1
|
Melo PA, Nogueira-Souza PD, Romanelli MA, Strauch MA, Cesar MDO, Monteiro-Machado M, Patrão-Neto FC, Gonsalez SR, Siqueira NG, Schaeffer E, Costa PRR, da Silva AJM. Plant-Derived Lapachol Analogs as Selective Metalloprotease Inhibitors Against Bothrops Venom: A Review. Int J Mol Sci 2025; 26:3950. [PMID: 40362190 PMCID: PMC12071312 DOI: 10.3390/ijms26093950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Plant compounds that inhibit snake venom activities are relevant and can provide active molecules to counteract snake venom effects. Numerous studies on snake viperid venoms found that metalloproteinases play a significant role in the pathophysiology of hemorrhage that occurs on envenomation. Preclinical studies using vitro and in vivo protocols investigated natural compounds and viperid snake venoms, evaluating the enzymatic, procoagulant, hemorrhagic, edematogenic, myotoxic, and lethal activities. Many studies focused on Bothrops venoms and ascribed that angiorrhexis and hemorrhage resulted from the metalloproteinase action on collagen in the basal lamina. This effect resulted in a combined action with phospholipase A2 and hyaluronidase, inducing hemorrhage, edema, and necrosis. Due to the lack of efficient antivenoms in remote areas, traditional native plant treatments remain common, especially in the Amazon. Our group studied plant extracts, isolated compounds, and lapachol synthetic derivative analogs with selective inhibition for Bothrops venom proteolytic and hemorrhagic activity and devoid of phospholipase activity. We highlight those new synthetic naphthoquinones which inhibit snake venom metalloproteinases and that are devoid of other venom enzyme inhibition. This review shows the potential use of snake venom effects, mainly Bothrops venom metalloproteinase activity, as a tool to identify and develop new active molecules against hemorrhagic effects.
Collapse
Affiliation(s)
- Paulo A. Melo
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Pâmella Dourila Nogueira-Souza
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Mayara Amorim Romanelli
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Marcelo A. Strauch
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil;
| | - Marcelo de Oliveira Cesar
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
- Instituto Vital Brazil, Niterói 24230-410, Brazil
| | - Marcos Monteiro-Machado
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Fernando Chagas Patrão-Neto
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Sabrina R. Gonsalez
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro 21941-901, Brazil;
| | - Nilton Ghiotti Siqueira
- Centro de Ciências da Saúde e do Desporto, Universidade Federal do Acre, Rio Branco 69920-900, Brazil;
| | - Edgar Schaeffer
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (E.S.); (P.R.R.C.); (A.J.M.d.S.)
| | - Paulo R. R. Costa
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (E.S.); (P.R.R.C.); (A.J.M.d.S.)
| | - Alcides J. M. da Silva
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (E.S.); (P.R.R.C.); (A.J.M.d.S.)
| |
Collapse
|
2
|
Ferraz KF, De Lucca Caetano LH, Orefice DP, Calabria PAL, Della-Casa MS, Freitas-de-Sousa LA, Beraldo-Neto E, Sanabani SS, Magalhães GS, Clissa PB. Bicistronic Vector Expression of Recombinant Jararhagin-C and Its Effects on Endothelial Cells. Toxins (Basel) 2024; 16:524. [PMID: 39728782 PMCID: PMC11728617 DOI: 10.3390/toxins16120524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Jararhagin-C (JarC) is a protein from the venom of Bothrops jararaca consisting of disintegrin-like and cysteine-rich domains. JarC shows a modulating effect on angiogenesis and remodeling of extracellular matrix constituents, improving wound healing in a mouse experimental model. JarC is purified from crude venom, and the yield is less than 1%. The aim of this work was to obtain the recombinant form of JarC and to test its biological activity. For this purpose, the bicistronic vector pSUMOUlp1 was used. This vector allowed the expression of the recombinant toxin JarC (rJarC) in fusion with the small ubiquitin-related modifier (SUMO) as well as the SUMO protease Ulp1. After expression, this protease was able to efficiently remove SUMO from rJarC inside the bacteria. rJarC free from SUMO was purified at the expected molecular mass and recognized by polyclonal anti-jararhagin antibodies. In terms of biological activity, both the native and recombinant forms showed no toxicity to the HUVEC cell line CRL1730 and were effective in modulating cell migration activity in the experimental in vitro model. These results demonstrate the successful production of rJarC and the preservation of its biological activity, which may facilitate further investigations into the therapeutic potential of this snake venom-derived protein.
Collapse
Affiliation(s)
- Karla Fernanda Ferraz
- Immunopathology Laboratory, Butantan Institute, São Paulo 05585-090, Brazil; (K.F.F.)
| | | | | | | | | | | | | | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, Sao Paulo 05508-220, Brazil
| | | | | |
Collapse
|
3
|
Vivas-Ruiz DE, Rosas P, Proleón A, Torrejón D, Lazo F, Tenorio-Ricca AB, Guajardo F, Almarza C, Andrades V, Astorga J, Oropesa D, Toledo J, Vera MJ, Martínez J, Araya-Maturana R, Dubois-Camacho K, Hermoso MA, Alvarenga VG, Sanchez EF, Yarlequé A, Oliveira LS, Urra FA. Pictolysin-III, a Hemorrhagic Type-III Metalloproteinase Isolated from Bothrops pictus (Serpentes: Viperidae) Venom, Reduces Mitochondrial Respiration and Induces Cytokine Secretion in Epithelial and Stromal Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15051533. [PMID: 37242775 DOI: 10.3390/pharmaceutics15051533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
From the venom of the Bothrops pictus snake, an endemic species from Peru, we recently have described toxins that inhibited platelet aggregation and cancer cell migration. In this work, we characterize a novel P-III class snake venom metalloproteinase, called pictolysin-III (Pic-III). It is a 62 kDa proteinase that hydrolyzes dimethyl casein, azocasein, gelatin, fibrinogen, and fibrin. The cations Mg2+ and Ca2+ enhanced its enzymatic activity, whereas Zn2+ inhibited it. In addition, EDTA and marimastat were also effective inhibitors. The amino acid sequence deduced from cDNA shows a multidomain structure that includes a proprotein, metalloproteinase, disintegrin-like, and cysteine-rich domains. Additionally, Pic-III reduces the convulxin- and thrombin-stimulated platelet aggregation and in vivo, it has hemorrhagic activity (DHM = 0.3 µg). In epithelial cell lines (MDA-MB-231 and Caco-2) and RMF-621 fibroblast, it triggers morphological changes that are accompanied by a decrease in mitochondrial respiration, glycolysis, and ATP levels, and an increase in NAD(P)H, mitochondrial ROS, and cytokine secretion. Moreover, Pic-III sensitizes to the cytotoxic BH3 mimetic drug ABT-199 (Venetoclax) in MDA-MB-231 cells. To our knowledge, Pic-III is the first SVMP reported with action on mitochondrial bioenergetics and may offer novel opportunities for promising lead compounds that inhibit platelet aggregation or ECM-cancer-cell interactions.
Collapse
Affiliation(s)
- Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
| | - Paola Rosas
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Alex Proleón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
| | - Fanny Lazo
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
| | - Ana Belén Tenorio-Ricca
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Francisco Guajardo
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Cristopher Almarza
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Víctor Andrades
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Jessica Astorga
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Daniel Oropesa
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Jorge Toledo
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - María Jesús Vera
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Laboratorio de Biología Celular, INTA, University of Chile, Santiago 7810000, Chile
| | - Jorge Martínez
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Laboratorio de Biología Celular, INTA, University of Chile, Santiago 7810000, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| | - Karen Dubois-Camacho
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Marcela A Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 7810000, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Valéria G Alvarenga
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Eladio Flores Sanchez
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima Cercado, Lima 15081, Peru
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Luciana Souza Oliveira
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte 30510-010, Brazil
| | - Félix A Urra
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca 3460000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| |
Collapse
|
4
|
de Souza JF, Santana MVDS, da Silva ACR, Donza MRH, Ferreira VF, Ferreira SB, Sanchez EF, Castro HC, Fuly AL. Study on the synthesis and structure-activity relationship of 1,2,3-triazoles against toxic activities of Bothrops jararaca venom. Z NATURFORSCH C 2022; 77:459-471. [PMID: 35767726 DOI: 10.1515/znc-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
Snakebite envenoming is a health concern and has been a neglected tropical disease since 2017, according to the World Health Organization. In this study, we evaluated the ability of ten 1,2,3-triazole derivatives AM001 to AM010 to inhibit pertinent in vitro (coagulant, hemolytic, and proteolytic) and in vivo (hemorrhagic, edematogenic, and lethal) activities of Bothrops jararaca venom. The derivatives were synthesized, and had their molecular structures fully characterized by CHN element analysis, Fourier-transform infrared spectroscopy and Nuclear magnetic resonance. The derivatives were incubated with the B. jararaca venom (incubation protocol) or administered before (prevention protocol) or after (treatment protocol) the injection of B. jararaca venom into the animals. Briefly, the derivatives were able to inhibit the main toxic effects triggered by B. jararaca venom, though with varying efficacies, and they were devoid of toxicity through in vivo, in silico or in vitro analyses. However, it seemed that the derivatives AM006 or AM010 inhibited more efficiently hemorrhage or lethality, respectively. The derivatives were nontoxic. Therefore, the 1,2,3-triazole derivatives may be useful as an adjuvant to more efficiently treat the local toxic effects caused by B. jararaca envenoming.
Collapse
Affiliation(s)
- Jenifer Frouche de Souza
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Ana Cláudia Rodrigues da Silva
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| | | | - Vitor Francisco Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Federal Fluminense University, Niterói, RJ, Brazil
| | - Sabrina Baptista Ferreira
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, RJ, RJ, Brazil
| | - Eladio Flores Sanchez
- Laboratory of Biochemistry of Proteins from Animal Venoms, Research and Development Center, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Helena Carla Castro
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Post-Graduate Program in Pathology, University Hospital Antônio Pedro, Federal Fluminense University, Niterói, RJ, Brazil
| | - André Lopes Fuly
- Post-Graduate Program in Science and Biotechnology, Institute of Biology, Federal Fluminense University, Niterói, RJ, Brazil.,Department of Molecular and Cellular Biology, Federal Fluminense University, Niterói, RJ, Brazil
| |
Collapse
|
5
|
Genomic Confirmation of the P-IIIe Subclass of Snake Venom Metalloproteinases and Characterisation of Its First Member, a Disintegrin-Like/Cysteine-Rich Protein. Toxins (Basel) 2022; 14:toxins14040232. [PMID: 35448841 PMCID: PMC9028321 DOI: 10.3390/toxins14040232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
Disintegrin-like/cysteine-rich (DC) proteins have long been regarded just as products of proteolysis of P-III snake venom metalloproteinases (SVMPs). However, here we demonstrate that a DC protein from the venom of Vipera ammodytes (Vaa; nose-horned viper), VaaMPIII-3, is encoded per se by a P-III SVMP-like gene that has a deletion in the region of the catalytic metalloproteinase domain and in part of the non-catalytic disintegrin-like domain. In this way, we justify the proposal of the introduction of a new subclass P-IIIe of SVMP-derived DC proteins. We purified VaaMPIII-3 from the venom of Vaa in a series of chromatographic steps. A covalent chromatography step based on thiol-disulphide exchange revealed that VaaMPIII-3 contains an unpaired Cys residue. This was demonstrated to be Cys6 in about 90% and Cys19 in about 10% of the VaaMPIII-3 molecules. We further constructed a three-dimensional homology model of VaaMPIII-3. From this model, it is evident that both Cys6 and Cys19 can pair with Cys26, which suggests that the intramolecular thiol-disulphide exchange has a regulatory function. VaaMPIII-3 is an acidic 21-kDa monomeric glycoprotein that exists in at least six N-glycoforms, with isoelectric points ranging from pH 4.5 to 5.1. Consistent with the presence of an integrin-binding motif in its sequence, SECD, VaaMPIII-3 inhibited collagen-induced platelet aggregation. It also inhibited ADP- and arachidonic-acid-induced platelet aggregation, but not ristocetin-induced platelet agglutination and the blood coagulation cascade.
Collapse
|
6
|
Coelho GR, da Silva DL, Beraldo-Neto E, Vigerelli H, de Oliveira LA, Sciani JM, Pimenta DC. Neglected Venomous Animals and Toxins: Underrated Biotechnological Tools in Drug Development. Toxins (Basel) 2021; 13:toxins13120851. [PMID: 34941689 PMCID: PMC8708286 DOI: 10.3390/toxins13120851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Among the vast repertoire of animal toxins and venoms selected by nature and evolution, mankind opted to devote its scientific attention—during the last century—to a restricted group of animals, leaving a myriad of toxic creatures aside. There are several underlying and justifiable reasons for this, which include dealing with the public health problems caused by envenoming by such animals. However, these studies became saturated and gave rise to a whole group of animals that become neglected regarding their venoms and secretions. This repertoire of unexplored toxins and venoms bears biotechnological potential, including the development of new technologies, therapeutic agents and diagnostic tools and must, therefore, be assessed. In this review, we will approach such topics through an interconnected historical and scientific perspective that will bring up the major discoveries and innovations in toxinology, achieved by researchers from the Butantan Institute and others, and describe some of the major research outcomes from the study of these neglected animals.
Collapse
Affiliation(s)
- Guilherme Rabelo Coelho
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
| | - Daiane Laise da Silva
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
| | - Emidio Beraldo-Neto
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
| | - Hugo Vigerelli
- Laboratório de Genética, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Laudiceia Alves de Oliveira
- Laboratório de Moléstias Infecciosas—Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), São Paulo 01049-010, Brazil;
| | - Juliana Mozer Sciani
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, Bragança Paulista 12916-900, Brazil;
| | - Daniel Carvalho Pimenta
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
- Correspondence:
| |
Collapse
|
7
|
Andrade-Silva D, Zelanis A, Travaglia-Cardoso SR, Nishiyama MY, Serrano SMT. Venom Profiling of the Insular Species Bothrops alcatraz: Characterization of Proteome, Glycoproteome, and N-Terminome Using Terminal Amine Isotopic Labeling of Substrates. J Proteome Res 2021; 20:1341-1358. [PMID: 33404253 DOI: 10.1021/acs.jproteome.0c00737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bothrops alcatraz, a species endemic to Alcatrazes Islands, is regarded as critically endangered due to its small area of occurrence and the declining quality of its habitat. We recently reported the identification of N-glycans attached to toxins of Bothrops species, showing similar compositions in venoms of the B. jararaca complex (B. jararaca, B. insularis, and B. alcatraz). Here, we characterized B. alcatraz venom using electrophoretic, proteomic, and glycoproteomic approaches. Electrophoresis showed that B. alcatraz venom differs from B. jararaca and B. insularis; however, N-glycan removal revealed similarities between them, indicating that the occupation of N-glycosylation sites contributes to interspecies variability in the B. jararaca complex. Metalloproteinase was the major toxin class identified in the B. alcatraz venom proteome followed by serine proteinase and C-type lectin, and overall, the adult B. alcatraz venom resembles that of B. jararaca juvenile specimens. The comparative glycoproteomic analysis of B. alcatraz venom with B. jararaca and B. insularis indicated that there may be differences in the utilization of N-glycosylation motifs among their different toxin classes. Furthermore, we prospected for the first time the N-terminome of a snake venom using the terminal amine isotopic labeling of substrates (TAILS) approach and report the presence of ∼30% of N-termini corresponding to truncated toxin forms and ∼37% N-terminal sequences blocked by pyroglutamic acid in B. alcatraz venom. These findings underscore a low correlation between venom gland transcriptomes and proteomes and support the view that post-translational processes play a major role in shaping venom phenotypes.
Collapse
Affiliation(s)
- Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos 12231-280, SP, Brazil
| | | | - Milton Y Nishiyama
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil
| |
Collapse
|
8
|
Oliveira LS, Estevão-Costa MI, Alvarenga VG, Vivas-Ruiz DE, Yarleque A, Lima AM, Cavaco A, Eble JA, Sanchez EF. Atroxlysin-III, A Metalloproteinase from the Venom of the Peruvian Pit Viper Snake Bothrops atrox (Jergón) Induces Glycoprotein VI Shedding and Impairs Platelet Function. Molecules 2019; 24:molecules24193489. [PMID: 31561469 PMCID: PMC6803841 DOI: 10.3390/molecules24193489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
Atroxlysin-III (Atr-III) was purified from the venom of Bothrops atrox. This 56-kDa protein bears N-linked glycoconjugates and is a P-III hemorrhagic metalloproteinase. Its cDNA-deduced amino acid sequence reveals a multidomain structure including a proprotein, a metalloproteinase, a disintegrin-like and a cysteine-rich domain. Its identity with bothropasin and jararhagin from Bothrops jararaca is 97% and 95%, respectively. Its enzymatic activity is metal ion-dependent. The divalent cations, Mg2+ and Ca2+, enhance its activity, whereas excess Zn2+ inhibits it. Chemical modification of the Zn2+-complexing histidine residues within the active site by using diethylpyrocarbonate (DEPC) inactivates it. Atr-III degrades plasma fibronectin, type I-collagen, and mainly the α-chains of fibrinogen and fibrin. The von Willebrand factor (vWF) A1-domain, which harbors the binding site for GPIb, is not hydrolyzed. Platelets interact with collagen via receptors for collagen, glycoprotein VI (GPVI), and α2β1 integrin. Neither the α2β1 integrin nor its collagen-binding A-domain is fragmented by Atr-III. In contrast, Atr-III cleaves glycoprotein VI (GPVI) into a soluble ~55-kDa fragment (sGPVI). Thereby, it inhibits aggregation of platelets which had been stimulated by convulxin, a GPVI agonist. Selectively, Atr-III targets GPVI antagonistically and thus contributes to the antithrombotic effect of envenomation by Bothrops atrox.
Collapse
Affiliation(s)
- Luciana S Oliveira
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil.
| | - Maria Inácia Estevão-Costa
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Valéria G Alvarenga
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil.
| | - Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular-Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima 14-0576, Peru.
| | - Armando Yarleque
- Laboratorio de Biología Molecular-Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 01, Lima 14-0576, Peru.
| | - Augusto Martins Lima
- Laboratory of Hemodynamics and Cardiovascular Technology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | - Ana Cavaco
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Eladio F Sanchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
Van de Velde AC, Gay CC, Moritz MNDO, Dos Santos PK, Bustillo S, Rodríguez JP, Acosta OC, Biscoglio MJ, Selistre-de-Araujo HS, Leiva LC. Purification of a fragment obtained by autolysis of a PIIIb-SVMP from Bothrops alternatus venom. Int J Biol Macromol 2018; 113:205-211. [PMID: 29471097 DOI: 10.1016/j.ijbiomac.2018.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/07/2017] [Accepted: 02/11/2018] [Indexed: 11/17/2022]
Affiliation(s)
- Andrea Carolina Van de Velde
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Claudia Carolina Gay
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina.
| | | | | | - Soledad Bustillo
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Juan Pablo Rodríguez
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| | - Ofelia Cristina Acosta
- Laboratorio de Farmacología, Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes, Argentina
| | | | | | - Laura Cristina Leiva
- Laboratorio de Investigación en Proteínas, Instituto de Química Básica y Aplicada del Nordeste Argentino (UNNE-CONICET), Corrientes, Argentina
| |
Collapse
|
10
|
A New Platelet-Aggregation-Inhibiting Factor Isolated from Bothrops moojeni Snake Venom. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4315832. [PMID: 29226136 PMCID: PMC5687129 DOI: 10.1155/2017/4315832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/12/2017] [Accepted: 09/24/2017] [Indexed: 11/29/2022]
Abstract
This work reports the purification and functional characterization of BmooPAi, a platelet-aggregation-inhibiting factor from Bothrops moojeni snake venom. The toxin was purified by a combination of three chromatographic steps (ion-exchange on DEAE-Sephacel, molecular exclusion on Sephadex G-75, and affinity chromatography on HiTrap™ Heparin HP). BmooPAi was found to be a single-chain protein with an apparent molecular mass of 32 kDa on 14% SDS-PAGE, under reducing conditions. Sequencing of BmooPAi by Edman degradation revealed the amino acid sequence LGPDIVPPNELLEVM. The toxin was devoid of proteolytic, haemorrhagic, defibrinating, or coagulant activities and induced no significant oedema or hyperalgesia. BmooPAi showed a rather specific inhibitory effect on ristocetin-induced platelet aggregation in human platelet-rich plasma, whereas it had little or no effect on platelet aggregation induced by collagen and adenosine diphosphate. The results presented in this work suggest that BmooPAi is a toxin comprised of disintegrin-like and cysteine-rich domains, originating from autolysis/proteolysis of PIII SVMPs from B. moojeni snake venom. This toxin may be of medical interest because it is a platelet aggregation inhibitor, which could potentially be developed as a novel therapeutic agent to prevent and/or treat patients with thrombotic disorders.
Collapse
|
11
|
Silva CCF, Menezes MC, Palomino M, Oliveira AK, Iwai LK, Faria M, Portaro FV. Peptides derived from plasma proteins released by bothropasin, a metalloprotease present in the Bothrops jararaca venom. Toxicon 2017; 137:65-72. [PMID: 28690013 DOI: 10.1016/j.toxicon.2017.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
Viperid snake venoms contain proteases that affect hemostasis by degrading important proteins such as those that participate in the coagulation cascade. The Bothrops jararaca venom presents as its main components metallo and serine proteases, which comprise around 65% of the venom composition. Bothropasin is a hemorrhagic metalloprotease from the B. jararaca venom which causes disruption of the basement membrane of the vascular endothelium, resulting in bleeding. Although the bothropasin ability to degrade plasmatic and extracellular matrix proteins in vitro has been described, the primary sequence of the released peptides is unknown. This research study presents the peptide identification from both fibrinogen and fibronectin, generated by bothropasin proteolytic activity. Among the fibrinogen derived peptides identified by mass spectrometry, analogous of endogenous products like the fibrinopeptides A and B were found, as well as other sequences described in the literature with vasoactive or antiangiogenic properties. A series of peptides derived from fibronectin by the action of bothropasin were described, and for most of them no biological activity has been described. However, exceptionally a peptide that is known as a bond site for B cells was found. This study indicates that, beyond to the degradation of human proteins, bothropasin can generate bioactive peptides, which may participate in the envenoming process by Bothrops snakes. Also important, the knowledge of the formed peptides, based on the cleavage sites of the hydrolyzed proteins, provided the opportunity to study the primary specificity of bothropasin.
Collapse
Affiliation(s)
| | - Milene Cristina Menezes
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Miryam Palomino
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Ana Karina Oliveira
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Leo Kei Iwai
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Marcella Faria
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | | |
Collapse
|
12
|
Andrade-Silva D, Zelanis A, Kitano ES, Junqueira-de-Azevedo ILM, Reis MS, Lopes AS, Serrano SMT. Proteomic and Glycoproteomic Profilings Reveal That Post-translational Modifications of Toxins Contribute to Venom Phenotype in Snakes. J Proteome Res 2016; 15:2658-75. [DOI: 10.1021/acs.jproteome.6b00217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Débora Andrade-Silva
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| | - André Zelanis
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
- Instituto de Ciência
e Tecnologia, Universidade Federal de São Paulo (ICT-UNIFESP), São José dos Campos 12231-280, Brazil
| | - Eduardo S. Kitano
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| | - Inácio L. M. Junqueira-de-Azevedo
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| | - Marcelo S. Reis
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| | - Aline S. Lopes
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
- Departamento
de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema 04021-001, Brazil
| | - Solange M. T. Serrano
- Laboratório
Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-000, Brazil
| |
Collapse
|
13
|
Recombinant expression of the precursor of the hemorrhagic metalloproteinase HF3 and its non-catalytic domains using a cell-free synthesis system. Amino Acids 2016; 48:2205-14. [PMID: 27209197 DOI: 10.1007/s00726-016-2255-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
Snake venom metalloproteinases (SVMPs) participate in snakebite pathology such as hemorrhage, inflammation, and necrosis. They are synthesized as latent multi-domain precursors whose processing generates either catalytically active enzymes or free non-enzymatic domains. Recombinant expression of the precursor of P-III class SVMPs has failed due to the instability of the multi-domain polypeptide structure. Conversely, functional recombinant non-catalytic domains were obtained by prokaryotic expression systems. Here, we show for the first time the recombinant expression of the precursor of HF3, a highly hemorrhagic SVMP from Bothrops jararaca, and its non-catalytic domains, using an E. coli-based cell-free synthesis system. The precursor of HF3, composed of pro-, metalloproteinase-, disintegrin-like-, and cysteine-rich domains, and containing 38 Cys residues, was successfully expressed and purified. A protein composed of the disintegrin-like and cysteine-rich domains (DC protein) and the cysteine-rich domain alone (C protein) were expressed in vitro individually and purified. Both proteins were shown to be functional in assays monitoring the interaction with matrix proteins and in modulating the cleavage of fibrinogen by HF3. These data indicate that recombinant expression using prokaryotic-based cell-free synthesis emerges as an attractive alternative for the study of the structure and function of multi-domain proteins with a high content of Cys residues.
Collapse
|
14
|
Freitas-de-Sousa L, Amazonas D, Sousa L, Sant'Anna S, Nishiyama M, Serrano S, Junqueira-de-Azevedo I, Chalkidis H, Moura-da-Silva A, Mourão R. Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species. Biochimie 2015; 118:60-70. [DOI: 10.1016/j.biochi.2015.08.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
|
15
|
Bernardoni JL, Sousa LF, Wermelinger LS, Lopes AS, Prezoto BC, Serrano SMT, Zingali RB, Moura-da-Silva AM. Functional variability of snake venom metalloproteinases: adaptive advantages in targeting different prey and implications for human envenomation. PLoS One 2014; 9:e109651. [PMID: 25313513 PMCID: PMC4196926 DOI: 10.1371/journal.pone.0109651] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023] Open
Abstract
Snake venom metalloproteinases (SVMPs) are major components in most viperid venoms that induce disturbances in the hemostatic system and tissues of animals envenomated by snakes. These disturbances are involved in human pathology of snake bites and appear to be essential for the capture and digestion of snake's prey and avoidance of predators. SVMPs are a versatile family of venom toxins acting on different hemostatic targets which are present in venoms in distinct structural forms. However, the reason why a large number of different SVMPs are expressed in some venoms is still unclear. In this study, we evaluated the interference of five isolated SVMPs in blood coagulation of humans, birds and small rodents. P-III class SVMPs (fractions Ic, IIb and IIc) possess gelatinolytic and hemorrhagic activities, and, of these, two also show fibrinolytic activity. P-I class SVMPs (fractions IVa and IVb) are only fibrinolytic. P-III class SVMPs reduced clotting time of human plasma. Fraction IIc was characterized as prothrombin activator and fraction Ic as factor X activator. In the absence of Ca2+, a firm clot was observed in chicken blood samples with fractions Ic, IIb and partially with fraction IIc. In contrast, without Ca2+, only fraction IIc was able to induce a firm clot in rat blood. In conclusion, functionally distinct forms of SVMPs were found in B. neuwiedi venom that affect distinct mechanisms in the coagulation system of humans, birds and small rodents. Distinct SVMPs appear to be more specialized to rat or chicken blood, strengthening the current hypothesis that toxin diversity enhances the possibilities of the snakes for hunting different prey or evading different predators. This functional diversity also impacts the complexity of human envenoming since different hemostatic mechanisms will be targeted by SVMPs accounting for the complexity of the response of humans to venoms.
Collapse
Affiliation(s)
| | - Leijiane F. Sousa
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Luciana S. Wermelinger
- Laboratório de Hemostasia e Venenos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
- Laboratório de Fisiopatologia da Trombose, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
| | - Aline S. Lopes
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), FAPESP, São Paulo, SP, Brazil
| | | | - Solange M. T. Serrano
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, São Paulo, SP, Brazil
- Center of Toxins, Immune-Response and Cell Signaling (CeTICS), FAPESP, São Paulo, SP, Brazil
| | - Russolina B. Zingali
- Laboratório de Hemostasia e Venenos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio do Janeiro, RJ, Brazil
| | | |
Collapse
|
16
|
Serrano SMT, Oliveira AK, Menezes MC, Zelanis A. The proteinase-rich proteome ofBothrops jararacavenom. TOXIN REV 2014. [DOI: 10.3109/15569543.2014.922581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Asega AF, Oliveira AK, Menezes MC, Neves-Ferreira AGC, Serrano SM. Interaction of Bothrops jararaca venom metalloproteinases with protein inhibitors. Toxicon 2014; 80:1-8. [DOI: 10.1016/j.toxicon.2014.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/21/2013] [Accepted: 01/01/2014] [Indexed: 12/14/2022]
|
18
|
Dias GS, Kitano ES, Pagotto AH, Sant’anna SS, Rocha MMT, Zelanis A, Serrano SMT. Individual Variability in the Venom Proteome of Juvenile Bothrops jararaca Specimens. J Proteome Res 2013; 12:4585-98. [DOI: 10.1021/pr4007393] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Gabriela S. Dias
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
| | - Eduardo S. Kitano
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
- Instituto de Química,
Departamento de Bioquímica, Universidade de São Paulo, São Paulo, 05508-070, Brazil
| | - Ana H. Pagotto
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
| | - Sávio S. Sant’anna
- Laboratório
de Herpetologia, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Marisa M. T. Rocha
- Laboratório
de Herpetologia, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - André Zelanis
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
| | - Solange M. T. Serrano
- Laboratório
Especial de Toxinologia Aplicada - CeTICS, Instituto Butantan, São
Paulo, 05503-900, Brazil
| |
Collapse
|
19
|
Torres FS, Rates B, Gomes MTR, Salas CE, Pimenta AMC, Oliveira F, Santoro MM, de Lima ME. Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom. ISRN TOXICOLOGY 2012; 2012:673941. [PMID: 23762636 PMCID: PMC3671731 DOI: 10.5402/2012/673941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/08/2012] [Indexed: 06/02/2023]
Abstract
A new fibrinogenolytic metalloproteinase (Bmoo FIBMP-I) was purified from Bothrops moojeni snake venom. This enzyme was isolated through a combination of three chromatographic steps (ion-exchange, molecular exclusion, and affinity chromatography). Analyses by reverse phase chromatography, followed by mass spectrometry, showed the presence of enzyme isoforms with average molecular mass of 22.8 kDa. The SDS-PAGE analyses showed a single chain of 27.6 kDa, in the presence and absence of reducing agent. The protein has a blocked N-terminal. One of the peptides obtained by enzymatic digestion of a reduced and S-alkylated isoform was completely sequenced by mass spectrometry (MS/MS). Bmoo FIBMP-I showed similarity with hemorrhagic factor and several metalloproteinases (MP). This enzyme degraded Aα-chain faster than the Bβ-chain and did not affect the γ-chain of bovine fibrinogen. The absence of proteolytic activity after treatment with EDTA, together with the observed molecular mass, led us to suggest that Bmoo FIBMP-I is a member of the P-I class of the snake venom MP family. Bmoo FIBMP-I showed pH-dependent proteolytic activity on azocasein, but was devoid of coagulant, defibrinating, or hemorrhagic activities. The kinetic parameters of proteolytic activity in azocasein were determined (V max = 0.4596 Uh(-1)nmol(-1) ± 0.1031 and K m = 14.59 mg/mL ± 4.610).
Collapse
Affiliation(s)
- F. S. Torres
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - B. Rates
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - M. T. R. Gomes
- Laboratório de Biologia Molecular de Produtos Naturais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - C. E. Salas
- Laboratório de Biologia Molecular de Produtos Naturais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - A. M. C. Pimenta
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - F. Oliveira
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - M. M. Santoro
- Laboratório de Físico-Química de Proteínas e Enzimologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - M. E. de Lima
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
20
|
da Silva IRF, Lorenzetti R, Rennó AL, Baldissera L, Zelanis A, Serrano SMDT, Hyslop S. BJ-PI2, A non-hemorrhagic metalloproteinase from Bothrops jararaca snake venom. Biochim Biophys Acta Gen Subj 2012; 1820:1809-21. [DOI: 10.1016/j.bbagen.2012.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/07/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
|
21
|
Magalhães GS, Novo JB, Clissa PB, Della Casa MS, Butera D, da Silva AMM. Engineered mammalian vector to express EGFP-tagged proteins as biomarkers. Mol Biotechnol 2012; 51:119-27. [PMID: 21847674 DOI: 10.1007/s12033-011-9444-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to its specialized post-translational machinery, mammalian cells represent an interesting and not fully explored system to express snake toxins. Therefore, in this work, we built up a new mammalian expression vector that enhances the feasibility to use mammalian cells to express proteins as biomarkers. Among the modifications, an Igκ signal peptide and a 6xHis tag were inserted into this vector in order to drive the protein to the supernatant and simplify its purification, respectively. In addition, to facilitate selection of high producing clones and also tag proteins which may function as a biomarker, the sequence of enhanced green fluorescent protein (EGFP) was added. The efficiency of the resulting vector (pToxEGFP) was tested by cloning and expressing the viper venom disintegrin echistatin (Ech) that due to its affinity to integrin αvβ3 was tested as a molecular marker. Expression of EGFP-Ech was achieved in CHO-DXB11 cells resulting in a yield of 22 mg/L. The binding activity of this chimera protein was successfully achieved on human umbilical vein endothelial cells which highly express αvβ3. The results indicate that pToxEGFP may constitute an efficient and versatile expression vector to express tagged proteins with potential biomarker activity.
Collapse
Affiliation(s)
- Geraldo Santana Magalhães
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP 05503-900, Brazil.
| | | | | | | | | | | |
Collapse
|
22
|
de Morais NCG, Neves Mamede CC, Fonseca KC, de Queiroz MR, Gomes-Filho SA, Santos-Filho NA, Bordon KDCF, Beletti ME, Sampaio SV, Arantes EC, de Oliveira F. Isolation and characterization of moojenin, an acid-active, anticoagulant metalloproteinase from Bothrops moojeni venom. Toxicon 2012; 60:1251-8. [PMID: 22975266 DOI: 10.1016/j.toxicon.2012.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/28/2022]
Abstract
A fibrinogenolytic metalloproteinase from Bothrops moojeni venom, named moojenin, was purified by a combination of ion-exchange chromatography on DEAE-Sephacel and gel filtration on Sephacryl S-300. SDS-PAGE analysis indicated that moojenin consists of a single polypeptide chain and has a molecular mass about 45 kDa. Sequencing of moojenin by Edman degradation revealed the amino acid sequence LGPDIVSPPVCGNELLEVGEECDCGTPENCQNE, which showed strong identity with many other snake venom metalloproteinases (SVMPs). The enzyme cleaves the Aα-chain of fibrinogen first, followed by the Bβ-chain, and shows no effects on the γ-chain. Moojenin showed a coagulant activity on bovine plasma about 3.1 fold lower than crude venom. The fibrinogenolytic and coagulant activities of the moojenin were abolished by preincubation with EDTA, 1,10-phenanthroline and β-mercaptoethanol. Moojenin showed maximum activity at temperatures ranging from 30 to 40 °C and its optimal pH was 4.0. Its activity was completely lost at temperatures above 50 °C. Moojenin induced necrosis in liver and muscle, evidenced by morphological alterations, but did not cause histological alterations in mouse lungs, kidney or heart. Moojenin rendered the blood uncoagulatable when it was intraperitoneally administered into mice. This metalloproteinase may be of medical interest because of its anticoagulant activity.
Collapse
Affiliation(s)
- Nadia C G de Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Moura-da-Silva AM, Baldo C. Jararhagin, a hemorrhagic snake venom metalloproteinase from Bothrops jararaca. Toxicon 2012; 60:280-9. [PMID: 22534074 DOI: 10.1016/j.toxicon.2012.03.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022]
Abstract
Jararhagin is a metalloproteinase isolated from Bothrops jararaca snake venom, which has been extensively studied. These studies showed its involvement on most of the systemic and local damaging effects of snakebite envenomings. In this review we comment on the major targets of jararhagin as the vascular endothelium, platelets and coagulation factors and also its action on other cell systems as inflammatory cells and their mediators, cancer and cell signaling. The mechanisms of jararhagin action are discussed together with structural features essential for the expression of its biological activities. The studies reviewed here denote jararhagin as a prototype for studies of snake venom metalloproteinases, bringing new insights into cellular-matrix interactions and adding for the improvement of snakebite treatment.
Collapse
Affiliation(s)
- Ana M Moura-da-Silva
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brasil 1500, CEP-05503-900 São Paulo, SP, Brazil.
| | | |
Collapse
|
24
|
Lucena S, Sanchez EE, Perez JC. Anti-metastatic activity of the recombinant disintegrin, r-mojastin 1, from the Mohave rattlesnake. Toxicon 2011; 57:794-802. [PMID: 21334359 PMCID: PMC3293478 DOI: 10.1016/j.toxicon.2011.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 11/19/2022]
Abstract
Cancer is the uncontrollable growth of cell, which may spread to other parts of the body. The interaction of cancer cells with extracellular matrix (ECM) is essential for metastasis, which is the principal cause of death in cancer patients. Disintegrins are naturally occurring low molecular weight peptides found in the venoms of many snakes. Disintegrins were first used to inhibit platelet aggregation, but more recently have been used to inhibit cancer cell growth, adhesion, migration, invasion and/or angiogenesis. The purpose of this study was to determine the anti-tumor properties of recombinant mojastin 1 (r-mojastin 1) and r-mojastin-GST, cloned from the venom glands of the Mohave rattlesnake (Crotalus scutulatus scutulatus). Human urinary bladder carcinoma (T24), human fibrosarcoma (HT-1080), human skin melanoma (SK-ML-28) and murine skin melanoma (B16F10) cell lines were used. r-Mojastin 1 inhibited SK-MEL-28 cell adhesion to fibronectin, but was not able to inhibit T24 cell adhesion to fibronectin. However, r-Mojastin-GST inhibited SK-MEL-28 and T24 cells adhesion to fibronectin. r-Mojastin-GST and r-mojastin 1 decreased the ability of SK-MEL-28 cells to migrate after 24 h of incubation but were not able to inhibit T24 cell migration. r-Mojastin 1 and r-mojastin-GST inhibited invasion of T24 and SK-MEL-28 cancer cells in vitro, and r-Mojastin 1 inhibited lung tumor colonization of B16F10 cells in mice in vivo. In conclusion, our studies suggest that r-mojastin could be a useful tool to develop novel anti-tumor agents by virtue of its ability to inhibit tumor cell adhesion, migration and invasion.
Collapse
Affiliation(s)
- Sara Lucena
- National Natural Toxins Research Center, Biology Department, Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | - Elda E. Sanchez
- National Natural Toxins Research Center, Biology Department, Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
- Department of Chemistry, Texas A&M University-Kingsville, MSC 161, Kingsville, TX 78363, USA
| | - John C. Perez
- National Natural Toxins Research Center, Biology Department, Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| |
Collapse
|
25
|
Pinyachat A, Rojnuckarin P, Muanpasitporn C, Singhamatr P, Nuchprayoon S. Albocollagenase, a novel recombinant P-III snake venom metalloproteinase from green pit viper (Cryptelytrops albolabris), digests collagen and inhibits platelet aggregation. Toxicon 2011; 57:772-80. [PMID: 21333669 DOI: 10.1016/j.toxicon.2011.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/20/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
Abstract
Molecular cloning and functional characterization of P-III snake venom metalloproteinases (SVMPs) will give us deeper insights in the pathogenesis of viper bites. This may lead to novel therapy for venom-induced local tissue damages, the complication refractory to current antivenom. The aim of this study was to elucidate the in vitro activities of a new SVMP from the green pit viper (GPV) using recombinant DNA technology. We report, here, a new cDNA clone from GPV (Cryptelytrops albolabris) venom glands encoding 614 amino acid residues P-III SVMP, termed albocollagenase. The conceptually translated protein comprised a signal peptide and prodomain, followed by a metalloproteinase domain containing a zinc-binding motifs, HEXGHXXGXXH-CIM and 9 cysteine residues. The disintegrin-like and cysteine-rich domains possessed 24 cysteines and a DCD (Asp-Cys-Asp) motif. The albocollagenase deduced amino acid sequence alignments showed approximately 70% identity with other P-III SVMPs. Notably, the prodomain was highly conserved, while the metalloproteinase, disintegrin-like and cysteine-rich domains contained several differences. Albocollagenase without the signal peptide and prodomain was expressed in Pichia pastoris with an N-terminal six-histidine tag. After affinity purification from the supernatant of methanol-induced media, SDS-PAGE and Western blot analysis in both reducing and non-reducing conditions showed a protein band of approximately 62 kDa. The recombinant albocollagenase could digest human type IV collagen from human placenta basement membrane within 1 min. After 10-min incubation, it also inhibited collagen-induced platelet aggregation with 50% inhibitory concentration (IC₅₀) of 70 nM. This is the first report of the active recombinant SVMP enzymes expressed in P. pastoris. The results suggest the significant roles of P-III SVMP in local and systemic pathology of envenomated patients. Inhibitors of this SVMP will be investigated in further studies to find a better treatment for viper bites.
Collapse
Affiliation(s)
- Anuwat Pinyachat
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|
26
|
Torres-Huaco FD, Ponce-Soto LA, Martins-de-Souza D, Marangoni S. Purification and characterization of a new weak hemorrhagic metalloproteinase BmHF-1 from Bothrops marajoensis snake venom. Protein J 2010; 29:407-16. [PMID: 20607373 DOI: 10.1007/s10930-010-9267-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BmHF-1, from the venom of Bothrops marajoensis, was purified by Sephadex G-75 and HPLC-RP on micro-Bondapak C-18 column chromatography. It presented a molecular mass of 27162.36 Da determined by MALDI-TOF MS. BmHF-1 had a sequence of 238 residues of amino acids. The multiple alignment of its amino acid sequence and those of other snake venom metalloproteinases showed high structural similarity, mainly among P-I class. The enzyme initially cleaves the Aalpha-chain of fibrinogen, followed by the Bbeta-chain, and shows no effects on the gamma-chain. BmHF-1 had, caseinolytic and weakly hemorrhagic activities, which were inhibited by EDTA. In contrast, PMSF did not affect these activities. The caseinolytic activity of BmHF-1 had a pH optimum of 8.0 and was stable in solution up to 40 degrees C; activity was completely lost at > or = 70 degrees C. The proteolytic activity was also inhibited by sDa (opossum sera) and Da2-1, Da2-II, antihemorrhagic factors isolated from the opossum sera of Didelphis albiventris. BmHF-1 presents weak hemorrhagic activity, with a MHD of 41.14 microg and it induces dose-dependent edema. We could concluded that, despite its weak hemorrhagic activity, BmHF-1 contributes to local tissue damage by inducing edema, releasing pharmacologically active mediators from protein precursors due to its enzymatic action.
Collapse
Affiliation(s)
- Frank Denis Torres-Huaco
- Department of Biochemistry, Institute of Biology (IB), State University of Campinas (UNICAMP), P.O. Box 6109, Campinas, SP 13083-970, Brazil
| | | | | | | |
Collapse
|
27
|
Sánchez EE, Lucena SE, Reyes S, Soto JG, Cantu E, Lopez-Johnston JC, Guerrero B, Salazar AM, Rodríguez-Acosta A, Galán JA, Tao WA, Pérez JC. Cloning, expression, and hemostatic activities of a disintegrin, r-mojastin 1, from the mohave rattlesnake (Crotalus scutulatus scutulatus). Thromb Res 2010; 126:e211-9. [PMID: 20598348 DOI: 10.1016/j.thromres.2010.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 05/21/2010] [Accepted: 06/03/2010] [Indexed: 11/29/2022]
Abstract
Interactions with exposed subendothelial extracellular proteins and cellular integrins (endothelial cells, platelets and lymphocytes) can cause alterations in the hemostatic system associated with atherothrombotic processes. Many molecules found in snake venoms induce pathophysiological changes in humans, cause edema, hemorrhage, and necrosis. Disintegrins are low molecular weight, non-enzymatic proteins found in snake venom that mediate changes by binding to integrins of platelets or other cells and prevent binding of the natural ligands such as fibrinogen, fibronectin or vitronectin. Disintegrins are of great biomedical importance due to their binding affinities resulting in the inhibition of platelet aggregation, adhesion of cancer cells, and induction of signal transduction pathways. RT-PCR was used to obtain a 216 bp disintegrin cDNA from a C. s. scutulatus snake venom gland. The cloned recombinant disintegrin called r-mojastin 1 codes for 71 amino acids, including 12 cysteines, and an RGD binding motif. r-Mojastin 1 inhibited platelet adhesion to fibronectin with an IC50 of 58.3 nM and ADP-induced platelet aggregation in whole blood with an IC50 of 46 nM. r-Mojastin 1 was also tested for its ability to inhibit platelet ATP release using PRP resulting with an IC50 of 95.6 nM. MALDI-TOF mass spectrum analysis showed that r-mojastin has a mass of 7.95676 kDa.
Collapse
Affiliation(s)
- Elda E Sánchez
- Natural Toxins Research Center, College of Arts and Sciences, 975 W. Avenue B. MSC 158, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Jia Y, Pérez JC. Molecular cloning and characterization of cDNAs encoding metalloproteinases from snake venom glands. Toxicon 2009; 55:462-9. [PMID: 19799929 DOI: 10.1016/j.toxicon.2009.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/19/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
Abstract
Snake venom metalloproteinases (SVMPs) are a superfamily of zinc-dependent proteases and participate in a number of important biological, physiological and pathophysiological processes. In this work, we simultaneously amplified nine cDNAs encoding different classes of metalloproteinases from glands of four different snake species (Agkistrodon contortrix laticinctus, Crotalus atrox, Crotalus viridis viridis and Agkistrodon piscivorus leucostoma) by RT-PCR with a pair of primers. Among the encoded metalloproteinases, two enzymes (AclVMP-I and AplVMP-I), three enzymes (CaVMP-II, CvvVMP-II and AplVMP-II) and four enzymes (AclVMP-III, CaVMP-III, CvvVMP-III and AplVMP-III) with the characteristic motif (HEXXHXXGXXH) of metalloproteinase belong to type P-I, P-II and P-III enzymes, respectively. Disintegrin domains of CaVMP-II and CvvVMP-II from two Crotatus snakes contain RGD-motif whereas AplVMP-II from Agkistrodon snake has KGD-motif. Instead of R/KGD-motif within disintegrin domain of SVMP-II enzyme, CaVMP-III, CvvVMP-III and AplVMP-III enzymes contain SECD-motif, while AclVMP-III has DDCD-motif in their corresponding position of disintegrin-like domains. There are 12 Cys amino acids in cysterin-rich domains of each P-III enzyme. Moreover, a disintegrin precursor (AplDis) with RGD-motif also simultaneously amplified from the glands of A.p. leucostoma while amplifying AplVMP-II and AplVMP-III, which indicated that different types of SVMPs and related genes are present in a single species of snake and share a consensus sequence at the 3' and 5' untranslated regions. RT-PCR result also showed that P-III is highly expressed in Crotalus snakes than in Agkistrodon snakes. Aligning the deduced amino acid sequence of these enzymes with other SVMPs from GenBank database indicated that this is the first report on the isolation of cDNAs encoding P-II and P-III enzymes from C.v. viridis and A.p. leucostoma snakes. The availability of these SVMP sequences directly facilitated further studies of structure characterization and diversified function analysis.
Collapse
Affiliation(s)
- Ying Jia
- Natural Toxins Research Center, College of Arts and Sciences, Texas A & M University-Kingsville, Kingsville, TX 78363, USA
| | | |
Collapse
|
30
|
Oliveira AK, Paes Leme AF, Assakura MT, Menezes MC, Zelanis A, Tashima AK, Lopes-Ferreira M, Lima C, Camargo AC, Fox JW, Serrano SM. Simplified procedures for the isolation of HF3, bothropasin, disintegrin-like/cysteine-rich protein and a novel P-I metalloproteinase from Bothrops jararaca venom. Toxicon 2009; 53:797-801. [DOI: 10.1016/j.toxicon.2009.02.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/13/2009] [Accepted: 02/17/2009] [Indexed: 11/29/2022]
|
31
|
Jia Y, Lucena S, Cantu E, Sánchez EE, Pérez JC. cDNA cloning, expression and fibrin(ogen)olytic activity of two low-molecular weight snake venom metalloproteinases. Toxicon 2009; 54:233-43. [PMID: 19375443 DOI: 10.1016/j.toxicon.2009.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
Abstract
Two cDNA clones, AplVMP1 and AplVMP2, were isolated from a snake (Agkistrodon piscivorus leucostoma) venom gland cDNA library. The full-length cDNA sequence of AplVMP1 with a calculated molecular mass of 46.61 kDa is 1233 bp in length. AplVMP1 encodes PI class metalloproteinase with an open reading frame of 411 amino acid residues that includes signal peptide, pro-domain and metalloproteinase domains. The full-length cDNA of the AplVMP2 (1371 bp) has a calculated molecular mass of 51.16 kDa and encodes PII class metalloproteinase. The open reading frame of AplVMP2 with a 457 amino acid residues is composed of signal peptide, pro-domain, metalloproteinase and disintegrin domains. AplVMP1 and AplVMP2 showed 85% and 93% amino acid identical to PI class enzyme Agkistrodon contortrix laticinctus ACLPREF and PII class enzyme Agkistrodon piscivorus piscivorus piscivostatin, respectively. When expressed in Escherichia coli, most of recombinant proteins of AplVMP1 and AplVMP2 were in insoluble inclusion bodies, with soluble yields of 0.7 mg/l and 0.4 mg/l bacterial culture, respectively. Both affinity purified recombinant proteins show proteolytic activity on fibrinogen, although having an activity lower than that of crude A. p. leucostoma venom. Proteolytic activities of AplVMP1 and AplVMP2 were completely abolished after incubation with a final concentration of 100 microM of EDTA or 1,10-phenanthroline. Both AplVMP1 and AplVMP2 were active in a fibrin-agarose plate but devoid of hemorrhagic activity when injected (up to 50 microg) subcutaneously into mice, and had no capacity to inhibit platelet aggregation.
Collapse
Affiliation(s)
- Ying Jia
- Natural Toxins Research Center, College of Arts and Sciences, Texas A&M University, Kingsville, TX 78363, USA
| | | | | | | | | |
Collapse
|
32
|
Fox JW, Serrano SM. Timeline of key events in snake venom metalloproteinase research. J Proteomics 2009; 72:200-9. [DOI: 10.1016/j.jprot.2009.01.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 12/16/2022]
|
33
|
Leme AFP, Kitano ES, Furtado MF, Valente RH, Camargo ACM, Ho PL, Fox JW, Serrano SMT. Analysis of the subproteomes of proteinases and heparin-binding toxins of eight Bothrops venoms. Proteomics 2009; 9:733-45. [DOI: 10.1002/pmic.200800484] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Gomes MSR, Mendes MM, de Oliveira F, de Andrade RM, Bernardes CP, Hamaguchi A, de Alcântara TM, Soares AM, Rodrigues VM, Homsi-Brandeburgo MI. BthMP: a new weakly hemorrhagic metalloproteinase from Bothrops moojeni snake venom. Toxicon 2009; 53:24-32. [DOI: 10.1016/j.toxicon.2008.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/10/2008] [Accepted: 10/07/2008] [Indexed: 11/15/2022]
|
35
|
Muniz JRC, Ambrosio ALB, Selistre-de-Araujo HS, Cominetti MR, Moura-da-Silva AM, Oliva G, Garratt RC, Souza DHF. The three-dimensional structure of bothropasin, the main hemorrhagic factor from Bothrops jararaca venom: insights for a new classification of snake venom metalloprotease subgroups. Toxicon 2008; 52:807-16. [PMID: 18831982 DOI: 10.1016/j.toxicon.2008.08.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/01/2008] [Accepted: 08/08/2008] [Indexed: 01/28/2023]
Abstract
Bothropasin is a 48kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys189 is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from PII SVMPs. The ECD motif is stabilized by the Cys277-Cys310 disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu276 of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other PIII SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other PIII members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain.
Collapse
Affiliation(s)
- João R C Muniz
- Departamento de Física e Informática, Instituto de Física de São Carlos, USP, São Carlos-SP CEP 13560-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fox JW, Serrano SMT. Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. FEBS J 2008; 275:3016-30. [PMID: 18479462 DOI: 10.1111/j.1742-4658.2008.06466.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As more data are generated from proteome and transcriptome analyses of snake venoms, we are gaining an appreciation of the complexity of the venoms and, to some degree, the various sources of such complexity. However, our knowledge is still far from complete. The translation of genetic information from the snake genome to the transcriptome and ultimately the proteome is only beginning to be appreciated, and will require significantly more investigation of the snake venom genomic structure prior to a complete understanding of the genesis of venom composition. Venom complexity, however, is derived not only from the venom genomic structure but also from transcriptome generation and translation and, perhaps most importantly, post-translation modification of the nascent venom proteome. In this review, we examine the snake venom metalloproteinases, some of the predominant components in viperid venoms, with regard to possible synthesis and post-translational mechanisms that contribute to venom complexity. The aim of this review is to highlight the state of our knowledge on snake venom metalloproteinase post-translational processing and to suggest testable hypotheses regarding the cellular mechanisms associated with snake venom metalloproteinase complexity in venoms.
Collapse
Affiliation(s)
- Jay W Fox
- Department of Microbiology, University of Virginia, Charlottesville, VA 22908-0734, USA.
| | | |
Collapse
|
37
|
Marques-Porto R, Lebrun I, Pimenta DC. Self-proteolysis regulation in the Bothrops jararaca venom: the metallopeptidases and their intrinsic peptidic inhibitor. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:424-33. [PMID: 18325841 DOI: 10.1016/j.cbpc.2008.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/22/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Snake venom proteome variation is a well-documented phenomenon, whereas peptidome variation is still relatively unknown. We used a biological approach to explore the inhibitory activities present in the whole venom of Bothrops jararaca that prevents the venom self-proteolysis and/or digestion of the glandular tissue. Although snake venom metallopeptidases have long been known from the biochemical up to the clinical point of view, the mechanisms by which these enzymes are regulated in the reptile's venom gland remain fairly unknown. We have successfully demonstrated that there are three synergistic weak inhibitory mechanisms that are present in the crude venom that are able to abolish the metallopeptidase activity in situ, namely: (i) citrate calcium chelation; (ii) acidic pH and; (iii) enzymatic competitive inhibition by the tripeptide Pyroglutamyl-lysyl-tryptophan. Taken together, these three factors become a strong set-up that inhibits the crude venom metallopeptidase activity as well as a purified metallopeptidase from this same venom. However, this inhibition can be totally reverted by dilution into an optimal pH solution, such as the blood.
Collapse
Affiliation(s)
- Rafael Marques-Porto
- CAT/CEPID, Instituto Butantan, Av Vital Brasil, 1500, São Paulo - SP, 05503-900, Brazil
| | | | | |
Collapse
|
38
|
Marcussi S, Bernardes CP, Santos-Filho NA, Mazzi MV, Oliveira CZ, Izidoro LFM, Fuly AL, Magro AJ, Braz ASK, Fontes MRM, Giglio JR, Soares AM. Molecular and functional characterization of a new non-hemorrhagic metalloprotease from Bothrops jararacussu snake venom with antiplatelet activity. Peptides 2007; 28:2328-39. [PMID: 18006118 DOI: 10.1016/j.peptides.2007.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 10/05/2007] [Accepted: 10/05/2007] [Indexed: 10/22/2022]
Abstract
BjussuMP-II is an acidic low molecular weight metalloprotease (Mr approximately 24,000 and pI approximately 6.5), isolated from Bothrops jararacussu snake venom. The chromatographic profile in RP-HPLC and its N-terminal sequence confirmed its high purity level. Its complete cDNA was obtained by RT-PCR and the 615bp codified for a mature protein of 205 amino acid residues. The multiple alignment of its deduced amino acid sequence and those of other snake venom metalloproteases showed a high structural similarity, mainly among class P-I proteases. The molecular modeling analysis of BjussuMP-II showed also conserved structural features with other SVMPs. BjussuMP-II did not induce hemorrhage, myotoxicity and lethality, but displayed dose-dependent proteolytic activity on fibrinogen, collagen, fibrin, casein and gelatin, keeping stable at different pHs, temperatures and presence of several divalent ions. BjussuMP-II did not show any clotting or anticoagulant activity on human citrated plasma, in contrast to its inhibitory effects on platelet aggregation. The aspects broached, in this work, provide data on the relationship between structure and function, in order to better understand the effects elicited by snake venom metalloproteases.
Collapse
Affiliation(s)
- Silvana Marcussi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto da Universidade de São Paulo, FCFRP-USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bernardes CP, Santos-Filho NA, Costa TR, Gomes MSR, Torres FS, Costa J, Borges MH, Richardson M, dos Santos DM, de Castro Pimenta AM, Homsi-Brandeburgo MI, Soares AM, de Oliveira F. Isolation and structural characterization of a new fibrin(ogen)olytic metalloproteinase from Bothrops moojeni snake venom. Toxicon 2007; 51:574-84. [PMID: 18187176 DOI: 10.1016/j.toxicon.2007.11.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 11/06/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
A proteinase, named BmooMPalpha-I, from the venom of Bothrops moojeni, was purified by DEAE-Sephacel, Sephadex G-75 and heparin-agarose column chromatography. The enzyme was purified to homogeneity as judged by its migration profile in SDS-PAGE stained with coomassie blue, and showed a molecular mass of about 24.5 kDa. Its complete cDNA was obtained by RT-PCR and the 615 bp codified for a mature protein of 205 amino acid residues. The multiple alignment of its deduced amino acid sequence and those of other snake venom metalloproteinases showed a high structural similarly, mainly among class P-IB proteases. The enzyme cleaves the Aalpha-chain of fibrinogen first, followed by the Bbeta-chain, and shows no effects on the gamma-chain. On fibrin, the enzyme hydrolyzed only the beta-chain, leaving the gamma-dimer apparently untouched. It was devoid of phospholipase A(2), hemorrhagic and thrombin-like activities. Like many venom enzymes, it is stable at pH values between 4 and 10 and stable at 70 degrees C for 15 min. The inhibitory effects of EDTA on the fibrinogenolytic activity suggest that BmooMPalpha-I is a metalloproteinase and inhibition by beta-mercaptoethanol revealed the important role of the disulfide bonds in the stabilization of the native structure. Aprotinin and benzamidine, specific serine proteinase inhibitors, had no effect on BmooMPalpha-I activity. Since the BmooMPalpha-I enzyme was found to cause defibrinogenation when administered i.p. on mice, it is expected that it may be of medical interest as a therapeutic agent in the treatment and prevention of arterial thrombosis.
Collapse
Affiliation(s)
- Carolina P Bernardes
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ramos OHP, Selistre-de-Araujo HS. Snake venom metalloproteases--structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:328-346. [PMID: 16434235 DOI: 10.1016/j.cbpc.2005.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 11/09/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
Snake venoms are relevant sources of toxins that have evolved towards the engineering of highly active compounds. In the last years, research efforts have produced great advance in their understanding and uses. Metalloproteases with disintegrin domains are among the most abundant toxins in many Viperidae snake venoms. This review will focus on the structure, function and possible applications of the metalloprotease and disintegrin domains.
Collapse
Affiliation(s)
- O H P Ramos
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235, São Carlos, SP, 13565-905, Brazil
| | - H S Selistre-de-Araujo
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
41
|
Abstract
Jararhagin is a 52 kDa hemorrhagic P-III metalloproteinase isolated from the venom of the medically important Brazilian pit-viper Bothrops jararaca. It is a member of the reprolysin family of zinc metalloproteinases containing a catalytic metalloproteinase domain followed by a disintegrin-like and a cysteine-rich domain. The impact of jararhagin on hemostasis has been extensively studied using in vitro and in vivo model systems as well as in clinical studies. Jararhagin-induced hemorrhage is the result of the degradation of sub-endothelial matrix proteins leading to the disruption of the blood vessel endothelium, with accompanying disturbances in platelet function. The versatility of jararhagin is further demonstrated by its direct action on von Willebrand factor, the degradation of fibrinogen, by its inhibition of platelet adhesion to collagen and by its inability to be affected by the plasma inhibitor alpha(2)-macroglobulin. Collagen-induced platelet aggregation is inhibited by jararhagin though the binding of the molecule to the alpha(2) subunit I domain of the platelet surface alpha(2)beta(1) integrin (collagen receptor). Jararhagin also cleaves the beta(1) subunit of the same integrin, inhibiting platelet interaction and ultimately causing impairment of signal transduction. The effect of jararhagin on cell systems other than platelets is evaluated; in fibroblasts, jararhagin functions as a collagen-mimetic substrate and, in endothelial cells, it causes apoptosis and indirectly inhibits cell proliferation by release of angiostatin-like compounds. Jararhagin induces a strong pro-inflammatory response characterized by intense leukocyte accumulation at the site of the injection. Although hemorrhage and edema are a response to the direct effect of jararhagin, jararhagin-induced inflammation and necrosis are dependent on macrophages and key pro-inflammatory cytokines or their receptors. Some data also indicate that the toxin possesses anti-tumorgenic properties. Methods for inhibiting jararhagin are reviewed; this encompasses the use of synthetic peptides to the isolation of naturally occurring mammalian peptides and the development of toxin-specific antibodies through DNA immunisation and monoclonal antibody technologies. The availability of jararhagin makes it an important tool for research into the mechanisms of action of similar toxins, for insights into cellular interactions and for clinical investigations into the treatment of envenomings from B. jararaca.
Collapse
Affiliation(s)
- Gavin D Laing
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | | |
Collapse
|
42
|
Fernandez JH, Silva CA, Assakura MT, Camargo ACM, Serrano SMT. Molecular cloning, functional expression, and molecular modeling of bothrostatin, a new highly active disintegrin from Bothrops jararaca venom. Biochem Biophys Res Commun 2005; 329:457-64. [PMID: 15737609 DOI: 10.1016/j.bbrc.2005.01.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Indexed: 11/24/2022]
Abstract
Disintegrins are among the most potent antagonists of several integrins. A cDNA encoding a novel disintegrin, bothrostatin, was cloned from a Bothrops jararaca cDNA library. The precursor of bothrostatin contains a pro, a metalloproteinase, and an RGD-disintegrin domain. The disintegrin domain expressed in Escherichia coli showed high inhibitory activity on collagen-induced platelet aggregation (IC(50) of 12nM), and thus it can be used as a useful tool for studies of integrin-ligand interaction. Furthermore, we used the comparative modeling approach to obtain a model of the 3D structure of bothrostatin. Our results suggest that bothrostatin adopts a globular, closed structure in solution. The RGD motif is exposed to the solution by the loop formed by residues 45-59 and is very close to the C-terminal domain forming a finger-like structure. The proximity of the RGD loop and the C-terminal residues, which is maintained by the Cys47-Cys66 bond, suggests that the C-terminal residues are involved in the ability of bothrostatin to interact with its ligands.
Collapse
Affiliation(s)
- Jorge H Fernandez
- Laboratorio Especial de Toxinologia Aplicada and CAT/CEPID, Instituto Butantan, CEP 05503-900, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
43
|
Stroka A, Donato JL, Bon C, Hyslop S, de Araújo AL. Purification and characterization of a hemorrhagic metalloproteinase from Bothrops lanceolatus (Fer-de-lance) snake venom. Toxicon 2005; 45:411-20. [PMID: 15733562 DOI: 10.1016/j.toxicon.2004.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 11/01/2004] [Indexed: 11/18/2022]
Abstract
Bothrops snake venoms contain metalloproteinases that contribute to the local effects seen after envenoming. In this work, a hemorrhagic metalloproteinase (BlaH1) was purified from the venom of the snake Bothrops lanceolatus by a combination of gel filtration, affinity (metal chelating) and hydrophobic interaction chromatographies. The hemorrhagin was homogeneous by SDS-PAGE and had a molecular mass of 28 kDa that was unaltered by treatment with beta-mercaptoethanol. BlaH1 gave a single band in immunoelectrophoresis and immunoblotting using commercial bothropic antivenom. BlaH1 had hemorrhagic, caseinolytic, fibrinogenolytic, collagenolytic and elastinolytic activities, but no phospholipase A(2) activity. The hemorrhagic and caseinolytic activities were inhibited by EDTA, indicating that they were metal ion-dependent. In contrast, aprotinin, benzamidine and PMSF did not affect these activities. The caseinolytic activity of BlaH1 had a pH optimum of 8.0 and was stable in solution at up to 40 degrees C; activity was completely lost at > or =70 degrees C. The hemorrhagic activity was neutralized by commercial bothropic antivenom. These properties suggest that this new hemorrhagin belongs to class P-I snake venom metalloproteinases.
Collapse
Affiliation(s)
- Alessandra Stroka
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), CP 6111, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
44
|
Silva CA, Zuliani JP, Assakura MT, Mentele R, Camargo ACM, Teixeira CFP, Serrano SMT. Activation of αMβ2-mediated phagocytosis by HF3, a P-III class metalloproteinase isolated from the venom of Bothrops jararaca. Biochem Biophys Res Commun 2004; 322:950-6. [PMID: 15336556 DOI: 10.1016/j.bbrc.2004.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 11/24/2022]
Abstract
The integrin alpha(M)beta(2) regulates important cell functions in inflammation being the primary phagocytic receptor on macrophages. HF3, a metalloproteinase isolated from Bothrops jararaca venom, is a potent hemorrhagic toxin. A cDNA encoding HF3 indicated that it is a multidomain molecule composed of a pro-domain, a catalytic domain with a zinc binding sequence, followed by disintegrin-like and cysteine-rich domains. It is known that metalloproteinases play a relevant role in the pathogenesis of venom-induced local tissue damage including inflammation. In this study we evaluated the effects of native HF3 and its recombinant disintegrin-like/cysteine-rich domains (DC-HF3) on alpha(M)beta(2)-mediated phagocytosis of opsonized-zymosan particles by macrophages. HF3 and DC-HF3 significantly increased phagocytosis and this activity was inhibited by anti-alpha(M) and anti-beta(2) antibodies. The data show the ability of P-III metalloproteinases to activate macrophages for phagocytosis through integrin alpha(M)beta(2) and suggest that the disintegrin-like/cysteine-rich domains are important for this effect. This is the first report on the activation of phagocytosis via alpha(M)beta(2) integrin by a metalloproteinase containing disintegrin-like/cysteine-rich domains.
Collapse
Affiliation(s)
- Carlos A Silva
- Laboratorio Especial de Toxinologia Aplicada-CAT/CEPID, Instituto Butantan, CEP 05503-900, Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Maria DA, Vassão RC, Ruiz IRG. Haematopoietic effects induced in mice by the snake venom toxin jararhagin. Toxicon 2003; 42:579-85. [PMID: 14602113 DOI: 10.1016/s0041-0101(03)00237-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Venom toxins have been tested as anti-thrombotic, and anti-metastatic drugs in experimental models. The jararhagin toxin, from Bothrops jararaca snake venom, acts upon several biological processes, as inflammation, pain, platelet aggregation, etc. In this article, the systemic effects of intra-peritoneal injections of different jararhagin doses were determined in mice. About 50% significant decrease was observed in total blood leukocytes in the first (48 ng), and second (24 ng) weeks. The reduction of lymphocytes, monocytes and neutrophils accounted for this leucopoenia up to the sixth week. Significant increase in red blood cells was observed, especially on the third and fourth weeks (6 and 12 ng). A significant reduction in leukocyte infiltration was found in peritoneum (6, 12, 48 ng), whereas the infiltration was significantly increased in bronchial alveolar exudates (6 and 12 ng). The differential analysis of bone marrow cells showed significant increase, particularly of myelocytes (12 and 24 ng). These results show, at low doses, the toxin jararhagin induces red blood cells production, which is compensating the reduction of different leukocyte types. This severe leucopoenia suggests the occurrence of anti-proliferate activity or direct citotoxicity of jararhagin in the differentiation level of myeloid, and lymphoid stem precursor cells.
Collapse
Affiliation(s)
- D A Maria
- Imunogenetics Laboratory, Butantan Institute, Av. Vital Brasil 1500, São Paulo, SP CEP 05503-900, Brazil
| | | | | |
Collapse
|
46
|
Cominetti MR, Ribeiro JU, Fox JW, Selistre-de-Araujo HS. BaG, a new dimeric metalloproteinase/disintegrin from the Bothrops alternatus snake venom that interacts with alpha5beta1 integrin. Arch Biochem Biophys 2003; 416:171-9. [PMID: 12893294 DOI: 10.1016/s0003-9861(03)00298-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The alpha(5)beta(1) integrin is one of the major fibronectin receptors which plays an essential role in the adhesion of normal and tumor cells to extracellular matrix. Here, we describe the isolation and characterization of a novel dimeric metalloproteinase/disintegrin, which is an inhibitor of fibronectin binding to the alpha(5)beta(1) integrin. This protein (BaG) was isolated from the venom of the South American snake Bothrops alternatus by gelatin-Sepharose affinity and anion exchange chromatography. The molecular mass of BaG was approximately 130 kDa under non-reducing conditions and 55 kDa under reducing conditions by SDS-PAGE. BaG shows proteolytic activity on casein that was inhibited by EDTA. 1,10-phenanthroline-treated BaG (BaG-I) inhibits ADP-induced platelet aggregation with an IC(50) of 190 nM. BaG-I inhibits fibronectin-mediated K562 cell adhesion with an IC(50) of 3.75 microM. K562 cells bind to BaG-I probably through interaction with alpha(5)beta(1) integrin, since anti-alpha(5)beta(1) antibodies inhibited K562 cell adhesion to BaG-I. In addition, BaG-I induces the detachment of K562 cells that were bound to fibronectin. In summary, we have purified a novel, dimeric snake venom metalloproteinase/disintegrin that binds to the alpha(5)beta(1) integrin.
Collapse
Affiliation(s)
- M R Cominetti
- Departamento de Ciĉncias Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | | | | | | |
Collapse
|