1
|
Zhu H, Ding Y. Nanobodies: From Discovery to AI-Driven Design. BIOLOGY 2025; 14:547. [PMID: 40427736 PMCID: PMC12109276 DOI: 10.3390/biology14050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
Nanobodies, derived from naturally occurring heavy-chain antibodies in camelids (VHHs) and sharks (VNARs), are unique single-domain antibodies that have garnered significant attention in therapeutic, diagnostic, and biotechnological applications due to their small size, stability, and high specificity. This review first traces the historical discovery of nanobodies, highlighting key milestones in their isolation, characterization, and therapeutic development. We then explore their structure-function relationship, emphasizing features like their single-domain architecture and long CDR3 loop that contribute to their binding versatility. Additionally, we examine the growing interest in multiepitope nanobodies, in which binding to different epitopes on the same antigen not only enhances neutralization and specificity but also allows these nanobodies to be used as controllable modules for precise antigen manipulation. This review also discusses the integration of AI in nanobody design and optimization, showcasing how machine learning and deep learning approaches are revolutionizing rational design, humanization, and affinity maturation processes. With continued advancements in structural biology and computational design, nanobodies are poised to play an increasingly vital role in addressing both existing and emerging biomedical challenges.
Collapse
Affiliation(s)
- Haoran Zhu
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200433, China;
- Quzhou Fudan Institute, Quzhou 324002, China
| | - Yu Ding
- State Key Laboratory of Genetics and Development of Complex Phenotypes, School of Life Sciences, Fudan University, Shanghai 200433, China;
- Quzhou Fudan Institute, Quzhou 324002, China
| |
Collapse
|
2
|
Eshak F, Goupil-Lamy A. Advancements in Nanobody Epitope Prediction: A Comparative Study of AlphaFold2Multimer vs AlphaFold3. J Chem Inf Model 2025; 65:1782-1797. [PMID: 39927847 DOI: 10.1021/acs.jcim.4c01877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Nanobodies have emerged as a versatile class of biologics with promising therapeutic applications, driving the need for robust tools to predict their epitopes, a critical step for in silico affinity maturation and epitope-targeted design. While molecular docking has long been employed for epitope identification, it requires substantial expertise. With the advent of AI driven tools, epitope identification has become more accessible to a broader community increasing the risk of models' misinterpretation. In this study, we critically evaluate the nanobody epitope prediction performance of two leading models: AlphaFold3 and AlphaFold2-Multimer (v.2.3.2), highlighting their strengths and limitations. Our analysis revealed that the overall success rate remains below 50% for both tools, with AlphaFold3 achieving a modest overall improvement. Interestingly, a significant improvement in AlphaFold3's performance was observed within a specific nanobody class. To address this discrepancy, we explored factors influencing epitope identification, demonstrating that accuracy heavily depends on CDR3 characteristics, such as its 3D spatial conformation and length, which drive binding interactions with the antigen. Additionally, we assessed the robustness of AlphaFold3's confidence metrics, highlighting their potential for broader applications. Finally, we evaluated different strategies aimed at improving the prediction success rate. This study can be extended to assess the accuracy of emerging deep learning models adopting an approach similar to that of AlphaFold3.
Collapse
Affiliation(s)
- Floriane Eshak
- SPPIN CNRS UMR 8003, Université Paris Cité, 75006 Paris, France
| | - Anne Goupil-Lamy
- Biovia Science Council, Dassault Système, 78140 Vélizy-Villacoublay, France
| |
Collapse
|
3
|
Mehrotra S, Kaur N, Kaur S, Matharoo K, Pandey RK. From antibodies to nanobodies: The next frontier in cancer theranostics for solid tumors. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:287-329. [PMID: 39978969 DOI: 10.1016/bs.apcsb.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The field of cancer therapeutics has witnessed significant advancements over the past decades, particularly with the emergence of immunotherapy. This chapter traces the transformative journey from traditional antibody-based therapies to the innovative use of nanobodies in the treatment and diagnosis of solid tumors. Nanobodies are the smallest fragments of antibodies derived from camelid immunoglobulins and have redefined the possibilities in cancer theranostics due to their unique structural and functional properties. We provide an overview of the biochemical characteristics of nanobodies that make them particularly suitable for theranostic applications, such as their small size, high stability, enhanced infiltration into the complex tumor microenvironment (TME) and ability to bind with high affinity to epitopes that are inaccessible to conventional antibodies. Further, their ease of modification and functionalization has enabled the development of nanobody-based drug conjugates/toxins and radiolabeled compounds for precise imaging and targeted radiotherapy. We elucidate how nanobodies are being served as valuable tools for prognostic assessment, enabling clinicians to predict disease aggressiveness, monitor treatment response, and stratify patients for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| | - Navdeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kawaljit Matharoo
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | |
Collapse
|
4
|
Tang W, Zheng K, Sun S, Zhong B, Luo Z, Yang J, Jia L, Yang L, Shang W, Jiang X, Lyu Z, Chen J, Chen G. Characteristics and Genomic Localization of Nurse Shark ( Ginglymostoma cirratum) IgNAR. Int J Mol Sci 2024; 25:12879. [PMID: 39684588 DOI: 10.3390/ijms252312879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
The variable domain of IgNAR shows great potential in biological medicine and therapy. IgNAR has been discovered in sharks and rays, with the nurse shark (Ginglymostoma cirratum) IgNARs being the most extensively studied among sharks. Despite being identified in nurse sharks over 30 years ago, the characteristics and genomic localization of IgNAR remain poorly defined, with significant gaps even in the latest released genome data. In our research, we localized the IgNAR loci in the nurse shark genome and resolved the previously missing regions. We identified three IgNAR loci, designated GcIgNAR1, GcIgNAR2, and GcIgNAR3, with only GcIgNAR1 and GcIgNAR2 being expressed. GcIgNAR1 and GcIgNAR2 belong to type I and type II IgNARs, respectively, and each exhibits several different isoforms. Most nurse shark IgNARs possess five constant domains. However, we found transcripts of GcIgNAR1 and GcIgNAR2 lacking two constant domains, C4 and C5, which differ from the IgNAR of the whitespotted bamboo shark. The protein structures of GcIgNAR1 and GcIgNAR2, generated by AlphaFold3, confirmed the accuracy of the IgNAR loci we identified. Our findings advance scientific understanding of IgNAR in nurse sharks and facilitate future research and medical applications.
Collapse
Affiliation(s)
- Wenjie Tang
- School of Life Sciences, Central South University, Changsha 410031, China
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kaixi Zheng
- School of Life Sciences, Central South University, Changsha 410031, China
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shengjie Sun
- School of Life Sciences, Central South University, Changsha 410031, China
| | - Bo Zhong
- School of Life Sciences, Central South University, Changsha 410031, China
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhan Luo
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junjie Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lei Jia
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lan Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenna Shang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312369, China
| | - Guodong Chen
- School of Life Sciences, Central South University, Changsha 410031, China
| |
Collapse
|
5
|
Fernández‐Quintero ML, Guarnera E, Musil D, Pekar L, Sellmann C, Freire F, Sousa RL, Santos SP, Freitas MC, Bandeiras TM, Silva MMS, Loeffler JR, Ward AB, Harwardt J, Zielonka S, Evers A. On the humanization of VHHs: Prospective case studies, experimental and computational characterization of structural determinants for functionality. Protein Sci 2024; 33:e5176. [PMID: 39422475 PMCID: PMC11487682 DOI: 10.1002/pro.5176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The humanization of camelid-derived variable domain heavy chain antibodies (VHHs) poses challenges including immunogenicity, stability, and potential reduction of affinity. Critical to this process are complementarity-determining regions (CDRs), Vernier and Hallmark residues, shaping the three-dimensional fold and influencing VHH structure and function. Additionally, the presence of non-canonical disulfide bonds further contributes to conformational stability and antigen binding. In this study, we systematically humanized two camelid-derived VHHs targeting the natural cytotoxicity receptor NKp30. Key structural positions in Vernier and Hallmark regions were exchanged with residues from the most similar human germline sequences. The resulting variants were characterized for binding affinities, yield, and purity. Structural binding modes were elucidated through crystal structure determination and AlphaFold2 predictions, providing insights into differences in binding affinity. Comparative structural and molecular dynamics characterizations of selected variants were performed to rationalize their functional properties and elucidate the role of specific sequence motifs in antigen binding. Furthermore, systematic analyses of next-generation sequencing (NGS) and Protein Data Bank (PDB) data was conducted, shedding light on the functional significance of Hallmark motifs and non-canonical disulfide bonds in VHHs in general. Overall, this study provides valuable insights into the structural determinants governing the functional properties of VHHs, offering a roadmap for their rational design, humanization, and optimization for therapeutic applications.
Collapse
Affiliation(s)
- Monica L. Fernández‐Quintero
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Enrico Guarnera
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Djordje Musil
- Structural Biology and BiophysicsMerck Healthcare KGaADarmstadtGermany
| | - Lukas Pekar
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Carolin Sellmann
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Filipe Freire
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Raquel L. Sousa
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Sandra P. Santos
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | - Micael C. Freitas
- iBET, Instituto de Biologia Experimental e TecnológicaOeirasPortugal
| | | | | | - Johannes R. Loeffler
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Julia Harwardt
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| | - Stefan Zielonka
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
- Institute for Organic Chemistry and BiochemistryTechnical University of DarmstadtDarmstadtGermany
| | - Andreas Evers
- Antibody Discovery and Protein EngineeringMerck Healthcare KGaADarmstadtGermany
| |
Collapse
|
6
|
Yu T, Zheng F, He W, Muyldermans S, Wen Y. Single domain antibody: Development and application in biotechnology and biopharma. Immunol Rev 2024; 328:98-112. [PMID: 39166870 PMCID: PMC11659936 DOI: 10.1111/imr.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Heavy-chain antibodies (HCAbs) are a unique type of antibodies devoid of light chains, and comprised of two heavy chains-only that recognize their cognate antigen by virtue of a single variable domain also referred to as VHH, single domain antibody (sdAb), or nanobody (Nb). These functional HCAbs, serendipitous discovered about three decades ago, are exclusively found in camelids, comprising dromedaries, camels, llamas, and vicugnas. Nanobodies have become an essential tool in biomedical research and medicine, both in diagnostics and therapeutics due to their beneficial properties: small size, high stability, strong antigen-binding affinity, low immunogenicity, low production cost, and straightforward engineering into more potent affinity reagents. The occurrence of HCAbs in camelids remains intriguing. It is believed to be an evolutionary adaptation, equipping camelids with a robust adaptive immune defense suitable to respond to the pressure from a pathogenic invasion necessitating a more profound antigen recognition and neutralization. This evolutionary innovation led to a simplified HCAb structure, possibly supported by genetic mutations and drift, allowing adaptive mutation and diversification in the heavy chain variable gene and constant gene regions. Beyond understanding their origins, the application of nanobodies has significantly advanced over the past 30 years. Alongside expanding laboratory research, there has been a rapid increase in patent application for nanobodies. The introduction of commercial nanobody drugs such as Cablivi, Nanozora, Envafolimab, and Carvykti has boosted confidence among in their potential. This review explores the evolutionary history of HCAbs, their ontogeny, and applications in biotechnology and pharmaceuticals, focusing on approved and ongoing medical research pipelines.
Collapse
Affiliation(s)
- Ting Yu
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| | - Wenbo He
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | - Yurong Wen
- Center for Microbiome Research of Med‐X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated HospitalXi'an Jiaotong UniversityXi'anChina
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science CenterXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
7
|
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies-Novel Tools to Study and Treat Allergies. Int J Mol Sci 2024; 25:7602. [PMID: 39062843 PMCID: PMC11277559 DOI: 10.3390/ijms25147602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
IgE-mediated allergies represent a major health problem in the modern world. Apart from allergen-specific immunotherapy (AIT), the only disease-modifying treatment, researchers focus on biologics that target different key molecules such as allergens, IgE, or type 2 cytokines to ameliorate allergic symptoms. Single-domain antibodies, or nanobodies, are the newcomers in biotherapeutics, and their huge potential is being investigated in various research fields since their discovery 30 years ago. While they are dominantly applied for theranostics of cancer and treatment of infectious diseases, nanobodies have become increasingly substantial in allergology over the last decade. In this review, we discuss the prerequisites that we consider to be important for generating useful nanobody-based drug candidates for treating allergies. We further summarize the available research data on nanobodies used as allergen monitoring and detection probes and for therapeutic approaches. We reflect on the limitations that have to be addressed during the development process, such as in vivo half-life and immunogenicity. Finally, we speculate about novel application formats for allergy treatment that might be available in the future.
Collapse
Affiliation(s)
- Ines Zettl
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clarissa Bauernfeind
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jessica Kollárová
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Conca W, Saleh SM, Al-Rabiah R, Parhar RS, Abd-Elnaeim M, Al-Hindas H, Tinson A, Kroell KB, Liedl KR, Collison K, Kishore U, Al-Mohanna F. The immunoglobulin A isotype of the Arabian camel ( Camelus dromedarius) preserves the dualistic structure of unconventional single-domain and canonical heavy chains. Front Immunol 2023; 14:1289769. [PMID: 38162642 PMCID: PMC10756906 DOI: 10.3389/fimmu.2023.1289769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The evolution of adaptive immunity in Camelidae resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (CH) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype. Methods Gene-specific primers were used to generate an IgA heavy chain cDNA library derived from RNA extracted from the dromedary's third eyelid where isolated lymphoid follicles and plasma cells abound at inductive and effector sites, respectively. Results Majority of the cDNA clones revealed hallmarks of heavy chain-only antibodies, i.e. camelid-specific amino acid substitutions in framework region 1 and 2, broad length distribution of complementarity determining region 3, and the absence of the CHα1 domain. In a few clones, however, the cDNA of the canonical IgA heavy chain was amplified which included the CHα1 domain, analogous to CHγ1 domain in IgG1 subclass. Moreover, we noticed a short, proline-rich hinge, and, at the N-terminal end of the CHα3 domain, a unique, camelid-specific pentapeptide of undetermined function, designated as the inter-α region. Immunoblots using rabbit anti-camel IgA antibodies raised against CHα2 and CHα3 domains as well as the inter-α region revealed the expression of a ~52 kDa and a ~60 kDa IgA species, corresponding to unconventional and canonical IgA heavy chain, respectively, in the third eyelid, trachea, small and large intestine. In contrast, the leporine anti-CHα1 antibody detected canonical, but not unconventional IgA heavy chain, in all the examined tissues, milk, and serum, in addition to another hitherto unexplored species of ~45 kDa in milk and serum. Immunohistology using anti-CHα domain antibodies confirmed the expression of both variants of IgA heavy chains in plasma cells in the third eyelid's lacrimal gland, conjunctiva, tracheal and intestinal mucosa. Conclusion We found that in the dromedary, the IgA isotype has expanded the immunoglobulin repertoire by co-expressing unconventional and canonical IgA heavy chains, comparable to the IgG class, thus underscoring the crucial role of heavy chain-only antibodies not only in circulation but also at the mucosal frontiers.
Collapse
Affiliation(s)
- Walter Conca
- Department of Executive Health Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Soad M. Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rana Al-Rabiah
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ranjit Singh Parhar
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mahmoud Abd-Elnaeim
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hussein Al-Hindas
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Alexander Tinson
- Management of Scientific Centers and Presidential Camels, Department of President’s Affairs, Hilli ET and Cloning Centre, Al Ain, United Arab Emirates
| | | | - Klaus Roman Liedl
- Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria
| | - Kate Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Jin BK, Odongo S, Radwanska M, Magez S. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int J Mol Sci 2023; 24:5994. [PMID: 36983063 PMCID: PMC10057852 DOI: 10.3390/ijms24065994] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
NANOBODY® (a registered trademark of Ablynx N.V) molecules (Nbs), also referred to as single domain-based VHHs, are antibody fragments derived from heavy-chain only IgG antibodies found in the Camelidae family. Due to their small size, simple structure, high antigen binding affinity, and remarkable stability in extreme conditions, nanobodies possess the potential to overcome several of the limitations of conventional monoclonal antibodies. For many years, nanobodies have been of great interest in a wide variety of research fields, particularly in the diagnosis and treatment of diseases. This culminated in the approval of the world's first nanobody based drug (Caplacizumab) in 2018 with others following soon thereafter. This review will provide an overview, with examples, of (i) the structure and advantages of nanobodies compared to conventional monoclonal antibodies, (ii) methods used to generate and produce antigen-specific nanobodies, (iii) applications for diagnostics, and (iv) ongoing clinical trials for nanobody therapeutics as well as promising candidates for clinical development.
Collapse
Affiliation(s)
- Bo-kyung Jin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Steven Odongo
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
- Center for Biosecurity and Global Health, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala 7062, Uganda
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon 21985, Republic of Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
10
|
Tang H, Gao Y, Han J. Application Progress of the Single Domain Antibody in Medicine. Int J Mol Sci 2023; 24:ijms24044176. [PMID: 36835588 PMCID: PMC9967291 DOI: 10.3390/ijms24044176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The camelid-derived single chain antibody (sdAb), also termed VHH or nanobody, is a unique, functional heavy (H)-chain antibody (HCAb). In contrast to conventional antibodies, sdAb is a unique antibody fragment consisting of a heavy-chain variable domain. It lacks light chains and a first constant domain (CH1). With a small molecular weight of only 12~15 kDa, sdAb has a similar antigen-binding affinity to conventional Abs but a higher solubility, which exerts unique advantages for the recognition and binding of functional, versatile, target-specific antigen fragments. In recent decades, with their unique structural and functional features, nanobodies have been considered promising agents and alternatives to traditional monoclonal antibodies. As a new generation of nano-biological tools, natural and synthetic nanobodies have been used in many fields of biomedicine, including biomolecular materials, biological research, medical diagnosis and immune therapies. This article briefly overviews the biomolecular structure, biochemical properties, immune acquisition and phage library construction of nanobodies and comprehensively reviews their applications in medical research. It is expected that this review will provide a reference for the further exploration and unveiling of nanobody properties and function, as well as a bright future for the development of drugs and therapeutic methods based on nanobodies.
Collapse
Affiliation(s)
- Huaping Tang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuan Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- Correspondence:
| | - Jiangyuan Han
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
11
|
Liu Y, Yi L, Li Y, Wang Z, Jirimutu. Characterization of heavy-chain antibody gene repertoires in Bactrian camels. J Genet Genomics 2023; 50:38-45. [PMID: 35500746 DOI: 10.1016/j.jgg.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Camelids are the only mammals that can produce functional heavy-chain antibodies (HCAbs). Although HCAbs were discovered over 30 years ago, the antibody gene repertoire of Bactrian camels remains largely underexplored. To characterize the diversity of variable genes of HCAbs (VHHs), germline and rearranged VHH repertoires are constructed. Phylogenetics analysis shows that all camelid VHH genes are derived from a common ancestor and the nucleotide diversity of VHHs is similar across all camelid species. While species-specific hallmark sites are identified, the non-canonical cysteines specific to VHHs are distinct in Bactrian camels and dromedaries compared with alpacas. Though low divergence at the germline repertoire between wild and domestic Bactrian camels, higher expression of VHHs is observed in some wild Bactrian camels than that of domestic ones. This study not only adds our understanding of VHH repertoire diversity across camelids, but also provides useful resources for HCAb engineering.
Collapse
Affiliation(s)
- Yuexing Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia 010018, China
| | - Yixue Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Guangzhou Laboratory, Guangzhou, Guangdong 510005, China; Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200433, China.
| | - Zhen Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jirimutu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia 010018, China; Inner Mongolia Institute of Camel Research, West Alax, Inner Mongolia 737399, China.
| |
Collapse
|
12
|
Mulero F, Oteo M, Garaulet G, Magro N, Rebollo L, Medrano G, Santiveri C, Romero E, Sellek RE, Margolles Y, Campos-Olivas R, Arroyo AG, Fernández LA, Morcillo MA, Martínez-Torrecuadrada JL. Development of anti-membrane type 1-matrix metalloproteinase nanobodies as immunoPET probes for triple negative breast cancer imaging. Front Med (Lausanne) 2022; 9:1058455. [PMID: 36507540 PMCID: PMC9729729 DOI: 10.3389/fmed.2022.1058455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by aggressiveness and high rates of metastasis. The identification of relevant biomarkers is crucial to improve outcomes for TNBC patients. Membrane type 1-matrix metalloproteinase (MT1-MMP) could be a good candidate because its expression has been reported to correlate with tumor malignancy, progression and metastasis. Moreover, single-domain variable regions (VHHs or Nanobodies) derived from camelid heavy-chain-only antibodies have demonstrated improvements in tissue penetration and blood clearance, important characteristics for cancer imaging. Here, we have developed a nanobody-based PET imaging strategy for TNBC detection that targets MT1-MMP. A llama-derived library was screened against the catalytic domain of MT1-MMP and a panel of specific nanobodies were identified. After a deep characterization, two nanobodies were selected to be labeled with gallium-68 (68Ga). ImmunoPET imaging with both ([68Ga]Ga-NOTA-3TPA14 and [68Ga]Ga-NOTA-3CMP75) in a TNBC mouse model showed precise tumor-targeting capacity in vivo with high signal-to-background ratios. (68Ga)Ga-NOTA-3CMP75 exhibited higher tumor uptake compared to (68Ga)Ga-NOTA-3TPA14. Furthermore, imaging data correlated perfectly with the immunohistochemistry staining results. In conclusion, we found a promising candidate for nanobody-based PET imaging to be further investigated as a diagnostic tool in TNBC.
Collapse
Affiliation(s)
- Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Oteo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Natalia Magro
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lluvia Rebollo
- Protein Production Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Guillermo Medrano
- Molecular Imaging Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Clara Santiveri
- Spectroscopy and Nuclear Magnetic Resonance Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Romero
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Ricela E. Sellek
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Yago Margolles
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Madrid, Spain
| | - Ramón Campos-Olivas
- Spectroscopy and Nuclear Magnetic Resonance Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Alicia G. Arroyo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Luis Angel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, (CNB-CSIC), Madrid, Spain
| | - Miguel Angel Morcillo
- Medical Applications of Ionizing Radiations Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain,*Correspondence: Miguel Angel Morcillo,
| | | |
Collapse
|
13
|
Khalaf HE, Al-Bouqaee H, Hwijeh M, Abbady AQ. Characterization of rabbit polyclonal antibody against camel recombinant nanobodies. Open Life Sci 2022; 17:659-675. [PMID: 35800073 PMCID: PMC9202535 DOI: 10.1515/biol-2022-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/02/2022] [Accepted: 03/12/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Nanobodies (Nbs) are recombinant single-domain fragments derived from camelids’ heavy-chain antibodies (HCAbs). Nanobodies are increasingly used in numerous biotechnological and medical applications because of their high stability, solubility, and yield. However, one major obstacle prohibiting Nb expansion is the affordability of specific detector antibodies for their final revelation. In this work, the production of a specific anti-Nb antibody as a general detector for camel antibodies, conventional cIgG, and HCAb, and their derived Nbs was sought. Thus, a T7 promoter plasmid was constructed and used to highly express six different Nbs that were used in a successful rabbit immunization. Affinity-purified rabbit anti-Nb rIgG was able to detect immobilized or antigen-bound Nbs via enzyme-linked immunosorbent assay, and its performance was comparable to that of a commercial anti-6× His antibody. Its capacities in dosing impure Nbs, detecting Nbs displayed on M13 phages, and revealing denatured Nbs in immune blotting were all proven. As expected, and because of shared epitopes, rabbit anti-Nb cross-reacted with cIgG, HCAbs, and 6× His-tagged proteins, and the percentage of each fraction within anti-Nb rIgG was determined. Anti-Nb is a promising tool for the checkpoints throughout the recombinant Nb technology.
Collapse
Affiliation(s)
- Houssam-Eddin Khalaf
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS) , P. O. Box 6091 , Damascus , Syria
| | - Hassan Al-Bouqaee
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS) , P. O. Box 6091 , Damascus , Syria
| | - Manal Hwijeh
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS) , P. O. Box 6091 , Damascus , Syria
| | - Abdul Qader Abbady
- Division of Molecular Biomedicine, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS) , P. O. Box 6091 , Damascus , Syria
| |
Collapse
|
14
|
Ben Abderrazek R, Ksouri A, Idoudi F, Dhaouadi S, Hamdi E, Vincke C, Farah A, Benlasfar Z, Majdoub H, El Ayeb M, Muyldermans S, Bouhaouala-Zahar B. Neutralizing Dromedary-Derived Nanobodies Against BotI-Like Toxin From the Most Hazardous Scorpion Venom in the Middle East and North Africa Region. Front Immunol 2022; 13:863012. [PMID: 35514999 PMCID: PMC9063451 DOI: 10.3389/fimmu.2022.863012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 01/18/2023] Open
Abstract
Scorpion envenoming is a severe health problem in many regions causing significant clinical toxic effects and fatalities. In the Middle East/North Africa (MENA) region, Buthidae scorpion stings are responsible for devastating toxic outcomes in human. The only available specific immunotherapeutic treatment is based on IgG fragments of animal origin. To overcome the limitations of classical immunotherapy, we have demonstrated the in vivo efficacy of NbF12-10 bispecific nanobody at preclinical level. Nanobodies were developed against BotI analogues belonging to a distinct structural and antigenic group of scorpion toxins, occurring in the MENA region. From Buthus occitanus tunetanus venom, BotI-like toxin was purified. The 41 N-terminal amino acid residues were sequenced, and the LD50 was estimated at 40 ng/mouse. The BotI-like toxin was used for dromedary immunization. An immune VHH library was constructed, and after screening, two nanobodies were selected with nanomolar and sub-nanomolar affinity and recognizing an overlapping epitope. NbBotI-01 was able to neutralize 50% of the lethal effect of 13 LD50 BotI-like toxins in mice when injected by i.c.v route, whereas NbBotI-17 neutralized 50% of the lethal effect of 7 LD50. Interestingly, NbBotI-01 completely reduced the lethal effect of the 2 LD50 of BotG50 when injected at 1:4 molar ratio excess. More interestingly, an equimolar mixture of NbBotI-01 with NbF12-10 neutralized completely the lethal effect of 7 and 5 LD50 of BotG50 or AahG50, at 1:4 and 1:2 molar ratio, respectively. Hence, NbBotI-01 and NbF12-10 display synergic effects, leading to a novel therapeutic candidate for treating Buthus occitanus scorpion stings in the MENA region.
Collapse
Affiliation(s)
- Rahma Ben Abderrazek
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Ayoub Ksouri
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Faten Idoudi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Sayda Dhaouadi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Emna Hamdi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Brussels, Belgium
| | - Azer Farah
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Zakaria Benlasfar
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Hafedh Majdoub
- Unité des Services Communs de Recherche (USCR) Séquenceur de Protéines, Faculté des Sciences de Sfax, Sfax, Tunisia
| | - Mohamed El Ayeb
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Balkiss Bouhaouala-Zahar
- Laboratoire des Biomolécules, Venins et Applications Théranostiques, Institut Pasteur Tunis, University Tunis El Manar, Tunis, Tunisia.,Unité des Services Communs de Recherche (USCR) Séquenceur de Protéines, Faculté des Sciences de Sfax, Sfax, Tunisia.,Faculté de Médecine de Tunis, Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
15
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
16
|
Pillay TS, Muyldermans S. Application of Single-Domain Antibodies ("Nanobodies") to Laboratory Diagnosis. Ann Lab Med 2021; 41:549-558. [PMID: 34108282 PMCID: PMC8203438 DOI: 10.3343/alm.2021.41.6.549] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies have proven to be central in the development of diagnostic methods over decades, moving from polyclonal antibodies to the milestone development of monoclonal antibodies. Although monoclonal antibodies play a valuable role in diagnosis, their production is technically demanding and can be expensive. The large size of monoclonal antibodies (150 kDa) makes their re-engineering using recombinant methods a challenge. Single-domain antibodies, such as “nanobodies,” are a relatively new class of diagnostic probes that originated serendipitously during the assay of camel serum. The immune system of the camelid family (camels, llamas, and alpacas) has evolved uniquely to produce heavy-chain antibodies that contain a single monomeric variable antibody domain in a smaller functional unit of 12–15 kDa. Interestingly, the same biological phenomenon is observed in sharks. Since a single-domain antibody molecule is smaller than a conventional mammalian antibody, recombinant engineering and protein expression in vitro using bacterial production systems are much simpler. The entire gene encoding such an antibody can be cloned and expressed in vitro. Single-domain antibodies are very stable and heat-resistant, and hence do not require cold storage, especially when incorporated into a diagnostic kit. Their simple genetic structure allows easy re-engineering of the protein to introduce new antigen-binding characteristics or attach labels. Here, we review the applications of single-domain antibodies in laboratory diagnosis and discuss the future potential in this area.
Collapse
Affiliation(s)
- Tahir S Pillay
- Department of Chemical Pathology and NHLS- Tshwane Academic Division, University of Pretoria, Pretoria, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa.,Department of Chemical Pathology, University of Pretoria, Prinshof Campus, Pretoria, South Africa
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
17
|
Chen F, Liu Z, Jiang F. Prospects of Neutralizing Nanobodies Against SARS-CoV-2. Front Immunol 2021; 12:690742. [PMID: 34122456 PMCID: PMC8194341 DOI: 10.3389/fimmu.2021.690742] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Since December 2019, the SARS-CoV-2 has erupted on a large scale worldwide and spread rapidly. Passive immunization of antibody-related molecules provides opportunities for prevention and treatment of high-risk patients and children. Nanobodies (Nbs) have many strong physical and chemical properties. They can be atomized, administered by inhalation, and can be directly applied to the infected site, with fast onset, high local drug concentration/high bioavailability, and high patient compliance (no needles). It has very attractive potential in the treatment of respiratory viruses. Rapid and low-cost development of Nbs targeting SARS-CoV-2 can quickly be achieved. Nbs against SARS-CoV-2 mutant strains also can be utilized quickly to prevent the virus from escaping. It provides important technical supports for the treatment of the SARS-CoV-2 and has the potential to become an essential medicine in the toolbox against the SARS-CoV-2.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhihong Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fan Jiang
- NanoAI Biotech Co., Ltd., Huahan Technology Industrial Park, Shenzhen, China
| |
Collapse
|
18
|
Low S, Wu H, Jerath K, Tibolla A, Fogal B, Conrad R, MacDougall M, Kerr S, Berger V, Dave R, Villalona J, Pantages L, Ahlberg J, Li H, Van Hoorick D, Ververken C, Broadwater J, Waterman A, Singh S, Kroe-Barrett R. VHH antibody targeting the chemokine receptor CX3CR1 inhibits progression of atherosclerosis. MAbs 2021; 12:1709322. [PMID: 31924119 PMCID: PMC6973309 DOI: 10.1080/19420862.2019.1709322] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
CX3CR1 has been identified as a highly attractive target for several therapeutic interventions. Despite this potential, no potent antagonists, either small molecule or monoclonal antibody, have been identified. Here we describe the lead finding and engineering approach that lead to the identification of BI 655088, a potent biotherapeutic antagonist to CX3CR1. BI 655088 is a potent CX3CR1 antagonist that, upon therapeutic dosing, significantly inhibits plaque progression in the standard mouse model of atherosclerosis. BI 655088 represents a novel and highly selective biotherapeutic that could reduce inflammation in the atherosclerotic plaque when added to standard of care treatment including statins, which could result in a significant decrease in atherothrombotic events in patients with existing cardiovascular disease.
Collapse
Affiliation(s)
- Sarah Low
- Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Haixia Wu
- Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Kavita Jerath
- Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Annette Tibolla
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Birgit Fogal
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Rebecca Conrad
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Margit MacDougall
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Steven Kerr
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Valentina Berger
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Rajvee Dave
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Jorge Villalona
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Lynn Pantages
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Jennifer Ahlberg
- Biotherapeutics Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Hua Li
- Biotherapeutics Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | | | - Cedric Ververken
- Project Management, Ablynx a Sanofi Company, Zwijnaarde, Belgium
| | - John Broadwater
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Alisa Waterman
- Cardiometabolic Disease Research, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Sanjaya Singh
- Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Rachel Kroe-Barrett
- Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
19
|
Bessalah S, Jebahi S, Mejri N, Salhi I, Khorchani T, Hammadi M. Perspective on therapeutic and diagnostic potential of camel nanobodies for coronavirus disease-19 (COVID-19). 3 Biotech 2021; 11:89. [PMID: 33500874 PMCID: PMC7820838 DOI: 10.1007/s13205-021-02647-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
In this paper, we focus on the camelid nanobodies as a revolutionary therapy that can guide efforts to discover new drugs for Coronavirus disease (COVID-19). The small size property makes nanobodies capable of penetrating efficiently into tissues and recognizing cryptic antigens. Strong antigen affinity and stability in the gastrointestinal tract allow them to be used via oral administration. In fact, the use of nanobodies as inhalant can be directly delivered to the target organ, conferring high pulmonary drug concentrations and low systemic drug concentrations and minimal systemic side effects. For that, nanobodies are referred as a class of next-generation antibodies. Nanobodies permit the construction of multivalent formats that may achieve ultra-high neutralization potency and then may prevent mutational escape and can neutralize a wide range of SARS-CoV-2 variants. Due to their distinctive characteristics, nanobodies can be of great use in the development of promising treatment or preventive strategies against SARS-CoV-2 infection. In this review, the state-of-the-art of camel nanobodies design strategies against the virus including SARS-CoV-2 are critically summarized. The application of general nanotechnology was also discussed to mitigate and control emerging SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Salma Bessalah
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A), University of Gabès, 4119 Médenine, Tunisia
| | - Samira Jebahi
- Laboratory on Energy and Matter for Nuclear Sciences Development (LR16CNSTN02), National Centre for Nuclear Sciences and Technologies, Sidi Thabet Technopark, 2020 Sidi Thabet, Tunisia, Pole technologique, BP 72, 2020 Sidi Thabet, Tunisia
| | - Naceur Mejri
- Laboratory on Energy and Matter for Nuclear Sciences Development (LR16CNSTN02), National Centre for Nuclear Sciences and Technologies, Sidi Thabet Technopark, 2020 Sidi Thabet, Tunisia, Pole technologique, BP 72, 2020 Sidi Thabet, Tunisia
| | - Imed Salhi
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A), University of Gabès, 4119 Médenine, Tunisia
| | - Touhami Khorchani
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A), University of Gabès, 4119 Médenine, Tunisia
| | - Mohamed Hammadi
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A), University of Gabès, 4119 Médenine, Tunisia
| |
Collapse
|
20
|
Abstract
Unique, functional, homodimeric heavy chain-only antibodies, devoid of light chains, are circulating in the blood of Camelidae. These antibodies recognize their cognate antigen via one single domain, known as VHH or Nanobody. This serendipitous discovery made three decades ago has stimulated a growing number of researchers to generate highly specific Nanobodies against a myriad of targets. The small size, strict monomeric state, robustness, and easy tailoring of these Nanobodies have inspired many groups to design innovative Nanobody-based multi-domain constructs to explore novel applications. As such, Nanobodies have been employed as an exquisite research tool in structural, cell, and developmental biology. Furthermore, Nanobodies have demonstrated their benefit for more sensitive diagnostic tests. Finally, several Nanobody-based constructs have been designed to develop new therapeutic products.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; .,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, People's Republic of China
| |
Collapse
|
21
|
Muyldermans S. A guide to: generation and design of nanobodies. FEBS J 2020; 288:2084-2102. [PMID: 32780549 PMCID: PMC8048825 DOI: 10.1111/febs.15515] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/03/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
A nanobody (Nb) is a registered trademark of Ablynx, referring to the single antigen-binding domain of heavy chain-only antibodies (HCAbs) that are circulating in Camelidae. Nbs are produced recombinantly in micro-organisms and employed as research tools or for diagnostic and therapeutic applications. They were - and still are - also named single-domain antibodies (sdAbs) or variable domain of the heavy chain of HCAbs (VHH). A variety of methods are currently in use for the fast and efficient generation of target-specific Nbs. Such Nbs are produced at low cost and associate with high affinity to their cognate antigen. They are robust, strictly monomeric and easy to tailor into more complex entities to meet the requirements of their application. Here, we review the various sources and different strategies that have been developed to identify rapidly, target-specific Nbs. We further discuss a variety of engineering technologies that have been explored to broaden the application range of Nbs and summarise those applications where designed Nbs might offer a marked advantage over other affinity reagents.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, China
| |
Collapse
|
22
|
Alshamat EA, Kweider M, Soukkarieh C, Zarkawi M, Khalaf HE, Abbady AQ. Phage-nanobody as molecular marker for the detection of Leishmania tropica. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Lafaye P, Lesuisse D, Declèves X. [New formats for improving brain drug delivery of antibodies: the blood-brain barrier case]. Med Sci (Paris) 2020; 35:1106-1112. [PMID: 31903924 DOI: 10.1051/medsci/2019223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many neurodegenerative or tumor brain pathologies should be able to benefit from the impressive medicinal advances that represent therapeutic antibodies. Unfortunately, many failures have been observed with antibodies whose targets are in the brain parenchyma due to their very low brain distribution. The blood-brain barrier (BBB) that exhibits extremely selective and restrictive properties is responsible for the low brain penetration of high-molecular mass molecules including therapeutic antibodies. The objective of this article is to present the properties of the BBB and the latest advances in the engineering of new antibody formats to possibly improve their brain distribution.
Collapse
Affiliation(s)
- Pierre Lafaye
- Institut Pasteur, Plateforme d'ingénierie des anticorps, Paris, France
| | - Dominique Lesuisse
- Sanofi, Département des Maladies Rares et Neurologiques, Groupe Barrières Cérébrales, Paris, France
| | - Xavier Declèves
- Université Paris Descartes, Faculté de Pharmacie de Paris et Inserm UMRS-1144, Barrière hémato-encéphalique: Physiopathologie et Thérapie, Paris, France
| |
Collapse
|
24
|
Sanaei M, Setayesh N, Sepehrizadeh Z, Mahdavi M, Yazdi MH. Nanobodies in Human Infections: Prevention, Detection, and Treatment. Immunol Invest 2019; 49:875-896. [PMID: 31856615 DOI: 10.1080/08820139.2019.1688828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite the existence of vaccination, antibiotic therapy, and antibody therapies, infectious diseases still remain as one of the biggest challenges to human health all over the world. Among the different methods for treatment and prevention of infectious diseases, antibodies are well known but poorly developed. There is a new subclass of antibodies calledheavy-chain antibodies that belong to the IgG isotype. However, they are low in molecular weight and lost the first constant domain (CH1). Their single-domain antigen-binding fragments, identified as nanobodies, have unique characteristics, which make them superior in comparison with the conventional antibodies. Low molecular weight and small size, high stability and solubility, ease of expression, good tissue penetration, and low-cost production make nanobodies an appropriate alternative to use against infectious disease. In this research, we review the properties of nanobodies and their potential applications in controlling human infections and inflammations.
Collapse
Affiliation(s)
- Marzieh Sanaei
- Biotechnology Research Center, Tehran University of Medical Sciences , Tehran, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Neda Setayesh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Zargham Sepehrizadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy & Biotechnology Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Mehdi Mahdavi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad Hossein Yazdi
- Biotechnology Research Center, Tehran University of Medical Sciences , Tehran, Iran.,Recombinant Vaccine Research Center, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
25
|
Ciccarese S, Burger PA, Ciani E, Castelli V, Linguiti G, Plasil M, Massari S, Horin P, Antonacci R. The Camel Adaptive Immune Receptors Repertoire as a Singular Example of Structural and Functional Genomics. Front Genet 2019; 10:997. [PMID: 31681428 PMCID: PMC6812646 DOI: 10.3389/fgene.2019.00997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
The adaptive immune receptors repertoire is highly plastic, with its ability to produce antigen-binding molecules and select those with high affinity for their antigen. Species have developed diverse genetic and structural strategies to create their respective repertoires required for their survival in the different environments. Camelids, until now, considered as a case of evolutionary innovation because of their only heavy-chain antibodies, represent a new mammalian model particularly useful for understanding the role of diversity in the immune system function. Here, we review the structural and functional characteristics and the current status of the genomic organization of camel immunoglobulins (IG) or antibodies, α/ß and γ/δ T cell receptors (TR), and major histocompatibility complex (MHC). In camelid humoral response, in addition to the conventional antibodies, there are IG with “only-heavy-chain” (no light chain, and two identical heavy gamma chains lacking CH1 and with a VH domain designated as VHH). The unique features of these VHH offer advantages in biotechnology and for clinical applications. The TRG and TRD rearranged variable domains of Camelus dromedarius (Arabian camel) display somatic hypermutation (SHM), increasing the intrinsic structural stability in the γ/δ heterodimer and influencing the affinity maturation to a given antigen similar to immunoglobulin genes. The SHM increases the dromedary γ/δ repertoire diversity. In Camelus genus, the general structural organization of the TRB locus is similar to that of the other artiodactyl species, with a pool of TRBV genes positioned at the 5’ end of three in tandem D-J-C clusters, followed by a single TRBV gene with an inverted transcriptional orientation located at the 3’ end. At the difference of TRG and TRD, the diversity of the TRB variable domains is not shaped by SHM and depends from the classical combinatorial and junctional diversity. The MHC locus is located on chromosome 20 in Camelus dromedarius. Cytogenetic and comparative whole genome analyses revealed the order of the three major regions “Centromere-ClassII-ClassIII-ClassI”. Unexpectedly low extent of polymorphisms and haplotypes was observed in all Old World camels despite different geographic origins.
Collapse
Affiliation(s)
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, Vienna, Austria
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro," Bari, Italy
| | - Vito Castelli
- Department of Biology, University of Bari "Aldo Moro," Bari, Italy
| | | | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | - Serafina Massari
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia.,CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, RG Animal Immunogenomics, Brno, Czechia
| | | |
Collapse
|
26
|
Uchański T, Zögg T, Yin J, Yuan D, Wohlkönig A, Fischer B, Rosenbaum DM, Kobilka BK, Pardon E, Steyaert J. An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 2019; 9:382. [PMID: 30674983 PMCID: PMC6344588 DOI: 10.1038/s41598-018-37212-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022] Open
Abstract
Fusions to the C-terminal end of the Aga2p mating adhesion of Saccharomyces cerevisiae have been used in many studies for the selection of affinity reagents by yeast display followed by flow cytometric analysis. Here we present an improved yeast display system for the screening of Nanobody immune libraries where we fused the Nanobody to the N-terminal end of Aga2p to avoid steric hindrance between the fused Nanobody and the antigen. Moreover, the display level of a cloned Nanobody on the surface of an individual yeast cell can be monitored through a covalent fluorophore that is attached in a single enzymatic step to an orthogonal acyl carrier protein (ACP). Additionally, the displayed Nanobody can be easily released from the yeast surface and immobilised on solid surfaces for rapid analysis. To prove the generic nature of this novel Nanobody discovery platform, we conveniently selected Nanobodies against three different antigens, including two membrane proteins.
Collapse
Affiliation(s)
- Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Thomas Zögg
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jie Yin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daopeng Yuan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Alexandre Wohlkönig
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Baptiste Fischer
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Brian K Kobilka
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
| |
Collapse
|
27
|
Kwon S, Duarte JN, Li Z, Ling JJ, Cheneval O, Durek T, Schroeder CI, Craik DJ, Ploegh HL. Targeted Delivery of Cyclotides via Conjugation to a Nanobody. ACS Chem Biol 2018; 13:2973-2980. [PMID: 30248263 DOI: 10.1021/acschembio.8b00653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many naturally occurring peptides have poor proteolytic stability, which limits their therapeutic applications. Cyclotides are plant-derived cyclic peptides that resist proteolysis due to their highly constrained structure, comprising a head-to-tail cyclic backbone and three disulfide bonds that form a cystine-knotted core. This structure makes them useful as scaffolds onto which peptide sequences (epitopes) can be grafted. In this study, VHH7, an alpaca-derived nanobody that targets murine class II MHC molecules, was used for the targeted delivery of cyclotides to antigen-presenting cells (APCs). The cyclotides MCoTI-I, and MCoTI-I with a HA-tag (YPYDVPDYA) grafted into loop 6 (MCoTI-HA), were tested for immunogenic properties. To produce the requisite VHH7-peptide conjugates, a site-specific sortase A-catalyzed reaction in combination with a copper-free strain-promoted cycloaddition reaction was used. MCoTI-I alone did not display any obvious antibody response, thus showing the capacity of cyclotides as immunologically silent scaffolds. By contrast, MCoTI-I conjugated to VHH7 elicited antibodies against cyclic or linear MCoTI-I, thus suggesting a simple and robust approach for targeting cyclotides to APCs, and potentially to other cell types. A similar antibody response was observed when MCoTI-HA was conjugated to VHH7, but there was no reactivity toward a linear HA-tag itself, suggesting differences in conformational constraint between cyclotide-presented and linear epitopes. Studies of commercially available HA antibodies applied to MCoTI-HA confirmed that the conformation of peptide immunogens affects their reactivity. Thus, the production of antibodies that recognize constrained epitopes may benefit from engraftment onto scaffolds such as cyclotides. More broadly, this study validates that a prototypic cyclotide, a member of a peptide family that has proven to be useful as drug design scaffolds in many other studies, can efficiently reach a specific target in vivo.
Collapse
Affiliation(s)
- Soohyun Kwon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Joao N. Duarte
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Zeyang Li
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Jingjing J. Ling
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
- Program in Cellular and Molecular Medicine, Division of Molecular Biology, Department of Medicine, Boston Children’s Hospital, 3 Blackfan Circle, Third Floor, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Zhang T, Cheng X, Yu D, Lin F, Hou N, Cheng X, Hao S, Wei J, Ma L, Fu Y, Ma Y, Ren L, Han H, Yu S, Yang X, Zhao Y. Genetic Removal of the CH1 Exon Enables the Production of Heavy Chain-Only IgG in Mice. Front Immunol 2018; 9:2202. [PMID: 30319646 PMCID: PMC6167435 DOI: 10.3389/fimmu.2018.02202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022] Open
Abstract
Nano-antibodies possess great potential in many applications. However, they are naturally derived from heavy chain-only antibodies (HcAbs), which lack light chains and the CH1 domain, and are only found in camelids and sharks. In this study, we investigated whether the precise genetic removal of the CH1 exon of the γ1 gene enabled the production of a functional heavy chain-only IgG1 in mice. IgG1 heavy chain dimers lacking associated light chains were detected in the sera of the genetically modified mice. However, the genetic modification led to decreased expression of IgG1 but increased expression of other IgG subclasses. The genetically modified mice showed a weaker immune response to specific antigens compared with wild type mice. Using a phage-display approach, antigen-specific, single domain VH antibodies could be screened from the mice but exhibited much weaker antigen binding affinity than the conventional monoclonal antibodies. Although the strategy was only partially successful, this study confirms the feasibility of producing desirable nano-bodies with appropriate genetic modifications in mice.
Collapse
Affiliation(s)
- Tianyi Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xueqian Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Di Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Fuyu Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ning Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xuan Cheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Shanshan Hao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Jingjing Wei
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Li Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yanbin Fu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yonghe Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Lafaye P, Li T. Use of camel single-domain antibodies for the diagnosis and treatment of zoonotic diseases. Comp Immunol Microbiol Infect Dis 2018; 60:17-22. [PMID: 30396425 PMCID: PMC7112682 DOI: 10.1016/j.cimid.2018.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022]
Abstract
VHHs provide many advantages over complete IgG in diagnostics and therapy. Toxins and viruses are more efficiently neutralized by multivalent VHHs. Camelids could be a source of broadly neutralizing antibodies (bNAbs) to treat zoonotic diseases.
Camelids produce both conventional heterotetrameric antibodies and homodimeric heavy-chain only antibodies. The antigen-binding region of such homodimeric heavy-chain only antibodies consists of one single domain, called VHH. VHHs provide many advantages over conventional full-sized antibodies and currently used antibody-based fragments (Fab, scFv), including high specificity, stability and solubility, and small size, allowing them to recognize unusual antigenic sites and deeply penetrate tissues. Since their discovery, VHHs have been used extensively in diagnostics and therapy. In recent decades, the number of outbreaks of diseases transmissible from animals to humans has been on the rise. In this review, we evaluate the status of VHHs as diagnostic and therapeutic biomolecular agents for the detection and treatment of zoonotic diseases, such as bacterial, parasitic, and viral zoonosis. VHHs show great adaptability to inhibit or neutralize pathogenic agents for the creation of multifunctional VHH-based diagnostic and therapeutic molecules against zoonotic diseases.
Collapse
Affiliation(s)
- Pierre Lafaye
- Institut Pasteur, Plate forme d'Ingénierie des Anticorps, C2RT, Paris, France.
| | - Tengfei Li
- Université Paris Diderot, Paris 7, France
| |
Collapse
|
30
|
Reporter-nanobody fusions (RANbodies) as versatile, small, sensitive immunohistochemical reagents. Proc Natl Acad Sci U S A 2018; 115:2126-2131. [PMID: 29440485 DOI: 10.1073/pnas.1722491115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensitive and specific antibodies are essential for detecting molecules in cells and tissues. However, currently used polyclonal and monoclonal antibodies are often less specific than desired, difficult to produce, and available in limited quantities. A promising recent approach to circumvent these limitations is to employ chemically defined antigen-combining domains called "nanobodies," derived from single-chain camelid antibodies. Here, we used nanobodies to prepare sensitive unimolecular detection reagents by genetically fusing cDNAs encoding nanobodies to enzymatic or antigenic reporters. We call these fusions between a reporter and a nanobody "RANbodies." They can be used to localize epitopes and to amplify signals from fluorescent proteins. They can be generated and purified simply and in unlimited amounts and can be preserved safely and inexpensively in the form of DNA or digital sequence.
Collapse
|
31
|
Antonacci R, Bellini M, Pala A, Mineccia M, Hassanane MS, Ciccarese S, Massari S. The occurrence of three D-J-C clusters within the dromedary TRB locus highlights a shared evolution in Tylopoda, Ruminantia and Suina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:105-119. [PMID: 28577760 DOI: 10.1016/j.dci.2017.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The αβ T cells are important components of the adaptive immune system and can recognize a vast array of peptides presented by MHC molecules. The ability of these T cells to recognize the complex depends on the diversity of the αβ TR, which is generated by a recombination of specific Variable, Diversity and Joining genes for the β chain, and Variable and Joining genes for the α chain. In this study, we analysed the genomic structure and the gene content of the TRB locus in Camelus dromedarius, which is a species belonging to the Tylopoda suborder. The most noteworthy result is the presence of three in tandem TRBD-J-C clusters in the dromedary TRB locus, which is similar to clusters found in sheep, cattle and pigs and suggests a common duplication event occurred prior to the Tylopoda/Ruminantia/Suina divergence. Conversely, a significant contraction of the dromedary TRBV genes, which was previously found in the TRG and TRD loci, was observed with respect to the other artiodactyl species.
Collapse
Affiliation(s)
| | | | - Angela Pala
- Department of Biology, University "Aldo Moro" of Bari, Bari, Italy.
| | - Micaela Mineccia
- Department of Biology, University "Aldo Moro" of Bari, Bari, Italy.
| | | | | | - Serafina Massari
- Department of Biological and Environmental Science e Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
32
|
Bedford R, Tiede C, Hughes R, Curd A, McPherson MJ, Peckham M, Tomlinson DC. Alternative reagents to antibodies in imaging applications. Biophys Rev 2017; 9:299-308. [PMID: 28752365 PMCID: PMC5578921 DOI: 10.1007/s12551-017-0278-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/21/2022] Open
Abstract
Antibodies have been indispensable tools in molecular biology, biochemistry and medical research. However, a number of issues surrounding validation, specificity and batch variation of commercially available antibodies have prompted research groups to develop novel non-antibody binding reagents. The ability to select highly specific monoclonal non-antibody binding proteins without the need for animals, the ease of production and the ability to site-directly label has enabled a wide variety of applications to be tested, including imaging. In this review, we discuss the success of a number of non-antibody reagents in imaging applications, including the recently reported Affimer.
Collapse
Affiliation(s)
- R Bedford
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - C Tiede
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - R Hughes
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - A Curd
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - M J McPherson
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Michelle Peckham
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
33
|
Wang T, Li P, Zhang Q, Zhang W, Zhang Z, Wang T, He T. Determination of Aspergillus pathogens in agricultural products by a specific nanobody-polyclonal antibody sandwich ELISA. Sci Rep 2017; 7:4348. [PMID: 28659622 PMCID: PMC5489487 DOI: 10.1038/s41598-017-04195-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022] Open
Abstract
Aspergillus and its poisonous mycotoxins are distributed worldwide throughout the environment and are of particular interest in agriculture and food safety. In order to develop a specific method for rapid detection of Aspergillus flavus to forecast diseases and control aflatoxins, a nanobody, PO8-VHH, highly reactive to A. flavus was isolated from an immunized alpaca nanobody library by phage display. The nanobody was verified to bind to the components of extracellular and intracellular antigen from both A. flavus and A. parasiticus. To construct a sandwich format immunoassay, polyclonal antibodies against Aspergillus were raised with rabbits. Finally, a highly selective nanobody-polyclonal antibody sandwich enzyme-linked immunosorbent assay was optimized and developed. The results revealed that the detection limits of the two fungi were as low as 1 μg mL-1, and that it is able to detect fungal concentrations below to 2 μg mg-1 of peanut and maize grains in both artificially and naturally contaminated samples. Therefore, we here provided a rapid and simple method for monitoring Aspergillus spp. contamination in agricultural products.
Collapse
Affiliation(s)
- Ting Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, People's Republic of China.
- Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan, 430062, People's Republic of China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430062, People's Republic of China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, People's Republic of China.
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
- Laboratory of Risk Assessment for Oilseeds Products, Wuhan, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
| | - Tong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
| | - Ting He
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, 430062, People's Republic of China
| |
Collapse
|
34
|
Yao H, Zhang M, Li Y, Yao J, Meng H, Yu S. Purification and quantification of heavy-chain antibodies from the milk of bactrian camels. Anim Sci J 2017; 88:1446-1450. [PMID: 28177177 DOI: 10.1111/asj.12772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/09/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022]
Abstract
Camel milk has a unique composition with naturally occurring heavy-chain antibodies (HCAbs), which exert rehabilitating potencies in infection and immunity. To characterize HCAb in camel milk, immunoglobulin G (IgG) was isolated from the milk of Camelus bactrianus by a combination of affinity chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis to purify and size-fractionate protein A and protein G, which were further identified by Western blotting, and were quantified by bicinchoninic acid (BCA) and ELISA. The results indicated that IgG1 fraction contains molecules of 50 kDa heavy chains and 36 kDa light chains. The HCAbs (IgG2 and IgG3 fractions) devoid of light chains, contain heavy chains of 45 kDa and 43 kDa, respectively, the amounts of which were significantly higher than that of the IgG1 in the milk of bactrian camels. Above all, we revealed the considerable amounts of HCAbs in the milk of bactrian camels, and developed a novel method for their purification and quantification. These findings provide the basis for developing potential effects of camel milk and its interface with the dairy industry, as well as future investigations of HCAb and its roles in human health and diseases.
Collapse
Affiliation(s)
- Hongqiang Yao
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| | - Min Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, China
| | - Yi Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, China
| | - Jirimutu Yao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Siriguleng Yu
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
35
|
Van Heeke G, Allosery K, De Brabandere V, De Smedt T, Detalle L, de Fougerolles A. Nanobodies® † †Nanobody is a registered trademark of Ablynx NV. as inhaled biotherapeutics for lung diseases. Pharmacol Ther 2017; 169:47-56. [DOI: 10.1016/j.pharmthera.2016.06.012] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2016] [Indexed: 02/06/2023]
|
36
|
Zhao N, Schmitt MA, Fisk JD. Phage display selection of tight specific binding variants from a hyperthermostable Sso7d scaffold protein library. FEBS J 2016; 283:1351-67. [DOI: 10.1111/febs.13674] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/21/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Zhao
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
| | - Margaret A. Schmitt
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
| | - John D. Fisk
- Department of Chemical and Biological Engineering; Colorado State University; Fort Collins CO USA
- Department of Chemistry; Colorado State University; Fort Collins CO USA
- School of Biomedical Engineering; Colorado State University; Fort Collins CO USA
| |
Collapse
|
37
|
Tillib SV, Vyatchanin AS, Muyldermans S. Molecular analysis of heavy chain-only antibodies of Camelus bactrianus. BIOCHEMISTRY (MOSCOW) 2015; 79:1382-90. [PMID: 25716733 DOI: 10.1134/s000629791412013x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this work, IgG content and structures of antigen-binding domains and hinge regions of different IgG subtypes of Camelus bactrianus were analyzed in detail for the first time. Our data demonstrate that C. bactrianus contains a very large amount of heavy chain-only antibodies that can be used as a source of VHH domain-containing molecules. Despite some minor sequence differences identified in this study, C. bactrianus VHH domains possess principally the same unique features as those of C. dromedarius and the llama. These features are important for developing an efficient phage display-based antibody selection technology. We conclude that C. bactrianus is a very suitable animal to raise an immune response that serves as a source to identify antigen-specific VHHs selected after phage display.
Collapse
Affiliation(s)
- S V Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | |
Collapse
|
38
|
Newnham LE, Wright MJ, Holdsworth G, Kostarelos K, Robinson MK, Rabbitts TH, Lawson AD. Functional inhibition of β-catenin-mediated Wnt signaling by intracellular VHH antibodies. MAbs 2015; 7:180-91. [PMID: 25524068 PMCID: PMC4622660 DOI: 10.4161/19420862.2015.989023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Wnt signaling pathway is of central importance in embryogenesis, development and adult tissue homeostasis, and dysregulation of this pathway is associated with cancer and other diseases. Despite the developmental and potential therapeutic significance of this pathway, many aspects of Wnt signaling, including the control of the master transcriptional co-activator β-catenin, remain poorly understood. In order to explore this aspect, a diverse immune llama VHH phagemid library was constructed and panned against β-catenin. VHH antibody fragments from the library were expressed intracellularly, and a number of antibodies were shown to possess function-modifying intracellular activity in a luciferase-based Wnt signaling HEK293 reporter bioassay. Further characterization of one such VHH (named LL3) confirmed that it bound endogenous β-catenin, and that it inhibited the Wnt signaling pathway downstream of the destruction complex, while production of a control Ala-substituted complementarity-determining region (CDR)3 mutant demonstrated that the inhibition of β-catenin activity by the parent intracellular antibody was dependent on the specific CDR sequence of the antibody.
Collapse
|
39
|
Optimization of dilution refolding conditions for a camelid single domain antibody against human beta-2-microglobulin. Protein Expr Purif 2015; 117:59-66. [PMID: 26386406 DOI: 10.1016/j.pep.2015.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 01/11/2023]
Abstract
Single domain antibody (sdAb) is often expressed as inclusion bodies in Escherichia coli cytoplasm. Establishing an effective in vitro refolding method for sdAb obtained from inclusion bodies would be important for sdAb research. In this study, dilution refolding condition for a camelid sdAb specific against human beta-2-microglobulin was optimized for the sdAb purified from the inclusion bodies of E. coli BL21 (DE3). Single factor methods based on protein concentration, velocity of dilution, incubation time and refolding buffer composition were first investigated. Then the key refolding buffer compositions were selected for further optimization by means of the Box-Behnken design of response surface methodology (RSM). The activity of the refolded sdAb was determined by measuring its specific antigen-binding ability using indirect ELISA. The optimized refolding condition of sdAb consisted of a 10-fold dilution in 10 mM Tris-HCl (pH 8.0) containing 1.24 mM GSH, 1mM GSSG, 352 mM L-Arg, 0.65% PEG-2000, and a 16 h incubation at 4 °C. Further comparison of the activities between the refolded sdAb and purified soluble sdAb expressed in E. coli Rosetta-gami (DE3) pLysS indicated that the sdAb was correctly refolded, as assayed by isothermal titration calorimetry. This work could provide an important strategy for the recombinant production and application of sdAb.
Collapse
|
40
|
Ghannam A, Kumari S, Muyldermans S, Abbady AQ. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. PLANT MOLECULAR BIOLOGY 2015; 87:355-69. [PMID: 25648551 DOI: 10.1007/s11103-015-0282-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/06/2015] [Indexed: 05/03/2023]
Abstract
Worldwide, plant viral infections decrease seriously the crop production yield, boosting the demand to develop new strategies to control viral diseases. One of these strategies to prevent viral infections, based on the immunomodulation faces many problems related to the ectopic expression of specific antibodies in planta. Camelid nanobodies, expressed in plants, may offer a solution as they are an attractive tool to bind efficiently to viral epitopes, cryptic or not accessible to conventional antibodies. Here, we report a novel, generic approach that might lead to virus resistance based on the expression of camelid specific nanobodies against Broad bean mottle virus (BBMV). Eight nanobodies, recognizing BBMV with high specificity and affinity, were retrieved after phage display from a large 'immune' library constructed from an immunized Arabic camel. By an in vitro assay we demonstrate how three nanobodies attenuate the BBMV spreading in inoculated Vicia faba plants. Furthermore, the in planta transient expression of these three selected nanobodies confirms their virus neutralizing capacity. In conclusion, this report supports that plant resistance against viral infections can be achieved by the in vivo expression of camelid nanobodies.
Collapse
Affiliation(s)
- Ahmed Ghannam
- Division of Plant Pathology, Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P. O. Box 6091, Damascus, Syria,
| | | | | | | |
Collapse
|
41
|
D’Huyvetter M, Xavier C, Caveliers V, Lahoutte T, Muyldermans S, Devoogdt N. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opin Drug Deliv 2014; 11:1939-54. [PMID: 25035968 PMCID: PMC4245996 DOI: 10.1517/17425247.2014.941803] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The integration of diagnostic testing for the presence of a molecular target is of interest to predict successful targeted radionuclide therapy (TRNT). This so-called 'theranostic' approach aims to improve personalized treatment based on the molecular characteristics of cancer cells. Moreover, it offers new insights in predicting adverse effects and provides appropriate tools to monitor therapy responses. Recent findings using nanobodies emphasize their potential as theranostic tools in cancer treatment. Nanobodies are recombinant, small antigen-binding fragments that are derived from camelid heavy-chain-only antibodies. AREAS COVERED We review the current status of theranostic approaches in TRNT, with a focus on antibodies, peptides, scaffold proteins and emerging nanobodies. In recent years, nanobodies have been evaluated intensively for molecular imaging. In addition, novel data on TRNT using radiolabeled nanobodies for carcinomas and multiple myeloma highlight their promising opportunities in cancer treatment. EXPERT OPINION We trust that radiolabeled nanobodies will have a future potential as theranostic tools in cancer therapy, both for diagnosis as well as for TRNT.
Collapse
Affiliation(s)
- Matthias D’Huyvetter
- Belgian Nuclear Research Center (SCK·CEN), Radiobiology Unit, Molecular and Cellular Biology Expert Group,
Mol, Belgium
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Catarina Xavier
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Vicky Caveliers
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
- UZ Brussel, Department of Nuclear Medicine,
Brussels, Belgium
| | - Tony Lahoutte
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
- UZ Brussel, Department of Nuclear Medicine,
Brussels, Belgium
| | - Serge Muyldermans
- Vrije Universiteit Brussel (VUB), Cellular and Molecular Immunology,
Pleinlaan 2, 1050 Brussels, Belgium+32 2 6291969;
- Vlaams Instituut voor Biotechnologie (VIB), Structural Biology Research Center,
Brussels, Belgium
| | - Nick Devoogdt
- Vrije Universiteit Brussel (VUB), In vivo Cellular and Molecular Imaging Laboratory (ICMI),
Laarbeeklaan 103, 1090 Brussels, Belgium
- Vrije Universiteit Brussel (VUB), Cellular and Molecular Immunology,
Pleinlaan 2, 1050 Brussels, Belgium+32 2 6291969;
| |
Collapse
|
42
|
Arias JL, Unciti-Broceta JD, Maceira J, Del Castillo T, Hernández-Quero J, Magez S, Soriano M, García-Salcedo JA. Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis. J Control Release 2014; 197:190-8. [PMID: 25445702 DOI: 10.1016/j.jconrel.2014.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/25/2022]
Abstract
Targeted delivery of therapeutics is an alternative approach for the selective treatment of infectious diseases. The surface of African trypanosomes, the causative agents of African trypanosomiasis, is covered by a surface coat consisting of a single variant surface glycoprotein, termed VSG. This coat is recycled by endocytosis at a very high speed, making the trypanosome surface an excellent target for the delivery of trypanocidal drugs. Here, we report the design of a drug nanocarrier based on poly ethylen glycol (PEG) covalently attached (PEGylated) to poly(D,L-lactide-co-glycolide acid) (PLGA) to generate PEGylated PLGA nanoparticles. This nanocarrier was coupled to a single domain heavy chain antibody fragment (nanobody) that specifically recognizes the surface of the protozoan pathogen Trypanosoma brucei. Nanoparticles were loaded with pentamidine, the first-line drug for T. b. gambiense acute infection. An in vitro effectiveness assay showed a 7-fold decrease in the half-inhibitory concentration (IC50) of the formulation relative to free drug. Furthermore, in vivo therapy using a murine model of African trypanosomiasis demonstrated that the formulation cured all infected mice at a 10-fold lower dose than the minimal full curative dose of free pentamidine and 60% of mice at a 100-fold lower dose. This nanocarrier has been designed with components approved for use in humans and loaded with a drug that is currently in use to treat the disease. Moreover, this flexible nanobody-based system can be adapted to load any compound, opening a range of new potential therapies with application to other diseases.
Collapse
Affiliation(s)
- José L Arias
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Granada, Granada, Spain
| | - Juan D Unciti-Broceta
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Armilla, Spain; GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - José Maceira
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Armilla, Spain; GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - Teresa Del Castillo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Armilla, Spain; GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - José Hernández-Quero
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Stefan Magez
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; Department of Structural Biology, VIB, Vrije Universiteit Brussel, Brussels, Belgium
| | - Miguel Soriano
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain; Departamento de Agronomía, Universidad de Almería, Almería, Spain
| | - José A García-Salcedo
- Unidad de Enfermedades Infecciosas y Microbiología, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain; Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), PTS Granada, Armilla, Spain; GENYO, Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, PTS Granada, Granada, Spain.
| |
Collapse
|
43
|
Ciccarese S, Vaccarelli G, Lefranc MP, Tasco G, Consiglio A, Casadio R, Linguiti G, Antonacci R. Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor gamma (TRG) and delta (TRD) variable domains. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:300-13. [PMID: 24836674 DOI: 10.1016/j.dci.2014.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 05/05/2023]
Abstract
In previous reports, we had shown in Camelus dromedarius that diversity in T cell receptor gamma (TRG) and delta (TRD) variable domains can be generated by somatic hypermutation (SHM). In the present paper, we further the previous finding by analyzing 85 unique spleen cDNA sequences encoding a total of 331 mutations from a single animal, and comparing the properties of the mutation profiles of dromedary TRG and TRD variable domains. The transition preference and the significant mutation frequency in the AID motifs (dgyw/wrch and wa/tw) demonstrate a strong dependence of the enzymes mediating SHM in TRG and TRD genes of dromedary similar to that of immunoglobulin genes in mammals. Overall, results reveal no asymmetry in the motifs targeting, i.e. mutations are equally distributed among g:c and a:t base pairs and replacement mutations are favored at the AID motifs, whereas neutral mutations appear to be more prone to accumulate in bases outside of the motifs. A detailed analysis of clonal lineages in TRG and TRD cDNA sequences also suggests that clonal expansion of mutated productive rearrangements may be crucial in shaping the somatic diversification in the dromedary. This is confirmed by the fact that our structural models, computed by adopting a comparative procedure, are consistent with the possibility that, irrespective of where (in the CDR-IMGT or in FR-IMGT) the diversity was generated by mutations, both clonal expansion and selection seem to be strictly related to an enhanced structural stability of the γδ subunits.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Camelus/genetics
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Models, Molecular
- Molecular Sequence Data
- Mutation Rate
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
| | - Giovanna Vaccarelli
- Department of Biology, University of Bari, via E. Orabona 4, 70125 Bari, Italy
| | - Marie-Paule Lefranc
- IMGT, Laboratoire d'ImmunoGénétique Moléculaire, Institut de Génétique Humaine, UPR CNRS 1142, Université Montpellier 2, 34396 Montpellier Cedex 5, France
| | - Gianluca Tasco
- Biocomputing Group, CIRI-Health Science and Technologies/Department of Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Arianna Consiglio
- CNR, Institute for Biomedical Technologies of Bari, via Amendola, 70125 Bari, Italy
| | - Rita Casadio
- Biocomputing Group, CIRI-Health Science and Technologies/Department of Biology, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Giovanna Linguiti
- Department of Biology, University of Bari, via E. Orabona 4, 70125 Bari, Italy
| | - Rachele Antonacci
- Department of Biology, University of Bari, via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
44
|
A novel VHH antibody targeting the B cell-activating factor for B-cell lymphoma. Int J Mol Sci 2014; 15:9481-96. [PMID: 24879522 PMCID: PMC4100105 DOI: 10.3390/ijms15069481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 12/26/2022] Open
Abstract
Objective: To construct an immune alpaca phage display library, in order to obtain a single domain anti-BAFF (B cell-activating factor) antibody. Methods: Using phage display technology, we constructed an immune alpaca phage display library, selected anti-BAFF single domain antibodies (sdAbs), cloned three anti-BAFF single-domain antibody genes into expression vector pSJF2, and expressed them efficiently in Escherichia coli. The affinity of different anti-BAFF sdAbs were measured by Bio layer interferometry. The in vitro biological function of three sdAbs was investigated by cell counting kit-8 (CCK-8) assay and a competitive enzyme-linked immunosorbent assay (ELISA). Results: We obtained three anti-BAFF single domain antibodies (anti-BAFF64, anti-BAFF52 and anti-BAFFG3), which were produced in high yield in Escherichia coli and inhibited tumor cell proliferation in vitro. Conclusion: The selected anti-BAFF antibodies could be candidates for B-cell lymphoma therapies.
Collapse
|
45
|
David MA, Jones DR, Tayebi M. Potential candidate camelid antibodies for the treatment of protein-misfolding diseases. J Neuroimmunol 2014; 272:76-85. [PMID: 24864011 DOI: 10.1016/j.jneuroim.2014.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/22/2014] [Accepted: 05/04/2014] [Indexed: 01/03/2023]
Abstract
Protein-misfolding diseases (PMDs), including Alzheimer's disease would potentially reach epidemic proportion if effective ways to diagnose and treat them were not developed. The quest for effective therapy for PMDs has been ongoing for decades and some of the technologies developed so far show great promise. We report here the development of antibodies by immunization of camelids with prion (PrioV3) and Alzheimer's (PrioAD12, 13 & 120) disease-derived brain material. We show that anti-PrP antibody transmigration across the blood-brain barrier (BBB) was inhibited with phosphatidylinositol-specific phospholipase C (PIPLC). Our camelid anti-prion antibody was also shown to permanently abrogate prion replication in a prion-permissive cell line after crossing the artificial BBB. Furthermore, anti-Aβ/tau antibodies were able to bind their specific immunogens with ELISA and immunohistochemistry. Finally, both PrioV3 and PrioAD12 were shown to co-localize with Lamp-1, a marker of late endosomal/lysosomal compartments. These antibodies could prove to be a valuable tool for the neutralization/clearance of PrP(Sc), Aβ and tau proteins in cellular compartments of affected neurons and could potentially have wider applicability for the treatment of PMDs.
Collapse
Affiliation(s)
- Monique Antoinette David
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX, USA; Antibody Discovery Laboratory, PrioCam LLC, Houston, TX, USA
| | | | - Mourad Tayebi
- Department of Pathology & Infectious Disease, School of Veterinary Medicine, The University of Surrey, Guildford, Surrey, UK; Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX, USA.
| |
Collapse
|
46
|
Sabir JSM, Atef A, El-Domyati FM, Edris S, Hajrah N, Alzohairy AM, Bahieldin A. Construction of naïve camelids VHH repertoire in phage display-based library. C R Biol 2014; 337:244-9. [PMID: 24702893 DOI: 10.1016/j.crvi.2014.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 11/16/2022]
Abstract
Camelids have unique antibodies, namely HCAbs (VHH) or commercially named Nanobodies(®) (Nb) that are composed only of a heavy-chain homodimer. As libraries based on immunized camelids are time-consuming, costly and likely redundant for certain antigens, we describe the construction of a naïve camelid VHHs library from blood serum of non-immunized camelids with affinity in the subnanomolar range and suitable for standard immune applications. This approach is rapid and recovers VHH repertoire with the advantages of being more diverse, non-specific and devoid of subpopulations of specific antibodies, which allows the identification of binders for any potential antigen (or pathogen). RNAs from a number of camelids from Saudi Arabia were isolated and cDNAs of the diverse vhh gene were amplified; the resulting amplicons were cloned in the phage display pSEX81 vector. The size of the library was found to be within the required range (10(7)) suitable for subsequent applications in disease diagnosis and treatment. Two hundred clones were randomly selected and the inserted gene library was either estimated for redundancy or sequenced and aligned to the reference camelid vhh gene (acc. No. ADE99145). Results indicated complete non-specificity of this small library in which no single event of redundancy was detected. These results indicate the efficacy of following this approach in order to yield a large and diverse enough gene library to secure the presence of the required version encoding the required antibodies for any target antigen. This work is a first step towards the construction of phage display-based biosensors useful in disease (e.g., TB or tuberculosis) diagnosis and treatment.
Collapse
Affiliation(s)
- Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, 21589 Jeddah, Saudi Arabia
| | - Ahmed Atef
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, 21589 Jeddah, Saudi Arabia
| | - Fotouh M El-Domyati
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Sherif Edris
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nahid Hajrah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, 21589 Jeddah, Saudi Arabia
| | - Ahmed M Alzohairy
- Genetics Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, 21589 Jeddah, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
47
|
Blanchetot C, Verzijl D, Mujić-Delić A, Bosch L, Rem L, Leurs R, Verrips CT, Saunders M, de Haard H, Smit MJ. Neutralizing nanobodies targeting diverse chemokines effectively inhibit chemokine function. J Biol Chem 2013; 288:25173-25182. [PMID: 23836909 PMCID: PMC3757181 DOI: 10.1074/jbc.m113.467969] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/29/2013] [Indexed: 12/19/2022] Open
Abstract
Chemokine receptors and their ligands play a prominent role in immune regulation but many have also been implicated in inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, allograft rejection after transplantation, and also in cancer metastasis. Most approaches to therapeutically target the chemokine system involve targeting of chemokine receptors with low molecular weight antagonists. Here we describe the selection and characterization of an unprecedented large and diverse panel of neutralizing Nanobodies (single domain camelid antibodies fragment) directed against several chemokines. We show that the Nanobodies directed against CCL2 (MCP-1), CCL5 (RANTES), CXCL11 (I-TAC), and CXCL12 (SDF-1α) bind the chemokines with high affinity (at nanomolar concentration), thereby blocking receptor binding, inhibiting chemokine-induced receptor activation as well as chemotaxis. Together, we show that neutralizing Nanobodies can be selected efficiently for effective and specific therapeutic treatment against a wide range of immune and inflammatory diseases.
Collapse
Affiliation(s)
- Christophe Blanchetot
- From the Departments of Cellular Biology and Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Dennis Verzijl
- the Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and
| | - Azra Mujić-Delić
- the Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and
| | - Leontien Bosch
- the Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and
| | - Louise Rem
- From the Departments of Cellular Biology and Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Rob Leurs
- the Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and
| | - C Theo Verrips
- From the Departments of Cellular Biology and Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | - Hans de Haard
- From the Departments of Cellular Biology and Biology, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands,; Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium.
| | - Martine J Smit
- the Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and.
| |
Collapse
|
48
|
Schmitz KR, Bagchi A, Roovers RC, van Bergen en Henegouwen PMP, Ferguson KM. Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. Structure 2013; 21:1214-24. [PMID: 23791944 PMCID: PMC3733345 DOI: 10.1016/j.str.2013.05.008] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 05/04/2013] [Accepted: 05/14/2013] [Indexed: 01/07/2023]
Abstract
The epidermal growth factor receptor (EGFR) is implicated in human cancers and is the target of several classes of therapeutic agents, including antibody-based drugs. Here, we describe X-ray crystal structures of the extracellular region of EGFR in complex with three inhibitory nanobodies, the variable domains of heavy chain only antibodies (VHH). VHH domains, the smallest natural antigen-binding modules, are readily engineered for diagnostic and therapeutic applications. All three VHH domains prevent ligand-induced EGFR activation, but use two distinct mechanisms. 7D12 sterically blocks ligand binding to EGFR in a manner similar to that of cetuximab. EgA1 and 9G8 bind an epitope near the EGFR domain II/III junction, preventing receptor conformational changes required for high-affinity ligand binding and dimerization. This epitope is accessible to the convex VHH paratope but inaccessible to the flatter paratope of monoclonal antibodies. Appreciating the modes of binding and inhibition of these VHH domains will aid in developing them for tumor imaging and/or cancer therapy.
Collapse
Affiliation(s)
- Karl R. Schmitz
- Department of Physiology and Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, U.S.A
| | - Atrish Bagchi
- Department of Physiology and Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, U.S.A
| | - Rob C. Roovers
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
| | | | - Kathryn M. Ferguson
- Department of Physiology and Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104, U.S.A
| |
Collapse
|
49
|
Abstract
Sera of camelids contain both conventional heterotetrameric antibodies and unique functional heavy (H)-chain antibodies (HCAbs). The H chain of these homodimeric antibodies consists of one antigen-binding domain, the VHH, and two constant domains. HCAbs fail to incorporate light (L) chains owing to the deletion of the first constant domain and a reshaped surface at the VHH side, which normally associates with L chains in conventional antibodies. The genetic elements composing HCAbs have been identified, but the in vivo generation of these antibodies from their dedicated genes into antigen-specific and affinity-matured bona fide antibodies remains largely underinvestigated. However, the facile identification of antigen-specific VHHs and their beneficial biochemical and economic properties (size, affinity, specificity, stability, production cost) supported by multiple crystal structures have encouraged antibody engineering of these single-domain antibodies for use as a research tool and in biotechnology and medicine.
Collapse
Affiliation(s)
- Serge Muyldermans
- Research Group Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
50
|
Abstract
The discovery of naturally occurring, heavy-chain only antibodies in Camelidae, and their further development into small recombinant nanobodies, presents attractive alternatives in drug delivery and imaging. Easily expressed in microorganisms and amenable to engineering, nanobody derivatives are soluble, stable, versatile, and have unique refolding capacities, reduced aggregation tendencies, and high-target binding capabilities. This review outlines the current state of the art in nanobodies, focusing on their structural features and properties, production, technology, and the potential for modulating immune functions and for targeting tumors, toxins, and microbes.
Collapse
Affiliation(s)
- Christina G Siontorou
- Department of Industrial Management and Technology, University of Piraeus, Piraeus, Greece
| |
Collapse
|