1
|
Dutta A, Szekely Z, Guven H, Li XP, McLaughlin JE, Tumer NE. A fluorescence anisotropy-based competition assay to identify inhibitors against ricin and Shiga toxin ribosome interactions. Anal Biochem 2024; 692:115580. [PMID: 38825159 PMCID: PMC11418909 DOI: 10.1016/j.ab.2024.115580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Ricin is one of the most toxic substances known and a type B biothreat agent. Shiga toxins (Stxs) produced by E. coli (STEC) and Shigella dysenteriae are foodborne pathogens. There is no effective therapy against ricin or STEC and there is an urgent need for inhibitors. Ricin toxin A subunit (RTA) and A1 subunit of Stx2a (Stx2A1) bind to the C-terminal domain (CTD) of the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop. Modulation of toxin-ribosome interactions has not been explored as a strategy for inhibition. Therefore, development of assays that detect inhibitors targeting toxin-ribosome interactions remains a critical need. Here we describe a fluorescence anisotropy (FA)-based competitive binding assay using a BODIPY-TMR labeled 11-mer peptide (P11) derived from the P-stalk CTD to measure the binding affinity of peptides ranging from 3 to 11 amino acids for the P-stalk pocket of RTA and Stx2A1. Comparison of the affinity with the surface plasmon resonance (SPR) assay indicated that although the rank order was the same by both methods, the FA assay could differentiate better between peptides that show nonspecific interactions by SPR. The FA assay detects only interactions that compete with the labeled P11 and can validate inhibitor specificity and mechanism of action.
Collapse
Affiliation(s)
- Arkajyoti Dutta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Zoltan Szekely
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Hakan Guven
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Xiao-Ping Li
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA.
| | - John E McLaughlin
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ, 08901, USA
| | - Nilgun E Tumer
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, 610 Taylor Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Kijewski ACR, Witsø IL, Sundaram AYM, Brynildsrud OB, Pettersen K, Anonsen EB, Anonsen JH, Aspholm ME. Transcriptomic and proteomic analysis of the virulence inducing effect of ciprofloxacin on enterohemorrhagic Escherichia coli. PLoS One 2024; 19:e0298746. [PMID: 38787890 PMCID: PMC11125564 DOI: 10.1371/journal.pone.0298746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 05/26/2024] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is considered to be the most dangerous pathotype of E. coli, as it causes severe conditions such as hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Antibiotic treatment of EHEC infections is generally not recommended since it may promote the production of the Shiga toxin (Stx) and lead to worsened symptoms. This study explores how exposure to the fluoroquinolone ciprofloxacin reorganizes the transcriptome and proteome of EHEC O157:H7 strain EDL933, with special emphasis on virulence-associated factors. As expected, exposure to ciprofloxacin caused an extensive upregulation of SOS-response- and Stx-phage proteins, including Stx. A range of other virulence-associated factors were also upregulated, including many genes encoded by the LEE-pathogenicity island, the enterohemolysin gene (ehxA), as well as several genes and proteins involved in LPS production. However, a large proportion of the genes and proteins (17 and 8%, respectively) whose expression was upregulated upon ciprofloxacin exposure (17 and 8%, respectively) are not functionally assigned. This indicates a knowledge gap in our understanding of mechanisms involved in EHECs response to antibiotic-induced stress. Altogether, the results contribute to better understanding of how exposure to ciprofloxacin influences the virulome of EHEC and generates a knowledge base for further studies on how EHEC responds to antibiotic-induced stress. A deeper understanding on how EHEC responds to antibiotics will facilitate development of novel and safer treatments for EHEC infections.
Collapse
Affiliation(s)
| | - Ingun Lund Witsø
- Faculty of Veterinary Medicine, Unit for Food Safety, Norwegian University of Life Sciences, Oslo, Norway
| | - Arvind Y. M. Sundaram
- Department of Medical Genetics, Norwegian Sequencing Centre, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Jan Haug Anonsen
- Department of Biosciences IBV, Mass Spectrometry and Proteomics Unit, University of Oslo, Oslo, Norway
- Norwegian Research Centre AS, Stavanger, Norway
| | - Marina Elisabeth Aspholm
- Faculty of Veterinary Medicine, Unit for Food Safety, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
3
|
Danielewicz N, Rosato F, Tomisch J, Gräber J, Wiltschi B, Striedner G, Römer W, Mairhofer J. Clickable Shiga Toxin B Subunit for Drug Delivery in Cancer Therapy. ACS OMEGA 2023; 8:15406-15421. [PMID: 37151527 PMCID: PMC10157870 DOI: 10.1021/acsomega.3c00667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/10/2023] [Indexed: 05/09/2023]
Abstract
In recent years, receptor-mediated drug delivery has gained major attention in the treatment of cancer. The pathogen-derived Shiga Toxin B subunit (STxB) can be used as a carrier that detects the tumor-associated glycosphingolipid globotriaosylceramide (Gb3) receptors. While drug conjugation via lysine or cysteine offers random drug attachment to carriers, click chemistry has the potential to improve the engineering of delivery systems as the site specificity can eliminate interference with the active binding site of tumor ligands. We present the production of recombinant STxB in its wild-type (STxBwt) version or incorporating the noncanonical amino acid azido lysine (STxBAzK). The STxBwt and STxBAzK were manufactured using a growth-decoupled Escherichia coli (E. coli)-based expression strain and analyzed via flow cytometry for Gb3 receptor recognition and specificity on two human colorectal adenocarcinoma cell lines-HT-29 and LS-174-characterized by high and low Gb3 abundance, respectively. Furthermore, STxBAzK was clicked to the antineoplastic agent monomethyl auristatin E (MMAE) and evaluated in cell-killing assays for its ability to deliver the drug to Gb3-expressing tumor cells. The STxBAzK-MMAE conjugate induced uptake and release of the MMAE drug in Gb3-positive tumor cells, reaching 94% of HT-29 cell elimination at 72 h post-treatment and low nanomolar doses while sparing LS-174 cells. STxBAzK is therefore presented as a well-functioning drug carrier, with a possible application in cancer therapy. This research demonstrates the feasibility of lectin carriers used in delivering drugs to tumor cells, with prospects for improved cancer therapy in terms of straightforward drug attachment and effective cancer cell elimination.
Collapse
Affiliation(s)
- Natalia Danielewicz
- enGenes
Biotech GmbH, Muthgasse
11, 1190 Vienna, Austria
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Francesca Rosato
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Jana Tomisch
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Jonas Gräber
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
| | - Birgit Wiltschi
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Gerald Striedner
- Department
of Biotechnology, University of Natural
Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Winfried Römer
- Faculty
of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signaling
Research Centers BIOSS and CIBSS, University
of Freiburg, Schänzlestraße
18, 79104 Freiburg, Germany
- Freiburg
Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
4
|
Ray R, Singh P. Prevalence and Implications of Shiga Toxin-Producing E. coli in Farm and Wild Ruminants. Pathogens 2022; 11:1332. [PMID: 36422584 PMCID: PMC9694250 DOI: 10.3390/pathogens11111332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) is a food-borne pathogen that causes human gastrointestinal infections across the globe, leading to kidney failure or even death in severe cases. E. coli are commensal members of humans and animals' (cattle, bison, and pigs) guts, however, may acquire Shiga-toxin-encoded phages. This acquisition or colonization by STEC may lead to dysbiosis in the intestinal microbial community of the host. Wildlife and livestock animals can be asymptomatically colonized by STEC, leading to pathogen shedding and transmission. Furthermore, there has been a steady uptick in new STEC variants representing various serotypes. These, along with hybrids of other pathogenic E. coli (UPEC and ExPEC), are of serious concern, especially when they possess enhanced antimicrobial resistance, biofilm formation, etc. Recent studies have reported these in the livestock and food industry with minimal focus on wildlife. Disturbed natural habitats and changing climates are increasingly creating wildlife reservoirs of these pathogens, leading to a rise in zoonotic infections. Therefore, this review comprehensively surveyed studies on STEC prevalence in livestock and wildlife hosts. We further present important microbial and environmental factors contributing to STEC spread as well as infections. Finally, we delve into potential strategies for limiting STEC shedding and transmission.
Collapse
Affiliation(s)
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL 60115, USA
| |
Collapse
|
5
|
Kim K, Song M, Liu Y, Ji P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022; 13:885253. [PMID: 35990617 PMCID: PMC9389069 DOI: 10.3389/fimmu.2022.885253] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection induced post-weaning diarrhea is one of the leading causes of morbidity and mortality in newly weaned pigs and one of the significant drivers for antimicrobial use in swine production. ETEC attachment to the small intestine initiates ETEC colonization and infection. The secretion of enterotoxins further disrupts intestinal barrier function and induces intestinal inflammation in weaned pigs. ETEC infection can also aggravate the intestinal microbiota dysbiosis due to weaning stress and increase the susceptibility of weaned pigs to other enteric infectious diseases, which may result in diarrhea or sudden death. Therefore, the amount of antimicrobial drugs for medical treatment purposes in major food-producing animal species is still significant. The alternative practices that may help reduce the reliance on such antimicrobial drugs and address animal health requirements are needed. Nutritional intervention in order to enhance intestinal health and the overall performance of weaned pigs is one of the most powerful practices in the antibiotic-free production system. This review summarizes the utilization of several categories of feed additives or supplements, such as direct-fed microbials, prebiotics, phytochemicals, lysozyme, and micro minerals in newly weaned pigs. The current understanding of these candidates on intestinal health and disease resistance of pigs under ETEC infection are particularly discussed, which may inspire more research on the development of alternative practices to support food-producing animals.
Collapse
Affiliation(s)
- Kwangwook Kim
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Yanhong Liu
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| | - Peng Ji
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Yanhong Liu, ; Peng Ji,
| |
Collapse
|
6
|
Schmieder SS, Tatituri R, Anderson M, Kelly K, Lencer WI. Structural basis for acyl chain control over glycosphingolipid sorting and vesicular trafficking. Cell Rep 2022; 40:111063. [PMID: 35830800 PMCID: PMC9358721 DOI: 10.1016/j.celrep.2022.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/13/2021] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
The complex sphingolipids exhibit a diversity of ceramide acyl chain structures that influence their trafficking and intracellular distributions, but it remains unclear how the cell discerns among the different ceramides to affect such sorting. To address the mechanism, we synthesize a library of GM1 glycosphingolipids with naturally varied acyl chains and quantitatively assess their sorting among different endocytic pathways. We find that a stretch of at least 14 saturated carbons extending from C1 at the water-bilayer interface dictate lysosomal sorting by exclusion from endosome sorting tubules. Sorting to the lysosome by the C14∗ motif is cholesterol dependent. Perturbations of the C14∗ motif by unsaturation enable GM1 entry into endosomal sorting tubules of the recycling and retrograde pathways independent of cholesterol. Unsaturation occurring beyond the C14∗ motif in very long acyl chains rescues lysosomal sorting. These results define a structural motif underlying the membrane organization of sphingolipids and implicate cholesterol-sphingolipid nanodomain formation in sorting mechanisms.
Collapse
Affiliation(s)
| | - Raju Tatituri
- Division of Rheumatology, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michael Anderson
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Boston, MA 02115, USA
| | - Kate Kelly
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Digestive Diseases Center, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Kong Y, Liu F, Liu Z, Zhao J, Wu Q, Zhang X, Liu M, Zhang H, Liu S, Zhang X, Chen M. Synthesis of globotriose-modified peptides for the preparation of a colorimetric biosensor to detect Shiga toxins. Talanta 2022; 243:123353. [DOI: 10.1016/j.talanta.2022.123353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 10/19/2022]
|
8
|
Gati NS, Altinok OA, Kumar S, Ferrando VA, Kurtz J, Quante M, Ludwig S, Mellmann A. Integrating evolutionary aspects into dual-use discussion: the cases of influenza virus and enterohemorrhagic Escherichia coli. Evol Med Public Health 2021; 9:383-392. [PMID: 34925844 PMCID: PMC8672939 DOI: 10.1093/emph/eoab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/17/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Research in infection biology aims to understand the complex nature of host–pathogen interactions. While this knowledge facilitates strategies for preventing and treating diseases, it can also be intentionally misused to cause harm. Such dual-use risk is potentially high for highly pathogenic microbes such as Risk Group-3 (RG3) bacteria and RG4 viruses, which could be used in bioterrorism attacks. However, other pathogens such as influenza virus (IV) and enterohemorrhagic Escherichia coli (EHEC), usually classified as RG2 pathogens, also demonstrate high dual-use risk. As the currently approved therapeutics against these pathogens are not satisfactorily effective, previous outbreaks of these pathogens caused enormous public fear, media attention and economic burden. In this interdisciplinary review, we summarize the current perspectives of dual-use research on IV and EHEC, and further highlight the dual-use risk associated with evolutionary experiments with these infectious pathogens. We support the need to carry out experiments pertaining to pathogen evolution, including to gain predictive insights on their evolutionary trajectories, which cannot be otherwise achieved with stand-alone theoretical models and epidemiological data. However, we also advocate for increased awareness and assessment strategies to better quantify the risks-versus-benefits associated with such evolutionary experiments. In addition to building public trust in dual-use research, we propose that these approaches can be extended to other pathogens currently classified as low risk, but bearing high dual-use potential, given the particular pressing nature of their rapid evolutionary potential.
Collapse
Affiliation(s)
| | | | - Sriram Kumar
- Institute of Virology, University of Münster, Münster, Germany
| | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Michael Quante
- Department of Philosophy, University of Münster, Münster, Germany
| | - Stephan Ludwig
- Institute of Virology, University of Münster, Münster, Germany
| | | |
Collapse
|
9
|
Ndegwa E, Alahmde A, Kim C, Kaseloo P, O'Brien D. Age related differences in phylogenetic diversity, prevalence of Shiga toxins, Intimin, Hemolysin genes and select serogroups of Escherichia. coli from pastured meat goats detected in a longitudinal cohort study. BMC Vet Res 2020; 16:266. [PMID: 32731899 PMCID: PMC7391229 DOI: 10.1186/s12917-020-02479-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background Little is known on significance, diversity and characteristics of gut E. coli in goats despite their importance as food animals globally. We characterized the temporal dynamics in diversity of E. coli in fecal samples from a cohort of goat kids and adult meat goats on pasture over a one-year period. Isolates were characterized based on phylogenetic grouping, virulence genes; shiga toxins 1 and 2 (Stx1&Stx2) (STEC), intimin (eaeA), hemolysin (hly) and select important sero-groups (026, 045, 0103, 0126 and 0146) using molecular methods. Results A total of 516 E. coli isolates were screened. Prevalence of virulence genes and STEC was 65 and 56% respectively. Prevalence of virulence genes and STEC was significantly higher in goat kids less than six months (76% /66%) than adults (48% /28%). Isolates with virulence profiles of two or more genes were also higher in young goat kids (50%) than adults (20%). Entero-pathogenic E. coli (EPEC-eaeA gene only) were mostly from pre-weaned goat kids while hly gene only isolates were significantly higher in adults. The stx1, stx2 and hly genes peaked around weaning (60, 63 and 52%) respectively. Goats kids were mostly hosts to group D (59%) while adults older than one year had B1 (75%) isolates. Group D isolates were most abundant at weaning (64%) and diarrhea samples (74%). Group B2 isolates overall (6%) were mostly detected around weaning (63%) while A isolates were 4% overall. Twenty-four isolates belonged to sero-groups 026, 0103 and 0146 with 70% of the isolates detected around weaning. Nineteen of these isolates were STEC with most harboring the stx1/stx2/hly/eae (25%) profile. Most belonged to O26 sero-group (75%) and phylogroup D (75%). Conclusion To our knowledge this is the first study to highlight longitudinal age related differences in E. coli phylogenetic diversity, abundance of virulence genes and select important sero-groups in goats. Differences detected suggest a possible role of age and weaning stress in influencing E. coli diversity in the gut of goats. The findings are relevant to both animal and public health to advise on further studies on caprine E. coli isolates as animal and human pathogens.
Collapse
Affiliation(s)
- Eunice Ndegwa
- Agricultural Research Station, Virginia State University, Petersburg, VA, 23806, USA.
| | - Aber Alahmde
- Department of Biology, Virginia State University, Petersburg, VA, 23806, USA
| | - Chyer Kim
- Agricultural Research Station, Virginia State University, Petersburg, VA, 23806, USA
| | - Paul Kaseloo
- Department of Biology, Virginia State University, Petersburg, VA, 23806, USA
| | - Dahlia O'Brien
- College of Agriculture, Virginia Cooperative Extension, Virginia State University, Petersburg, VA, 23806, USA
| |
Collapse
|
10
|
Shiga Toxin Uptake and Sequestration in Extracellular Vesicles Is Mediated by Its B-Subunit. Toxins (Basel) 2020; 12:toxins12070449. [PMID: 32664382 PMCID: PMC7404996 DOI: 10.3390/toxins12070449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 01/03/2023] Open
Abstract
Shiga toxin (Stx)-stimulated blood cells shed extracellular vesicles (EVs) which can transfer the toxin to the kidneys and lead to hemolytic uremic syndrome. The toxin can be taken up by renal cells within EVs wherein the toxin is released, ultimately leading to cell death. The mechanism by which Stx is taken up, translocated, and sequestered in EVs was addressed in this study utilizing the B-subunit that binds to the globotriaosylceramide (Gb3) receptor. We found that Stx1B was released in EVs within minutes after stimulation of HeLa cells or red blood cells, detected by live cell imaging and flow cytometry. In the presence of Retro-2.1, an inhibitor of intracellular retrograde trafficking, a continuous release of Stx-positive EVs occurred. EVs from HeLa cells possess the Gb3 receptor on their membrane, and EVs from cells that were treated with a glycosylceramide synthase inhibitor, to reduce Gb3, bound significantly less Stx1B. Stx1B was detected both on the membrane and within the shed EVs. Stx1B was incubated with EVs derived from blood cells, in the absence of cells, and was shown to bind to, and be taken up by, these EVs, as demonstrated by electron microscopy. Using a membrane translocation assay we demonstrated that Stx1B was taken up by blood cell- and HeLa-derived EVs, an effect enhanced by chloropromazine or methyl-ß-cyclodextrin, suggesting toxin transfer within the membrane. This is a novel mechanism by which EVs derived from blood cells can sequester their toxic content, possibly to evade the host response.
Collapse
|
11
|
Kim JS, Lee MS, Kim JH. Recent Updates on Outbreaks of Shiga Toxin-Producing Escherichia coli and Its Potential Reservoirs. Front Cell Infect Microbiol 2020; 10:273. [PMID: 32582571 PMCID: PMC7287036 DOI: 10.3389/fcimb.2020.00273] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
Following infection with certain strains of Shiga toxin-producing Escherichia coli (STEC), particularly enterohemorrhagic ones, patients are at elevated risk for developing life-threatening extraintestinal complications, such as acute renal failure. Hence, these bacteria represent a public health concern in both developed and developing countries. Shiga toxins (Stxs) expressed by STEC are highly cytotoxic class II ribosome-inactivating proteins and primary virulence factors responsible for major clinical signs of Stx-mediated pathogenesis, including bloody diarrhea, hemolytic uremic syndrome (HUS), and neurological complications. Ruminant animals are thought to serve as critical environmental reservoirs of Stx-producing Escherichia coli (STEC), but other emerging or arising reservoirs of the toxin-producing bacteria have been overlooked. In particular, a number of new animal species from wildlife and aquaculture industries have recently been identified as unexpected reservoir or spillover hosts of STEC. Here, we summarize recent findings about reservoirs of STEC and review outbreaks of these bacteria both within and outside the United States. A better understanding of environmental transmission to humans will facilitate the development of novel strategies for preventing zoonotic STEC infection.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Moo-Seung Lee
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea.,Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
12
|
Nyong EC, Zaia SR, Allué-Guardia A, Rodriguez AL, Irion-Byrd Z, Koenig SSK, Feng P, Bono JL, Eppinger M. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Front Microbiol 2020; 11:619. [PMID: 32351476 PMCID: PMC7175801 DOI: 10.3389/fmicb.2020.00619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.
Collapse
Affiliation(s)
- Emmanuel C. Nyong
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sam R. Zaia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Armando L. Rodriguez
- Research Computing Support Group, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zaina Irion-Byrd
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | | | - James L. Bono
- United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture (ARS-USDA), Clay Center, NE, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| |
Collapse
|
13
|
Bhowmick UD, Bhattacharjee S. Bacteriological, Clinical and Virulence Aspects of Aeromonas-associated Diseases in Humans. Pol J Microbiol 2019; 67:137-149. [PMID: 30015452 PMCID: PMC7256846 DOI: 10.21307/pjm-2018-020] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2018] [Indexed: 12/04/2022] Open
Abstract
Aeromonads have been isolated from varied environmental sources such as polluted and drinking water, as well as from tissues and body fluids of cold and warm-blooded animals. A phenotypically and genotypically heterogenous bacteria, aeromonads can be successfully identified by ribotyping and/or by analysing gyrB gene sequence, apart from classical biochemical characterization. Aeromonads are known to cause scepticemia in aquatic organisms, gastroenteritis and extraintestinal diseases such as scepticemia, skin, eye, wound and respiratory tract infections in humans. Several virulence and antibiotic resistance genes have been identified and isolated from this group, which if present in their mobile genetic elements, may be horizontally transferred to other naive environmental bacteria posing threat to the society. The extensive and indiscriminate use of antibiotics has given rise to many resistant varieties of bacteria. Multidrug resistance genes, such as NDM1, have been identified in this group of bacteria which is of serious health concern. Therefore, it is important to understand how antibiotic resistance develops and spreads in order to undertake preventive measures. It is also necessary to search and map putative virulence genes of Aeromonas for fighting the diseases caused by them. This review encompasses current knowledge of bacteriological, environmental, clinical and virulence aspects of the Aeromonas group and related diseases in humans and other animals of human concern.
Collapse
Affiliation(s)
- Uttara Dey Bhowmick
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal,Raja Rammohunpur, Siliguri, District Darjeeling, West Bengal,India
| | - Soumen Bhattacharjee
- Cell and Molecular Biology Laboratory, Department of Zoology, University of North Bengal,Raja Rammohunpur, Siliguri, District Darjeeling, West Bengal,India
| |
Collapse
|
14
|
Xu W, Cater M, Gravois R, Navarre C, Coulon D, Djebbi-Simmons D, Wong A. Animal contact in public settings-risk awareness of enteric pathogens and hand hygiene behaviors. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.03.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Microvesicle Involvement in Shiga Toxin-Associated Infection. Toxins (Basel) 2017; 9:toxins9110376. [PMID: 29156596 PMCID: PMC5705991 DOI: 10.3390/toxins9110376] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022] Open
Abstract
Shiga toxin is the main virulence factor of enterohemorrhagic Escherichia coli, a non-invasive pathogen that releases virulence factors in the intestine, causing hemorrhagic colitis and, in severe cases, hemolytic uremic syndrome (HUS). HUS manifests with acute renal failure, hemolytic anemia and thrombocytopenia. Shiga toxin induces endothelial cell damage leading to platelet deposition in thrombi within the microvasculature and the development of thrombotic microangiopathy, mostly affecting the kidney. Red blood cells are destroyed in the occlusive capillary lesions. This review focuses on the importance of microvesicles shed from blood cells and their participation in the prothrombotic lesion, in hemolysis and in the transfer of toxin from the circulation into the kidney. Shiga toxin binds to blood cells and may undergo endocytosis and be released within microvesicles. Microvesicles normally contribute to intracellular communication and remove unwanted components from cells. Many microvesicles are prothrombotic as they are tissue factor- and phosphatidylserine-positive. Shiga toxin induces complement-mediated hemolysis and the release of complement-coated red blood cell-derived microvesicles. Toxin was demonstrated within blood cell-derived microvesicles that transported it to renal cells, where microvesicles were taken up and released their contents. Microvesicles are thereby involved in all cardinal aspects of Shiga toxin-associated HUS, thrombosis, hemolysis and renal failure.
Collapse
|
16
|
Lupindu AM. Epidemiology of Shiga toxin-producingEscherichia coliO157:H7 in Africa in review. S Afr J Infect Dis 2017. [DOI: 10.1080/23120053.2017.1376558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Athumani M Lupindu
- Department of Veterinary Medicine and Public Health, College of Veterinary and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
17
|
Lapadula WJ, Marcet PL, Mascotti ML, Sanchez-Puerta MV, Juri Ayub M. Metazoan Ribosome Inactivating Protein encoding genes acquired by Horizontal Gene Transfer. Sci Rep 2017; 7:1863. [PMID: 28500327 PMCID: PMC5431988 DOI: 10.1038/s41598-017-01859-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/05/2017] [Indexed: 12/26/2022] Open
Abstract
Ribosome inactivating proteins (RIPs) are RNA N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of 28S rRNA. These enzymes are widely distributed among plants and their presence has also been confirmed in several bacterial species. Recently, we reported for the first time in silico evidence of RIP encoding genes in metazoans, in two closely related species of insects: Aedes aegypti and Culex quinquefasciatus. Here, we have experimentally confirmed the presence of these genes in mosquitoes and attempted to unveil their evolutionary history. A detailed study was conducted, including evaluation of taxonomic distribution, phylogenetic inferences and microsynteny analyses, indicating that mosquito RIP genes derived from a single Horizontal Gene Transfer (HGT) event, probably from a cyanobacterial donor species. Moreover, evolutionary analyses show that, after the HGT event, these genes evolved under purifying selection, strongly suggesting they play functional roles in these organisms.
Collapse
Affiliation(s)
- Walter J Lapadula
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| | - Paula L Marcet
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, USA
| | - María L Mascotti
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
| | - Maximiliano Juri Ayub
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis, IMIBIO-SL-CONICET and Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.
| |
Collapse
|
18
|
Murphy BP, McCabe E, Murphy M, Buckley JF, Crowley D, Fanning S, Duffy G. Longitudinal Study of Two Irish Dairy Herds: Low Numbers of Shiga Toxin-Producing Escherichia coli O157 and O26 Super-Shedders Identified. Front Microbiol 2016; 7:1850. [PMID: 27917164 PMCID: PMC5114295 DOI: 10.3389/fmicb.2016.01850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/03/2016] [Indexed: 01/24/2023] Open
Abstract
A 12-month longitudinal study was undertaken on two dairy herds to ascertain the Shiga-toxin producing Escherichia coli (STEC) O157 and O26 shedding status of the animals and its impact (if any) on raw milk. Cattle are a recognized reservoir for these organisms with associated public health and environmental implications. Animals shedding E. coli O157 at >10,000 CFU/g of feces have been deemed super-shedders. There is a gap in the knowledge regarding super-shedding of other STEC serogroups. A cohort of 40 lactating cows from herds previously identified as positive for STEC in a national surveillance project were sampled every second month between August, 2013 and July, 2014. Metadata on any potential super-shedders was documented including, e.g., age of the animal, number of lactations and days in lactation, nutritional condition, somatic cell count and content of protein in milk to assess if any were associated with risk factors for super-shedding. Recto-anal mucosal swabs (RAMS), raw milk, milk filters, and water samples were procured for each herd. The swabs were examined for E. coli O157 and O26 using a quantitative real time PCR method. Counts (CFU swab-1) were obtained from a standard calibration curve that related real-time PCR cycle threshold (Ct) values against the initial concentration of O157 or O26 in the samples. Results from Farm A: 305 animals were analyzed; 15 E. coli O157 (5%) were recovered, 13 were denoted STEC encoding either stx1 and/or stx2 virulence genes and 5 (2%) STEC O26 were recovered. One super-shedder was identified shedding STEC O26 (stx1&2). Farm B: 224 animals were analyzed; eight E. coli O157 (3.5%) were recovered (seven were STEC) and 9 (4%) STEC O26 were recovered. Three super-shedders were identified, one was shedding STEC O157 (stx2) and two STEC O26 (stx2). Three encoded the adhering and effacement gene (eae) and one isolate additionally encoded the haemolysin gene (hlyA). All four super-shedders were only super-shedding once during the 1-year sampling period. The results of this study show, low numbers of super-shedders in the herds examined, with high numbers of low and medium shedding. Although four super-shedding animals were identified, no STEC O157 or O26 were recovered from any of the raw milk, milk filter, or water samples. The authors conclude that this study highlights the need for further surveillance to assess the potential for environmental contamination and food chain security.
Collapse
Affiliation(s)
- Brenda P. Murphy
- Veterinary Department, Veterinary Food Safety Laboratory, Cork County Council, County CorkIreland
| | | | - Mary Murphy
- Veterinary Department, Veterinary Food Safety Laboratory, Cork County Council, County CorkIreland
| | - James F. Buckley
- Veterinary Department, Veterinary Food Safety Laboratory, Cork County Council, County CorkIreland
| | - Dan Crowley
- Veterinary Department, Veterinary Food Safety Laboratory, Cork County Council, County CorkIreland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College DublinDublin, Ireland
| | | |
Collapse
|
19
|
Baskaran SA, Kollanoor-Johny A, Nair MS, Venkitanarayanan K. Efficacy of Plant-Derived Antimicrobials in Controlling Enterohemorrhagic Escherichia coli Virulence In Vitro. J Food Prot 2016; 79:1965-1970. [PMID: 28221905 DOI: 10.4315/0362-028x.jfp-16-104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli O157:H7 is a major foodborne pathogen that can cause serious human illness characterized by hemorrhagic diarrhea and kidney failure. The pathology of enterohemorrhagic E. coli O157:H7 (EHEC) infection is primarily mediated by verotoxins, which bind to the globotriaosylceramide receptor on host cells. Antibiotics are contraindicated for treating EHEC infection because they lead to increased verotoxin release, thereby increasing the risk of renal failure and death in patients. Thus, alternative strategies are needed for controlling EHEC infections in humans. This study investigated the effect of subinhibitory concentrations of five plant-derived antimicrobial agents (PDAs) that are generally considered as safe, i.e., trans-cinnamaldehyde, eugenol, carvacrol, thymol, and β-resorcylic acid, on EHEC motility, adhesion to human intestinal epithelial cells, verotoxin production, and virulence gene expression. All tested PDAs reduced EHEC motility and attachment to human intestinal epithelial cells (P < 0.05) and decreased verotoxin synthesis by EHEC. The reverse transcription real-time PCR data revealed that PDAs decreased the expression of critical virulence genes in EHEC (P < 0.05). The results collectively suggest that these PDAs could be used to reduce EHEC virulence, but follow-up studies in animal models are necessary to validate these findings.
Collapse
Affiliation(s)
- Sangeetha Ananda Baskaran
- Department of Veterinary Public Health & Epidemiology, Veterinary College & Research Institute, Orathanadu, Tamil Nadu, India 614 625
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Meera Surendran Nair
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | | |
Collapse
|
20
|
Leffler J, Prohászka Z, Mikes B, Sinkovits G, Ciacma K, Farkas P, Réti M, Kelen K, Reusz GS, Szabó AJ, Martin M, Blom AM. Decreased Neutrophil Extracellular Trap Degradation in Shiga Toxin-Associated Haemolytic Uraemic Syndrome. J Innate Immun 2016; 9:12-21. [PMID: 27784011 DOI: 10.1159/000450609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/06/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) can stimulate thrombosis, and their degradation is decreased in several autoimmune disorders. It was recently reported that some patients with haemolytic uraemic syndrome (HUS) also fail to degrade NETs and that neutrophils from Shiga toxin-associated HUS are primed to form NETs. METHOD We used a well-characterized cohort of 74 thrombotic microangiopathy (TMA) patients, with a subset also providing follow-up samples, and 112 age-matched controls to investigate NET degradation and serum nuclease activity in TMA before, during and after treatment. RESULTS We identified that in the cohort of TMA patients, 50% of patients with Shiga toxin-associated HUS displayed a decreased ability to degrade NETs. NET degradation correlated with serum nuclease activity, but not with autoantibodies against double-stranded DNA, which has been previously observed in some autoimmune disorders. Further, NET degradation negatively correlated with serum creatinine levels, suggesting that kidney function was negatively impacted by the low NET degradation ability. CONCLUSIONS We revealed that decreased NET degradation is a common feature of Shiga toxin-associated HUS and that it is associated with decreased kidney function in these patients. It remains to be clarified whether improving NET degradation would be beneficial for the patient.
Collapse
Affiliation(s)
- Jonatan Leffler
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zadravec P, Marečková L, Petroková H, Hodnik V, Perišić Nanut M, Anderluh G, Štrukelj B, Malý P, Berlec A. Development of Recombinant Lactococcus lactis Displaying Albumin-Binding Domain Variants against Shiga Toxin 1 B Subunit. PLoS One 2016; 11:e0162625. [PMID: 27606705 PMCID: PMC5015993 DOI: 10.1371/journal.pone.0162625] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/25/2016] [Indexed: 01/06/2023] Open
Abstract
Infections with shiga toxin-producing bacteria, like enterohemorrhagic Escherichia coli and Shigella dysenteriae, represent a serious medical problem. No specific and effective treatment is available for patients with these infections, creating a need for the development of new therapies. Recombinant lactic acid bacterium Lactococcus lactis was engineered to bind Shiga toxin by displaying novel designed albumin binding domains (ABD) against Shiga toxin 1 B subunit (Stx1B) on their surface. Functional recombinant Stx1B was produced in Escherichia coli and used as a target for selection of 17 different ABD variants (named S1B) from the ABD scaffold-derived high-complex combinatorial library in combination with a five-round ribosome display. Two most promising S1Bs (S1B22 and S1B26) were characterized into more details by ELISA, surface plasmon resonance and microscale thermophoresis. Addition of S1Bs changed the subcellular distribution of Stx1B, completely eliminating it from Golgi apparatus most likely by interfering with its retrograde transport. All ABD variants were successfully displayed on the surface of L. lactis by fusing to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA. Binding of Stx1B by engineered lactococcal cells was confirmed using flow cytometry and whole cell ELISA. Lactic acid bacteria prepared in this study are potentially useful for the removal of Shiga toxin from human intestine.
Collapse
Affiliation(s)
- Petra Zadravec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Lucie Marečková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Hana Petroková
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- The Chair of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology CAS, v. v. i., BIOCEV Research Center, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
22
|
|
23
|
Surendran-Nair M, Kollanoor-Johny A, Ananda-Baskaran S, Norris C, Lee JY, Venkitanarayanan K. Selenium reduces enterohemorrhagic Escherichia coli O157:H7 verotoxin production and globotriaosylceramide receptor expression on host cells. Future Microbiol 2016; 11:745-56. [DOI: 10.2217/fmb.16.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigated the efficacy of selenium (Se) in reducing Escherichia coli O157:H7 verotoxin production and toxin gene expression. Additionally, the effect of Se on globotriaosylceramide (Gb3) receptor in human lymphoma cells was determined. Materials & methods: The effect of Se on verotoxin synthesis was determined by standard ELISA, whereas its effect on Gb3 receptor was determined by flow cytometry and real-time quantitative PCR. Results & conclusions: Se reduced extracellular and intracellular verotoxin concentration by 40–60% and 80–90%, respectively (p < 0.05), and downregulated verotoxin genes (p < 0.05). Se reduced Gb3 receptor synthesis in lymphoma cells, and real-time quantitative PCR data revealed a significant downregulation of LacCer synthase gene (GalT2) involved in Gb3 synthesis. Further studies are warranted to validate these results in an appropriate animal model.
Collapse
Affiliation(s)
| | - Anup Kollanoor-Johny
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Animal Science, University of Minnesota, St Paul, MN, USA
| | | | - Carol Norris
- Department of Molecular & Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
24
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
25
|
Tang B, Li Q, Zhao XH, Wang HG, Li N, Fang Y, Wang K, Jia YP, Zhu P, Gu J, Li JX, Jiao YJ, Tong WD, Wang M, Zou QM, Zhu FC, Mao XH. Shiga toxins induce autophagic cell death in intestinal epithelial cells via the endoplasmic reticulum stress pathway. Autophagy 2016; 11:344-54. [PMID: 25831014 DOI: 10.1080/15548627.2015.1023682] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Shiga toxins (Stxs) are a family of cytotoxic proteins that lead to the development of bloody diarrhea, hemolytic-uremic syndrome, and central nervous system complications caused by bacteria such as S. dysenteriae, E. coli O157:H7 and E. coli O104:H4. Increasing evidence indicates that macroautophagy (autophagy) is a key factor in the cell death induced by Stxs. However, the associated mechanisms are not yet clear. This study showed that Stx2 induces autophagic cell death in Caco-2 cells, a cultured line model of human enterocytes. Inhibition of autophagy using pharmacological inhibitors, such as 3-methyladenine and bafilomycin A1, or silencing of the autophagy genes ATG12 or BECN1 decreased the Stx2-induced death in Caco-2 cells. Furthermore, there were numerous instances of dilated endoplasmic reticulum (ER) in the Stx2-treated Caco-2 cells, and repression of ER stress due to the depletion of viable candidates of DDIT3 and NUPR1. These processes led to Stx2-induced autophagy and cell death. Finally, the data showed that the pseudokinase TRIB3-mediated DDIT3 expression and AKT1 dephosphorylation upon ER stress were triggered by Stx2. Thus, the data indicate that Stx2 causes autophagic cell death via the ER stress pathway in intestinal epithelial cells.
Collapse
Key Words
- 3-MA, 3-methyladenine
- AO, acridine orange
- ATF4, activating transcription factor 4
- ATG, autophagy-related
- BECN1, Beclin 1, autophagy-related
- Baf A1, bafilomycin A1
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- DDIT3, DNA-damage-inducible transcript 3
- E. coli O157:H7
- EHEC O157, Escherichia coli O157:H7
- ER stress
- FACS, fluorescence activated cell sorting
- MAP1LC3B, microtubule-associated protein 1 light chain 3 beta
- MAPK, mitogen-activated protein kinase
- MDC, monodansylcadaverine
- NUPR1, nuclear protein, transcriptional regulator, 1
- PARP1, poly (ADP-ribose) polymerase 1
- PBS, phosphate-buffered saline
- PI, propidium iodide
- Shiga toxins
- Stxs, Shiga toxins
- TEM, transmission electron microscopy
- TRIB3, tribbles pseudokinase 3
- Thap, thapsigargin
- WT, wild type
- Z-VAD, Z-VAD-FMK
- autophagic cell death
- autophagy
- Δ, knockout
Collapse
Affiliation(s)
- Bin Tang
- a National Engineering Research Center for Immunobiological Products; Department of Microbiology and Biochemical Pharmacy; College of Pharmacy; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Iannino F, Herrmann CK, Roset MS, Briones G. Development of a dual vaccine for prevention of Brucella abortus infection and Escherichia coli O157:H7 intestinal colonization. Vaccine 2015; 33:2248-2253. [DOI: 10.1016/j.vaccine.2015.03.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/23/2015] [Accepted: 03/12/2015] [Indexed: 02/04/2023]
|
27
|
Amani J, Ahmadpour A, Imani Fooladi AA, Nazarian S. Detection of E. coli O157:H7 and Shigella dysenteriae toxins in clinical samples by PCR-ELISA. Braz J Infect Dis 2015; 19:278-84. [PMID: 25911087 PMCID: PMC9425373 DOI: 10.1016/j.bjid.2015.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/12/2015] [Accepted: 02/21/2015] [Indexed: 11/30/2022] Open
Abstract
Shiga toxin producing bacteria are potential causes of serious human disease such as hemorrhagic colitis, severe inflammations of ileocolonic regions of gastrointestinal tract, thrombocytopenia, septicemia, malignant disorders in urinary ducts, hemolytic uremic syndrome (HUS). Shiga toxin 1 (stx1), shiga toxin 2 (stx2), or a combination of both are responsible for most clinical symptoms of these diseases. A lot of methods have been developed so far to detect shiga toxins such as cell culture, ELISA, and RFPLA, but due to high costs and labor time in addition to low sensitivity, they have not received much attention. In this study, PCR-ELISA method was used to detect genes encoding shiga toxins1 and 2 (stx1 and stx2). To detect stx1 and stx2 genes, two primer pairs were designed for Multiplex-PCR then PCR-ELISA. PCR products (490 and 275, respectively) were subsequently verified by sequencing. Sensitivity and specificity of PCR-ELISA method were determined by using genome serial dilution and Enterobacteria strains. PCR-ELISA method used in this study proved to be a rapid and precise approach to detect different types of shiga toxins and can be used to detect bacterial genes encoding shiga toxins.
Collapse
Affiliation(s)
- Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Askary Ahmadpour
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Shahram Nazarian
- Imam Hossain University, Faculty of Science, Department of Biology, Tehran, Iran
| |
Collapse
|
28
|
Affiliation(s)
- Analia Etcheverria
- a Laboratorio de Imunoquímica y Biotecnología ; Centro de Investigación Veterinaria de Tandil (CIVETAN) ; Tandil , Buenos Aires , Argentina
| |
Collapse
|
29
|
Liu CC, Yang H, Zhang LL, Zhang Q, Chen B, Wang Y. Biotoxins for cancer therapy. Asian Pac J Cancer Prev 2015; 15:4753-8. [PMID: 24998537 DOI: 10.7314/apjcp.2014.15.12.4753] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In recent times, a number of studies have provided evidence that biotoxins present great potential as antitumor agents, such as snake venom, bee venom, some bacteria toxins and plant toxins, and thus could be used as chemotherapeutic agents against tumors. The biodiversity of venoms and toxins make them a unique source from which novel anticancer agent may be developed. Biotoxins, also known as natural toxins, include toxic substances produced by plants, animals and microorganisms. Here, we systematically list representative biological toxins that have antitumor properties, involving animal toxins, plant toxins, mycotoxins as well as bacterial toxins. In this review, we summarize the current knowledge involving biotoxins and the active compounds that have anti-cancer activity to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. We also show insights into the molecular and functional evolution of biotoxins.
Collapse
Affiliation(s)
- Cui-Cui Liu
- Department of Scientific Research, Hong Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China E-mail :
| | | | | | | | | | | |
Collapse
|
30
|
Silva CJ, Erickson-Beltran ML, Skinner CB, Dynin I, Hui C, Patfield SA, Carter JM, He X. Safe and Effective Means of Detecting and Quantitating Shiga-Like Toxins in Attomole Amounts. Anal Chem 2014; 86:4698-706. [DOI: 10.1021/ac402930r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Christopher J. Silva
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Melissa L. Erickson-Beltran
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Craig B. Skinner
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Irina Dynin
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Colleen Hui
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Stephanie A. Patfield
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - John Mark Carter
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| | - Xiaohua He
- Western Regional Research Center, United States Department of Agriculture, Albany, California 94710, United States
| |
Collapse
|
31
|
Zhang X, Kuča K, Dohnal V, Dohnalová L, Wu Q, Wu C. Military potential of biological toxins. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2014.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
32
|
Gagnon H, Beauchemin S, Kwiatkowska A, Couture F, D'Anjou F, Levesque C, Dufour F, Desbiens AR, Vaillancourt R, Bernard S, Desjardins R, Malouin F, Dory YL, Day R. Optimization of furin inhibitors to protect against the activation of influenza hemagglutinin H5 and Shiga toxin. J Med Chem 2013; 57:29-41. [PMID: 24359257 DOI: 10.1021/jm400633d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proprotein convertases (PCs) are crucial in the processing and entry of viral or bacterial protein precursors and confer increased infectivity of pathogens bearing a PC activation site, which results in increased symptom severity and lethality. Previously, we developed a nanomolar peptide inhibitor of PCs to prevent PC activation of infectious agents. Herein, we describe a peptidomimetic approach that increases the stability of this inhibitor for use in vivo to prevent systemic infections and cellular damage, such as that caused by influenza H5N1 and Shiga toxin. The addition of azaβ(3)-amino acids to both termini of the peptide successfully prevented influenza hemagglutinin 5 fusogenicity and Shiga toxin Vero toxicity in cell-based assays. The results from a cell-based model using stable shRNA-induced proprotein convertase knockdown indicate that only furin is the major proprotein convertase required for HA5 cleavage.
Collapse
Affiliation(s)
- Hugo Gagnon
- Institut de Pharmacologie de Sherbrooke (IPS) and Département de Chirurgie/Urologie, Faculté de Médecine et des Sciences de la Santé (FMSS), Université de Sherbrooke , 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lapadula WJ, Sánchez Puerta MV, Juri Ayub M. Revising the taxonomic distribution, origin and evolution of ribosome inactivating protein genes. PLoS One 2013; 8:e72825. [PMID: 24039805 PMCID: PMC3764214 DOI: 10.1371/journal.pone.0072825] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 07/13/2013] [Indexed: 11/24/2022] Open
Abstract
Ribosome inactivating proteins are enzymes that depurinate a specific adenine residue in the alpha-sarcin-ricin loop of the large ribosomal RNA, being ricin and Shiga toxins the most renowned examples. They are widely distributed in plants and their presence has also been confirmed in a few bacterial species. According to this taxonomic distribution, the current model about the origin and evolution of RIP genes postulates that an ancestral RIP domain was originated in flowering plants, and later acquired by some bacteria via horizontal gene transfer. Here, we unequivocally detected the presence of RIP genes in fungi and metazoa. These findings, along with sequence and phylogenetic analyses, led us to propose an alternative, more parsimonious, hypothesis about the origin and evolutionary history of the RIP domain, where several paralogous RIP genes were already present before the three domains of life evolved. This model is in agreement with the current idea of the Last Universal Common Ancestor (LUCA) as a complex, genetically redundant organism. Differential loss of paralogous genes in descendants of LUCA, rather than multiple horizontal gene transfer events, could account for the complex pattern of RIP genes across extant species, as it has been observed for other genes.
Collapse
Affiliation(s)
- Walter J. Lapadula
- Área de Biología Molecular, Departamento de Bioquímica y Ciencias Biológicas, UNSL and Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis, Argentina
| | - María Virginia Sánchez Puerta
- Instituto de Ciencias Básicas, IBAM-CONICET and Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Maximiliano Juri Ayub
- Área de Biología Molecular, Departamento de Bioquímica y Ciencias Biológicas, UNSL and Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL-CONICET), San Luis, Argentina
- * E-mail:
| |
Collapse
|
34
|
Salvadori M, Bertoni E. Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations. World J Nephrol 2013; 2:56-76. [PMID: 24255888 PMCID: PMC3832913 DOI: 10.5527/wjn.v2.i3.56] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/26/2013] [Accepted: 08/02/2013] [Indexed: 02/06/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both "traditional therapy" (including plasma therapy, kidney and kidney-liver transplantation) and "new therapies". The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody "eculizumab". Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy.
Collapse
|
35
|
Photobleaching with phloxine B sensitizer to reduce food matrix interference for detection of Escherichia coli serotype O157:H7 in fresh spinach by flow cytometry. Food Microbiol 2013; 36:416-25. [PMID: 24010624 DOI: 10.1016/j.fm.2013.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/09/2013] [Accepted: 07/17/2013] [Indexed: 02/05/2023]
Abstract
A flow cytometric method (RAPID-B™) with detection sensitivity of one viable cell of Escherichia coli serotype O157:H7 in fresh spinach (Spinacia oleracea) was developed and evaluated. The major impediment to achieving this performance was mistaking autofluorescing spinach particles for tagged target cells. Following a 5 h non-selective enrichment, artificially inoculated samples were photobleached, using phloxine B as a photosensitizer. Samples were centrifuged at high speed to concentrate target cells, then gradient centrifuged to separate them from matrix debris. In external laboratory experiments, RAPID-B and the reference method both correctly detected E. coli O157:H7 at inoculations of ca. 15 cells. In a follow-up study, after 4 cell inoculations of positives and 6 h enrichment, RAPID-B correctly identified 92% of 25 samples. The RAPID-B method limit of detection (LOD) was one cell in 25 g. It proved superior to the reference method (which incorporated real time-PCR, selective enrichment, and culture plating elements) in accuracy and speed.
Collapse
|
36
|
Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol 2013; 4:135. [PMID: 23734150 PMCID: PMC3661942 DOI: 10.3389/fmicb.2013.00135] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/07/2013] [Indexed: 01/26/2023] Open
Abstract
The prevalence of antimicrobial resistance (AR) in bacteria isolated from U.S. food animals has increased over the last several decades as have concerns of AR foodborne zoonotic human infections. Resistance mechanisms identified in U.S. animal isolates of Salmonella enterica included resistance to aminoglycosides (e.g., alleles of aacC, aadA, aadB, ant, aphA, and StrAB), β-lactams (e.g., blaCMY−2, TEM−1, PSE−1), chloramphenicol (e.g., floR, cmlA, cat1, cat2), folate pathway inhibitors (e.g., alleles of sul and dfr), and tetracycline [e.g., alleles of tet(A), (B), (C), (D), (G), and tetR]. In the U.S., multi-drug resistance (MDR) mechanisms in Salmonella animal isolates were associated with integrons, or mobile genetic elements (MGEs) such as IncA/C plasmids which can be transferred among bacteria. It is thought that AR Salmonella originates in food animals and is transmitted through food to humans. However, some AR Salmonella isolated from humans in the U.S. have different AR elements than those isolated from food animals, suggesting a different etiology for some AR human infections. The AR mechanisms identified in isolates from outside the U.S. are also predominantly different. For example the extended spectrum β-lactamases (ESBLs) are found in human and animal isolates globally; however, in the U.S., ESBLs thus far have only been found in human and not food animal isolates. Commensal bacteria in animals including Escherichia coli and Enterococcus spp. may be reservoirs for AR mechanisms. Many of the AR genes and MGEs found in E. coli isolated from U.S. animals are similar to those found in Salmonella. Enterococcus spp. isolated from animals frequently carry MGEs with AR genes, including resistances to aminoglycosides (e.g., alleles of aac, ant, and aph), macrolides [e.g., erm(A), erm(B), and msrC], and tetracyclines [e.g., tet(K), (L), (M), (O), (S)]. Continuing investigations are required to help understand and mitigate the impact of AR bacteria on human and animal health.
Collapse
Affiliation(s)
- Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Agricultural Research Service, U.S. Department of Agriculture Athens, GA, USA
| | | |
Collapse
|
37
|
Etcheverría AI, Padola NL. Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence 2013; 4:366-72. [PMID: 23624795 PMCID: PMC3714128 DOI: 10.4161/viru.24642] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in humans. Outbreaks are linked to bovine food sources. STEC O157:H7 has been responsible for the most severe outbreaks worldwide. However, non-O157 serotypes have emerged as important enteric pathogens in several countries. The main virulence factor of STEC is the production of Shiga toxins 1 and 2. Additional virulence markers are a plasmid-encoded enterohemolysin (ehxA), an autoagglutinating adhesin (Saa), a catalase-peroxidase (katP), an extracellular serine protease (espP), a zinc metalloprotease (stcE), a subtilase cytotoxin (subAB), among others. Other virulence factors are intimin and adhesins that had a roll in the adherence of STEC to bovine colon. This review focuses on the virulence traits of STEC and especially on those related to the adhesion to bovine colon. The known of the interaction between STEC and the bovine host is crucial to develop strategies to control cattle colonization.
Collapse
Affiliation(s)
- Analía Inés Etcheverría
- Laboratorio de Imunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | | |
Collapse
|
38
|
Secondary, profound, sensorineural hearing loss after recovery from haemolytic uraemic syndrome due to enterohaemorrhagic Escherichia coli, and subsequent cochlear implantation, in two Japanese children. The Journal of Laryngology & Otology 2013; 127:306-10. [PMID: 23406716 DOI: 10.1017/s0022215113000145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES To describe two cases of profound hearing loss secondary to enterohaemorrhagic Escherichia coli infection, and to report the efficacy of subsequent cochlear implantation. RESULTS The first case was a four-year-old girl admitted to hospital with Escherichia coli O157 infection and haemolytic uraemic syndrome. Mild hearing loss was confirmed five months after discharge, progressing to profound loss three months later. At the age of seven years, she underwent cochlear implantation, with remarkable improvement in speech perception and production. The second case was a three-year-old boy admitted with haemolytic uraemic syndrome caused by Escherichia coli O111 infection. One year after disease onset, profound hearing loss was confirmed. Cochlear implantation at the age of five years produced significant recovery of auditory function. CONCLUSION This study represents the first published report of secondary hearing loss after recovery from haemolytic uraemic syndrome caused by enterohaemorrhagic Escherichia coli. It indicates that cochlear implantation can restore hearing function in such patients.
Collapse
|
39
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
40
|
Nataro JP, Barry EM. Diarrhea caused by bacteria. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
Abstract
Phage-encoded Shiga toxin (Stx) acts as a bacterial defense against the eukaryotic predator Tetrahymena thermophila. It is unknown how Stx enters Tetrahymena protozoa or how it kills them. Tetrahymena protozoa are phagocytotic; hence, Stx could gain entry to the cytoplasm through the oral apparatus or via endocytosis. We find that Stx2 can kill T. thermophila protozoa that lack an oral apparatus, indicating that Stx2 can enter these cells via endocytosis. As opposed to the lack of effect on mammalian phagocytes, Stx2 produced by bacteria encapsulated within phagocytotic vesicles is also capable of killing Tetrahymena. Addition of an excess of the carbohydrate binding subunits of Stx2 (StxB) and/or ricin (ricin B) blocks Stx2 cytotoxicity. Thus, regardless of whether Stx2 enters the cytoplasm by endocytosis or from the phagocytotic vesicle, this transport is mediated by a putative glycoconjugate receptor. Bacteriophage-mediated lysis of Stx-encoding bacteria is necessary for Stx toxicity in Tetrahymena; i.e., toxin released as a consequence of digestion of bacteria by Tetrahymena is harmless to the cell. This finding provides a rationale as to why the genes encoding Stx are found almost exclusively on bacteriophages; Stx must be released from the bacteria prior to the digestion of the cell, or it will not be able to exert its cytotoxic effect. It also suggests a reason why other bacterial exotoxins are also found only on temperate bacteriophages. Incubation of Tetrahymena with purified Stx2 decreases total protein synthesis. This finding indicates that, similar to mammalian cells, Stx2 kills Tetrahymena by inactivating its ribosomes. Tetrahymena is a bacterial predator and a model for mammalian phagocytosis and intracellular vesicular trafficking. Phage-encoded exotoxins apparently have evolved for the purpose of bacterial antipredator defense. These exotoxins kill mammalian cells by inactivating universally conserved factors and/or pathways. Tetrahymena and susceptible mammalian cells are killed when exposed to bacteriophage-encoded Shiga toxin (Stx). Stx toxicity in mammalian cells requires Stx binding to the globotriaosyl ceramide (Gb3) receptor, followed by receptor-mediated endocytosis (RME). We show that, similar to mammalian cells, internalized Stx inhibits protein synthesis in Tetrahymena. Although Tetrahymena lacks Gb3, our results suggest that the cytotoxic effect of Stx on Tetrahymena is apparently mediated by a receptor, thereby arguing for the existence of RME in Tetrahymena. As opposed to the case with mammalian phagocytes, Stx produced by bacteria inside Tetrahymena is cytotoxic, suggesting that these cells may represent a “missing link” between unicellular eukaryotic bacterial predators and phagocytotic mammalian cells.
Collapse
|
42
|
van Hattum H, van der Zwaluw K, Visser GM, van Putten J, Ruijtenbeek R, Pieters RJ. Functional assay for shiga-like toxin via detection by antibody capture and multivalent galabiose binding. Bioorg Med Chem Lett 2012; 22:7448-50. [DOI: 10.1016/j.bmcl.2012.10.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
|
43
|
Reyes AG, Anné J, Mejía A. Ribosome-inactivating proteins with an emphasis on bacterial RIPs and their potential medical applications. Future Microbiol 2012; 7:705-17. [PMID: 22702525 DOI: 10.2217/fmb.12.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ribosome-inactivating proteins (RIPs) are toxic due to their N-glycosidase activity catalyzing depurination at the universally conserved α-sarcin loop of the 60S ribosomal subunit. In addition, RIPs have been shown to also have other enzymatic activities, including polynucleotide:adenosine glycosidase activity. RIPs are mainly produced by different plant species, but are additionally found in a number of bacteria, fungi, algae and some mammalian tissues. This review describes the occurrence of RIPs, with special emphasis on bacterial RIPs, including the Shiga toxin and RIP in Streptomyces coelicolor recently identified in S. coelicolor. The properties of RIPs, such as enzymatic activity and targeting specificity, and how their unique biological activity could be potentially turned into medical or agricultural tools to combat tumors, viruses and fungi, are highlighted.
Collapse
Affiliation(s)
- Ana G Reyes
- Departamento de Biotecnología, División de Ciencias Biológicas & de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | | | | |
Collapse
|
44
|
Mallick EM, McBee ME, Vanguri VK, Melton-Celsa AR, Schlieper K, Karalius BJ, O'Brien AD, Butterton JR, Leong JM, Schauer DB. A novel murine infection model for Shiga toxin-producing Escherichia coli. J Clin Invest 2012; 122:4012-24. [PMID: 23041631 DOI: 10.1172/jci62746] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 08/09/2012] [Indexed: 01/10/2023] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is an important subset of Shiga toxin-producing (Stx-producing) E. coli (STEC), pathogens that have been implicated in outbreaks of food-borne illness and can cause intestinal and systemic disease, including severe renal damage. Upon attachment to intestinal epithelium, EHEC generates "attaching and effacing" (AE) lesions characterized by intimate attachment and actin rearrangement upon host cell binding. Stx produced in the gut transverses the intestinal epithelium, causing vascular damage that leads to systemic disease. Models of EHEC infection in conventional mice do not manifest key features of disease, such as AE lesions, intestinal damage, and systemic illness. In order to develop an infection model that better reflects the pathogenesis of this subset of STEC, we constructed an Stx-producing strain of Citrobacter rodentium, a murine AE pathogen that otherwise lacks Stx. Mice infected with Stx-producing C. rodentium developed AE lesions on the intestinal epithelium and Stx-dependent intestinal inflammatory damage. Further, the mice experienced lethal infection characterized by histopathological and functional kidney damage. The development of a murine model that encompasses AE lesion formation and Stx-mediated tissue damage will provide a new platform upon which to identify EHEC alterations of host epithelium that contribute to systemic disease.
Collapse
Affiliation(s)
- Emily M Mallick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Nguyen Y, Sperandio V. Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol 2012; 2:90. [PMID: 22919681 PMCID: PMC3417627 DOI: 10.3389/fcimb.2012.00090] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 06/15/2012] [Indexed: 11/13/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a human pathogen responsible for outbreaks of bloody diarrhea and hemolytic uremic syndrome (HUS) worldwide. Conventional antimicrobials trigger an SOS response in EHEC that promotes the release of the potent Shiga toxin that is responsible for much of the morbidity and mortality associated with EHEC infection. Cattle are a natural reservoir of EHEC, and approximately 75% of EHEC outbreaks are linked to the consumption of contaminated bovine-derived products. This review will discuss how EHEC causes disease in humans but is asymptomatic in adult ruminants. It will also analyze factors utilized by EHEC as it travels through the bovine gastrointestinal (GI) tract that allow for its survival through the acidic environment of the distal stomachs, and for its ultimate colonization in the recto-anal junction (RAJ). Understanding the factors crucial for EHEC survival and colonization in cattle will aid in the development of alternative strategies to prevent EHEC shedding into the environment and consequent human infection.
Collapse
Affiliation(s)
- Y Nguyen
- Department of Microbiology, The University of Texas Southwestern Medical Center Dallas, TX, USA
| | | |
Collapse
|
46
|
Polifroni R, Etcheverría AI, Sanz ME, Cepeda RE, Krüger A, Lucchesi PMA, Fernández D, Parma AE, Padola NL. Molecular characterization of Shiga toxin-producing Escherichia coli isolated from the environment of a dairy farm. Curr Microbiol 2012; 65:337-43. [PMID: 22706777 DOI: 10.1007/s00284-012-0161-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/19/2012] [Indexed: 11/30/2022]
Abstract
Environmental samples were taken from ground, cattle water troughs, and feeders from a dairy farm with different STEC prevalence between animal categories (weaning calves, rearing calves, and dairy cows). Overall, 23 % of samples were positive for stx genes, stx(2) being the most prevalent type. Isolates were analyzed by PCR monoplex to confirm generic E. coli and by two multiplex PCR to investigate the presence of stx(1), stx(2), eae, saa, ehxA, and other putative virulence genes encoded in STEC plasmids: katP, espP, subA, and stcE. The toxin genes were subtyped and the strains were serotyped. The ground and the environment of the rearing calves were the sites with the highest number of STEC-positive samples; however, cattle water troughs and the environment of cows were the places with the greater chance of finding stx(2EDL933) which is a subtype associated with serious disease in humans. Several non-O157 STEC serotypes were detected. The serotypes O8:H19; O26:H11; O26:H-; O118:H2; O141:H-; and O145:H- have been asociated with human illness. Furthermore, the emergent pathogen STEC O157:H- (stx(1)-ehxA-eae) was detected in the environment of the weaning calves. These results emphasize the risk that represents the environment as source of STEC, a potential pathogen for human and suggest the importance of developing control methods designed to prevent contaminations of food products and transmission from animal to person.
Collapse
Affiliation(s)
- Rosana Polifroni
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Dpto. SAMP, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Activation of p53/ATM-dependent DNA damage signaling pathway by shiga toxin in mammalian cells. Microb Pathog 2012; 52:311-7. [DOI: 10.1016/j.micpath.2012.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/20/2012] [Accepted: 02/23/2012] [Indexed: 11/17/2022]
|
48
|
Lumor SE, Fredrickson NR, Ronningen I, Deen BD, Smith K, Diez-Gonzalez F, Labuza TP. Comparison of the presence of Shiga toxin 1 in food matrices as determined by an enzyme-linked immunosorbent assay and a biological activity assay. J Food Prot 2012; 75:1036-42. [PMID: 22691470 DOI: 10.4315/0362-028x.jfp-11-372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was conducted to compare the identification of Shiga toxin 1 (Stx1) based on its specific biological activity and based on results of a commercial enzyme-linked immunosorbent assay (ELISA) kit. Stx1 was thermally treated for various periods in phosphate-buffered saline, milk, and orange juice. The residual Stx1 concentration was determined with the commercial ELISA kit, and its residual enzymatic activity (amount of adenine released from a 2,551-bp DNA substrate) was determined with a biological activity assay (BAA). Regression analysis indicated that the inactivation of Stx1 as a function of time followed first-order kinetics. The half-lives determined at 60, 65, 70, 75, 80, and 85°C were 9.96, 3.19, 2.67, 0.72, 0.47, and 0.29 min, respectively, using the BAA. The half-lives determined by the ELISA with thermal treatments at 70, 75, 80, and 85°C were 40.47, 11.03, 3.64, and 1.40 min, respectively. The Z, Q(10), and Arrhenius activation energy values derived by both assays were dissimilar, indicating that the rate of inactivation of the active site of Stx1 was less sensitive to temperature change than was denaturation of the epitope(s) used in the ELISA. These values were 10.28°C and 9.40 and 54.70 kcal/mol, respectively, with the ELISA and 16°C and 4.11 and 34 kcal/mol, respectively, with the BAA. Orange juice enhanced Stx1 inactivation as a function of increasing temperature, whereas inactivation in 2% milk was not very much different from that in phosphate-buffered saline. Our investigation indicates that the ELISA would be a reliable method for detecting the residual toxicity of heat-treated Stx1 because the half-lives determined with the ELISA were greater than those determined with the BAA (faster degradation) at all temperatures and were highly correlated (R(2) = 0.994) with those determined with the BAA.
Collapse
Affiliation(s)
- Stephen E Lumor
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, Saint Paul, Minnesota 55108, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Lysogeny with Shiga toxin 2-encoding bacteriophages represses type III secretion in enterohemorrhagic Escherichia coli. PLoS Pathog 2012; 8:e1002672. [PMID: 22615557 PMCID: PMC3355084 DOI: 10.1371/journal.ppat.1002672] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 03/13/2012] [Indexed: 12/22/2022] Open
Abstract
Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. Many significant infectious diseases that impact human health evolve in animal hosts. Our work focuses on infections caused by strains of enterohemorrhagic Escherichia coli (EHEC) that cause bloody diarrhoea and life threatening kidney and brain damage in humans as an incidental host, while ruminants are a reservoir host. EHEC strains are infected with bacteriophages that can integrate their genetic material into the bacterial chromosome. This includes genes for the production of Shiga toxins (Stx) that are responsible for the severe pathology in humans. It has been demonstrated that certain EHEC strains are more likely to be associated with human disease and ‘supershedding’ animals. The current study has shown that these EHEC strains are more likely to contain two related Stx bacteriophages, rather than one, and that the intercalating bacteriophages take control of the bacterial type III secretion system that is essential for ruminant colonization. We propose that this regulation favours co-acquisition of other genetic regions that encode type III-secreted proteins and regulators that can overcome this control. This finding helps our understanding of EHEC strain evolution and indicates that selection of more toxic strains may be occurring in the ruminant host with important implications for human health.
Collapse
|
50
|
Abstract
The potential for biological weapons to be used in terrorism is a real possibility. Biological weapons include infectious agents and toxins. Toxins are poisons produced by living organisms. Toxins relevant to bioterrorism include ricin, botulinum, Clostridium perfrigens epsilson toxin, conotoxins, shigatoxins, saxitoxins, tetrodotoxins, mycotoxins, and nicotine. Toxins have properties of biological and chemical weapons. Unlike pathogens, toxins do not produce an infection. Ricin causes multiorgan toxicity by blocking protein synthesis. Botulinum blocks acetylcholine in the peripheral nervous system leading to muscle paralysis. Epsilon toxin damages cell membranes. Conotoxins block potassium and sodium channels in neurons. Shigatoxins inhibit protein synthesis and induce apoptosis. Saxitoxin and tetrodotoxin inhibit sodium channels in neurons. Mycotoxins include aflatoxins and trichothecenes. Aflatoxins are carcinogens. Trichothecenes inhibit protein and nucleic acid synthesis. Nicotine produces numerous nicotinic effects in the nervous system.
Collapse
Affiliation(s)
- Peter D. Anderson
- Forensic Pharmacologist, Private Practice, Adjunct Associate Professor of Pharmacy Practice, University of Rhode Island, Randolph, MA, USA
| |
Collapse
|