1
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
2
|
Lima R, Monteiro A, Salgado AJ, Monteiro S, Silva NA. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci 2022; 23:ijms232213833. [PMID: 36430308 PMCID: PMC9698625 DOI: 10.3390/ijms232213833] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Spinal cord injury (SCI) is a disabling condition that disrupts motor, sensory, and autonomic functions. Despite extensive research in the last decades, SCI continues to be a global health priority affecting thousands of individuals every year. The lack of effective therapeutic strategies for patients with SCI reflects its complex pathophysiology that leads to the point of no return in its function repair and regeneration capacity. Recently, however, several studies started to uncover the intricate network of mechanisms involved in SCI leading to the development of new therapeutic approaches. In this work, we present a detailed description of the physiology and anatomy of the spinal cord and the pathophysiology of SCI. Additionally, we provide an overview of different molecular strategies that demonstrate promising potential in the modulation of the secondary injury events that promote neuroprotection or neuroregeneration. We also briefly discuss other emerging therapies, including cell-based therapies, biomaterials, and epidural electric stimulation. A successful therapy might target different pathologic events to control the progression of secondary damage of SCI and promote regeneration leading to functional recovery.
Collapse
Affiliation(s)
- Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Laboratory, PT Government Associated Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| |
Collapse
|
3
|
Guerron A, Phan HT, Peñaloza-Arias C, Brambilla D, Roullin VG, Giasson S. Selectively triggered cell detachment from poly(N-isopropylacrylamide) microgel functionalized substrates. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Kim H, Kim Y, Park J, Hwang NS, Lee YK, Hwang Y. Recent Advances in Engineered Stem Cell-Derived Cell Sheets for Tissue Regeneration. Polymers (Basel) 2019; 11:E209. [PMID: 30960193 PMCID: PMC6419010 DOI: 10.3390/polym11020209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The substantial progress made in the field of stem cell-based therapy has shown its significant potential applications for the regeneration of defective tissues and organs. Although previous studies have yielded promising results, several limitations remain and should be overcome for translating stem cell-based therapies to clinics. As a possible solution to current bottlenecks, cell sheet engineering (CSE) is an efficient scaffold-free method for harvesting intact cell sheets without the use of proteolytic enzymes, and may be able to accelerate the adoption of stem cell-based treatments for damaged tissues and organs regeneration. CSE uses a temperature-responsive polymer-immobilized surface to form unique, scaffold-free cell sheets composed of one or more cell layers maintained with important intercellular junctions, cell-secreted extracellular matrices, and other important cell surface proteins, which can be achieved by changing the surrounding temperature. These three-dimensional cell sheet-based tissues can be designed for use in clinical applications to target-specific tissue regeneration. This review will highlight the principles, progress, and clinical relevance of current approaches in the cell sheet-based technology, focusing on stem cell-based therapies for bone, periodontal, skin, and vascularized muscles.
Collapse
Affiliation(s)
- Hyunbum Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea.
- The BioMax Institute of Seoul National University, Seoul 08826, Korea.
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Jihyun Park
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul 08826, Korea.
- The BioMax Institute of Seoul National University, Seoul 08826, Korea.
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea.
| |
Collapse
|
5
|
Ammar MM, Waly GH, Saniour SH, Moussa TA. Growth factor release and enhanced encapsulated periodontal stem cells viability by freeze-dried platelet concentrate loaded thermo-sensitive hydrogel for periodontal regeneration. Saudi Dent J 2018; 30:355-364. [PMID: 30202174 PMCID: PMC6128323 DOI: 10.1016/j.sdentj.2018.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/23/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022] Open
Abstract
Periodontium regeneration is a highly challenging process as it requires the regeneration of three different tissues simultaneously. The aim of this study was to develop a composite material that can be easily applied and can sufficiently deliver essential growth factors and progenitor cells for periodontal tissue regeneration. Freeze-dried platelet concentrate (FDPC) was prepared and incorporated in a thermo-sensitive chitosan/β-glycerol phosphate (β-GP) hydrogel at concentrations of 5, 10, or 15 mg/ml. The viscosity of the hydrogels was investigated as the temperature rises from 25 °C to 37 °C and the release kinetics of transforming growth factor (TGF-β1), platelet-derived growth factor (PDGF-BB) and insulin-like growth factor (IGF-1) were investigated at four time points (1 h, 1 day, 1 week, 2 weeks). Periodontal ligament stem cells (PDLSCs) were isolated from human third molars and encapsulated in the different hydrogel groups. Their viability was investigated after 7 days in culture in comparison to standard culture conditions and non FDPC-loaded hydrogel. Results showed that loading FDPC in the hydrogel lowered the initial viscosity in comparison to the unloaded control group and did not affect the sol-gel transition in any group. All FDPC-loaded hydrogel groups exhibited sustained release of TGF-β1 and PDGF-BB for two weeks with significant difference between the different concentrations. The loading of 10 and 15 mg/ml of FDPC in the hydrogel increased the PDLSCs viability significantly compared to the unloaded hydrogel and was comparable to the standard culture conditions. Accordingly, it may be concluded that loading FDPC in a chitosan/β-GP hydrogel can offer enhanced injectability, a sustained release of growth factors and increased viability of encapsulated stem cells which can be beneficial in periodontium tissue regeneration.
Collapse
Affiliation(s)
- Mohamed M Ammar
- Biomaterials Department, Faculty of Oral and Dental Medicine, Future University, Cairo, Egypt.,Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Gihan H Waly
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Sayed H Saniour
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Taheya A Moussa
- Biomaterials Department, Faculty of Oral and Dental Medicine, Future University, Cairo, Egypt.,Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Moschouris K, Firoozi N, Kang Y. The application of cell sheet engineering in the vascularization of tissue regeneration. Regen Med 2016; 11:559-70. [PMID: 27527673 PMCID: PMC5007660 DOI: 10.2217/rme-2016-0059] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Scaffold-free cell sheet engineering (CSE) is a new technology to regenerate injured or damaged tissues, which has shown promising potential in tissue regeneration. CSE uses a thermosensitive surface to form a dense cell sheet that can be detached when temperature decreases. The detached cell sheet can be stacked on top of one another according to the thickness of cell sheet for the specific tissue regeneration application. One of the key challenges of tissue engineering is vascularization. CSE technique provides excellent microenvironment for vascularization since the technique can maintain the intact cell matrix that is crucial for angiogenesis. In this review paper, we will highlight the principle technique of CSE and its application in tissue regeneration.
Collapse
Affiliation(s)
- Kathryn Moschouris
- Department of Biological Sciences, College of Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Negar Firoozi
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering & Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA.,Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
7
|
Yao CL, Liao CJ, Liang SM. Characterization and implantation of a novel foamy type of collagen into SD rats to regenerate tissue by slowing down the collagen degradation rate. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1129963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Thomas LV, Nair PD. (Citric acid-co-polycaprolactone triol) polyester: a biodegradable elastomer for soft tissue engineering. BIOMATTER 2014; 1:81-90. [PMID: 23507730 PMCID: PMC3548247 DOI: 10.4161/biom.1.1.17301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties.
Collapse
Affiliation(s)
- Lynda V Thomas
- Division of Tissue Engineering and Regeneration Technologies, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | |
Collapse
|
9
|
Raposo-Amaral CE, Bueno DF, Almeida AB, Jorgetti V, Costa CC, Gouveia CH, Vulcano LC, Fanganiello RD, Passos-Bueno MR, Alonso N. Is bone transplantation the gold standard for repair of alveolar bone defects? J Tissue Eng 2014; 5:2041731413519352. [PMID: 24551445 PMCID: PMC3924878 DOI: 10.1177/2041731413519352] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.
Collapse
Affiliation(s)
- Cassio Eduardo Raposo-Amaral
- Departamento de Cirurgia Plástica e Queimaduras, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Daniela Franco Bueno
- Centro de Estudos do Genoma Humano, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Ana Beatriz Almeida
- Departamento de Cirurgia Plástica e Queimaduras, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Vanda Jorgetti
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Cristiane Cabral Costa
- Centro de Estudos do Genoma Humano, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Cecília Helena Gouveia
- Centro de Estudos do Genoma Humano, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Luiz Carlos Vulcano
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), São Paulo, Brazil
| | - Roberto D Fanganiello
- Centro de Estudos do Genoma Humano, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Nivaldo Alonso
- Departamento de Cirurgia Plástica e Queimaduras, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
10
|
Blaeser A, Duarte Campos DF, Weber M, Neuss S, Theek B, Fischer H, Jahnen-Dechent W. Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs. Biores Open Access 2013; 2:374-84. [PMID: 24083093 PMCID: PMC3776616 DOI: 10.1089/biores.2013.0031] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bioprinting is a recent development in tissue engineering, which applies rapid prototyping techniques to generate complex living tissues. Typically, cell-containing hydrogels are dispensed layer-by-layer according to a computer-generated three-dimensional model. The lack of mechanical stability of printed hydrogels hinders the fabrication of high aspect ratio constructs. Here we present submerged bioprinting, a novel technique for freeform fabrication of hydrogels in liquid fluorocarbon. The high buoyant density of fluorocarbons supports soft hydrogels by floating. Hydrogel constructs of up to 30-mm height were generated. Using 3% (w/v) agarose as the hydrogel and disposable syringe needles as nozzles, the printer produced features down to 570-μm diameter with a lateral dispensing accuracy of 89 μm. We printed thin-walled hydrogel cylinders measuring 4.8 mm in height, with an inner diameter of ∼2.9 mm and a minimal wall thickness of ∼650 μm. The technique was successfully applied in printing a model of an arterial bifurcation. We extruded under fluorocarbon, cellularized alginate tubes with 5-mm outer diameter and 3-cm length. Cells grew vigorously and formed clonal colonies within the 7-day culture period. Submerged bioprinting thus seems particularly suited to fabricate hollow structures with a high aspect ratio like vascular grafts for cardiovascular tissue engineering as well as branching or cantilever-like structures, obviating the need for a solid support beneath the overhanging protrusions.
Collapse
Affiliation(s)
- Andreas Blaeser
- Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
- Department of Dental Materials and Biomaterial Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Daniela F. Duarte Campos
- Department of Dental Materials and Biomaterial Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Michael Weber
- Department of Dental Materials and Biomaterial Research, RWTH Aachen University Hospital, Aachen, Germany
| | - Sabine Neuss
- Biointerface Laboratory, RWTH Aachen University Hospital, Aachen, Germany
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Benjamin Theek
- Experimental Molecular Imaging, Helmholtz Institute of Biomedical Engineering, RWTH Aachen University Hospital, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterial Research, RWTH Aachen University Hospital, Aachen, Germany
| | | |
Collapse
|
11
|
Shishatskaya EI, Kamendov IV, Starosvetsky SI, Vinnik YS, Markelova NN, Shageev AA, Khorzhevsky VA, Peryanova OV, Shumilova AA. An in vivo study of osteoplastic properties of resorbable poly-3-hydroxybutyrate in models of segmental osteotomy and chronic osteomyelitis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:344-55. [PMID: 23899021 DOI: 10.3109/21691401.2013.816312] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A series of 3D implants and filling materials prepared from powdered biodegradable polymers, polyhydroxyalkanoates (PHAs), have been designed for the purposes of reparative osteogenesis. The 3D implants are made of resorbable polymer of hydroxybutyric acid (poly-3-hydroxybutyrate, P3HB) and a composite of this polymer with hydroxyapatite (HA) (P3HB/HA). The properties of the implants were studied in vivo in a model of segmental osteotomy and compared with commercial material Bio-Oss(®). All implants containing P3HB as the main component facilitate reconstructive osteogenesis. P3HB and P3HB/HA show pronounced osteoplastic properties; their in vivo degradation is slow and corresponds to the growth of a new bone tissue, facilitating normal reparative osteogenesis. Also, powdered P3HB and P3HB/tienam can be used as filling materials for osteoplasty of bone cavities infected by Staphylococcus aureus. Biodegradable 3D implants and P3HB-based filling materials show pronounced osteoplastic properties and degrade in vivo at a slow rate, enabling normal reparative osteogenesis.
Collapse
Affiliation(s)
- Ekaterina I Shishatskaya
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences , Akademgorodok, Krasnoyarsk , Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Effects of allogenous periosteal-derived cells transfected with adenovirus-mediated BMP-2 on repairing defects of the mandible in rabbits. J Oral Maxillofac Surg 2013; 71:1789-99. [PMID: 23676775 DOI: 10.1016/j.joms.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/22/2022]
Abstract
PURPOSE This report describes the effect of periosteal-derived cells transfected with adenovirus-mediated bone morphogenetic protein-2 (BMP-2) on the repair of mandibular defects in rabbits. MATERIALS AND METHODS Periosteal-derived cells were transfected with a replication-defective adenoviral vector encoding BMP-2, and the expression of BMP-2 was examined in transfected cells using in situ hybridization and enzyme-linked immunosorbent assay. In addition, the proliferation ability and activity of alkaline phosphatase of transfected cells were examined using the 3-[4,5-dimethylthiazol-2-Yl]-2,5-diphenyltetrazolium bromide method and enzymology, respectively. In vitro critical-size defects (about 10 × 6 mm) were made bilaterally in each rabbit mandible, and individual sites were implanted with tissue-engineered bone modified with an adenovirus construct encoding the recombinant human BMP-2 gene (Ad-BMP-2), tissue-engineered bone without modification, single bioactive glass ceramic, or no implants (control). New bone formation was evaluated by histochemical stain. RESULTS BMP-2 expression in the supernate of infected cells was detected from the first day after Ad-BMP-2 transfection and remained at a high level for at least 2 weeks. Alkaline phosphatase expression in transfected cells was significantly greater than in uninfected cells. The group of Ad-BMP-2-modified periosteal-derived cells formed more new bone than the other group at any time point. CONCLUSION Gene-modified tissue-engineered bone grafts have greater osteogenic potential than single tissue-engineered bone and single bioactive glass ceramic graft. Ex vivo Ad-BMP-2 transfer to periosteal-derived cells can increase bone formation in critical-size bone defects. Further studies are needed to determine if modified engineered cells can be developed for safe and effective clinical applications.
Collapse
|
13
|
|
14
|
Dietrich I, Cochet O, Villageois P, Rodrigues CJ. Engraftment of human adipose derived stem cells delivered in a hyaluronic acid preparation in mice. Acta Cir Bras 2012; 27:283-9. [PMID: 22534801 DOI: 10.1590/s0102-86502012000400001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/15/2012] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To evaluate the implant of human adipose derived stem cells (ADSC) delivered in hyaluronic acid gel (HA), injected in the subcutaneous of athymic mice. METHODS Control implants -HA plus culture media was injected in the subcutaneous of the left sub scapular area of 12 athymic mice. ADSC implants: HA plus ADSC suspended in culture media was injected in the subcutaneous, at the contra lateral area, of the same animals. With eight weeks, animals were sacrificed and the recovered implants were processed for extraction of genomic DNA, and histological study by hematoxilin-eosin staining and immunufluorescence using anti human vimentin and anti von Willebrand factor antibodies. RESULTS CONTROLS Not visualized at the injection site. An amorphous substance was observed in hematoxilin-eosin stained sections. Human vimentin and anti von Willebrand factor were not detected. No human DNA was detected. ADSC implants - A plug was visible at the site of injection. Fusiform cells were observed in sections stained by hematoxilin- eosin and both human vimentin and anti von Willebrand factor were detected by immunofluorescence. The presence of human DNA was confirmed. CONCLUSION The delivery of human adipose derived stem cells in preparations of hyaluronic acid assured cells engraftment at the site of injection.
Collapse
Affiliation(s)
- Isa Dietrich
- Department of Surgery, Laboratory of Surgical Anatomy of Human Structural Topography, School of Medicine, Sao Paulo University, Brazil.
| | | | | | | |
Collapse
|
15
|
Horch RE, Kneser U, Polykandriotis E, Schmidt VJ, Sun J, Arkudas A. Tissue engineering and regenerative medicine -where do we stand? J Cell Mol Med 2012; 16:1157-65. [PMID: 22436120 PMCID: PMC3823070 DOI: 10.1111/j.1582-4934.2012.01564.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tissue Engineering (TE) in the context of Regenerative Medicine (RM) has been hailed for many years as one of the most important topics in medicine in the twenty-first century. While the first clinically relevant TE efforts were mainly concerned with the generation of bioengineered skin substitutes, subsequently TE applications have been continuously extended to a wide variety of tissues and organs. The advent of either embryonic or mesenchymal adult stem-cell technology has fostered many of the efforts to combine this promising tool with TE approaches and has merged the field into the term Regenerative Medicine. As a typical example in translational medicine, the discovery of a new type of cells called Telocytes that have been described in many organs and have been detected by electron microscopy opens another gate to RM. Besides cell-therapy strategies, the application of gene therapy combined with TE has been investigated to generate tissues and organs. The vascularization of constructs plays a crucial role besides the matrix and cell substitutes. Therefore, novel in vivo models of vascularization have evolved allowing axial vascularization with subsequent transplantation of constructs. This article is intended to give an overview over some of the most recent developments and possible applications in RM through the perspective of TE achievements and cellular research. The synthesis of TE with innovative methods of molecular biology and stem-cell technology appears to be very promising.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery And Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich Alexander University Erlangen-Nuernberg, Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Shishatskaya EI, Khlusov IA, Volova TG. A hybrid PHB–hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:481-98. [PMID: 16800151 DOI: 10.1163/156856206776986242] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Samples of a hybrid composite of polyhydroxybutyrate (PHB), a biodegradable polyester, and hydroxyapatite (HA), with different PHB/HA ratios, have been prepared using mechanical-physical method. Electron microscopy, X-ray structure analysis and differential thermal analysis have been used to investigate the structure and physicochemical properties of the composite, depending on the PHB/HA ratio. The properties of the surface of the HA-loaded composite are significantly different from those of the pure polymer. As the HA percentage in the composite increases, free interface energy, the cohesive force, i.e., the strength of the adhesive bond between the composite surface and the water phase, and surface wettability increase. The HA percentage of the composite does not influence its melting temperature, but affects the temperature for the onset of decomposition: as the HA content increases from 0 to 10% (w/w), Td decreases from 260 degrees C to 225 degrees C. The degree of crystallinity of PHB/HA increases from 77% to 89% with an increase in the HA fraction from 10% to 50%. Functional properties of the composites have been investigated in vitro and in vivo. The best parameters of growth and differentiation of murine marrow osteoblasts are registered on PHB/HA samples containing 10% and 20% HA. In ectopic bone formation assay it has been proven that the hybrid PHB/HA composites can function as scaffolds and that bone tissue develops on their surface and in pores.
Collapse
Affiliation(s)
- E I Shishatskaya
- Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 60036, Russia
| | | | | |
Collapse
|
17
|
Scaffold informatics and biomimetic design: three-dimensional medical reconstruction. Methods Mol Biol 2012; 868:91-109. [PMID: 22692606 DOI: 10.1007/978-1-61779-764-4_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This chapter briefly describes the concepts underlying medical imaging reconstruction and the requirements for its integration with subsequent applications as BioCAD, rapid prototyping (RP), and rapid manufacturing (RM) of implants, scaffolds, or organs. As an introduction to the problem, principles related to data acquisition, enhancement, segmentation, and interpolation are discussed. After this, some available three-dimensional medical reconstruction software tools are presented. Finally, applications of these technologies are illustrated.
Collapse
|
18
|
Gassling V, Hedderich J, Açil Y, Purcz N, Wiltfang J, Douglas T. Comparison of platelet rich fibrin and collagen as osteoblast-seeded scaffolds for bone tissue engineering applications. Clin Oral Implants Res 2011; 24:320-8. [PMID: 22092514 DOI: 10.1111/j.1600-0501.2011.02333.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2011] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The loss of jaw bone caused by different kinds of pathologies leads to dysfunction and reduced quality of life in affected patients. Thus, the pivotal goal in bone tissue engineering is to reconstruct these defects. The essential precondition for new tissue generation is an extracellular matrix which acts as a scaffold so that cells can migrate, differentiate, and proliferate. Fibrin, a biopolymer responsible for blood clot formation, has been shown to be suitable for tissue engineering applications. The aim of the present study is a comparison of platelet rich fibrin (PRF) with the commonly used collagen membrane BioGide(®) as a scaffold for human osteoblast cell seeding for bone tissue engineering. MATERIAL AND METHODS Human osteoblasts were cultured with eluates from PRF (n = 7) and BioGide(®) (n = 8) membranes incubated in serum-free cell culture medium. Vitality of these cells was assessed by fluorescein diacetate and propidium iodide staining, biocompatibility with the lactate dehydrogenase test and proliferation levels with the MTT ([3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide]), and BrdU (5-bromo-2-deoxyuridine) tests. In addition, human osteoblasts were seeded on both membrane systems and cell growth was compared by the water soluble tetrazolium (WST-1) (4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) test and scanning electron microscopy (SEM). Osteoblastic differentiation was assessed by alkaline phosphatase activity measured by ELISA in the supernatant of osteoblasts cultivated on PRF membranes (n = 10), PRF clots (n = 10), and BioGide(®) membranes (n = 10). RESULTS Lactate dehydrogenase test values were higher for PRF compared to BioGide(®) . The BrdU test showed superior cell growth after cultivation in eluate from PRF than in eluate from BioGide(®) . The WST-1 assay demonstrated superior cell proliferation on PRF than on BioGide(®) . SEM revealed osteoblast colonization of both membranes. Cultivation of osteoblasts on PRF membranes and PRF clots showed significantly higher alkaline phosphatase activity than on BioGide(®) membranes. CONCLUSION Metabolic activity and proliferation of human osteoblast cells in vitro were supported to a significant higher extent by eluates from PRF membranes. Both membranes are suitable as scaffolds for cultivation of human osteoblast cells in vitro; proliferation was significant higher on PRF membranes and on PRF clot than on BioGide(®) membranes.
Collapse
Affiliation(s)
- Volker Gassling
- Department of Oral and Maxillofacial Surgery, University of Schleswig-Holstein, 24105 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Bodle JC, Hanson AD, Loboa EG. Adipose-derived stem cells in functional bone tissue engineering: lessons from bone mechanobiology. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:195-211. [PMID: 21338267 DOI: 10.1089/ten.teb.2010.0738] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This review aims to highlight the current and significant work in the use of adipose-derived stem cells (ASC) in functional bone tissue engineering framed through the bone mechanobiology perspective. Over a century of work on the principles of bone mechanosensitivity is now being applied to our understanding of bone development. We are just beginning to harness that potential using stem cells in bone tissue engineering. ASC are the primary focus of this review due to their abundance and relative ease of accessibility for autologous procedures. This article outlines the current knowledge base in bone mechanobiology to investigate how the knowledge from this area has been applied to the various stem cell-based approaches to engineering bone tissue constructs. Specific emphasis is placed on the use of human ASC for this application.
Collapse
Affiliation(s)
- Josephine C Bodle
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695-7115, USA
| | | | | |
Collapse
|
20
|
Wang M, Zhai P, Chen X, Schreyer DJ, Sun X, Cui F. Bioengineered scaffolds for spinal cord repair. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:177-94. [PMID: 21338266 DOI: 10.1089/ten.teb.2010.0648] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Spinal cord injury can lead to devastating and permanent loss of neurological function, affecting all levels below the site of trauma. Unfortunately, the injured adult mammalian spinal cord displays little regenerative capacity and little functional recovery in large part due to a tissue environment that is nonpermissive for regenerative axon growth. Artificial tissue repair scaffolds may provide a physical guide to allow regenerative axon growth that bridges the lesion cavity and restores functional neural connectivity. By integrating different strategies, including the use of various biomaterials and microstructures as well as incorporation of bioactive molecules and living cells, combined or synergistic effects for spinal cord repair through regenerative axon growth may be achieved. This article briefly reviews the development of bioengineered scaffolds for spinal cord repair, focusing on spinal cord injury and the subsequent cellular response, scaffold materials, fabrication techniques, and current therapeutic strategies. Key issues and challenges are also identified and discussed along with recommendations for future research.
Collapse
Affiliation(s)
- Mindan Wang
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods Mol Biol 2011; 698:253-78. [PMID: 21431525 PMCID: PMC3106977 DOI: 10.1007/978-1-60761-999-4_20] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that adult cartilage lacks the ability to repair itself; this makes articular cartilage a very attractive target for tissue engineering. The majority of articular cartilage repair models attempt to deliver or recruit reparative cells to the site of injury. A number of efforts are directed to the characterization of progenitor cells and the understanding of the mechanisms involved in their chondrogenic differentiation. Our laboratory has focused on cartilage repair using mesenchymal stem cells and studied their differentiation into cartilage. Mesenchymal stem cells are attractive candidates for cartilage repair due to their osteogenic and chondrogenic potential, ease of harvest, and ease of expansion in culture. However, the need for chondrogenic differentiation is superposed on other technical issues associated with cartilage repair; this adds a level of complexity over using mature chondrocytes. This chapter will focus on the methods involved in the isolation and expansion of human mesenchymal stem cells, their differentiation along the chondrogenic lineage, and the qualitative and quantitative assessment of chondrogenic differentiation.
Collapse
Affiliation(s)
- Luis A Solchaga
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | | | | |
Collapse
|
22
|
Repairing critical-sized rat calvarial defects with a periosteal cell-seeded small intestinal submucosal layer. Plast Reconstr Surg 2010; 122:400-409. [PMID: 18626355 DOI: 10.1097/prs.0b013e31817d6206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Small intestinal submucosa was evaluated as a bioscaffold candidate for periosteum-derived osteoblasts, and its suitability as a bone replacement material for cranial defects was investigated. METHODS In the in vitro phase, osteoblasts were expanded in osteogenic medium and were then seeded onto small intestinal submucosa. To confirm osteoblast phenotype, they were tested for alkaline phosphatase, collagen type 1, and calcium expression. In the in vivo phase, calvarial critical-sized defects were created in 35 rats. The defects were either left untreated for surgical control (group 1), treated with small intestinal submucosa alone (group 2), treated with an osteoblast-embedded construct (group 3), or treated with an autogenous bone graft (group 4). The results were evaluated 12 weeks after surgery with radiopacity measurements and with stereologic analysis. RESULTS Periosteal cells grew successfully in vitro. The percentage radiopaque area at the defect was measured to be 42, 74, 76, and 89 percent for groups 1, 2, 3, and 4, respectively. The pixel intensity of the same site was 36.4, 48.1, 47.5, and 54.5 for the same groups, respectively. Tissue-engineered constructs did not achieve enough bone formation and calcification to be effective as autogenous bone grafts and were not superior to the small intestinal submucosa alone. However, both small intestinal submucosa and cell-seeded small intestinal submucosa showed significantly more bone formation compared with the untreated group. CONCLUSIONS Although it was demonstrated that the small intestinal submucosa itself has osteogenic properties, it was not significantly increased by adding periosteum-derived osteoblasts to it. The osteogenic properties of small intestinal submucosa are promising, and its role as a scaffold should be investigated further.
Collapse
|
23
|
Gassling V, Douglas T, Warnke PH, Açil Y, Wiltfang J, Becker ST. Platelet-rich fibrin membranes as scaffolds for periosteal tissue engineering. Clin Oral Implants Res 2010; 21:543-9. [PMID: 20443805 DOI: 10.1111/j.1600-0501.2009.01900.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Platelet-rich fibrin (PRF)-based membranes have been used for covering alveolar ridge augmentation side in several in vivo studies. Few in vitro studies on PRF and no studies using human periosteal cells for tissue engineering have been published. The aim is a comparison of PRF with the commonly used collagen membrane Bio-Gide as scaffolds for periosteal tissue engineering. MATERIAL AND METHODS Human periosteal cells were seeded on membrane pieces (collagen [Bio-Gide] and PRF) at a density of 10(4) cells/well. Cell vitality was assessed by fluorescein diacetate (FDA) and propidium iodide (PI) staining, biocompatibility with the lactate dehydrogenase (LDH) test and proliferation level with the MTT, WST and BrdU tests and scanning electron microscopy (SEM). RESULTS PRF membranes showed slightly inferior biocompatibility, as shown by the LDH test. The metabolic activity measured by the MTT and WST tests was higher for PRF than for collagen (BioGide). The proliferation level as measured by the BrdU test (quantitative) and SEM examinations (qualitative) revealed higher values for PRF. CONCLUSION PRF appears to be superior to collagen (Bio-Gide) as a scaffold for human periosteal cell proliferation. PRF membranes are suitable for in vitro cultivation of periosteal cells for bone tissue engineering.
Collapse
Affiliation(s)
- Volker Gassling
- Department of Oral and Maxillofacial Surgery, University of Schleswig-Holstein, Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
|
26
|
Akman AC, Seda Tığlı R, Gümüşderelioğlu M, Nohutcu RM. Bone Morphogenetic Protein-6-loaded Chitosan Scaffolds Enhance the Osteoblastic Characteristics of MC3T3-E1 Cells. Artif Organs 2010; 34:65-74. [DOI: 10.1111/j.1525-1594.2009.00798.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Thomas LV, Arun U, Remya S, Nair PD. A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20 Suppl 1:S259-69. [PMID: 18925362 DOI: 10.1007/s10856-008-3599-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 09/23/2008] [Indexed: 05/22/2023]
Abstract
Unique elastomeric and biocompatible scaffolds were produced by the polyesterification of poly(vinyl alcohol) (PVA) and citric acid via a simple polycondensation reaction. The physicochemical characterization of the materials was done by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), mechanical and surface property analyses. The materials are hydrophilic and have viscoelastic nature. Biodegradable, non-cytotoxic materials that can be tailored into 3D scaffolds could be prepared in an inexpensive manner. This polyester has potential implications in vascular tissue engineering application as a biodegradable elastomeric scaffold.
Collapse
Affiliation(s)
- Lynda V Thomas
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, Kerala, India
| | | | | | | |
Collapse
|
28
|
Bone engineering-vitalisation of alloplastic and allogenic bone grafts by human osteoblast-like cells. Br J Oral Maxillofac Surg 2009; 48:369-73. [PMID: 19596502 DOI: 10.1016/j.bjoms.2009.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2009] [Indexed: 11/20/2022]
Abstract
Human osteoblasts on non-sintered hydroxyapatite and demineralised bone matrix (DBX) were analysed in vitro to find out whether they would be suitable for reconstruction of bones in oral surgery. Human osteoblasts were isolated from the jaw during routine dental operations and seeded onto the two biomaterials. Cells were characterised by assay of alkaline phosphatase, detection of type 1 collagen, and production of osteocalcin. After 21 days of cultivation, the cell/biomaterial constructs were examined by scanning electron microscopy, thin sections, and propidium iodide/fluorescein diacetate staining. The osteoblasts formed a vital multiple cell layer on DBX within 3 weeks of cultivation. On hydroxyapatite, the cells showed no tendency to proliferate or migrate onto the synthetic biomaterial, or to form well-spread and viable cell constructs. These findings suggest that surface morphology or the presence of osteoinductive factors may have an important role in the adhesion and proliferation of osteoblasts. Human DBX can be colonised by human osteoblast-like cells in vitro, indicating the potential of allogeneic carriers for future procedures in bone engineering.
Collapse
|
29
|
Pelaez D, Charles Huang CY, Cheung HS. Cyclic Compression Maintains Viability and Induces Chondrogenesis of Human Mesenchymal Stem Cells in Fibrin Gel Scaffolds. Stem Cells Dev 2009; 18:93-102. [DOI: 10.1089/scd.2008.0030] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daniel Pelaez
- Research Service and Geriatrics Research, Education, and Clinical Center, Veterans Affairs Medical Center, Miami, Florida
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| | - Chun-Yuh Charles Huang
- Research Service and Geriatrics Research, Education, and Clinical Center, Veterans Affairs Medical Center, Miami, Florida
- Department of Pediatric Dentistry, Nova Southeastern University, Fort Lauderdale, Florida
| | - Herman S. Cheung
- Research Service and Geriatrics Research, Education, and Clinical Center, Veterans Affairs Medical Center, Miami, Florida
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida
| |
Collapse
|
30
|
Vitalisation of tubular coral scaffolds with cell sheets for regeneration of long bones: a preliminary study in nude mice. Br J Oral Maxillofac Surg 2008; 47:116-22. [PMID: 18992973 DOI: 10.1016/j.bjoms.2008.07.199] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2008] [Indexed: 12/26/2022]
Abstract
In this study, cell sheets comprising multilayered living bone marrow stromal cells and extracellular matrix were assembled with tubular coral scaffolds for long bone regeneration. Cell sheet with visible mineralized nodules was harvested and wrapped against tubular coral scaffolds with 5mm diameter and 1.5mm wall thickness. New bone formation was investigated by CT scan and histological observation 8 and 12 weeks after implantation of cell sheet/scaffold. The results showed that cortical bone formed within the constructs for both groups. New bone composed 25.75% of the graft in 8 weeks group, compared to that of 40.01% in 12 weeks group. Histological examination showed that new bone formation was in the manner of endochondral osteogenesis, with woven bone matrix subsequently maturing into fully mineralized compact bone. These findings demonstrated that osteogenic cell sheet could vitalize tubulate coral scaffolds to regenerate bone graft with similar shape and structure to native bone.
Collapse
|
31
|
Doraiswamy A, Narayan RJ, Harris ML, Qadri SB, Modi R, Chrisey DB. Laser microfabrication of hydroxyapatite-osteoblast-like cell composites. J Biomed Mater Res A 2007; 80:635-43. [PMID: 17051538 DOI: 10.1002/jbm.a.30969] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have developed a novel approach for layer-by-layer growth of tissue-engineered materials using a direct writing process known as matrix assisted pulsed laser evaporation direct write (MAPLE DW). Unlike conventional cell-seeding methods, this technique provides the possibility for cell-material integration prior to artificial tissue fabrication. This process also provides greater flexibility in selection and processing of scaffold materials. In addition, MAPLE DW offers rapid computer-controlled deposition of mesoscopic voxels at high spatial resolutions. We have examined MAPLE DW processing of zirconia and hydroxyapatite scaffold materials that can provide a medical device with nearly inert and bioactive implant-tissue interfaces, respectively. We have also demonstrated codeposition of hydroxyapatite, MG 63 osteoblast-like cells, and extracellular matrix using MAPLE DW. We have shown that osteoblast-like cells remain viable and retain the capacity for proliferation when codeposited with bioceramic scaffold materials. Our results on MG 63-hydroxyapatite composites can be extended to develop other integrated cell-scaffold structures for medical and dental applications.
Collapse
Affiliation(s)
- A Doraiswamy
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
32
|
The Biocompatibility of Biodegradable Glycine Containing Polyphosphazenes: A Comparative study in Bone. J Inorg Organomet Polym Mater 2007. [DOI: 10.1007/s10904-006-9096-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Hou R, Chen F, Yang Y, Cheng X, Gao Z, Yang HO, Wu W, Mao T. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. J Biomed Mater Res A 2007; 80:85-93. [PMID: 16960828 DOI: 10.1002/jbm.a.30840] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue engineered bone has become a bone substitute for the treatment of bone defects in animal research. This study investigated the osteogenesis capacity of coral-MSCs-rhBMP-2 composite with the auto-bone-graft as control. Coral-MSCs-rhBMP-2 composite were fabricated by coral (as main scaffold), rhBMP-2 (as growth factor), and MSCs (cultured from iliac marrow as seed cells). Critical-sized defects (d = 15 mm) were made on forty rabbits crania and treated by different composite scaffolds: iliac autograft (n = 8), coral (n = 8), rhBMP-2/coral (n = 8), and MSCs/rhBMP-2/coral (n = 8). The defects were evaluated by gross observation, radiographic examination, histological examination, and histological fluorescence examinations after 8 and 16 weeks. The results showed that repair of bone defect was the least in coral group, and significant ingrowth of new bone formation and incorporation could be seen with 77.45% +/- 0.52% in radiopacity in MSCs/rhBMP-2/coral group, which was similar to that in iliac autograft group (84.61% +/- 0.56% in radiopacity). New bone formation in MSCs/rhBMP-2/coral group was more than that in rhBMP-2/coral group. And osteogenesis rate in MSCs/rhBMP-2/coral group (10.23 +/- 1.45 microm) was much faster than that in rhBMP-2/coral group (5.85 +/- 2.19 microm) according to histological fluorescence examination. Newly formed bone partly came from induced MSCs in composite scaffold according to bromodeoxyuridine immunohistochemical examination. These data implicated that MSCs could produce synergic effect with coral-rhBMP-2, and the tissue engineered bone of coral-MSCs-rhBMP-2 is comparable to auto-bone-graft for the repair of critical-sized bone defect.
Collapse
Affiliation(s)
- Rui Hou
- Department of Oral and Maxillofacial Surgery, Stomatological College, Fourth Military Medical University, ChangLe West Road, 145 Xi'an, Shaanxi 710032, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsigkou O, Hench LL, Boccaccini AR, Polak JM, Stevens MM. Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass® composite films in the absence of osteogenic supplements. J Biomed Mater Res A 2006; 80:837-51. [PMID: 17072851 DOI: 10.1002/jbm.a.30910] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study investigates the cellular response of fetal osteoblasts to bioactive resorbable composite films consisting of a poly-D,L-lactide (PDLLA) matrix and bioactive glass 45S5 Bioglass (BG) particles at three different concentrations (0% (PDLLA), 5% (P/BG5), and 40% (P/BG40)). Using scanning electron microscopy (SEM) we observed that cells were less spread and elongated on PDLLA and P/BG5, whereas cells on P/BG40 were elongated but with multiple protrusions spreading over the BG particles. Vinculin immunostaining revealed similar distribution of focal adhesion contacts on all cells independent of substratum, indicating that all materials permitted cell adhesion. However, when differentiation and maturation of fetal osteoblasts was examined, incorporation of 45S5 BG within the PDLLA matrix was found to significantly (p < 0.05) enhance alkaline phosphatase enzymatic activity and osteocalcin protein synthesis compared to tissue culture polystyrene controls and PDLLA alone. Alizarin red staining indicated extracellular matrix mineralization on both P/BG5 and P/BG40, with significantly more bone nodules formed than on PDLLA. Real time RT-PCR revealed that expression of bone sialoprotein was also affected by the BG containing films compared to controls, whereas expression of Collagen Type I was not influenced. By performing these investigations in the absence of osteogenic factors it appears that the incorporation of BG stimulates osteoblast differentiation and mineralization of the extracellular matrix, demonstrating the osteoinductive capacity of the composite.
Collapse
Affiliation(s)
- O Tsigkou
- Tissue Engineering and Regenerative Medicine Centre, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Sumerel J, Lewis J, Doraiswamy A, Deravi LF, Sewell SL, Gerdon AE, Wright DW, Narayan RJ. Piezoelectric ink jet processing of materials for medicaland biological applications. Biotechnol J 2006; 1:976-87. [PMID: 16941446 DOI: 10.1002/biot.200600123] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many advanced medical and biological devices require microscale patterning of cells, proteins, and other biological materials. This article describes the use of piezoelectric ink jet processing in the fabrication of biosensors, cell-based assays, and other microscale medical devices. A microelectromechanical system-based piezoelectric transducer was used to develop uniform fluid flow through nozzles and to prepare well-defined microscale patterns of proteins, monofunctional acrylate ester, sinapinic acid, deoxyribonucleic acid (DNA), and DNA scaffolds on relevant substrates. Our results demonstrate that piezoelectric ink jet deposition is a powerful non-contact, non-destructive additive process for developing biosensors, cell culture systems, and other devices for medical and biological applications.
Collapse
|
36
|
Mesa JM, Zaporojan V, Weinand C, Johnson TS, Bonassar L, Randolph MA, Yaremchuk MJ, Butler PE. Tissue Engineering Cartilage with Aged Articular Chondrocytes In Vivo. Plast Reconstr Surg 2006; 118:41-9; discussion 50-3. [PMID: 16816672 DOI: 10.1097/01.prs.0000231929.37736.28] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tissue engineering has the potential to repair cartilage structures in middle-aged and elderly patients using their own "aged" cartilage tissue as a source of reparative chondrocytes. However, most studies on tissue-engineered cartilage have used chondrocytes from postfetal or very young donors. The authors hypothesized that articular chondrocytes isolated from old animals could produce neocartilage in vivo as well as articular chondrocytes from young donors. METHODS Articular chondrocytes from 8-year-old sheep (old donors) and 3- to 6-month-old sheep (young donors) were isolated. Cells were mixed in fibrin gel polymer at 40 x 10 cells/ml until polymerization. Cell-polymer constructs were implanted into the subcutaneous tissue of nude mice and harvested at 7 and 12 weeks. RESULTS Samples and native articular cartilage controls were examined histologically and assessed biochemically for total DNA, glycosaminoglycan, and hydroxyproline content. Histological analysis showed that samples made with chondrocytes from old donors accumulated basophilic extracellular matrix and sulfated glycosaminoglycans around the cells in a manner similar to that seen in samples made with chondrocytes from young donors at 7 and 12 weeks. Biochemical analysis revealed that DNA, glycosaminoglycan, and hydroxyproline content increased in chondrocytes from old donors over time in a pattern similar to that seen with chondrocytes from young donors. CONCLUSIONS This study demonstrates that chondrocytes from old donors can be rejuvenated and can produce neocartilage just as chondrocytes from young donors do when encapsulated in fibrin gel polymer in vivo. This study suggests that middle-aged and elderly patients could benefit from cartilage tissue-engineering repair using their own "aged" articular cartilage as a source of reparative chondrocytes.
Collapse
Affiliation(s)
- John M Mesa
- Plastic Surgery Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Mass. 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Turhani D, Watzinger E, Weissenböck M, Yerit K, Cvikl B, Thurnher D, Ewers R. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study. Clin Oral Implants Res 2005; 16:417-24. [PMID: 16117765 DOI: 10.1111/j.1600-0501.2005.01144.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone tissue engineering is a promising approach for treatment of defective and lost bone in the maxillofacial region. Creating functional tissue for load bearing bone reconstruction using biocompatible and biodegradable scaffolds seeded with living cells is of crucial importance. The aim of our study was to compare the effects of poly-lactic-co-glycolic acid (PLGA) and hydroxyapatite (HA) ceramic granulae on growth, differentiation, mineralization and gene expression of mandibular mesenchymal cambial layer precursor cells (MCLPCs) cultured onto tissue engineered three-dimensional (3-D) composites in vitro. These 3-D composites were cultivated in a rotating cultivation system under osteogenic differentiation conditions for a maximum period of 21 days. After 6 and 21 days, histological examination was performed; scanning electron microscopy (SEM), alkaline phosphatase (ALP) activity and levels of DNA were investigated. Expression of bone-specific genes osteocalcin, osteonectin, osteopontin, ALP, core binding factor alpha 1 and collagen type I were investigated by using a reverse transcription-polymerase chain reaction (RT-PCR) method. After 6 and 21 days of incubation an initiation of mineralization and the presence of newly formed bone at the surface of the composites were shown after evaluation of ALP activity, DNA content, SEM and histological staining. Expression of bone-specific genes confirmed the bone-like character of these composites and different effects of PLGA or HA granulae on the osteogenic differentiation of human MCLPCs in vitro. The results of this study support the concept that substrate signals significantly influence MCLPCs growth, differentiation, mineralization and gene expression in vitro, and that the use of these cells in the manufacturing of 3-D cell/HA composites is a promising approach for load bearing bone reconstruction in the maxillofacial region in vivo.
Collapse
Affiliation(s)
- Dritan Turhani
- Hospital of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
38
|
Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 2005; 26:6415-22. [PMID: 16011847 DOI: 10.1016/j.biomaterials.2005.04.061] [Citation(s) in RCA: 425] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/05/2005] [Indexed: 12/11/2022]
Abstract
While tissue engineering has long been thought to possess enormous potential, conventional applications using biodegradable scaffolds have limited the field's progress, demonstrating a need for new methods. We have previously developed cell sheet engineering using temperature-responsive culture dishes in order to avoid traditional tissue engineering approaches, and their related shortcomings. Using temperature-responsive dishes, cultured cells can be harvested as intact sheets by simple temperature changes, thereby avoiding the use of proteolytic enzymes. Cell sheet engineering therefore allows for tissue regeneration by either direct transplantation of cell sheets to host tissues or the creation of three-dimensional structures via the layering of individual cell sheets. By avoiding the use of any additional materials such as carrier substrates or scaffolds, the complications associated with traditional tissue engineering approaches such as host inflammatory responses to implanted polymer materials, can be avoided. Cell sheet engineering thus presents several significant advantages and can overcome many of the problems that have previously restricted tissue engineering with biodegradable scaffolds.
Collapse
Affiliation(s)
- Joseph Yang
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Turhani D, Watzinger E, Weissenböck M, Yerit K, Cvikl B, Ewers R, Thurnher D. Expression pattern of the chromosome 21 transcription factor Ets2 in cell-seeded three-dimensional bone constructs. J Biomed Mater Res A 2005; 73:445-55. [PMID: 15900611 DOI: 10.1002/jbm.a.30292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ability to generate new bone for reconstructive surgery use is a major clinical need. Tissue engineering with osteoprogenitor cells isolated from the patient's periosteum and seeded into bioresorbable scaffolds offers a promising approach to the generation of skeletal tissue. To our knowledge, there is no description about the expression of Ets2 in tissue engineered "bone neotissue." The aim of our study was to manufacture cell-seeded three-dimensional bone constructs with human periosteal cells on poly (lactic-co-glycolic acid) polymer fleeces to describe the expression pattern of Ets2 and its target genes osteocalcin and osteopontin; expression analysis of type I collagen, core-binding factor-1, alkaline phosphatase, and osteonectin; the ability of matrix mineralization and ALP enzymatic activity showed the osteogenic character of the constructs. A significant correlation between the expression of Ets2 and osteopontin mRNA (r = -0.70; p < 0.05) could be shown. A 1.35-fold increase of Ets2 expression from days 1 to 9 was detected, followed by a slight decrease from days 11 to 15. Until the end of the culture period, the expression of Ets2 reached a comparable high level as detected on day 9. In contrast, the expression level of osteopontin mRNA reached a maximum at day 7, followed by a progressive 3.04-fold decrease until day 21. This study shows for the first time that Ets2 gene and its transcriptional target genes are expressed in tissue-engineered bone constructs. These findings have the potential to provide much-needed information about the role and function of Ets2 in human osteogenesis processes and creation of "bone neotissue."
Collapse
Affiliation(s)
- Dritan Turhani
- Department of Cranio-Maxillofacial and Oral Surgery, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
In 1742, H.L. Duhamel published a report in which the osteogenic function of periosteum was described. In 1932 H.B. Fell was the first to successfully culture periosteum; Fell concluded that this tissue might have the capability to form mineralized tissue in vitro. In the 1990s the research group of A.L. Caplan pioneered work exploring the osteogenic potential of periosteal cells in the field of bone engineering. On the basis of these studies a number of research groups have developed hard tissue generation concepts that aim to repeat the clinical success of bone autografts by culturing cells from periosteum and seeding a sufficient quantity of those cells into scaffolds made of biomaterials of natural and synthetic origin. The highly porous matrices support the induction of bone regeneration by creating and maintaining a space that facilitates progenitor cell migration, proliferation, and differentiation as well as graft revascularization. In this way, a host tissue-scaffold cell interphase might be created that allows reproduction of the intrinsic properties of autogenous bone, including the ability to be incorporated into the surrounding host bone and to continue normal bone-remodeling processes. This review discusses the history and state of the art of bone tissue engineering from a periosteum and periosteal cell source point of view and attempts to indicate future research directions.
Collapse
Affiliation(s)
- Dietmar W Hutmacher
- Department of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore.
| | | |
Collapse
|
42
|
Abstract
Tissue engineering is a field of research with interdisciplinary cooperation between clinicians, cell biologists, and materials research scientists. Many medical specialties apply tissue engineering techniques for the development of artificial replacement tissue. Stages of development extend from basic research and preclinical studies to clinical application. Despite numerous established tissue replacement methods in otorhinolaryngology, head and neck surgery, tissue engineering techniques opens up new ways for cell and tissue repair in this medical field. Autologous cartilage still remains the gold standard in plastic reconstructive surgery of the nose and external ear. The limited amount of patient cartilage obtainable for reconstructive head and neck surgery have rendered cartilage one of the most important targets for tissue engineering in head and neck surgery. Although successful in vitro generation of bioartificial cartilage is possible today, these transplants are affected by resorption after implantation into the patient. Replacement of bone in the facial or cranial region may be necessary after tumor resections, traumas, inflammations or in cases of malformations. Tissue engineering of bone could combine the advantages of autologous bone grafts with a minimal requirement for second interventions. Three different approaches are currently available for treating bone defects with the aid of tissue engineering: (1) matrix-based therapy, (2) factor-based therapy, and (3) cell-based therapy. All three treatment strategies can be used either alone or in combination for reconstruction or regeneration of bone. The use of respiratory epithelium generated in vitro is mainly indicated in reconstructive surgery of the trachea and larynx. Bioartificial respiratory epithelium could be used for functionalizing tracheal prostheses as well as direct epithelial coverage for scar prophylaxis after laser surgery of shorter stenoses. Before clinical application animal experiments have to prove feasability and safety of the different experimental protocols. All diseases accompanied by permanently reduced salivation are possible treatment targets for tissue engineering. Radiogenic xerostomia after radiotherapy of malignant head and neck tumors is of particular importance here due to the high number of affected patients. The number of new diseases is estimated to be over 500,000 cases worldwide. Causal treatment options for radiation-induced salivary gland damage are not yet available; thus, various study groups are currently investigating whether cell therapy concepts can be developed with tissue engineering methods. Tissue engineering opens up new ways to generate vital and functional transplants. Various basic problems have still to be solved before clinically applying in vitro fabricated tissue. Only a fraction of all somatic organ-specific cell types can be grown in sufficient amounts in vitro. The inadequate in vitro oxygen and nutrition supply is another limiting factor for the fabrication of complex tissues or organ systems. Tissue survival is doubtful after implantation, if its supply is not ensured by a capillary network.
Collapse
Affiliation(s)
- M Bücheler
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Bonn, Bonn, Germany.
| | | |
Collapse
|
43
|
Ashammakhi N, Suuronen R, Tiainen J, Törmälä P, Waris T. Spotlight on naturally absorbable osteofixation devices. J Craniofac Surg 2003; 14:247-59. [PMID: 12621298 DOI: 10.1097/00001665-200303000-00021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The practice of using implants is growing day by day, and more foreign materials are being inserted for various indications. The field of implantology thus deserves intensive research and careful evaluation of results. Solutions to overcome current problems and risks are necessary. It has taken a long time to arrive at where we are now. Bioabsorbable devices were explored in the 1960s for surgical bone fixation. Failures were followed by changes in ways of thinking and innovations. Improvements in the strength properties and biocompatibility were achieved. Bioabsorbable polymeric materials such as high-molecular-weight polymers were used and also reinforced with other material or, more recently, by self-reinforcement to produce small yet strong devices. New generations of implants include those that contain bioactive substances such as antibiotics and growth factors. Developments in bioabsorbable materials continue to accommodate the new way of thinking brought about by the emergence of the field of tissue engineering. Surgeons, conversely, are also inventing new surgical techniques and methods to exploit the plastic and bioabsorbability properties of these materials for the better future of our patients. Such a multidisciplinary approach that involves surgeons and materials scientists should help to find solutions to the current limitations of these devices.
Collapse
|
44
|
Sodian R, Lemke T, Fritsche C, Hoerstrup SP, Fu P, Potapov EV, Hausmann H, Hetzer R. Tissue-engineering bioreactors: a new combined cell-seeding and perfusion system for vascular tissue engineering. TISSUE ENGINEERING 2002; 8:863-70. [PMID: 12459065 DOI: 10.1089/10763270260424222] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One approach to the tissue engineering of vascular structures is to develop in vitro conditions in order ultimately to fabricate functional vascular tissues before final implantation. In our experiment, we aimed to develop a new combined cell seeding and perfusion system that provides sterile conditions during cell seeding and biomechanical stimuli in order to fabricate autologous human vascular tissue in vitro. The cell seeding and perfusion system is made of Plexiglas and is completely transparent (Berlin Heart, Berlin, Germany; University Hospital Benjamin Franklin, Berlin, Germany). The whole system consists of a cell seeding chamber that can be incorporated into the perfusion system and an air-driven respirator pump connected to the bioreactor. The cell culture medium continuously circulates through a closed-loop system. We thus developed a cell seeding device for static and dynamic seeding of vascular cells onto a polymeric vascular scaffold and a closed-loop perfused bioreactor for long-term vascular conditioning. The cell seeding chamber can be easily connected to the bioreactor, which combines continuous, pulsatile perfusion and mechanical stimulation to the tissue-engineered conduit. Adjusting the stroke volume, the stroke rate, and the inspiration/expiration time of the ventilator allows various pulsatile flows and different levels of pressure. The whole system is a highly isolated cell culture setting, which provides a high level of sterility and a gas supply and fits into a standard humidified incubator. The device can be sterilized by ethylene oxide and assembled with a standard screwdriver. Our newly developed combination of a cell seeding and conditioning device provides sterile conditions and biodynamic stimuli for controlled tissue development and in vitro conditioning of an autologous tissue-engineered vessel.
Collapse
Affiliation(s)
- Ralf Sodian
- Department of Thoracic and Cardiovascular Surgery, Laboratory for Tissue Engineering, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Puelacher W. Engineering of Cartilaginous Tissues. Int J Artif Organs 2002. [DOI: 10.1177/039139880202500736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- W.C. Puelacher
- Laboratory for Tissue Engineering, Clin. Department of Oral and Maxillofacial Surgery, Leopold Franzens University, Innsbruck - Austria
| |
Collapse
|
46
|
Abstract
BACKGROUND/PURPOSE Reconstructive surgery often is limited by the availability of normal tissue. Tissue engineering provides promise in the development of "artificial tissues." The purpose of this study was to test the efficacy and viability of the use of a biologic surgical adhesive TISSEEL in combining engineered bronchial epithelium with engineered cartilage. METHODS Using isolated human cells, bronchial epithelium and mature cartilage were engineered. Using a contact adhesive technique, TISSEEL was used to biologically fuse the bronchial epithelium and the cartilage. The fused composite then was supported for 5 days in tissue culture. The mechanical properties of the adhesion were tested, and the construct was studied morphologically to assess viability of the cartilage and the bronchial epithelium. The bronchial epithelium showed a normal cell size (337.2 microm2) and epithelial thickness (46.47 microm). RESULTS TISSEEL was effective in fusing the epithelium to the cartilage. The construct remained viable for 5 days in culture. There was no difference in the dimensions of the bronchial epithelium or the epithelial cells. Mechanical adhesion was achieved. CONCLUSIONS Biologically compatible fibrin glue is an effective surgical adhesive that allows the tissue types to be fused while remaining viable and morphologically accurate. Surgical adhesives may show promise in the development of composite tissue development in the field of bioengineering.
Collapse
Affiliation(s)
- Edward J Doolin
- Division of Pediatric Surgery Department, Robert Wood Johnson Medical School at Camden, Camden, NJ, USA
| | | | | | | |
Collapse
|
47
|
Deschamps AA, Claase MB, Sleijster WJ, de Bruijn JD, Grijpma DW, Feijen J. Design of segmented poly(ether ester) materials and structures for the tissue engineering of bone. J Control Release 2002; 78:175-86. [PMID: 11772459 DOI: 10.1016/s0168-3659(01)00497-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, PEOT/PBT segmented copolymers of different compositions have been evaluated as possible scaffold materials for the tissue engineering of bone. By changing the composition of PEOT/PBT copolymers, very different mechanical and swelling behaviors are observed. Tensile strengths vary from 8 to 23 MPa and elongations at break from 500 to 1300%. Water-uptake ranges from 4 up to as high as 210%. The in vitro degradation of PEOT/PBT copolymers occurs both by hydrolysis and oxidation. In both cases degradation is more rapid for copolymers with high PEO content. PEOT/PBT scaffolds with varying porosities and pore sizes have been prepared by molding and freeze-drying techniques in combination with particulate-leaching. The most hydrophilic PEOT/PBT copolymers did not sustain goat bone marrow cell adhesion and growth. However, surface modification by gas plasma treatment showed a very much improved polymer-cell interaction for all PEOT/PBT copolymer compositions. Their mechanical properties, degradability and ability to sustain bone marrow cell growth make PEOT/PBT copolymers excellent materials for bone tissue engineering.
Collapse
Affiliation(s)
- Audrey A Deschamps
- Department of Polymer Chemistry and Biomaterials, Faculty of Chemical Technology, Institute for Biomedical Technology (BMTI), University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
This report draws upon data from a variety of sources to estimate the size, scope, and growth rate of the contemporary tissue engineering enterprise. At the beginning of 2001, tissue engineering research and development was being pursued by 3,300 scientists and support staff in more than 70 startup companies or business units with a combined annual expenditure of over $600 million. Spending by tissue engineering firms has been growing at a compound annual rate of 16%, and the aggregate investment since 1990 now exceeds $3.5 billion. At the beginning of 2001, the net capital value of the 16 publicly traded tissue engineering startups had reached $2.6 billion. Firms focusing on structural applications (skin, cartilage, bone, cardiac prosthesis, and the like) comprise the fastest growing segment. In contrast, efforts in biohybrid organs and other metabolic applications have contracted over the past few years. The number of companies involved in stem cells and regenerative medicine is rapidly increasing, and this area represents the most likely nidus of future growth for tissue engineering. A notable recent trend has been the emergence of a strong commercial activity in tissue engineering outside the United States, with at least 16 European or Australian companies (22% of total) now active.
Collapse
Affiliation(s)
- M J Lysaght
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island 02818, USA.
| | | |
Collapse
|
49
|
|
50
|
Estrada LE, Dodge GR, Richardson DW, Farole A, Jimenez SA. Characterization of a biomaterial with cartilage-like properties expressing type X collagen generated in vitro using neonatal porcine articular and growth plate chondrocytes. Osteoarthritis Cartilage 2001; 9:169-77. [PMID: 11237664 DOI: 10.1053/joca.2000.0373] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The availability of cartilage with or without the potential to ossify and suitable for surgical restoration and resurfacing of joints is an important clinical problem in arthritis-related pathology, trauma and reconstructive surgery. Here, we designed experiments to generate a biomaterial with cartilage-like properties by culturing neonatal porcine articular and growth plate chondrocytes on a hydrogel substrate and to examine the biochemical and histological characteristics of the resulting tissue. DESIGN Neonatal porcine epiphyseal and growth plate chondrocytes were cultured on poly(2-hydroxyethyl methacrylate) (polyHEMA)-coated dishes to prevent their adherence to plastic. We previously described that this procedure allows the maintenance of the chondrocyte-specific phenotype for > or = 8 months. Chondrocytes were isolated by successive enzymatic digestions and cultured at high density (>2.0 x 10(7) cells/ml) in DMEM with 10% FBS, 50 microg/ml ascorbic acid, glutamine, vitamins, and antibiotics for up to 10 weeks on 60 mm plastic culture dishes coated with polyHEMA. The tissues produced during culture were studied histologically and biochemically and were examined for cellular proliferation employing(3)H-thymidine incorporation and for their collagen production employing biosynthetic labeling with(14)C-proline and Western blot with specific antibodies. The expression of relevant collagen genes was examined employing RT-PCR. RESULTS Within 24 h of culture, isolated chondrocytes organized into well-formed clusters and in 2 weeks formed structures with gross appearance and consistency similar to those of natural cartilage. The wet weight of the tissue formed in vitro increased six-fold during the 10-week period of study. Cell proliferation measured by the incorporation of(3)H-thymidine increased during the first 3 weeks and reached a plateau in subsequent weeks. Histological examination showed that the cultures contained rounded chondrocytes embedded in an abundant cartilaginous extracellular matrix. The cartilage formed contained large amounts of collagen and sulfated proteoglycans as examined by staining with Masson's Trichrome and Alcian blue, respectively. Deposition of calcium in the deeper layers of the tissue was demonstrated with the von Kossa stain. Western analyses with specific antibodies showed that type II collagen was present from the first week and progressively increased in the cultures, whereas type X collagen was first detected at 4 weeks and increased with length of culture. When chondrocytes isolated from the growth plate were included, small amounts of type I collagen were detected in the medium of cultured biomaterial as expected. Type III collagen was not detected by Western blot over the 10-week period. High levels of type II and type X collagen gene expression were demonstrated by RT-PCR. CONCLUSION These studies demonstrate the production in vitro of cartilage-like tissue with similar morphological, histochemical and biochemical characteristics to those of natural growth plate cartilage. The cartilage generated in vitro has the potential to be used in reconstructive surgery and in joint resurfacing and restoration of skeletal defects.
Collapse
Affiliation(s)
- L E Estrada
- Department of Medicine, Division of Rheumatology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|