucositis (OM) that results from cancer chemoradiotherapy. In a phase 3 trial involving patients who were treated with myeloablative chemoradiotherapy before autologous peripheral blood progenitor cell transplantation for hematologic malignancies, KGF significantly reduced both the incidence and duration of severe OM. Similar investigations are underway in patients being treated for solid tumors. On the basis of its success in ameliorating chemoradiotherapy-induced OM in humans and tissue damage in a variety of animal models, additional clinical applications of KGF are worthy of investigation.
Collapse
Affiliation(s)
- Paul W Finch
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
41
|
Steiling H, Mühlbauer M, Bataille F, Schölmerich J, Werner S, Hellerbrand C. Activated hepatic stellate cells express keratinocyte growth factor in chronic liver disease. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1233-41. [PMID: 15466389 PMCID: PMC1618645 DOI: 10.1016/s0002-9440(10)63383-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, is a specific mitogen for different types of epithelial cells and a potent survival factor for these cells under stress conditions. KGF expression increases strongly after injury to various tissues, including the skin and the intestine, and signaling via the KGF receptor was shown to be crucial for repair of skin wounds and for liver regeneration. Here we demonstrate an increased expression of KGF in chronic liver disease associated with fibrosis. The extent of KGF overexpression correlated strongly with the stage of fibrosis. As the cellular source of KGF we identified activated hepatic stellate cells (HSCs)/myofibroblasts. In contrast to the ligand, the KGF receptor, FGFR2-IIIb, was exclusively expressed by hepatocytes, but not by activated HSCs or other parenchymal or nonparenchymal liver cells. Based on the known effects of KGF on hepatocytes in vitro, our findings suggest that HSC/myofibroblast-derived KGF may enhance liver regeneration and/or hepatocyte survival in patients with chronic liver disease.
Collapse
Affiliation(s)
- Heike Steiling
- Department of Biology, Institute of Cell Biology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Daher A, de Boer WI, Le Frère-Belda MA, Kheuang L, Abbou CC, Radvanyi F, Jaurand MC, Thiery JP, Gil Diez de Medina S, Chopin DK. Growth, differentiation and senescence of normal human urothelium in an organ-like culture. Eur Urol 2004; 45:799-805. [PMID: 15149756 DOI: 10.1016/j.eururo.2004.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2004] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To examine the kinetics of growth, differentiation and senescence of normal human urothelium in an organoid-like culture model. MATERIALS AND METHODS Micro-dissected normal human urothelium explants were grown on porous membranes pretreated with various matrix components. Between 5 and 30 days of culture, cell proliferation was assessed by BrdU incorporation. Differentiation was evaluated on the basis of cytokeratin (Ck) and uroplakin (UP) expression. Epidermal growth factor family mRNA expression was monitored during explant outgrowth. Senescence was assessed by measuring endogenous beta-galactosidase activity and p16(INK4a) mRNA expression. RESULTS Collagen IV was the most efficient matrix component for urothelial cell expansion. BrdU incorporation by urothelial cells was 5% between 15 and 30 days, corresponding to steady-state urothelium in vivo. Heparin-binding EGF (HB-EGF), Amphiregulin (AR) and Transforming Growth Factor alpha (TGF alpha) expression correlated with increased cell proliferation. UPII expression was stable throughout culture. P16(INK4a) mRNA expression and beta-galactosidase activity increased on day 25, giving signs of senescence. CONCLUSIONS This model retains many characteristics of the urothelium in vivo. It can be used for pharmacological studies between 15 to 25 days and to study mechanisms such as wound healing, proliferation and senescence.
Collapse
Affiliation(s)
- Ahmad Daher
- INSERM EMI 03-37, Faculté de Médecine, 8, Rue du Général Sarrail, Université Paris 12, 94000 Créteil cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Walker DC, Hill G, Wood SM, Smallwood RH, Southgate J. Agent-Based Computational Modeling of Wounded Epithelial Cell Monolayers. IEEE Trans Nanobioscience 2004; 3:153-63. [PMID: 15473067 DOI: 10.1109/tnb.2004.833680] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Computational modeling of biological systems, or in silico biology, is an emerging tool for understanding structure and order in biological tissues. Computational models of the behavior of epithelial cells in monolayer cell culture have been developed and used to predict the healing characteristics of scratch wounds made to urothelial cell cultures maintained in low- and physiological [Ca2+] environments. Both computational models and in vitro experiments demonstrated that in low exogenous [Ca2+], the closure of 500-microm scratch wounds was achieved primarily by cell migration into the denuded area. The wound healing rate in low (0.09 mM) [Ca2+] was approximately twice as rapid as in physiological (2 mM) [Ca2+]. Computational modeling predicted that in cell cultures that are actively proliferating, no increase in the fraction of cells in the S-phase would be expected, and this conclusion was supported experimentally in vitro by bromodeoxyuridine incorporation assay. We have demonstrated that a simple rule-based model of cell behavior, incorporating rules relating to contact inhibition of proliferation and migration, is sufficient to qualitatively predict the calcium-dependent pattern of wound closure observed in vitro. Differences between the in vitro and in silico models suggest a role for wound-induced signaling events in urothelial cell cultures.
Collapse
Affiliation(s)
- D C Walker
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
| | | | | | | | | |
Collapse
|
44
|
Sawada H, Esaki M, Sheng HM, Kita A, Yoshida T. Transplantation of the urinary bladder and other organs in the subcutaneous tissue induces cyst formation and epithelialization: its potential usefulness in regenerative medicine. Wound Repair Regen 2004; 12:30-7. [PMID: 14974962 DOI: 10.1111/j.1067-1927.2004.012108.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Certain hollow organs are known to form cysts when heterologously transplanted. In order to examine the usefulness of the phenomenon for regenerative medicine, rat urinary bladders and other organs were allo-transplanted under the subcutaneous tissue of the back. These transplanted tissues very often formed cysts covered with epithelia. The epithelia covered an area about twice the original size. In the case of the urinary bladder, the epithelium started moving from the edge of the transplants around day 3 after the operation, and as time proceeded, the tela submucosa and tunica muscularis also moved to encircle the epithelium, and formed the wall of the cyst. The basal laminae were formed under the newly expanded epithelium slightly behind the leading tip. All of the organs tested had the capability of cyst formation and epithelialization, although their rate differed between organs. The results are discussed with reference to the potential use of cyst formation for regenerating damaged organs.
Collapse
Affiliation(s)
- Hajime Sawada
- Department of Anatomy, Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | |
Collapse
|
45
|
Greenberg CB, Davidson EB, Bellmer DD, Morton RJ, Payton ME. Evaluation of the tensile strengths of four monofilament absorbable suture materials after immersion in canine urine with or without bacteria. Am J Vet Res 2004; 65:847-53. [PMID: 15198227 DOI: 10.2460/ajvr.2004.65.847] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the tensile strength, elongation, and degradation of 4 monofilament absorbable suture materials that undergo degradation by hydrolysis in specimens of canine urine with various physical characteristics. SAMPLE POPULATION 4 monofilament absorbable sutures (polydioxanone, poliglecaprone 25, polyglyconate, and glycomer 631). PROCEDURE Voided urine was collected from 6 healthy dogs, pooled, filter-sterilized, and prepared to provide 5 media: sterile neutral (pH, 7.0), sterile acidic (pH, 6.2), sterile basic (pH, 8.8), Escherichia coli-inoculated, and Proteus mirabilis-inoculated urine. Ten strands of each suture material were immersed in each of the media for 0 to 28 days. Tensile strength and elongation of each suture material were evaluated by use of a texture analyzer on days 0, 1, 3, 7, 10, 14, 21, and 28. RESULTS Reduction in tensile strength was detected for all materials in all urine specimens over time. Polyglyconate and polydioxanone had superior tensile strengths in sterile neutral and E. coli-inoculated urine, and polydioxanone retained the greatest tensile strength throughout the study period. All suture materials disintegrated before day 7 in P. mirabilis-inoculated urine. CONCLUSIONS AND CLINICAL RELEVANCE Polydioxanone, polyglyconate, and glycomer 631 may be acceptable for urinary bladder closure in the presence of sterile neutral and E. coli-contaminated urine. Tensile strength of poliglecaprone 25 in urine may be unacceptable by the critical healing time for bladder tissue (14 to 21 days). During bladder surgery, exposure of suture material that degrades via hydrolysis to urine containing Proteus spp should be minimized.
Collapse
Affiliation(s)
- Chelsea B Greenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | |
Collapse
|
46
|
Schoeller T, Neumeister MW, Huemer GM, Russell RC, Lille S, Otto-Schoeller A, Wechselberger G. Capsule induction technique in a rat model for bladder wall replacement: an overview. Biomaterials 2004; 25:1663-73. [PMID: 14697868 DOI: 10.1016/s0142-9612(03)00518-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The search for a reliable technique for functional genitourinary tissue replacement remains a challenging task. The most recent advances in cell biology and tissue engineering have utilized various avascular and acellular collagen scaffolds with or without seeded cells. These techniques, however, are frequently complicated by tissue necrosis, contracture and resorption due to limited vascularization. We employed a new three-stage, evolving animal model with stage I optimizing the culture delivery vehicle, stage II employing a seeded vascularized capsule flap, and stage III adding a contractile matrix in the form of pedicled gracilis muscle prelaminated with autologous, in vitro-expanded urothelial cells to reconstruct an entire supratrigonal bladder-wall defect in rats.Specimens stained with hematoxylin and eosin (H&E), alpha(1)-actin staining, and a specific immunohistochemical staining (AE(1)&AE(3)-anticytoceratin monoclonal antibody stain) showed a continuous, multilayered, functioning urothelial lining along the transposed prelaminated gracilis flap in the animals of the final-stage experiment. Successful urinary reconstruction requires a contractile neoreservoir resistant to resorption over time and a stable, protective urothelial lining. We demonstrated that a gracilis muscle flap can be seeded with autologous cultured urothelial cells suspended in fibrin glue. This prelaminated flap can be safely transposed onto its pedicle and become successfully integrated into the remaining bladder wall, demonstrating urothelial lining and the potential to contract. Further studies in larger animals with urodynamic assessment is warranted to determine if this type of bladder-wall replacement technique is suitable for urinary reconstruction in humans.
Collapse
Affiliation(s)
- Thomas Schoeller
- University Hospital of Plastic and Reconstructive Surgery Innsbruck, Anichstrasse 35, A-6020, Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
47
|
Andreoni CR, Lin HK, Olweny E, Landman J, Lee D, Bostwick D, Clayman RV. Comprehensive evaluation of ureteral healing after electrosurgical endopyelotomy in a porcine model: original report and review of the literature. J Urol 2004; 171:859-69. [PMID: 14713843 DOI: 10.1097/01.ju.0000108383.18165.f5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Endopyelotomy (EP) has yet to equal the success achieved with open dismembered pyeloplasty. To understand better the ureteral response to EP we performed a timed histopathological evaluation of the porcine ureter after Acucise (Applied Medical, Rancho Santa Margarita, California) EP. MATERIALS AND METHODS In 28 domestic pigs bilateral Acucise EPs were performed and bilateral 7Fr stents were placed. The kidneys, ureters and bladder were harvested after EP at 0, 1, 2, 3, 6, 12 and 18 hours, 1, 3 and 5 days, and 1, 2, 4 and 8 weeks. The stents were removed after 4 weeks. The healing area of the ureter was sectioned. Half was fixed in formalin 10%, stained and evaluated by light microscopy. The other half was frozen and reverse transcriptase-polymerase chain reaction was performed to measure steady state levels of epidermal growth factor, transforming growth factor (TGF)-alpha, TGF-beta 1, TGF-beta 2, TGF-beta 3, keratinocyte growth factor, vascular endothelial growth factor, insulin-like growth factor, platelet derived growth factor, collagen type 1, integrin and fibronectin transcript expression. Immunohistochemistry for actin, desmin and myosin expression was completed. The same studies were applied to the mid portion of the unoperated ureter. RESULTS Initial sealing of the ureterotomy defect was by blood clot and periureteral fat. Complete healing of the mucosa was observed at 2 weeks in animals without an associated urinoma. However, in no case did the muscle layer bridge the whole circumference of the ureter despite followup out to 8 weeks. In the operated ureter elevated expression of keratinocyte growth factor, vascular endothelial growth factor, TGF-alpha, TGF-beta 1, TGF-beta 3 and integrin was detected 2 hours after the operation and sustained for 7 to 14 days after the procedure. Immunohistochemistry revealed that most presumed myocytes seen in the defect were actually myofibroblasts. Persistent urinoma formation beyond the first few days appeared to slow the healing process. CONCLUSIONS Urothelium regenerated rapidly over an iatrogenic ureteral defect despite the absence of a lamina propria. Muscle cell coverage failed to occur completely at 8 weeks. In the initial 8 weeks of the healing process myofibroblasts appear to be prevalent. A persistent urinoma negatively impacts the healing process.
Collapse
|
48
|
Herz DB, Aitken K, Bagli DJ. Collagen Directly Stimulates Bladder Smooth Muscle Cell Growth In Vitro: Regulation by Extracellular Regulated Mitogen Activated Protein Kinase. J Urol 2003; 170:2072-6. [PMID: 14532856 DOI: 10.1097/01.ju.0000091810.33953.13] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Bladders clinically subjected to excessive pressure or distention demonstrate an altered extracellular matrix (ECM) composition. We determined how an altered collagen substratum might affect bladder smooth muscle cell (bSMC) growth in vitro and probed the mechanism of this response. MATERIALS AND METHODS Primary culture rat bSMCs were seeded onto culture plates pre-coated with normal type I collagen (NC) or heat denatured type I collagen (DNC) under standard culture conditions. In separate experiments bSMCs from the 2 substrates were enzymatically released and changed to growth on normal collagen (NC-->NC or DNC-->NC) or denatured collagen (DNC-->DNC or NC-->DNC). At 24 hours proliferation was assessed by 3H-thymidine incorporation. Statistical significance in triplicate wells was determined by ANOVA. RESULTS The proliferation of bSMCs on DNC was 5-fold greater than on NC (p <0.0001). Passage onto damaged collagen (DNC-->DNC) showed 2-fold further augmentation in proliferation (p <0.0001) but only a 50% decrease when NC was reintroduced (DNC-->NC) (p <0.001). Conversely replating on NC (NC-->NC) generated a 33% decrease in the already low proliferation rate (p <0.001) but 9-fold stimulation of proliferation when changed to damaged ECM (NC-->DNC) (p <0.0001). The mitogenic effect of damaged ECM on bSMC growth was abolished by specific inhibition of extracellular regulated kinase mitogen activated protein kinase signaling using PD98059. CONCLUSIONS Damaged type I collagen (ECM) is mitogenic to bSMCs. The response is amplified by re-exposure to DNC. However, mitogenicity is only partially reversible by re-introducing NC. These results demonstrate striking bSMC responsiveness to ECM conformation. Signaling through the extracellular regulated kinase mitogen activated protein kinase pathway supports bSMC-ECM interaction. We speculate that remodeling the ECM in vivo may regulate bSMC growth.
Collapse
Affiliation(s)
- Daniel B Herz
- Division of Infection, Immunity, Injury and Repair, Research Institute, Department of Surgery, Hospital for Sick Children, 555 University Avenue, University of Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
49
|
|
50
|
Atabai K, Ishigaki M, Geiser T, Ueki I, Matthay MA, Ware LB. Keratinocyte growth factor can enhance alveolar epithelial repair by nonmitogenic mechanisms. Am J Physiol Lung Cell Mol Physiol 2002; 283:L163-9. [PMID: 12060573 DOI: 10.1152/ajplung.00396.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pretreatment with keratinocyte growth factor (KGF) ameliorates experimentally induced acute lung injury in rats. Although alveolar epithelial type II cell hyperplasia probably contributes, the mechanisms underlying KGF's protective effect remain incompletely described. Therefore, we tested the hypothesis that KGF given to rats in vivo would enhance alveolar epithelial repair in vitro by nonproliferative mechanisms. After intratracheal instillation (48 h) of KGF (5 mg/kg), alveolar epithelial type II cells were isolated for in vitro alveolar epithelial repair studies. KGF-treated cells had markedly increased epithelial repair (96 +/- 22%) compared with control cells (P < 0.001). KGF-treated cells had increased cell spreading and migration at the wound edge but no increase in in vitro proliferation compared with control cells. KGF-treated cells were more adherent to extracellular matrix proteins and polystyrene. Inhibition of the epidermal growth factor (EGF) receptor with tyrosine kinase inhibitors abolished the KGF effect on epithelial repair. In conclusion, in vivo administration of KGF augments the epithelial repair rate of alveolar epithelial cells by altering cell adherence, spreading, and migration and through stimulation of the EGF receptor.
Collapse
Affiliation(s)
- Kamran Atabai
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco 94143-0130, USA.
| | | | | | | | | | | |
Collapse
|