1
|
Ghorbanizadeh S, Abbasnejad M, Zamyad M, Esmaeili-Mahani S, Kheirandish R, Mansoori M. Impact of temporomandibular disorder on food preference behavior in adult male rats. Arch Oral Biol 2025; 169:106100. [PMID: 39395316 DOI: 10.1016/j.archoralbio.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/14/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Temporomandibular disorders (TMD) are a group of conditions affecting the jaw, surrounding muscles and associated structures. Researches indicate that TMD has implications for changes in nutritional behavior. This study investigates the impact of TMD on the food preference behavior of rats, examining various food models with differing caloric content, taste, and texture. DESIGN Forty-two male Wistar rats (200-250 g) were divided into six groups, comprising three control and three pain or TMD groups. Induction of TMD by injection of complete Freund adjuvant (CFA) into the left temporomandibular joint (TMJ) of rat serves as a model for studying TMD. Twenty-four hours post-TMD induction, the preference of animals to foods with differences in calories, taste and texture was evaluated with the help of an automatic preference measuring device. RESULTS In terms of caloric preferences, the pain group exhibited a distinct shift towards high-calorie food. Taste preferences were marked by an increased preference for sweet food in the pain group. Texture preferences were altered, with the pain group displaying a preference for low-texture food. CONCLUSION TMD in rats leads to increased preferences for high-calorie and sweet foods, as well as altered preferences for food textures. These findings highlight the influence of TMJ pain on food preference behavior in rats.
Collapse
Affiliation(s)
- Saeid Ghorbanizadeh
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahnaz Zamyad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran; Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Kheirandish
- Department of Pathology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mojdeh Mansoori
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Denmark
| |
Collapse
|
2
|
D'Aquila PS. Dopamine, activation of ingestion and evaluation of response efficacy: a focus on the within-session time-course of licking burst number. Psychopharmacology (Berl) 2024; 241:1111-1124. [PMID: 38702473 PMCID: PMC11106101 DOI: 10.1007/s00213-024-06600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
RATIONALE Evidence on the effect of dopamine D1-like and D2-like receptor antagonists on licking microstructure and the forced swimming response led us to suggest that (i) dopamine on D1-like receptors plays a role in activating reward-directed responses and (ii) the level of response activation is reboosted based on a process of evaluation of response efficacy requiring dopamine on D2-like receptors. A main piece of evidence in support of this hypothesis is the observation that the dopamine D2-like receptor antagonist raclopride induces a within-session decrement of burst number occurring after the contact with the reward. The few published studies with a detailed analysis of the time-course of this measure were conducted in our laboratory. OBJECTIVES The aim of this review is to recapitulate and discuss the evidence in support of the analysis of the within-session burst number as a behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and its relevance in the analysis of drug effects on ingestion. CONCLUSIONS The evidence gathered so far suggests that the analysis of the within-session time-course of burst number provides an important behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and might provide decisive evidence in the analysis of the effects of drugs on ingestion. However, further evidence from independent sources is necessary to validate the use and the proposed interpretation of this measure.
Collapse
Affiliation(s)
- Paolo S D'Aquila
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale S. Pietro 43/b, Sassari, 07100, Italy.
| |
Collapse
|
3
|
Li AQ, Li SS, Zhang RX, Zhao XY, Liu ZY, Hu Y, Wang B, Neely GG, Simpson SJ, Wang QP. Nutritional geometry framework of sucrose taste in Drosophila. J Genet Genomics 2023; 50:233-240. [PMID: 36773723 DOI: 10.1016/j.jgg.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Dietary protein (P) and carbohydrate (C) have a major impact on sweet taste sensation. However, it remains unclear whether the balance of P and C influences sweet taste sensitivity. Here, we use the nutritional geometry framework (NGF) to address the interaction of protein and carbohydrates and on sweet taste using Drosophila as a model. Our results reveal that high-protein, low-carbohydrate (HPLC) diets sensitize to sweet taste and low-protein, high-carbohydrate (LPHC) diets desensitize sweet taste in both male and female flies. We further investigate the underlying mechanisms of these two diets' effect on sweet taste using RNA sequencing. When compared to the LPHC diet, the mRNA expression of genes involved in the metabolism of glycine, serine, and threonine is significantly upregulated in the HPLC diet, suggesting these amino acids may mediate sweet taste perception. We further find that sweet sensitization occurs in flies fed with the LPHC diet supplemented with serine and threonine. Our study demonstrates that sucrose taste sensitivity is affected by the balance of dietary protein and carbohydrates possibly through changes in serine and threonine.
Collapse
Affiliation(s)
- An-Qi Li
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Sha-Sha Li
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ruo-Xin Zhang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Ying Liu
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yun Hu
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bei Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
4
|
Kirsch M, Dimitrijevic A, Buchholz MB. "Death drive" scientifically reconsidered: Not a drive but a collection of trauma-induced auto-addictive diseases. Front Psychol 2022; 13:941328. [PMID: 36248574 PMCID: PMC9554588 DOI: 10.3389/fpsyg.2022.941328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last 102 years, a lot of discussion was being held about the psychoanalytic conception of the "death drive," but still with inconclusive results. In this paper, we start with a brief review of Freud's conception, followed by a comprised overview of its subsequent support or criticisms. The core of our argument is a systematic review of current biochemical research about two proposed manifestations of the "death drive," which could hopefully move the discussion to the realm of science. It was already established that drive satisfaction leads to the secretion of beta-endorphins, and research evidence also shows that the same biochemical mechanisms get activated in the case of masochism and the gambling disorder but only if they are preceded by chronic frustration of the essential drives. We conclude that the actual situation is more complex than Freud hypothesized, and that a fundamental revision of the psychoanalytic drive theory is necessary.
Collapse
Affiliation(s)
- Michael Kirsch
- Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | | | | |
Collapse
|
5
|
Kim JM, Lee E. Association between Soft-Drink Intake and Obesity, Depression, and Subjective Health Status of Male and Female Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910415. [PMID: 34639714 PMCID: PMC8507828 DOI: 10.3390/ijerph181910415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/18/2022]
Abstract
This study explores the association between soft-drink intake and obesity, depression, and subjective health status in male and female adults. Soft-drink consumption has become a serious public health issue worldwide. Participants of this study were selected (n = 3086) from the respondents in the Seventh Korea National Health and Nutrition Examination Survey 2016 and divided into the non-soft-drink group (men, 502; women, 1117) and the soft-drink group (men, 684; women, 783). Soft-drink intake data were obtained, using a validated quantitative food frequency questionnaire and the 24 h dietary recall. Total energy intake and fat density were significantly higher, but the nutrient densities of carbohydrate, total dietary fiber, and micronutrients were significantly lower in the soft-drink group than in the non-soft-drink group. In men, soft-drink intake was found to be significantly associated with a lower risk of depression. Conversely, in women, soft-drink intake was found to be significantly associated with the higher risks of depression, obesity, and poor subjective health status. Therefore, less frequent soft-drink intake may prevent obesity and depression in Korean women.
Collapse
Affiliation(s)
- Ji-Myung Kim
- Food and Nutrition Major, Division of Food Science & Culinary Arts, Shinhan University, Uijeongbu-si 11644, Gyeonggi-do, Korea;
| | - EunJung Lee
- Food and Nutrition Major, School of Wellness Industry Convergence, Hankyong National University, Anseong-si 17579, Gyeonggi-do, Korea
- Correspondence: ; Tel.: +82-31-670-5185
| |
Collapse
|
6
|
Nuseir KQ, Alzoubi KH, Alhusban AY, Alazzani M, Bawaane A, Khabour OF. Saccharin and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: role of BDNF and enkephalin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1641-1650. [PMID: 33829293 DOI: 10.1007/s00210-021-02086-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/04/2021] [Indexed: 11/29/2022]
Abstract
This study aim to examine the hypothesis that repetitive painful stimuli during infancy will alter pain sensitivity and impair learning and memory during adulthood and that saccharin will prevent this through its analgesic effect. Naltrexone is used to examine if saccharin effect is mediated via the endogenous opioid system. Pain in rat pups was induced via needle pricks of the paws on day 1 of their birth (P0). All treatments/ manipulations started on day 1 and continued for 2 weeks. The radial arm water maze (RAWM) test was used to assess learning and memory. Pain threshold through foot-withdrawal response to a hot plate was also assessed. At the end of behavioral tests, animals were killed, hippocampus was dissected, and hippocampal levels of β-endorphin, enkephalin, and brain-derived neurotropic factor (BDNF) were assessed using ELISA. Naltrexone and saccharin combined normalized noxious stimulation induced increased pain sensitivity later in life. Furthermore, naltrexone and saccharin together mitigated the deficiency in learning and memory induced by noxious stimulation. Saccharin treatment prevented reduction in hippocampal enkephalin. Additionally, saccharin prevented hippocampal noxious stimulation induced BDNF decrement. Saccharin prevented long-term memory impairment during adulthood induced by repeated neonatal pain via mechanisms that appear to involve BDNF. Interestingly, naltrexone did not antagonize the effects of saccharin, instead naltrexone augmented saccharin effects.
Collapse
Affiliation(s)
- Khawla Q Nuseir
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan. .,School of Pharmacy and Pharmaceutical Sciences, University of California at Irvine, Irvine, CA, 92697, USA.
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmed Y Alhusban
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mohammed Alazzani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Areej Bawaane
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
7
|
Daimon CM, Hentges ST. β-endorphin differentially contributes to food anticipatory activity in male and female mice undergoing activity-based anorexia. Physiol Rep 2021; 9:e14788. [PMID: 33661571 PMCID: PMC7931805 DOI: 10.14814/phy2.14788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Anorexia nervosa (AN) has a lifetime prevalence of up to 4% and a high mortality rate (~5-10%), yet little is known regarding the etiology of this disease. In an attempt to fill the gaps in knowledge, activity-based anorexia (ABA) in rodents has been a widely used model as it mimics several key features of AN including severely restricted food intake and excessive exercise. Using this model, a role for the hypothalamic proopiomelanocortin (POMC) system has been implicated in the development of ABA as Pomc mRNA is elevated in female rats undergoing the ABA paradigm. Since the Pomc gene product α-MSH potently inhibits food intake, it could be that elevated α-MSH might promote ABA. However, the α-MSH receptor antagonist SHU9119 does not protect against the development of ABA. Interestingly, it has also been shown that female mice lacking the mu opioid receptor (MOR), the primary receptor activated by the Pomc-gene-derived opioid β-endorphin, display blunted food anticipatory behavior (FAA), a key feature of ABA. Thus, we hypothesized that the elevation in Pomc mRNA observed during ABA may lead to increased β-endorphin concentrations and MOR activation to promote ABA. Further, given the known sex differences in AN and ABA, we hypothesized that MORs may contribute differentially in male and female mice. Using wild-type and MOR knockout mice of both sexes, a MOR antagonist and careful analysis of food anticipatory behavior and β-endorphin levels, we found 1) increased Pomc mRNA levels in both female and male mice that underwent ABA, 2) increased β-endorphin in female mice that underwent ABA, and 3) blunted FAA in both sexes in response to MOR genetic deletion yet blunted FAA only in males in response to MOR antagonism. The results presented provide support for both hypotheses and suggest that it may be the β-endorphin resulting from increased Pomc transcription that supports the development of some features of ABA.
Collapse
Affiliation(s)
- Caitlin M Daimon
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Shane T Hentges
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
8
|
Uenoyama R, Miyazaki T, Hurst JL, Beynon RJ, Adachi M, Murooka T, Onoda I, Miyazawa Y, Katayama R, Yamashita T, Kaneko S, Nishikawa T, Miyazaki M. The characteristic response of domestic cats to plant iridoids allows them to gain chemical defense against mosquitoes. SCIENCE ADVANCES 2021; 7:7/4/eabd9135. [PMID: 33523929 PMCID: PMC7817105 DOI: 10.1126/sciadv.abd9135] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Domestic cats and other felids rub their faces and heads against catnip (Nepeta cataria) and silver vine (Actinidia polygama) and roll on the ground as a characteristic response. While this response is well known, its biological function and underlying mechanism remain undetermined. Here, we uncover the neurophysiological mechanism and functional outcome of this feline response. We found that the iridoid nepetalactol is the major component of silver vine that elicits this potent response in cats and other felids. Nepetalactol increased plasma β-endorphin levels in cats, while pharmacological inhibition of μ-opioid receptors suppressed the classic rubbing response. Rubbing behavior transfers nepetalactol onto the faces and heads of respondents where it repels the mosquito, Aedes albopictus Thus, self-anointing behavior helps to protect cats against mosquito bites. The characteristic response of cats to nepetalactol via the μ-opioid system provides an important example of chemical pest defense using plant metabolites in nonhuman mammals.
Collapse
Affiliation(s)
- Reiko Uenoyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Tamako Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Masaatsu Adachi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Takanobu Murooka
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Ibuki Onoda
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yu Miyazawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Rieko Katayama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Tetsuro Yamashita
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshio Nishikawa
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Masao Miyazaki
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
9
|
Kadel P, Schneider S, Mata J. Soft drink consumption and mental health problems: Longitudinal relations in children and adolescents. Soc Sci Med 2020; 258:113123. [PMID: 32593956 DOI: 10.1016/j.socscimed.2020.113123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased soft drink consumption has been proposed as both predictor and result of mental health problems. Although possible mechanisms for both directions have been suggested, understanding of the association is limited. Most previous research has been cross-sectional and could not assess directionality. METHOD This study investigated the directionality of the association between soft drink consumption and mental health using longitudinal panel data of 5882 children and adolescents from the nationally representative German KiGGS baseline study (2003-2006) and KiGGS Wave 1 (2009-2012). Soft drink consumption and mental health problems were assessed by standardized questionnaire (baseline) and telephone interview (Wave 1). Four cross-lagged panel models were specified and compared regarding their fit indices. Specific paths were tested for significance. RESULTS Positive cross-sectional associations between soft drink consumption and mental health problems were found at both measurement points (ps < .01), even after controlling for third variables (including age, gender, and socioeconomic status). Only the lagged effect of mental health problems on soft drink consumption reached statistical significance (β = 0.031, p = .020), but not the effect in the opposite direction. The corresponding model also showed the best model fit overall. CONCLUSIONS Mental health problems predicted soft drink consumption over an average of six years, but not vice versa. These findings suggest that consuming soft drinks might be a dysfunctional strategy of coping with mental health problems for children and adolescents and highlight the importance of considering mental health problems in the prevention of soft drink overconsumption and obesity.
Collapse
Affiliation(s)
- Philipp Kadel
- Health Psychology, School of Social Sciences, University of Mannheim, Germany.
| | - Sven Schneider
- Mannheim Institute of Public Health, Social and Preventive Medicine, Heidelberg University, Germany
| | - Jutta Mata
- Health Psychology, School of Social Sciences, University of Mannheim, Germany
| |
Collapse
|
10
|
Smutzer G, Jacob JC, Tran JT, Shah DI, Gambhir S, Devassy RK, Tran EB, Hoang BT, McCune JF. Detection and modulation of capsaicin perception in the human oral cavity. Physiol Behav 2018; 194:120-131. [DOI: 10.1016/j.physbeh.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
|
11
|
Nuseir KQ, Alzoubi KH, Alhusban A, Bawaane A, Al-Azzani M, Khabour OF. Sucrose and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: Role of BDNF and β-endorphin. Physiol Behav 2017; 179:213-219. [PMID: 28663110 DOI: 10.1016/j.physbeh.2017.06.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/13/2017] [Accepted: 06/25/2017] [Indexed: 10/19/2022]
Abstract
Pain in neonates is associated with short and long-term adverse outcomes. Data demonstrated that long-term consequences of untreated pain are linked to the plasticity of the neonate's brain. Sucrose is effective and safe for reducing painful procedures from single events. However, the mechanism of sucrose-induced analgesia is not fully understood. The role of the opioid system in this analgesia using the opioid receptor antagonist Naltrexone was investigated, plus the long-term effects on learning and memory formation during adulthood. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution and/or naltrexone were administered before the pricks. All treatments started on day one of birth and continued for two weeks. At the end of 8weeks, behavioral studies were conducted to test spatial learning and memory using radial arm water maze (RAWM), and pain threshold via foot-withdrawal response to a hot plate. The hippocampus was dissected; levels of brain derived neurotrophic factor (BDNF) and endorphins were assessed using ELISA. Acute repetitive neonatal pain increased pain sensitivity later in life, while naltrexone with sucrose decreased pain sensitivity. Naltrexone and/or sucrose prevented neonatal pain induced impairment of long-term memory, while neonatal pain decreased levels of BDNF in the hippocampus; this decrease was averted by sucrose and naltrexone. Sucrose with naltrexone significantly increased β-endorphin levels in noxiously stimulated rats. In conclusion, naltrexone and sucrose can reverse increased pain sensitivity and impaired long-term memory induced by acute repetitive neonatal pain probably by normalizing BDNF expression and increasing β-endorphin levels.
Collapse
Affiliation(s)
- Khawla Q Nuseir
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Karem H Alzoubi
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Alhusban
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Areej Bawaane
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed Al-Azzani
- Department of clinical pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of medical laboratory sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
12
|
Eker HE, Cok OY, Çetinkaya B, Aribogan A. Oral 30% glucose provides sufficient sedation in newborns during MRI. J Anesth 2016; 31:206-211. [DOI: 10.1007/s00540-016-2296-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/07/2016] [Indexed: 11/27/2022]
|
13
|
Aizawa F, Nishinaka T, Yamashita T, Nakamoto K, Kurihara T, Hirasawa A, Kasuya F, Miyata A, Tokuyama S. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior. J Pharmacol Sci 2016; 132:249-254. [PMID: 27979701 DOI: 10.1016/j.jphs.2016.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 11/17/2022] Open
Abstract
The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.
Collapse
Affiliation(s)
- Fuka Aizawa
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Takashi Nishinaka
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Takuya Yamashita
- Biochemical Toxicology Laboratory, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Akira Hirasawa
- Department of Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyo Kasuya
- Biochemical Toxicology Laboratory, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan.
| |
Collapse
|
14
|
Souza GFP, Solon C, Nascimento LF, De-Lima-Junior JC, Nogueira G, Moura R, Rocha GZ, Fioravante M, Bobbo V, Morari J, Razolli D, Araujo EP, Velloso LA. Defective regulation of POMC precedes hypothalamic inflammation in diet-induced obesity. Sci Rep 2016; 6:29290. [PMID: 27373214 PMCID: PMC4931679 DOI: 10.1038/srep29290] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 06/17/2016] [Indexed: 11/23/2022] Open
Abstract
Obesity is the result of a long-term positive energy balance in which caloric intake overrides energy expenditure. This anabolic state results from the defective activity of hypothalamic neurons involved in the sensing and response to adiposity. However, it is currently unknown what the earliest obesity-linked hypothalamic defect is and how it orchestrates the energy imbalance present in obesity. Using an outbred model of diet-induced obesity we show that defective regulation of hypothalamic POMC is the earliest marker distinguishing obesity-prone from obesity-resistant mice. The early inhibition of hypothalamic POMC was sufficient to transform obesity-resistant in obesity-prone mice. In addition, the post-prandial change in the blood level of β-endorphin, a POMC-derived peptide, correlates with body mass gain in rodents and humans. Taken together, these results suggest that defective regulation of POMC expression, which leads to a change of β-endorphin levels, is the earliest hypothalamic defect leading to obesity.
Collapse
Affiliation(s)
- Gabriela F P Souza
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Lucas F Nascimento
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Jose C De-Lima-Junior
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Guilherme Nogueira
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Rodrigo Moura
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Guilherme Z Rocha
- Department of Internal Medicine, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Milena Fioravante
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Vanessa Bobbo
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil.,Faculty of Nursing, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Joseane Morari
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Daniela Razolli
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Eliana P Araujo
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil.,Faculty of Nursing, University of Campinas, 13084-970 - Campinas-SP, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, University of Campinas, 13084-970 - Campinas-SP, Brazil
| |
Collapse
|
15
|
Sakamoto K, Matsumura S, Okafuji Y, Eguchi A, Lee S, Adachi SI, Fujitani M, Tsuzuki S, Inoue K, Fushiki T. Mechanisms Involved in Guiding the Preference for Fat Emulsion Differ Depending on the Concentration. J Nutr Sci Vitaminol (Tokyo) 2016; 61:247-54. [PMID: 26226962 DOI: 10.3177/jnsv.61.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High-fat foods tend to be palatable and can cause addiction in mice via a reinforcing effect. However, mice showed preference for low fat concentrations that do not elicit a reinforcing effect in a two-bottle choice test with water as the alternative. This behavior indicates the possibility that the mechanism underlying fat palatability may differ depending on the dietary fat content. To address this issue, we examined the influences of the opioid system and olfactory and gustatory transductions on the intake and reinforcing effects of various concentrations of a dietary fat emulsion (Intralipid). We found that the intake and reinforcing effects of fat emulsion were reduced by the administration of an opioid receptor antagonist (naltrexone). Furthermore, the action of naltrexone was only observed at higher concentrations of fat emulsion. The intake and the reinforcing effects of fat emulsion were also reduced by olfactory and glossopharyngeal nerve transections (designated ONX and GLX, respectively). In contrast to naltrexone, the effects of ONX and GLX were mainly observed at lower concentrations of fat emulsion. These results imply that the opioid system seems to have a greater role in determining the palatability of high-fat foods unlike the contribution of olfactory and glossopharyngeal nerves.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alvarado-Bañuelos M, Barrios De Tomasi E, Juárez J. Changes in the incentive value of food after naltrexone treatment depend on a differential preference for a palatable food in male rats. Nutr Neurosci 2016; 20:416-423. [DOI: 10.1080/1028415x.2016.1162389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mariana Alvarado-Bañuelos
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco CP 44130, México
| | - Eliana Barrios De Tomasi
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco CP 44130, México
| | - Jorge Juárez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco CP 44130, México
| |
Collapse
|
17
|
Nuseir KQ, Alzoubi KH, Alabwaini J, Khabour OF, Kassab MI. Sucrose-induced analgesia during early life modulates adulthood learning and memory formation. Physiol Behav 2015; 145:84-90. [PMID: 25846434 DOI: 10.1016/j.physbeh.2015.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/02/2015] [Accepted: 04/02/2015] [Indexed: 12/25/2022]
Abstract
This study is aimed at examining the long-term effects of chronic pain during early life (postnatal day 0 to 8weeks), and intervention using sucrose, on cognitive functions during adulthood in rats. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution or paracetamol was administered for analgesia before the paw prick. Control groups include tactile stimulation to account for handling and touching the paws, and sucrose alone was used. All treatments were started on day one of birth and continued for 8weeks. At the end of the treatments, behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM), as well as pain threshold via foot-withdrawal response to a hot plate apparatus. Additionally, the hippocampus was dissected, and blood was collected. Levels of neurotrophins (BDNF, IGF-1 and NT-3) and endorphins were assessed using ELISA. The results show that chronic noxious stimulation resulted in comparable foot-withdrawal latency between noxious and tactile groups. On the other hand, pretreatment with sucrose or paracetamol increased pain threshold significantly both in naive rats and noxiously stimulated rats (P<0.05). Chronic pain during early life impaired short-term memory, and sucrose treatment prevented such impairment (P<0.05). Sucrose significantly increased serum levels of endorphin and enkephalin. Chronic pain decreased levels of BDNF in the hippocampus and this decrease was prevented by sucrose and paracetamol treatments. Hippocampal levels of NT-3 and IGF-1 were not affected by any treatment. In conclusion, chronic pain induction during early life induced short memory impairment, and pretreatment with sucrose prevented this impairment via mechanisms that seem to involve BDNF. As evident in the results, sucrose, whether alone or in the presence of pre-noxious stimulation, increases pain threshold in such circumstances; most likely via a mechanism that involves an increase in endogenous opioids.
Collapse
Affiliation(s)
- Khawla Q Nuseir
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Jehad Alabwaini
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Biology, Faculty of Science, Tibah University, Al Madinah, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Manal I Kassab
- Department of Maternal and Child Health Nursing, Faculty of Nursing, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
18
|
Kraft TT, Huang D, Natanova E, Lolier M, Yakubov Y, La Magna S, Warshaw D, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonist-induced reductions of fructose and saccharin intake in BALB/c and SWR inbred mice. Pharmacol Biochem Behav 2015; 131:13-8. [DOI: 10.1016/j.pbb.2015.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
|
19
|
Systemic mechanism of taste, flavour and palatability in brain. Appl Biochem Biotechnol 2015; 175:3133-47. [PMID: 25733187 DOI: 10.1007/s12010-015-1488-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
Abstract
Taste is considered as one of the five traditional senses and has the ability to detect the flavour of food and certain minerals. Information of taste is transferred to the cortical gustatory area for identification and discrimination of taste quality. Animals have memory recognition power to maintain the familiar foods which are already encountered. Animal shows neophobic response when it encounters novel taste and shows no hesitation when the food is known to be safe. Palatability is the hedonic reward provided by foods and fluids. Palatability is closely related to neurochemicals, and this chemical influences the consumption of food and fluid. Even though, the food is palatable that can become aversive and avoided as a consequence of postingestional unpleasant experience such as malaise. This review presents the overall view on brain mechanisms of taste, flavour and palatability.
Collapse
|
20
|
Sakamoto K, Matsumura S, Okafuji Y, Eguchi A, Yoneda T, Mizushige T, Tsuzuki S, Inoue K, Fushiki T. The opioid system contributes to the acquisition of reinforcement for dietary fat but is not required for its maintenance. Physiol Behav 2015; 138:227-35. [DOI: 10.1016/j.physbeh.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022]
|
21
|
Sakamoto K, Okahashi T, Matsumura S, Okafuji Y, Adachi SI, Tsuzuki S, Inoue K, Fushiki T. The opioid system majorly contributes to preference for fat emulsions but not sucrose solutions in mice. Biosci Biotechnol Biochem 2014; 79:658-63. [PMID: 25516200 DOI: 10.1080/09168451.2014.991688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Rodents show a stronger preference for fat than sucrose, even if their diet is isocaloric. This implies that the preference mechanisms for fat and sucrose differ. To compare the contribution of the opioid system to the preference of fat and sucrose, we examined the effects of mu-, delta-, kappa-, and non-selective opioid receptor antagonists on the preference of sucrose and fat, assessed by a two-bottle choice test and a licking test, in mice naïve to sucrose and fat ingestion. Administration of non-selective and mu-selective opioid receptor antagonists more strongly inhibited the preference of fat than sucrose. While the preference of fat was reduced to the same level as water by the antagonist administration that of sucrose was still greater than water. Our results suggest that the preference of fat relies strongly on the opioid system, while that of sucrose is regulated by other mechanisms in addition to the opioid system.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fushiki T. Why fat is so preferable: from oral fat detection to inducing reward in the brain. Biosci Biotechnol Biochem 2014; 78:363-9. [DOI: 10.1080/09168451.2014.905186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Potential mechanisms underlying the high palatability of fat can be assessed by reviewing animal studies on fat detection and brain patterns during reward behavior. Fatty acids are likely recognized by receptors on taste buds, with the signals transmitted to the brain through taste nerves. Ingested oil is broken down and absorbed in the gastrointestinal tract, which also sends signals to the brain through unknown mechanisms. Information from both sensory receptors and peripheral tissue is integrated by the brain, resulting in a strong appetite for fatty foods via a reward system. Understanding mechanisms of fat recognition will prove valuable in the development of strategies to manage the high palatability of foods.
Collapse
Affiliation(s)
- Tohru Fushiki
- Division of Food Science & Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
23
|
Treesukosol Y, Sun B, Moghadam AA, Liang NC, Tamashiro KL, Moran TH. Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure. Am J Physiol Regul Integr Comp Physiol 2014; 306:R499-509. [PMID: 24500433 DOI: 10.1152/ajpregu.00419.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore Maryland
| | | | | | | | | | | |
Collapse
|
24
|
There is no sweet escape from social pain: Glucose does not attenuate the effects of ostracism. Physiol Behav 2014; 124:8-14. [DOI: 10.1016/j.physbeh.2013.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
|
25
|
Yamamoto RT, Foulds-Mathes W, Kanarek RB. Antinociceptive actions of peripheral glucose administration. Pharmacol Biochem Behav 2013; 117:34-9. [PMID: 24333388 DOI: 10.1016/j.pbb.2013.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/22/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022]
Abstract
The effects of intraperitoneal (ip) D-glucose administration on antinociception were studied in male Long-Evans rats. Rats were assessed for antinociception using the hot-water tail-withdrawal procedure (54±0.2 °C) to determine if peripheral administration of D-glucose (300, 560, or 720 mg/kg) would enhance morphine-mediated antinociception (MMA) (1.0, 3.0, 4.2, 5.6, and 10.0mg/kg cumulative-dosing regime) and if D-glucose (560, 720, or 1000 mg/kg) alone could produce antinociceptive activity that was naloxone (0.32 mg/kg) reversible. Additionally, the actions of D-glucose on MMA were compared with a stereoisomer, L-glucose, which is not metabolized. The results of these studies demonstrate that peripheral administration of D-glucose significantly enhances MMA and that D-glucose alone produces antinociceptive actions that are potentially mediated by the endogenous opioid system. Furthermore, L-glucose failed to have an effect on MMA suggesting that the alterations in antinociception seen with D-glucose are not due to stressors such as osmolality or injection. The current studies provide evidence that D-glucose alteration of antinociception is not simply a response to taste or gustation.
Collapse
Affiliation(s)
- Rinah T Yamamoto
- Department of Psychology, Tufts University, Medford, MA 02155,USA.
| | | | - Robin B Kanarek
- Department of Psychology, Tufts University, Medford, MA 02155,USA
| |
Collapse
|
26
|
Abstract
The use of oral sucrose has been the most extensively studied pain intervention in newborn care to date. More than 150 published studies relating to sweet-taste-induced calming and analgesia in human infants have been identified, of which 100 (65%) include sucrose. With only a few exceptions, sucrose, glucose, or other sweet solutions reduced pain responses during commonly performed painful procedures in diverse populations of infants up to 12 months of age. Sucrose has been widely recommended for routine use during painful procedures in newborn and young infants, yet these recommendations have not been translated into consistent use in clinical practice. One reason may be related to important knowledge and research gaps concerning analgesic effects of sucrose. Notably, the mechanism of sweet-taste-induced analgesia is still not precisely understood, which has implications for using research evidence in practice. The aim of this article is to review what is known about the mechanisms of sucrose-induced analgesia; highlight existing evidence, knowledge gaps, and current controversies; and provide directions for future research and practice.
Collapse
Affiliation(s)
- Denise Harrison
- Centre for Practice Changing Research, Children’s Hospital of Eastern Ontario, Ottawa, Canada.
| | | | | |
Collapse
|
27
|
Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS 2012; 9:16. [PMID: 22883598 PMCID: PMC3439317 DOI: 10.1186/2045-8118-9-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/07/2012] [Indexed: 02/08/2023] Open
Abstract
There is increasing evidence that non-synaptic communication by volume transmission in the flowing CSF plays an important role in neural mechanisms, especially for extending the duration of behavioral effects. In the present review, we explore the mechanisms involved in the behavioral and physiological effects of β-endorphin (β-END), especially those involving the cerebrospinal fluid (CSF), as a message transport system to reach distant brain areas. The major source of β-END are the pro-opio-melano-cortin (POMC) neurons, located in the arcuate hypothalamic nucleus (ARH), bordering the 3rd ventricle. In addition, numerous varicose β-END-immunoreactive fibers are situated close to the ventricular surfaces. In the present paper we surveyed the evidence that volume transmission via the CSF can be considered as an option for messages to reach remote brain areas. Some of the points discussed in the present review are: release mechanisms of β-END, independence of peripheral versus central levels, central β-END migration over considerable distances, behavioral effects of β-END depend on location of ventricular administration, and abundance of mu and delta opioid receptors in the periventricular regions of the brain.
Collapse
|
28
|
Increased motivation to eat in opiate-withdrawn mice. Psychopharmacology (Berl) 2012; 221:675-84. [PMID: 22207240 DOI: 10.1007/s00213-011-2612-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
RATIONALE In drug-dependent individuals, the primary excessive motivation is for drugs. Studies also indicate altered interest for "natural" rewarding activities associated with motivational disorders that may be relevant to drug dependence. However, to date, the impact of drug dependence and withdrawal upon motivation for "natural" rewards remains unclear. METHODS AND OBJECTIVES In the present study, we use a food-driven operant behavior paradigm to assess the impact of opiate intake and withdrawal upon the motivational properties of highly palatable food (HPF) in mice. RESULTS Our findings indicate that early (8-h) opiate withdrawal does not affect either the motivational or the discriminative properties of HPF intake. However, starting 32 h after the last morphine injection, opiate withdrawal increases operant behavior aimed at obtaining HPF. The increased HPF-driven behavior lasts at least 12 days following opiate withdrawal, indicating long-lasting effects upon motivation. Using a paradigm of reward contingency reversal, we also address the impact of opiate withdrawal upon cognitive functions. Our results indicate that opiate withdrawal does not affect the ability to learn a new operant rule to obtain HPF. Indeed, opiate withdrawal ameliorates the acquisition of the new HPF-driven operant task, most probably due to the persistent and long-lasting increased motivation. Finally, analysis of ambulatory activity and body weight (BW) changes reveal that motivational and cognitive effects are totally independent of caloric and/or motor effects of opiate dosing and withdrawal. CONCLUSIONS These results clearly demonstrate that excessive opiate intake and withdrawal produces dramatic and long-lasting motivational disorders relevant to drug dependence.
Collapse
|
29
|
Ragen BJ, Mendoza SP, Mason WA, Bales KL. Differences in titi monkey (Callicebus cupreus) social bonds affect arousal, affiliation, and response to reward. Am J Primatol 2012; 74:758-69. [PMID: 22549396 DOI: 10.1002/ajp.22026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/15/2012] [Accepted: 02/25/2012] [Indexed: 11/11/2022]
Abstract
Titi monkeys (Callicebus cupreus) are a monogamous, New World primate. Adult pair-mates form a bidirectional social bond and offspring form a selective unidirectional bond to their father. Some of the neurobiology involved in social bonds and maternal behavior is similar to the neural circuitry involved in nonsocial reward. Due to these overlapping mechanisms, social states may affect responses to external rewarding stimuli. We sought to determine whether having a social attachment, and/or being in the presence of that attachment figure, can affect an individual's response to a rewarding stimulus. In addition, we compared affiliative bonds between pair-mates to those between offspring and fathers. Eighteen adult male titi monkeys were either living alone (Lone), with a female pair-mate (Paired), or with the natal group (Natal; N = 6/condition). Each individual went through eight 30-min preference tests for a sweet substance, Tang. For Paired and Natal males, half of the test sessions were with their attachment figure and half were alone. Lone males were always tested alone. Preference scores for Tang, time spent drinking, affiliative, and arousal behaviors were measured. Paired and Natal males emitted significantly more isolation peeps and locomoted more when tested alone compared to when tested with their attachment figure, and paired males engaged in more affiliative behavior than Natal males. Lone males engaged in significantly more behaviors indicative of behavioral arousal such as locomotion and piloerection compared to Paired and Natal males. Finally, Paired males drank significantly more Tang and had a significantly greater preference for Tang compared to Lone and Natal males. These results indicate that offspring undergo a behavioral separation response upon separation from their father that persists into adulthood, Lone males are more behaviorally reactive, and that living with an attachment figure and the type of attachment relationship result in different responses to a rewarding sweet stimulus.
Collapse
Affiliation(s)
- Benjamin J Ragen
- Department of Psychology, University of California-Davis, Davis, California; California National Primate Research Center, University of California-Davis, Davis, California
| | | | | | | |
Collapse
|
30
|
Matsumura S, Eguchi A, Okafuji Y, Tatsu S, Mizushige T, Tsuzuki S, Inoue K, Fushiki T. Dietary fat ingestion activates β-endorphin neurons in the hypothalamus. FEBS Lett 2012; 586:1231-5. [PMID: 22575661 DOI: 10.1016/j.febslet.2012.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 12/17/2022]
Abstract
The opioid system regulates food choice, consumption, and reinforcement processes, especially for palatable meals such as fatty food. β-Endorphin is known as an endogenous opioid peptide produced in neurons of the hypothalamus. In this study, we found that Intralipid (fat emulsion) ingestion increased c-fos expression in β-endorphin neurons. However, intragastric infusion of Intralipid only slightly increased c-fos expression 2h after infusion. Further, dissection of glossopharyngeal nerve, innervating posterior tongue taste buds, partially but significantly decreased the Intralipid-induced c-fos expression. These results indicate that mainly the orosensory stimulation from fat may activate β-endorphin neurons, thereby promoting β-endorphin release.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Olszewski PK, Rozman J, Jacobsson JA, Rathkolb B, Strömberg S, Hans W, Klockars A, Alsiö J, Risérus U, Becker L, Hölter SM, Elvert R, Ehrhardt N, Gailus-Durner V, Fuchs H, Fredriksson R, Wolf E, Klopstock T, Wurst W, Levine AS, Marcus C, Hrabě de Angelis M, Klingenspor M, Schiöth HB, Kilimann MW. Neurobeachin, a regulator of synaptic protein targeting, is associated with body fat mass and feeding behavior in mice and body-mass index in humans. PLoS Genet 2012; 8:e1002568. [PMID: 22438821 PMCID: PMC3305408 DOI: 10.1371/journal.pgen.1002568] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/16/2012] [Indexed: 01/08/2023] Open
Abstract
Neurobeachin (Nbea) regulates neuronal membrane protein trafficking and is required for the development and functioning of central and neuromuscular synapses. In homozygous knockout (KO) mice, Nbea deficiency causes perinatal death. Here, we report that heterozygous KO mice haploinsufficient for Nbea have higher body weight due to increased adipose tissue mass. In several feeding paradigms, heterozygous KO mice consumed more food than wild-type (WT) controls, and this consumption was primarily driven by calories rather than palatability. Expression analysis of feeding-related genes in the hypothalamus and brainstem with real-time PCR showed differential expression of a subset of neuropeptide or neuropeptide receptor mRNAs between WT and Nbea+/− mice in the sated state and in response to food deprivation, but not to feeding reward. In humans, we identified two intronic NBEA single-nucleotide polymorphisms (SNPs) that are significantly associated with body-mass index (BMI) in adult and juvenile cohorts. Overall, data obtained in mice and humans suggest that variation of Nbea abundance or activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. Our study emphasizes the importance of neural mechanisms in body weight control and points out NBEA as a potential risk gene in human obesity. Body weight and energy balance are under very complex neural, endocrine, and metabolic control. Correspondingly, recent research suggests that hundreds of genes contribute to human obesity and that only a small proportion of them have as yet been identified. Neurobeachin (Nbea) is a protein specifically expressed in nerve and endocrine cells and is important for neurotransmission, apparently by influencing the synaptic targeting of membrane proteins. Here, we show that heterozygous knockout mice, expressing Nbea at 50% of normal levels, display increased adipose tissue mass, abnormal feeding behavior, and modified expression of specific genes in the brainstem and hypothalamus known to be important for body weight control. Moreover, we find that NBEA gene polymorphisms are associated with body-mass index in adult and juvenile human cohorts. Our results demonstrate that variation of Nbea activity critically affects body weight, presumably by influencing the activity of feeding-related neural circuits. They emphasize the importance of neural mechanisms in body weight control, and they identify NBEA as a potential genetic risk factor in human obesity.
Collapse
Affiliation(s)
- Pawel K. Olszewski
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Minnesota Obesity Center, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center and ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Josefin A. Jacobsson
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Siv Strömberg
- Molecular Cell Biology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anica Klockars
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Johan Alsiö
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, München, Germany
| | - Sabine M. Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Ralf Elvert
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nicole Ehrhardt
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert Fredriksson
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, München, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-Universität München, München, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
- Max-Planck-Institute for Psychiatry, München, Germany
- Technical University München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Munich, Germany
| | - Allen S. Levine
- Minnesota Obesity Center, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Claude Marcus
- Department for Clinical Science, Intervention, and Technology, Karolinska Institutet, Division of Pediatrics, National Childhood Obesity Centre, Stockholm, Sweden
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center and ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Helgi B. Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Manfred W. Kilimann
- Molecular Cell Biology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
32
|
Shiiba SJ, Sakamoto E, Sago T, Furuta H, Yamamoto T, Tada Y, Yamaguchi K, Yoshida M, Harano N, Nunomaki M, Nakatsu Y. Effect of sweet solutions on pain tolerance threshold in pediatric oral mucosa. PEDIATRIC DENTAL JOURNAL 2012. [DOI: 10.1016/s0917-2394(12)70248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Bachmanov AA, Bosak NP, Floriano WB, Inoue M, Li X, Lin C, Murovets VO, Reed DR, Zolotarev VA, Beauchamp GK. Genetics of sweet taste preferences. FLAVOUR FRAG J 2011; 26:286-294. [PMID: 21743773 PMCID: PMC3130742 DOI: 10.1002/ffj.2074] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sweet taste is a powerful factor influencing food acceptance. There is considerable variation in sweet taste perception and preferences within and among species. Although learning and homeostatic mechanisms contribute to this variation in sweet taste, much of it is genetically determined. Recent studies have shown that variation in the T1R genes contributes to within- and between-species differences in sweet taste. In addition, our ongoing studies using the mouse model demonstrate that a significant portion of variation in sweetener preferences depends on genes that are not involved in peripheral taste processing. These genes are likely involved in central mechanisms of sweet taste processing, reward and/or motivation. Genetic variation in sweet taste not only influences food choice and intake, but is also associated with proclivity to drink alcohol. Both peripheral and central mechanisms of sweet taste underlie correlation between sweet-liking and alcohol consumption in animal models and humans. All these data illustrate complex genetics of sweet taste preferences and its impact on human nutrition and health. Identification of genes responsible for within- and between-species variation in sweet taste can provide tools to better control food acceptance in humans and other animals.
Collapse
Affiliation(s)
| | | | - Wely B Floriano
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Masashi Inoue
- Laboratory of Cellular Neurobiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Xia Li
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
We investigated the brain activation associated with sweet taste-induced analgesia by 3-T functional magnetic resonance imaging, the mechanism of which is considered to involve the central nervous system. After 12 healthy individuals ingested tasteless gelatin (nonsweet condition) or sweet glucose (sweet condition) in a magnetic resonance imaging scanning gantry, the cold pressor test was applied to their medial forearm. Under both conditions, the cold pressor test robustly activated the pain-related neural network, notably the anterior cingulate cortex, insula, posterior parietal cortex, and thalamus, although such activations under the sweet condition weakened with pain threshold increase, compared with those under the nonsweet condition. Together with emotional changes in pain appraisal, our findings provide objective representation of sweet taste-induced analgesia in the human brain.
Collapse
|
35
|
Chong E, Guelfi K, Fournier P. Effect of a carbohydrate mouth rinse on maximal sprint performance in competitive male cyclists. J Sci Med Sport 2011; 14:162-7. [DOI: 10.1016/j.jsams.2010.08.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 11/25/2022]
|
36
|
Kakeda T, Ishikawa T. Gender differences in pain modulation by a sweet stimulus in adults: A randomized study. Nurs Health Sci 2011; 13:34-40. [PMID: 21352431 DOI: 10.1111/j.1442-2018.2010.00573.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study aimed to examine whether or not there are gender differences in sweet stimulus-induced analgesia for cold pain in adults. In a randomized cross-over design, twenty men and 20 women held either a 24% sucrose solution or distilled water in their mouth before and while they immersed their hand in cold water and their pain response was examined. Unlike the women, when the men held the sucrose solution in their mouth, the latency of the onset of pain significantly increased, compared with the distilled water. Meanwhile, the level of pain tolerance was not significantly different for both sexes. The findings reveal that the analgesic effect of a sweet stimulus on the pain threshold is influenced by gender differences in human adults, indicating that sweet stimulus-induced analgesia has a brief analgesic effect, particularly for men. Although more research is warranted, the sweet stimulus could be put to practical application as an adjunct to acute pain management for men.
Collapse
Affiliation(s)
- Takahiro Kakeda
- Department of Nursing, Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Kurashiki; Division of Neurosciences, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | | |
Collapse
|
37
|
|
38
|
Matsumura S, Yoneda T, Aki S, Eguchi A, Manabe Y, Tsuzuki S, Inoue K, Fushiki T. Intragastric infusion of glucose enhances the rewarding effect of sorbitol fatty acid ester ingestion as measured by conditioned place preference in mice. Physiol Behav 2010; 99:509-14. [PMID: 20045421 DOI: 10.1016/j.physbeh.2009.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/28/2022]
Abstract
We investigated substances that induce a rewarding effect during the postingestive process using the conditioned place preference (CPP) test. Although mice showed high affinity for a low-energy fat substitute--sorbitol fatty acid esters and low-concentration linoleic acid solution--they did not exhibit a place preference toward a voluntary intake of fat substitute in the CPP test. However, during a conditioning session of CPP that involved intragastric administration of corn oil immediately before the intake of the fat substitute, the test mice displayed a place preference. Similarly, intragastric administration of glucose, galactose, and dextrin also induced CPP; however, fructose, mannose, and a nonmetabolized carbohydrate did not. These results suggest that administration of corn oil and glucose has the same postingestive effect with regard to inducing CPP and that the structural specificity of carbohydrates influences the postingestive effect.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto City, 606-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hajnal A, Norgren R, Kovacs P. Parabrachial coding of sapid sucrose: relevance to reward and obesity. Ann N Y Acad Sci 2009; 1170:347-64. [PMID: 19686159 DOI: 10.1111/j.1749-6632.2009.03930.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cumulative evidence in rats suggests that the pontine parabrachial nuclei (PBN) are necessary for assigning hedonic value to taste stimuli. In a series of studies, our laboratory has investigated the parabrachial coding of sapid sucrose in normal and obese rats. First, using chronic microdialysis, we demonstrated that sucrose intake increases dopamine release in the nucleus accumbens, an effect that is dependent on oral stimulation and on concentration. The dopamine response was independent of the thalamocortical gustatory system but was blunted substantially by lesions of the PBN. Similar lesions of the PBN but not the thalamic taste relay diminished cFos activation in the nucleus accumbens caused by sucrose ingestion. Recent single-neuron recording studies have demonstrated that processing of sucrose-evoked activity in the PBN is altered in Otsuka Long Evans Tokushima Fatty (OLETF) rats, which develop obesity due to chronic overeating and express increased avidity to sweet. Compared with lean controls, taste neurons in OLETF rats had reduced overall sensitivity to sucrose and altered concentration responses, with decreased responses to lower concentrations and augmented responses to higher concentrations. The decreased sensitivity to sucrose was specific to NaCl-best neurons that also responded to sucrose, but the concentration effects were carried by the sucrose-specific neurons. Collectively, these findings support the hypothesis that the PBN enables taste stimuli to engage the reward system and, in doing so, influences food intake and body weight regulation. Obesity, in turn, may further alter the gustatory code via forebrain connections to the taste relays or hormonal changes consequent to weight gain.
Collapse
Affiliation(s)
- Andras Hajnal
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
40
|
Lee MW, Fujioka K. Naltrexone for the treatment of obesity: review and update. Expert Opin Pharmacother 2009; 10:1841-5. [PMID: 19537999 DOI: 10.1517/14656560903048959] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Since their discovery in the brain and gastrointestinal tract nearly 40 years ago, endogenous opioid peptides have been progressively shown to play a role in the regulation of food intake. Animal and human studies regarding opioid peptides and ingestive behavior are reviewed. While the opioid receptor antagonist naltrexone is associated with minimal weight loss as monotherapy, it does have potential utility in the treatment of obesity when combined with the pro-opiomelanocortin activator bupropion.
Collapse
Affiliation(s)
- Michael William Lee
- Scripps Clinic Center for Weight Management, 12395 El Camino Real, Suite 317, San Diego, CA 92130, USA.
| | | |
Collapse
|
41
|
Mizushige T, Saitoh K, Manabe Y, Nishizuka T, Taka Y, Eguchi A, Yoneda T, Matsumura S, Tsuzuki S, Inoue K, Fushiki T. Preference for dietary fat induced by release of beta-endorphin in rats. Life Sci 2009; 84:760-5. [DOI: 10.1016/j.lfs.2009.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 01/13/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022]
|
42
|
Central mechanisms of taste: Cognition, emotion and taste-elicited behaviors. JAPANESE DENTAL SCIENCE REVIEW 2008. [DOI: 10.1016/j.jdsr.2008.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
43
|
Abstract
Taste is unique among sensory systems in its innate association with mechanisms of reward and aversion in addition to its recognition of quality, e.g., sucrose is sweet and preferable, and quinine is bitter and aversive. Taste information is sent to the reward system and feeding center via the prefrontal cortices such as the mediodorsal and ventrolateral prefrontal cortices in rodents and the orbitofrontal cortex in primates. The amygdala, which receives taste inputs, also influences reward and feeding. In terms of neuroactive substances, palatability is closely related to benzodiazepine derivatives and beta-endorphin, both of which facilitate consumption of food and fluid. The reward system contains the ventral tegmental area, nucleus accumbens and ventral pallidum and finally sends information to the lateral hypothalamic area, the feeding center. The dopaminergic system originating from the ventral tegmental area mediates the motivation to consume palatable food. The actual ingestive behavior is promoted by the orexigenic neuropeptides from the hypothalamus. Even palatable food can become aversive and avoided as a consequence of a postingestional unpleasant experience such as malaise. The neural mechanisms of this conditioned taste aversion will also be elucidated.
Collapse
Affiliation(s)
- T Yamamoto
- Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
44
|
McCaughey SA. The taste of sugars. Neurosci Biobehav Rev 2008; 32:1024-43. [PMID: 18499254 DOI: 10.1016/j.neubiorev.2008.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 03/27/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
Sugars evoke a distinctive perceptual quality ("sweetness" in humans) and are generally highly preferred. The neural basis for these phenomena is reviewed for rodents, in which detailed electrophysiological measurements have been made. A receptor has been identified that binds sweeteners and activates G-protein-mediated signaling in taste receptor cells, which leads to changes in neural firing rates in the brain, where perceptions of taste quality, intensity, and palatability are generated. Most cells in gustatory nuclei are broadly tuned, so quality perception presumably arises from patterns of activity across neural populations. However, some manipulations affect only the most sugar-oriented cells, making it useful to consider them as a distinct neural subtype. Quality perception may also arise partly due to temporal patterns of activity to sugars, especially within sugar-oriented cells that give large but delayed responses. Non-specific gustatory neurons that are excited by both sugars and unpalatable stimuli project to ventral forebrain areas, where neural responses provide a closer match with behavioral preferences. This transition likely involves opposing excitatory and inhibitory influences by different subgroups of gustatory cells. Sweeteners are generally preferred over water, but the strength of this preference can vary across time or between individuals, and higher preferences for sugars are often associated with larger taste-evoked responses.
Collapse
Affiliation(s)
- Stuart A McCaughey
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104-3308, United States.
| |
Collapse
|
45
|
Kakeda T, Ito M, Matsui T, Ishikawa T. The evidence for sweet substance-induced analgesia in adult human . ACTA ACUST UNITED AC 2008. [DOI: 10.11154/pain.23.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takahiro Kakeda
- Division of Nursing, Faculty of Health and Welfare, Kawasaki University of Medical Welfare
| | - Misae Ito
- Division of Nursing, Faculty of Health and Welfare, Kawasaki University of Medical Welfare
| | - Tomohiro Matsui
- Division of Neuroscience, Yamaguchi University, Graduate School of Medicine
| | - Toshizo Ishikawa
- Division of Neuroscience, Yamaguchi University, Graduate School of Medicine
| |
Collapse
|
46
|
Finlayson G, King N, Blundell JE. Liking vs. wanting food: importance for human appetite control and weight regulation. Neurosci Biobehav Rev 2007; 31:987-1002. [PMID: 17559933 DOI: 10.1016/j.neubiorev.2007.03.004] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
Current train of thought in appetite research is favouring an interest in non-homeostatic or hedonic (reward) mechanisms in relation to overconsumption and energy balance. This tendency is supported by advances in neurobiology that precede the emergence of a new conceptual approach to reward where affect and motivation (liking and wanting) can be seen as the major force in guiding human eating behaviour. In this review, current progress in applying processes of liking and wanting to the study of human appetite are examined by discussing the following issues: How can these concepts be operationalised for use in human research to reflect the neural mechanisms by which they may be influenced? Do liking and wanting operate independently to produce functionally significant changes in behaviour? Can liking and wanting be truly experimentally separated or will an expression of one inevitably contain elements of the other? The review contains a re-examination of selected human appetite research before exploring more recent methodological approaches to the study of liking and wanting in appetite control. In addition, some theoretical developments are described in four diverse models that may enhance current understanding of the role of these processes in guiding ingestive behaviour. Finally, the implications of a dual process modulation of food reward for weight gain and obesity are discussed. The review concludes that processes of liking and wanting are likely to have independent roles in characterising susceptibility to weight gain. Further research into the dissociation of liking and wanting through implicit and explicit levels of processing would help to disclose the relative importance of these components of reward for appetite control and weight regulation.
Collapse
Affiliation(s)
- Graham Finlayson
- Biopsychology Group, Institute of Psychological Sciences, University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
47
|
Furudono Y, Ando C, Yamamoto C, Kobashi M, Yamamoto T. Involvement of specific orexigenic neuropeptides in sweetener-induced overconsumption in rats. Behav Brain Res 2006; 175:241-8. [PMID: 17010451 DOI: 10.1016/j.bbr.2006.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/23/2006] [Accepted: 08/25/2006] [Indexed: 11/18/2022]
Abstract
Palatability is one of the factors that regulates food and fluid intake and contributes to overconsumption in turn contributing to obesity. To elucidate the brain mechanisms of the palatability-induced ingestion, we explored the roles of six hypothalamic orexigenic neuropeptides, orexin, melanin-concentrating hormone (MCH), neuropeptide Y (NPY), agouti-related protein (AgRP), ghrelin and dynorphin, in the intake of a palatable solution, saccharin. Of the six peptides, intracerebroventricular (i.c.v.) administrations of orexin, MCH and NPY increased the intake of saccharin. Drinking of saccharin in turn elevated the mRNA levels of orexin and NPY, but not MCH. Pre-treatments of naloxone, an opioid antagonist, blocked the orexigenic effects of orexin and NPY. Specific gastric motor responses induced by central orexin-A and NPY are well known, however, MCH did not induce such responses. The i.c.v. administration of orexin-A facilitated gastric emptying. These results suggest that the overconsumption promoted by sweet and palatable tastes is attributed to the activation of orexigenic neuropeptides, such as orexin and NPY, and a downstream opioid system together with enhanced digestive functions.
Collapse
Affiliation(s)
- Yuichi Furudono
- Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|
48
|
Mizushige T, Kawai T, Matsumura S, Yoneda T, Kawada T, Tsuzuki S, Inoue K, Fushiki T. POMC and orexin mRNA expressions induced by anticipation of a corn-oil emulsion feeding are maintained at the high levels until oil ingestion. Biomed Res 2006; 27:227-32. [PMID: 17099287 DOI: 10.2220/biomedres.27.227] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated the gene expression dynamics of several hypothalamic neuropeptides associated with appetite regulation when rats are anticipating being fed a corn-oil emulsion. For 5 days at the same hour each day, rats were fed 5% corn oil emulsified with 0.3% xanthan gum or the vehicle for 20 min. On Day 6, the 5% corn oil emulsion or the vehicle (Vehicle) was presented to the rats, some of which (Oil-intake) were allowed to eat it and some of which (Oil-anticipation) were kept from eating it. Despite waiting a corn-oil, the mRNA levels of proopiomelanocortin (POMC), a beta-endorphin precursor, and orexin showed increases, and high levels of mRNAs of POMC and orexin were maintained for 30 min after the corn-oil was placed before the rats, and only gradually decreased through 150 min. However, the mRNA levels of POMC and orexin in the hypothalamus were decreased within 30 min after starting to ingest the corn-oil emulsion. These results suggest that POMC and orexin mRNA expression was induced by the anticipation in rats after learning the palatability of 5% corn oil emulsion, and the induced mRNA expression based on the anticipation was maintained for at least for 30 min as the rats eagerly waited for ingestion.
Collapse
Affiliation(s)
- Takafumi Mizushige
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pepino MY, Mennella JA. Sucrose-induced analgesia is related to sweet preferences in children but not adults. Pain 2005; 119:210-218. [PMID: 16298489 PMCID: PMC1364537 DOI: 10.1016/j.pain.2005.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/08/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
The present study tested the hypothesis that the efficacy of sucrose in reducing pain during the Cold Pressor Test (CPT) was related to its hedonic value. To this aim, we determined the most preferred level of sucrose and the analgesic properties of 24% w/v sucrose during the CPT in 242, 5- to 10-year-old children and their mothers. Outcome measures included pain thresholds (the time at which discomfort was first indicated) and pain tolerance (the length of time the hand was kept in the cold water bath). Although children, as a group, preferred significantly higher sucrose concentrations than adults, there were individual differences that allowed us to group them on the basis of those who preferred sucrose concentrations below that used in the CPT (24% w/v) and those who preferred levels >or=24% w/v sucrose. Regardless of such groupings, sucrose was not an effective analgesic in adult women. Unlike adults, the more children liked sucrose, the better its efficacy as an analgesic. That is, children who preferred >or=24%w/v sucrose exhibited an increased latency to report pain and tolerated pain for significantly longer periods of time when sucrose was held in their mouths relative to water. This effect was more pronounced among normal weight when compared to overweight/at risk for overweight children. The role that dietary habits and individual differences contribute to the preferences for sweet taste and its physiological consequences in children is an important area for future research.
Collapse
|
50
|
Walker CD. Nutritional aspects modulating brain development and the responses to stress in early neonatal life. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1249-63. [PMID: 16253410 DOI: 10.1016/j.pnpbp.2005.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Nutrition is one of the critical factors insuring adequate growth and development in all species. In particular, brain development is sensitive to specific nutrient intake such as proteins and lipids, which are important for cell membrane formation and myelinization. Carbohydrate intake insures adequate short-term energy supply, but has important effects on the activity of the hypothalamic-pituitary-adrenal (HPA) axis to regulate stress responsiveness. This review focuses on the effects of carbohydrates and fat on the activity of the HPA axis as well as other brain-related functions such as pain modulation, neuropeptide and neurotransmitters release, and some aspects related to cognitive functions. The role of leptin, DHA and AA as mediators of the effects of fat on the brain is discussed.
Collapse
Affiliation(s)
- Claire-Dominique Walker
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, 6875 Lasalle Blvd, Verdun, QC, Canada H4H 1R3.
| |
Collapse
|