1
|
Slc2a6 regulates myoblast differentiation by targeting LDHB. Cell Commun Signal 2022; 20:107. [PMID: 35850889 PMCID: PMC9290262 DOI: 10.1186/s12964-022-00915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background Type 2 diabetes mellitus is a global health problem. It often leads to a decline in the differentiation capacity of myoblasts and progressive loss of muscle mass, which in turn results in deterioration of skeletal muscle function. However, effective therapies against skeletal muscle diseases are unavailable. Methods Skeletal muscle mass and differentiation ability were determined in db/+ and db/db mice. Transcriptomics and metabolomics approaches were used to explore the genetic mechanism regulating myoblast differentiation in C2C12 myoblasts. Results In this study, the relatively uncharacterized solute carrier family gene Slc2a6 was found significantly up-regulated during myogenic differentiation and down-regulated during diabetes-induced muscle atrophy. Moreover, RNAi of Slc2a6 impaired the differentiation and myotube formation of C2C12 myoblasts. Both metabolomics and RNA-seq analyses showed that the significantly differentially expressed genes (e.g., LDHB) and metabolites (e.g., Lactate) during the myogenic differentiation of C2C12 myoblasts post-Slc2a6-RNAi were enriched in the glycolysis pathway. Furthermore, we show that Slc2a6 regulates the myogenic differentiation of C2C12 myoblasts partly through the glycolysis pathway by targeting LDHB, which affects lactic acid accumulation. Conclusion Our study broadens the understanding of myogenic differentiation and offers the Slc2a6-LDHB axis as a potential therapeutic target for the treatment of diabetes-associated muscle atrophy. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00915-2.
Collapse
|
2
|
Adhikari A, Kim W, Davie J. Myogenin is required for assembly of the transcription machinery on muscle genes during skeletal muscle differentiation. PLoS One 2021; 16:e0245618. [PMID: 33465133 PMCID: PMC7815108 DOI: 10.1371/journal.pone.0245618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle gene expression is governed by the myogenic regulatory family (MRF) which includes MyoD (MYOD1) and myogenin (MYOG). MYOD1 and MYOG are known to regulate an overlapping set of muscle genes, but MYOD1 cannot compensate for the absence of MYOG in vivo. In vitro, late muscle genes have been shown to be bound by both factors, but require MYOG for activation. The molecular basis for this requirement was unclear. We show here that MYOG is required for the recruitment of TBP and RNAPII to muscle gene promoters, indicating that MYOG is essential in assembling the transcription machinery. Genes regulated by MYOD1 and MYOG include genes required for muscle fusion, myomaker and myomerger, and we show that myomaker is fully dependent on activation by MYOG. We also sought to determine the role of MYOD1 in MYOG dependent gene activation and unexpectedly found that MYOG is required to maintain Myod1 expression. However, we also found that exogenous MYOD1 was unable to compensate for the loss of Myog and activate muscle gene expression. Thus, our results show that MYOD1 and MYOG act in a feed forward loop to maintain each other’s expression and also show that it is MYOG, and not MYOD1, that is required to load TBP and activate gene expression on late muscle gene promoters bound by both factors.
Collapse
Affiliation(s)
- Abhinav Adhikari
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL, United States of America
- Molecular Pathology Unit, Massachusetts General Hospital Research Institute, Charlestown, MA, United States of America
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, United States of America
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Stem Cell Institute, Cambridge, MA, United States of America
| | - William Kim
- College of Science, Southern Illinois University, Carbondale, IL, United States of America
| | - Judith Davie
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL, United States of America
- * E-mail:
| |
Collapse
|
3
|
Dong YH, Zhou CJ, Zhang MY, Tao J, Zhang XM, An L, Zhang J, Yang J, Liu DJ, Cang M. MiR-455-5p monitors myotube morphogenesis by targeting mylip. J Cell Biochem 2021; 122:442-455. [PMID: 33399227 DOI: 10.1002/jcb.29873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 11/10/2022]
Abstract
As a posttranscriptional regulatory factor, microRNA (miRNA) plays an important role in the formation of myotubes. However, little is known about the mechanism of miRNA regulating myotube morphogenesis. Here, we aimed to characterize the function of miR-455-5p in myotube morphogenesis by inducing differentiation in C2C12 myoblasts containing murine Mylip fragments with the miR-455-5p target sequence. We found that miR-455-5p overexpression promoted the differentiation and hypertrophy of myotubes, while miR-455-5p inhibition led to the failure of myotube differentiation and formation of short myotubes. Furthermore, we demonstrated that miR-455-5p directly targeted the Mylip 3'-untranslated region, which plays a key role in monitoring myotube morphogenesis. Interestingly, the expression and function of Mylip were opposite to those of miR-455-5p during myogenesis. Our data uncovered novel miR-455-5p targets and established a functional link between Mylip and myotube morphogenesis. Understanding the involvement of Mylip in myotube morphogenesis provides insight into the function of the gene regulatory network.
Collapse
Affiliation(s)
- Yan-Hua Dong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Meng-Yuan Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jin Tao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xiao-Meng Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Lu An
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ju Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jie Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Dong-Jun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Ming Cang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Adhikari A, Davie JK. The PRC2 complex directly regulates the cell cycle and controls proliferation in skeletal muscle. Cell Cycle 2020; 19:2373-2394. [PMID: 32816597 PMCID: PMC7513841 DOI: 10.1080/15384101.2020.1806448] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/01/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
The polycomb repressive complex 2 (PRC2) is an important developmental regulator responsible for the methylation of histone 3 lysine 27 (H3K27). Here, we show that the PRC2 complex regulates the cell cycle in skeletal muscle cells to control proliferation and mitotic exit. Depletions of the catalytic subunit of the PRC2 complex, EZH2, have shown that EZH2 is required for cell viability, suggesting that EZH2 promotes proliferation. We found that EZH2 directly represses both positive and negative cell cycle genes, thus enabling the PRC2 complex to tightly control the cell cycle. We show that modest inhibition or depletion of EZH2 leads to enhanced proliferation and an accumulation of cells in S phase. This effect is mediated by direct repression of cyclin D1 (Ccnd1) and cyclin E1 (Ccne1) by the PRC2 complex. Our results show that PRC2 has pleiotropic effects on proliferation as it serves to restrain cell growth, yet clearly has a function required for cell viability as well. Intriguingly, we also find that the retinoblastoma protein gene (Rb1) is a direct target of the PRC2 complex. However, modest depletion of EZH2 is not sufficient to maintain Rb1 expression, indicating that the PRC2 dependent upregulation of cyclin D1 is sufficient to inhibit Rb1 expression. Taken together, our results show that the PRC2 complex regulates skeletal muscle proliferation in a complex manner that involves the repression of Ccnd1 and Ccne1, thus restraining proliferation, and the repression of Rb1, which is required for mitotic exit and terminal differentiation.
Collapse
Affiliation(s)
- Abhinav Adhikari
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - Judith K. Davie
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
5
|
In Vitro and In Vivo Osteogenesis of Human Orbicularis Oculi Muscle-Derived Stem Cells. Tissue Eng Regen Med 2019; 15:445-452. [PMID: 30603568 DOI: 10.1007/s13770-018-0122-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 10/16/2022] Open
Abstract
BACKGROUND Cell-based therapies for treating bone defects require a source of stem cells with osteogenic potential. There is evidence from pathologic ossification within muscles that human skeletal muscles contain osteogenic progenitor cells. However, muscle samples are usually acquired through a traumatic biopsy procedure which causes pain and morbidity to the donor. Herein, we identified a new alternative source of skeletal muscle stem cells (SMSCs) without conferring morbidity to donors. METHODS Adherent cells isolated from human orbicularis oculi muscle (OOM) fragments, which are currently discarded during ophthalmic cosmetic surgeries, were obtained using a two-step plating method. The cell growth kinetics, immunophenotype and capabilities of in vitro multilineage differentiation were evaluated respectively. Moreover, the osteogenically-induced cells were transduced with GFP gene, loaded onto the porous β-tricalcium phosphate (β-TCP) bioceramics, and transplanted into the subcutaneous site of athymic mice. Ectopic bone formation was assessed and the cell fate in vivo was detected. RESULTS OOM-derived cells were fibroblastic in shape, clonogenic in growth, and displayed phenotypic and behavioral characteristics similar to SMSCs. In particular, these cells could be induced into osteoblasts in vitro evidenced by the extracellular matrix calcification and enhanced alkaline phosphatase (ALP) activity and osteocalcin (OCN) production. New bone formation was found in the cell-loaded bioceramics 6 weeks after implantation. By using the GFP-labeling technique, these muscle cells were detected to participate in the process of ectopic osteogenesis in vivo. CONCLUSION Our data suggest that human OOM tissue is a valuable and noninvasive resource for osteoprogenitor cells to be used in bone repair and regeneration.
Collapse
|
6
|
Jagot S, Sabin N, Le Cam A, Bugeon J, Rescan PY, Gabillard JC. Histological, transcriptomic and in vitro analysis reveal an intrinsic activated state of myogenic precursors in hyperplasic muscle of trout. BMC Genomics 2018; 19:865. [PMID: 30509177 PMCID: PMC6276237 DOI: 10.1186/s12864-018-5248-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/14/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The dramatic increase in myotomal muscle mass in post-hatching fish is related to their ability to lastingly produce new muscle fibres, a process termed hyperplasia. The molecular and cellular mechanisms underlying fish muscle hyperplasia largely remain unknown. In this study, we aimed to characterize intrinsic properties of myogenic cells originating from hyperplasic fish muscle. For this purpose, we compared in situ proliferation, in vitro cell behavior and transcriptomic profile of myogenic precursors originating from hyperplasic muscle of juvenile trout (JT) and from non-hyperplasic muscle of fasted juvenile trout (FJT) and adult trout (AT). RESULTS For the first time, we showed that myogenic precursors proliferate in hyperplasic muscle from JT as shown by in vivo BrdU labeling. This proliferative rate was very low in AT and FJT muscle. Transcriptiomic analysis revealed that myogenic cells from FJT and AT displayed close expression profiles with only 64 differentially expressed genes (BH corrected p-val < 0.001). In contrast, 2623 differentially expressed genes were found between myogenic cells from JT and from both FJT and AT. Functional categories related to translation, mitochondrial activity, cell cycle, and myogenic differentiation were inferred from genes up regulated in JT compared to AT and FJT myogenic cells. Conversely, Notch signaling pathway, that signs cell quiescence, was inferred from genes down regulated in JT compared to FJT and AT. In line with our transcriptomic data, in vitro JT myogenic precursors displayed higher proliferation and differentiation capacities than FJT and AT myogenic precursors. CONCLUSIONS The transcriptomic analysis and examination of cell behavior converge to support the view that myogenic cells extracted from hyperplastic muscle of juvenile trout are intrinsically more potent to form myofibres than myogenic cells extracted from non-hyperplasic muscle. The generation of gene expression profiles in myogenic cell extracted from muscle of juvenile trout may yield insights into the molecular and cellular mechanisms controlling hyperplasia and provides a useful list of potential molecular markers of hyperplasia.
Collapse
Affiliation(s)
- Sabrina Jagot
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | - Nathalie Sabin
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | - Aurélie Le Cam
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | - Jérôme Bugeon
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | - Pierre-Yves Rescan
- INRA, LPGP, Fish Physiology and Genomic Laboratory, 35000 Rennes, France
| | | |
Collapse
|
7
|
Kim J, Hopkinson M, Kavishwar M, Fernandez-Fuente M, Brown SC. Prenatal muscle development in a mouse model for the secondary dystroglycanopathies. Skelet Muscle 2016; 6:3. [PMID: 26900448 PMCID: PMC4759920 DOI: 10.1186/s13395-016-0073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022] Open
Abstract
Background The defective glycosylation of α-dystroglycan is associated with a group of muscular dystrophies that are collectively referred to as the secondary dystroglycanopathies. Mutations in the gene encoding fukutin-related protein (FKRP) are one of the most common causes of secondary dystroglycanopathy in the UK and are associated with a wide spectrum of disease. Whilst central nervous system involvement has a prenatal onset, no studies have addressed prenatal muscle development in any of the mouse models for this group of diseases. In view of the pivotal role of α-dystroglycan in early basement membrane formation, we sought to determine if the muscle formation was altered in a mouse model of FKRP-related dystrophy. Results Mice with a knock-down in FKRP (FKRPKD) showed a marked reduction in α-dystroglycan glycosylation and reduction in laminin binding by embryonic day 15.5 (E15.5), relative to wild type controls. In addition, the total number of Pax7+ progenitor cells in the FKRPKD tibialis anterior at E15.5 was significantly reduced, and myotube cluster/myofibre size showed a significant reduction in size. Moreover, myoblasts isolated from the limb muscle of these mice at E15.5 showed a marked reduction in their ability to form myotubes in vitro. Conclusions These data identify an early reduction of laminin α2, reduction of myogenicity and depletion of Pax7+ progenitor cells which would be expected to compromise subsequent postnatal muscle growth and its ability to regenerate postnatally. These findings are of significance to the development of future therapies in this group of devastating conditions.
Collapse
Affiliation(s)
- Jihee Kim
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Manoli Kavishwar
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Marta Fernandez-Fuente
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Susan Carol Brown
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
8
|
Pisciotta A, Riccio M, Carnevale G, Lu A, De Biasi S, Gibellini L, La Sala GB, Bruzzesi G, Ferrari A, Huard J, De Pol A. Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. Stem Cell Res Ther 2015; 6:156. [PMID: 26316011 PMCID: PMC4552417 DOI: 10.1186/s13287-015-0141-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/07/2015] [Accepted: 07/30/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD), caused by a lack of the functional structural protein dystrophin, leads to severe muscle degeneration where the patients are typically wheelchair-bound and die in their mid-twenties from cardiac or respiratory failure or both. The aim of this study was to investigate the potential of human dental pulp stem cells (hDPSCs) and human amniotic fluid stem cells (hAFSCs) to differentiate toward a skeletal myogenic lineage using several different protocols in order to determine the optimal conditions for achieving myogenic commitment and to subsequently evaluate their contribution in the improvement of the pathological features associated with dystrophic skeletal muscle when intramuscularly injected into mdx/SCID mice, an immune-compromised animal model of DMD. METHODS Human DPSCs and AFSCs were differentiated toward myogenic lineage in vitro through the direct co-culture with a myogenic cell line (C2C12 cells) and through a preliminary demethylation treatment with 5-Aza-2'-deoxycytidine (5-Aza), respectively. The commitment and differentiation of both hDPSCs and hAFSCs were evaluated by immunofluorescence and Western blot analysis. Subsequently, hDPSCs and hAFSCs, preliminarily demethylated and pre-differentiated toward a myogenic lineage for 2 weeks, were injected into the dystrophic gastrocnemius muscles of mdx/SCID mice. After 1, 2, and 4 weeks, the gastrocnemius muscles were taken for immunofluorescence and histological analyses. RESULTS Both populations of cells engrafted within the host muscle of mdx/SCID mice and through a paracrine effect promoted angiogenesis and reduced fibrosis, which eventually led to an improvement of the histopathology of the dystrophic muscle. CONCLUSION This study shows that hAFSCs and hDPSCs represent potential sources of stem cells for translational strategies to improve the histopathology and potentially alleviate the muscle weakness in patients with DMD.
Collapse
Affiliation(s)
- Alessandra Pisciotta
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Massimo Riccio
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Gianluca Carnevale
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Sara De Biasi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Lara Gibellini
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| | - Giovanni B La Sala
- Department of Obstetrics and Gynecology, Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Giacomo Bruzzesi
- Oro-Maxillo-Facial Department, AUSL Baggiovara, via Giardini 1355, 41126, Modena, Baggiovara, Italy.
| | - Adriano Ferrari
- Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, Children Rehabilitation Special Unit, IRCCS Arcispedale Santa Maria Nuova, viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, 450 Technology Drive, Bridgeside Point II, Suite 206, 15219, Pittsburgh, PA, USA.
| | - Anto De Pol
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, via del Pozzo 71, 41124, Modena, Italy.
| |
Collapse
|
9
|
Myogenic regulatory factor (MRF) expression is affected by exercise in postnatal chicken skeletal muscles. Gene 2015; 561:292-9. [PMID: 25701607 DOI: 10.1016/j.gene.2015.02.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/21/2015] [Accepted: 02/15/2015] [Indexed: 12/17/2022]
Abstract
The MyoD1, MyoG, Myf5, and Mrf4 proteins belong to the family of muscle regulatory factors (MRFs) and play important roles in skeletal muscle hyperplasia and hypertrophy. We hypothesized that exercise would affect MRF mRNA and protein abundance in postnatal chicken skeletal muscle driving molecular changes that could ultimately lead to increased muscle fiber diameter. At day (d) 43, twelve hundred chickens with similar body weight were randomly assigned to cage, pen, and free-range groups. The MRF mRNA abundance was measured in the pectoralis major and thigh muscle at d56, d70, and d84, and the protein levels of MRFs were determined from the thigh muscle at d84. The results showed no significant difference in mRNA of the MRFs among the three groups at d56 (P>0.05). At d84, chicken in the pen and free-range group showed higher MyoD1, MyoG, Myf5, and Mrf4 mRNA abundance compared to the caged chickens (P<0.05). Free-range chickens had higher Mrf4 and MyoG expression than those in penned ones (P<0.05). Protein abundances of all four factors were lowest in the caged group, and Mrf4 and MyoG protein quantities were greatest in free-range chickens (P<0.05), but Myf5 and MyoD1 protein abundance did not differ between penned and caged groups. The results suggested that exercise up-regulated MRF expression in the postnatal skeletal muscles, which led to an increase in muscle fiber diameter, and eventually affected the meat quality of the skeletal muscles in adult chickens.
Collapse
|
10
|
Guan JJ, Niu X, Gong FX, Hu B, Guo SC, Lou YL, Zhang CQ, Deng ZF, Wang Y. Biological characteristics of human-urine-derived stem cells: potential for cell-based therapy in neurology. Tissue Eng Part A 2014; 20:1794-806. [PMID: 24387670 PMCID: PMC4086681 DOI: 10.1089/ten.tea.2013.0584] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/02/2014] [Indexed: 12/18/2022] Open
Abstract
Stem cells in human urine have gained attention in recent years; however, urine-derived stem cells (USCs) are far from being well elucidated. In this study, we compared the biological characteristics of USCs with adipose-derived stem cells (ASCs) and investigated whether USCs could serve as a potential cell source for neural tissue engineering. USCs were isolated from voided urine with a modified culture medium. Through a series of experiments, we examined the growth rate, surface antigens, and differentiation potential of USCs, and compared them with ASCs. USCs showed robust proliferation ability. After serial propagation, USCs retained normal karyotypes. Cell surface antigen expression of USCs was similar to ASCs. With lineage-specific induction factors, USCs could differentiate toward the osteogenic, chondrogenic, adipogenic, and neurogenic lineages. To assess the ability of USCs to survive, differentiate, and migrate, they were seeded onto hydrogel scaffold and transplanted into rat brain. The results showed that USCs were able to survive in the lesion site, migrate to other areas, and express proteins that were associated with neural phenotypes. The results of our study demonstrate that USCs possess similar biological characteristics with ASCs and have multilineage differentiation potential. Moreover USCs can differentiate to neuron-like cells in rat brain. The present study shows that USCs are a promising cell source for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jun-Jie Guan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, Shanghai, China
| | - Xin Niu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, Shanghai, China
| | - Fei-Xiang Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, Shanghai, China
| | - Shang-Chun Guo
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, Shanghai, China
| | - Yuan-Lei Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, Shanghai, China
| | - Zhi-Feng Deng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital, Shanghai, China
| |
Collapse
|
11
|
Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci U S A 2014; 111:10125-30. [PMID: 24982152 DOI: 10.1073/pnas.1401577111] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combining biological components, such as cells and tissues, with soft robotics can enable the fabrication of biological machines with the ability to sense, process signals, and produce force. An intuitive demonstration of a biological machine is one that can produce motion in response to controllable external signaling. Whereas cardiac cell-driven biological actuators have been demonstrated, the requirements of these machines to respond to stimuli and exhibit controlled movement merit the use of skeletal muscle, the primary generator of actuation in animals, as a contractile power source. Here, we report the development of 3D printed hydrogel "bio-bots" with an asymmetric physical design and powered by the actuation of an engineered mammalian skeletal muscle strip to result in net locomotion of the bio-bot. Geometric design and material properties of the hydrogel bio-bots were optimized using stereolithographic 3D printing, and the effect of collagen I and fibrin extracellular matrix proteins and insulin-like growth factor 1 on the force production of engineered skeletal muscle was characterized. Electrical stimulation triggered contraction of cells in the muscle strip and net locomotion of the bio-bot with a maximum velocity of ∼ 156 μm s(-1), which is over 1.5 body lengths per min. Modeling and simulation were used to understand both the effect of different design parameters on the bio-bot and the mechanism of motion. This demonstration advances the goal of realizing forward-engineered integrated cellular machines and systems, which can have a myriad array of applications in drug screening, programmable tissue engineering, drug delivery, and biomimetic machine design.
Collapse
|
12
|
Xu H, Wang Z, Jin S, Hao H, Zheng L, Zhou B, Zhang W, Lv H, Yuan Y. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression. Biochem Biophys Res Commun 2014; 446:235-40. [DOI: 10.1016/j.bbrc.2014.02.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/21/2014] [Indexed: 12/15/2022]
|
13
|
Hudson NJ, Lyons RE, Reverter A, Greenwood PL, Dalrymple BP. Inferring the in vivo cellular program of developing bovine skeletal muscle from expression data. Gene Expr Patterns 2013; 13:109-25. [PMID: 23419240 DOI: 10.1016/j.gep.2013.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/01/2022]
Abstract
We outline an in vivo cellular program of bovine longissimus muscle development inferred from expression data from 60 days post conception to 3months postnatal. Analytic challenges included changes in cellular composition, ambiguous 'diagnostic' markers of cell type and contrasts between cattle human and mouse myogenesis. Nevertheless, the expression profiles of the myosin isoforms support slow and fast muscle fibres emanating from primary and secondary myogenesis respectively, while expression of the prenatal myosin subunits is down regulated prior to birth. Of the canonical pro-myogenic transcription factors (TF), MYF6 and MYF5 are negatively co-expressed, with MYF6 displaying higher expression in the post-natal samples and MYF5, MYOG, HES6 and PAX7 displaying higher expression in early development. A set of TFs (SIX1, EYA2 and DACH2) considered important in undifferentiated murine cells were equally abundant in differentiated bovine cells. An examination of mammalian regulators of fibre composition, muscle mass and muscle metabolism, underscored the roles of PPARGC1A, TGFβ signalling and the NHR4 Nuclear Hormone Receptors on bovine muscle development. Enriched among the most variably expressed genes from the entire data set were molecules regulating mitochondrial metabolism of carbohydrate (PDK4), fat (UCP3), protein (AGXT2L1) and high energy phosphate (CKMT2). The dramatic increase in the expression of these transcripts, which may enable the peri-natal transition to metabolic independence critical for new-born herbivores, provides surprising evidence for substantial developmental remodelling of muscle mitochondria and reflects changes in nutrient availability. Overall, despite differences in size, metabolism and physiology, the muscle structural subunit expression program appears very similar in ruminants, rodents and humans.
Collapse
Affiliation(s)
- Nicholas J Hudson
- Computational and Systems Biology Group, CSIRO Food Futures and CSIRO Animal, Food and Health Sciences, 306 Carmody Road, St. Lucia, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
14
|
Mancinelli R, Pietrangelo T, Burnstock G, Fanò G, Fulle S. Transcriptional profile of GTP-mediated differentiation of C2C12 skeletal muscle cells. Purinergic Signal 2011; 8:207-21. [PMID: 22127439 DOI: 10.1007/s11302-011-9266-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 10/03/2011] [Indexed: 02/01/2023] Open
Abstract
Several purine receptors have been localised on skeletal muscle membranes. Previous data support the hypothesis that extracellular guanosine 5'-triphosphate (GTP) is an important regulatory factor in the development and function of muscle tissue. We have previously described specific extracellular binding sites for GTP on the plasma membrane of mouse skeletal muscle (C2C12) cells. Extracellular GTP induces an increase in intracellular Ca(2+) concentrations that results in membrane hyperpolarisation through Ca(2+)-activated K(+) channels, as has been demonstrated by patch-clamp experiments. This GTP-evoked increase in intracellular Ca(2+) is due to release of Ca(2+) from intracellular inositol-1,4,5-trisphosphate-sensitive stores. This enhances the expression of the myosin heavy chain in these C2C12 myoblasts and commits them to fuse into multinucleated myotubes, probably via a phosphoinositide-3-kinase-dependent signal-transduction mechanism. To define the signalling of extracellular GTP as an enhancer or modulator of myogenesis, we investigated whether the gene-expression profile of differentiated C2C12 cells (4 and 24 h in culture) is affected by extracellular GTP. To investigate the nuclear activity and target genes modulated by GTP, transcriptional profile analysis and real-time PCR were used. We demonstrate that in the early stages of differentiation, GTP up-regulates genes involved in different pathways associated with myogenic processes, including cytoskeleton structure, the respiratory chain, myogenesis, chromatin reorganisation, cell adhesion, and the Jak/Stat pathway, and down-regulates the mitogen-activated protein kinase pathway. GTP also increases the expression of three genes involved in myogenesis, Pp3ca, Gsk3b, and Pax7. Our data suggests that in the myogenic C2C12 cell line, extracellular GTP acts as a differentiative factor in the induction and sustaining of myogenesis.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience and Imaging, University G. d'Annunzio Chieti-Pescara, Chieti, Italy.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Wang CZ, Wang GJ, Ho ML, Wang YH, Yeh ML, Chen CH. Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. J Appl Physiol (1985) 2010; 109:840-8. [DOI: 10.1152/japplphysiol.00115.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Whole body vibration training is widely used in rehabilitation and sports activities to improve muscle strength, balance, and flexibility. However, the molecular mechanisms of vertical vibration (VV) training and their effect on the myogenesis of myoblasts remain undefined. This study was undertaken to address the hypothesis that VV can enhance the expression of ECM proteins and myogenic regulatory factors (MRFs) in myoblasts and, in turn, increase myotube formation. Using real-time PCR, Western blot analysis, and immunofluorescence studies, we examined the effect of VV treatment with frequencies of 5, 8, or 10 Hz on the expression of ECM proteins and MRFs as well as myotube formation in C2C12 myoblasts. We showed that VV stimulation is safe and effective at stimulating myogenesis in C2C12 myoblasts. The levels of expression of the ECM proteins type I collagen and decorin were the highest after VV treatment at frequencies of 8 and 10 Hz. Expression of the MRFs MyoD and myogenin increased after VV stimulation in a time- and dose-dependent manner. The total number of myotubes formed, as well as the length and the average area of myotubes, were substantially increased following VV treatment at frequencies of 8 to 10 Hz. In conclusion, VV treatment at frequencies of 8 to 10 Hz can stimulate the expression of ECM proteins and MRFs in myoblasts and, in turn, increase myotube formation.
Collapse
Affiliation(s)
- Chau-Zen Wang
- Department of Physiology, Kaohsiung Medical University and
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gwo-Jaw Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, Virginia
- Department of Orthopaedics, College of Medicine, Kaohsiung Medical University Hospital and
| | - Mei-Ling Ho
- Department of Physiology, Kaohsiung Medical University and
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Long Yeh
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; and
| | - Chia-Hsin Chen
- Departments of Physical Medicine and Rehabilitation, Kaohsiung Municipal Ta-Tung Hospital,
- Department of Physical Medicine and Rehabilitation, and
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Barzilay R, Melamed E, Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells 2010; 27:2509-15. [PMID: 19591229 DOI: 10.1002/stem.172] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multipotent mesenchymal stem cells (MSCs) represent a promising autologous source for regenerative medicine. Because MSCs can be isolated from adult tissues, they represent an attractive cell source for autologous transplantation. A straightforward therapeutic strategy in the field of stem cell-based regenerative medicine is the transplantation of functional differentiated cells as cell replacement for the lost or defective cells affected by disease. However, this strategy requires the capacity to regulate stem cell differentiation toward the desired cell fate. This therapeutic approach assumes the capability to direct MSC differentiation toward diverse cell fates, including those outside the mesenchymal lineage, a process termed transdifferentiation. The capacity of MSCs to undergo functional transdifferentiation has been questioned over the years. Nonetheless, recent studies support that genetic manipulation can serve to promote transdifferentiation. Specifically, forced expression of certain transcription factors can lead to reprogramming and alter cell fate. Using such a method, fully differentiated lymphocytes have been reprogrammed to become macrophages and, remarkably, somatic cells have been reprogrammed to become embryonic stem-like cells. In this review, we discuss the past and current research aimed at transdifferentiating MSCs, a process with applications that could revolutionize regenerative medicine.
Collapse
Affiliation(s)
- Ran Barzilay
- Laboratory of Neurosciences, Felsenstein Medical Research Center and Department of Neurology, Rabin Medical Center, Tel Aviv University, Sackler School of Medicine, Petah-Tikva, Israel
| | | | | |
Collapse
|
18
|
Ichim TE, Alexandrescu DT, Solano F, Lara F, Campion RDN, Paris E, Woods EJ, Murphy MP, Dasanu CA, Patel AN, Marleau AM, Leal A, Riordan NH. Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 2010; 260:75-82. [PMID: 19917503 DOI: 10.1016/j.cellimm.2009.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/13/2009] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked musculodegenerative condition consisting of an underlying genetic defect whose manifestation is augmented by inflammatory mechanisms. Previous treatment approaches using gene replacement, exon-skipping or allogeneic cell therapy have been relatively unsuccessful. The only intervention to mediate improvement in survival, albeit minor, is glucocorticoid treatment. Given this modality appears to function via suppression of underlying inflammation; we focus this review on the inflammatory response as a target for mesenchymal stem cell (MSC) therapy. In contrast to other cell based therapies attempted in DMD, MSC have the advantages of (a) ability to fuse with and genetically complement dystrophic muscle; (b) possess anti-inflammatory activities; and (c) produce trophic factors that may augment activity of endogenous repair cells. We conclude by describing one practical scenario of stem cell therapy for DMD.
Collapse
|
19
|
Kennedy KAM, Porter T, Mehta V, Ryan SD, Price F, Peshdary V, Karamboulas C, Savage J, Drysdale TA, Li SC, Bennett SAL, Skerjanc IS. Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative beta-catenin. BMC Biol 2009; 7:67. [PMID: 19814781 PMCID: PMC2764571 DOI: 10.1186/1741-7007-7-67] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 10/08/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Understanding stem cell differentiation is essential for the future design of cell therapies. While retinoic acid (RA) is the most potent small molecule enhancer of skeletal myogenesis in stem cells, the stage and mechanism of its function has not yet been elucidated. Further, the intersection of RA with other signalling pathways that stimulate or inhibit myogenesis (such as Wnt and BMP4, respectively) is unknown. Thus, the purpose of this study is to examine the molecular mechanisms by which RA enhances skeletal myogenesis and interacts with Wnt and BMP4 signalling during P19 or mouse embryonic stem (ES) cell differentiation. RESULTS Treatment of P19 or mouse ES cells with low levels of RA led to an enhancement of skeletal myogenesis by upregulating the expression of the mesodermal marker, Wnt3a, the skeletal muscle progenitor factors Pax3 and Meox1, and the myogenic regulatory factors (MRFs) MyoD and myogenin. By chromatin immunoprecipitation, RA receptors (RARs) bound directly to regulatory regions in the Wnt3a, Pax3, and Meox1 genes and RA activated a beta-catenin-responsive promoter in aggregated P19 cells. In the presence of a dominant negative beta-catenin/engrailed repressor fusion protein, RA could not bypass the inhibition of skeletal myogenesis nor upregulate Meox1 or MyoD. Thus, RA functions both upstream and downstream of Wnt signalling. In contrast, it functions downstream of BMP4, as it abrogates BMP4 inhibition of myogenesis and Meox1, Pax3, and MyoD expression. Furthermore, RA downregulated BMP4 expression and upregulated the BMP4 inhibitor, Tob1. Finally, RA inhibited cardiomyogenesis but not in the presence of BMP4. CONCLUSION RA can enhance skeletal myogenesis in stem cells at the muscle specification/progenitor stage by activating RARs bound directly to mesoderm and skeletal muscle progenitor genes, activating beta-catenin function and inhibiting bone morphogenetic protein (BMP) signalling. Thus, a signalling pathway can function at multiple levels to positively regulate a developmental program and can function by abrogating inhibitory pathways. Finally, since RA enhances skeletal muscle progenitor formation, it will be a valuable tool for designing future stem cell therapies.
Collapse
Affiliation(s)
- Karen AM Kennedy
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Tammy Porter
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Scott D Ryan
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Feodor Price
- Ottawa Health Research Institute, Molecular Medicine Program, Ottawa, Ontario, Canada
| | - Vian Peshdary
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Christina Karamboulas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Josée Savage
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Thomas A Drysdale
- Department of Pediatrics and Physiology and Pharmacology, The University of Western Ontario, Children's Health Research Institute, London, Ontario, Canada
| | - Shun-Cheng Li
- Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| | - Steffany AL Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada,Department of Biochemistry, Medical Sciences Building, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
20
|
Messina G, Cossu G. The origin of embryonic and fetal myoblasts: a role of Pax3 and Pax7. Genes Dev 2009; 23:902-5. [PMID: 19390084 DOI: 10.1101/gad.1797009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Skeletal muscle is a heterogeneous tissue composed of individual muscle fibers, diversified in size, shape, and contractile protein content, to fulfill the different functional needs of the vertebrate body. This heterogeneity derives from and depends at least in part on distinct classes of myogenic progenitors; i.e., embryonic and fetal myoblasts and satellite cells whose origin and lineage relationship have been elusive so far. In this issue of Genes & Development, Hutcheson and colleagues (pp. 997-1013) provide a first answer to this question.
Collapse
Affiliation(s)
- Graziella Messina
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
21
|
Lu SH, Wei CF, Yang AH, Chancellor MB, Wang LS, Chen KK. Isolation and characterization of human muscle-derived cells. Urology 2009; 74:440-5. [PMID: 19362337 DOI: 10.1016/j.urology.2009.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/21/2008] [Accepted: 01/27/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To isolate and characterize human muscle-derived cells (MDCs) for future management applications on lower urinary tract symptoms, including stress urinary incontinence and bladder reconstitution. The development of muscle stem cells for transplantation or gene transfer in patients with muscle disorders has become more attractive and challenging recently. METHODS Human MDCs were isolated from the skeletal muscles of the limbs. The muscle tissues were minced, digested at 37 degrees C by 0.2% collagenase, trypsinized, filtered, and cultured in F12 medium with 15% fetal bovine serum at 37 degrees C. Human MDCs were then isolated using a modified preplate technique. After isolation, the MDCs were characterized by immunohistochemistry, flow cytometry, and indirect immunofluorescence. RESULTS The growth doubling time of the MDCs was approximately 24 hours. Immunohistochemistry study was performed with the stem cell markers CD34, CD117, vascular cell adhesion molecule, and vascular endothelial growth factor receptor 2, and the relative stem cell position was identified. Positive immunofluorescence outcomes were found with the stem cell markers, myoblast markers CXCR4, CD56, desmin, and a fibroblast marker AB-1. Flow cytometry analysis identified markers CD34 and CD56 in the isolated MDCs, with a percentage of 5.12% and 10.34%, respectively. CONCLUSIONS The isolation and characterization of human MDCs was successfully achieved. Human MDCs might have the potential to be a novel tool for the management of stress urinary incontinence and bladder reconstitution.
Collapse
Affiliation(s)
- Shing-Hwa Lu
- Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
22
|
Tian C, Lu Y, Gilbert R, Karpati G. Differentiation of Murine Embryonic Stem Cells in Skeletal Muscles of Mice. Cell Transplant 2008; 17:325-35. [DOI: 10.3727/096368908784153841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Possible myogenic differentiation of SSEA-1- and OCT-4-positive murine embryonic stem cells (ESCs) and embryoid bodies (EBs) was studied in vitro and in vivo. In vitro, ESC- or EB-derived ESCs (EBs/ESCs) showed only traces of Pax 3 and 7 expression by immunocytochemistry and Pax 3 expression by immunoblot. By RT-PCR, myogenic determinant molecules (myf5, myoD, and myogenin) were expressed by EBs/ESCs but not by ESCs. However, in such cultures, very rare contracting myotubes were still present. Suspensions of LacZ-labeled ESCs or EBs were injected into anterior tibialis muscles (ATM) of different cohorts of mice for the study of their survival and possible myogenic differentiation. The different cohorts of mice included isogenic adult 129/Sv, nonisogenic CD1 and mdx, as well as mdx immunosuppressed with 2.5 mg/kg daily injections of tacrolimus. Ten to 90 days postinjections, the injected ATM of nonisogenic mice did not contain cells positive for LacZ, SSEA-1, OCT-4, or embryonic myosin heavy chain. The ATM of intact mdx mice contained very rare examples of muscle fibers positive for dystrophin and/or embryonic myosin heavy chain. In the ATM of the isogenic normal and the immunosuppressed mdx mice, as expected, large teratomas developed containing the usual diverse cell types. In some teratomas of immunosuppressed mdx mice, small pockets of muscle fibers expressed dystrophin and myosin heavy chain. Our studies indicated that in muscles of animals nonisogenic with the used ESCs, only very rare ESCs survived with myogenic differentiation. These studies also indicated that ESCs will not undergo significant, selective, and preferential myogenic differentiation in vitro or in vivo in any of the models studied. It is probable that this strain of murine ESC requires some experimentally induced alteration of its gene expression profile to secure significant myogenicity and suppress tumorogenicity.
Collapse
Affiliation(s)
- Chai Tian
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yifan Lu
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Rénald Gilbert
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec, Canada
| | - George Karpati
- Neuromuscular Research Group, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Rosenbaum AJ, Grande DA, Dines JS. The use of mesenchymal stem cells in tissue engineering: A global assessment. Organogenesis 2008; 4:23-7. [PMID: 19279711 PMCID: PMC2634175 DOI: 10.4161/org.6048] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 04/07/2008] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest to both clinicians and researchers for their great potential to enhance tissue engineering. Their ease of isolation, manipulability and potential for differentiation are specifically what have made them so attractive. These multipotent cells have been found to differentiate into cartilage, bone, fat, muscle, tendon, skin, hematopoietic-supporting stroma and neural tissue. Their diverse in vivo distribution includes bone marrow, adipose, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, blood, trabecular bone, human umbilical cord, lung, dental pulp and periodontal ligament. Despite their frequent use in research, no standardized criteria exist for the identification of mesenchymal stem cells; The International Society for Cellular Therapy has sought to change this with a set of guidelines elucidating the major surface markers found on these cells. While many studies have shown MSCs to be just as effective as unipotent cells for certain types of tissue regeneration, limitations do exist due to their immunosuppressive properties. This paper serves as a review pertaining to these issues, as well as others related to the use of MSCs in tissue engineering.
Collapse
Affiliation(s)
- Andrew J Rosenbaum
- Department Orthopedic Surgery Research; The Feinstein Institute; Manhasset, New York USA
| | | | | |
Collapse
|
24
|
Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Péault B. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 2007; 25:1025-34. [PMID: 17767154 DOI: 10.1038/nbt1334] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 08/12/2007] [Indexed: 01/23/2023]
Abstract
We document anatomic, molecular and developmental relationships between endothelial and myogenic cells within human skeletal muscle. Cells coexpressing myogenic and endothelial cell markers (CD56, CD34, CD144) were identified by immunohistochemistry and flow cytometry. These myoendothelial cells regenerate myofibers in the injured skeletal muscle of severe combined immunodeficiency mice more effectively than CD56+ myogenic progenitors. They proliferate long term, retain a normal karyotype, are not tumorigenic and survive better under oxidative stress than CD56+ myogenic cells. Clonally derived myoendothelial cells differentiate into myogenic, osteogenic and chondrogenic cells in culture. Myoendothelial cells are amenable to biotechnological handling, including purification by flow cytometry and long-term expansion in vitro, and may have potential for the treatment of human muscle disease.
Collapse
Affiliation(s)
- Bo Zheng
- Stem Cell Research Center, Children's Hospital of Pittsburgh; Department of Orthopaedic Surgery, University of Pittsburgh Children's Hospital and School of Medicine, 4100 Rangos Research Center, 3460 Fifth Avenue, Pittsburgh, PA 15213-2583, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007; 308:281-93. [PMID: 17612520 DOI: 10.1016/j.ydbio.2007.06.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/03/2007] [Accepted: 06/08/2007] [Indexed: 12/29/2022]
Abstract
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy.
| | | | | |
Collapse
|
26
|
Nakanishi K, Dohmae N, Morishima N. Endoplasmic reticulum stress increases myofiber formation in vitro. FASEB J 2007; 21:2994-3003. [PMID: 17435177 DOI: 10.1096/fj.06-6408com] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myoblast differentiation involves myoblast fusion followed by myofiber formation. We recently demonstrated that endoplasmic reticulum (ER) stress signaling occurs during myoblast differentiation in vivo. This signaling results in apoptosis in a subpopulation of myoblasts. In a cell culture model of myogenesis, inhibition of ER stress signaling blocked apoptosis and myoblast differentiation. To further examine the role of ER stress during myogenesis, we exposed cultured myoblasts to ER stress inducers during the transition from proliferation to differentiation. The stress inducers tunicamycin (an inhibitor of N-glycosylation in the ER) and thapsigargin (an inhibitor of ER-specific calcium ATPase) were used at doses that induce 40-50% apoptosis in myoblast cultures. Increased ER stress enhanced differentiation-associated apoptosis of myoblasts. It is likely that apoptosis induced by ER stress selectively eliminates vulnerable cells. We found that the surviving myoblast cells were even more resistant to apoptosis. Remarkably, the surviving cells efficiently differentiated into contracting myofibers that are rarely found in culture models of myogenesis. Our observations suggest that ER stress exerts a positive effect on myofiber formation, possibly mimicking the action of signals that drive apoptosis and differentiation in vivo. These results may provide important insight for developing therapies to improve myofiber formation.
Collapse
Affiliation(s)
- Keiko Nakanishi
- The Biomolecular Characterization Team, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | |
Collapse
|
27
|
Meeson AP, Shi X, Alexander MS, Williams RS, Allen RE, Jiang N, Adham IM, Goetsch SC, Hammer RE, Garry DJ. Sox15 and Fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells. EMBO J 2007; 26:1902-12. [PMID: 17363903 PMCID: PMC1847663 DOI: 10.1038/sj.emboj.7601635] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 02/07/2007] [Indexed: 01/12/2023] Open
Abstract
The regulation of myogenic progenitor cells during muscle regeneration is not clearly understood. We have previously shown that the Foxk1 gene, a member of the forkhead/winged helix family of transcription factors, is expressed in myogenic progenitor cells in adult skeletal muscle. In the present study, we utilize transgenic technology and demonstrate that the 4.6 kb upstream fragment of the Foxk1 gene directs beta-galactosidase expression to the myogenic progenitor cell population. We further establish that Sox15 directs Foxk1 expression to the myogenic progenitor cell population, as it binds to an evolutionarily conserved site and recruits Fhl3 to transcriptionally coactivate Foxk1 gene expression. Knockdown of endogenous Sox15 results in perturbed cell cycle kinetics and decreased Foxk1 expression. Furthermore, Sox15 mutant mice display perturbed skeletal muscle regeneration, due in part to decreased numbers of satellite cells and decreased Foxk1 expression. These studies demonstrate that Sox15, Fhl3 and Foxk1 function to coordinately regulate the myogenic progenitor cell population and skeletal muscle regeneration.
Collapse
Affiliation(s)
- Annette P Meeson
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaozhong Shi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew S Alexander
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R S Williams
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Ronald E Allen
- Department of Animal Sciences, University of Arizona, Tucson, AZ, USA
| | - Nan Jiang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ibrahim M Adham
- Institute of Human Genetics, University of Göttingen, Göttingen, Germany
| | - Sean C Goetsch
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert E Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Garry
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Donald W Reynolds Cardiovascular Clinical Research Center at UT Southwestern Medical Center, Dallas, TX, USA
- Internal Medicine-Cardiology, NB11.118A, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8573, USA. Tel.: +1 214 648 1654; Fax: +1 214 648 1450; E-mail:
| |
Collapse
|
28
|
Biressi S, Tagliafico E, Lamorte G, Monteverde S, Tenedini E, Roncaglia E, Ferrari S, Ferrari S, Cusella-De Angelis MG, Tajbakhsh S, Cossu G. Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol 2007; 304:633-51. [PMID: 17292343 DOI: 10.1016/j.ydbio.2007.01.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/29/2006] [Accepted: 01/05/2007] [Indexed: 12/30/2022]
Abstract
Skeletal muscle development occurs asynchronously and it has been proposed to be dependent upon the generation of temporally distinct populations of myogenic cells. This long-held hypothesis has not been tested directly due to the inability to isolate and analyze purified populations of myoblasts derived from specific stages of prenatal development. Using a mouse strain with the GFP reporter gene targeted into the Myf5 locus, a cell-sorting method was developed for isolating embryonic and fetal myoblasts. The two types of myoblasts show an intrinsic difference in fusion ability, proliferation, differentiation and response to TGFbeta, TPA and BMP-4 in vitro. Microarray and quantitative PCR were used to identify differentially expressed genes both before and after differentiation, thus allowing a precise phenotypic analysis of the two populations. Embryonic and fetal myoblasts differ in the expression of a number of transcription factors and surface molecules, which may control different developmental programs. For example, only embryonic myoblasts express a Hox code along the antero-posterior axis, indicating that they possess direct positional information. Taken together, the data presented here demonstrate that embryonic and fetal myoblasts represent intrinsically different myogenic lineages and provide important information for the understanding of the molecular mechanisms governing skeletal muscle development.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, Dibit, H. San Raffaele, via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zammit PS, Partridge TA, Yablonka-Reuveni Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 2006; 54:1177-91. [PMID: 16899758 DOI: 10.1369/jhc.6r6995.2006] [Citation(s) in RCA: 447] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The muscle satellite cell was first described and actually named on the basis of its anatomic location under the basement membrane surrounding each myofiber. For many years following its discovery, electron microscopy provided the only definitive method of identification. More recently, several molecular markers have been described that can be used to detect satellite cells, making them more accessible for study at the light microscope level. Satellite cells supply myonuclei to growing myofibers before becoming mitotically quiescent in muscle as it matures. They are then activated from this quiescent state to fulfill their roles in routine maintenance, hypertrophy, and repair of adult muscle. Because muscle is able to efficiently regenerate after repeated bouts of damage, systems must be in place to maintain a viable satellite cell pool, and it was proposed over 30 years ago that self-renewal was the primary mechanism. Self-renewal entails either a stochastic event or an asymmetrical cell division, where one daughter cell is committed to differentiation whereas the second continues to proliferate or becomes quiescent. This classic model of satellite cell self-renewal and the importance of satellite cells in muscle maintenance and repair have been challenged during the past few years as bone marrow-derived cells and various intramuscular populations were shown to be able to contribute myonuclei and occupy the satellite cell niche. This is a fast-moving and dynamic field, however, and in this review we discuss the evidence that we think puts this enigmatic cell firmly back at the center of adult myogenesis.
Collapse
Affiliation(s)
- Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL England.
| | | | | |
Collapse
|
30
|
Abstract
Somatic stem cell populations participate in the development and regeneration of their host tissues. Skeletal muscle is capable of complete regeneration due to stem cells that reside in skeletal muscle and nonmuscle stem cell populations. However, in severe myopathic diseases such as Duchenne Muscular Dystrophy, this regenerative capacity is exhausted. In the present review, studies will be examined that focus on the origin, gene expression, and coordinated regulation of stem cell populations to highlight the regenerative capacity of skeletal muscle and emphasize the challenges for this field. Intense interest has focused on cell-based therapies for chronic, debilitating myopathic diseases. Future studies that enhance our understanding of stem cell biology and repair mechanisms will provide a platform for therapeutic applications directed toward these chronic, life-threatening diseases.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
31
|
Zheng JK, Wang Y, Karandikar A, Wang Q, Gai H, Liu AL, Peng C, Sheng HZ. Skeletal myogenesis by human embryonic stem cells. Cell Res 2006; 16:713-22. [PMID: 16788572 DOI: 10.1038/sj.cr.7310080] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have examined the myogenic potential of human embryonic stem (hES) cells in a xeno-transplantation animal model. Here we show that precursors differentiated from hES cells can undergo myogenesis in an adult environment and give rise to a range of cell types in the myogenic lineage. This study provides direct evidences that hES cells can regenerate both muscle and satellite cells in vivo and are another promising cell type for treating muscle degenerative disorders in addition to other myogenic cell types.
Collapse
Affiliation(s)
- Jun Ke Zheng
- Center for Developmental Biology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Maier A, Zhou Z, Bornemann A. The expression profile of myogenic transcription factors in satellite cells from denervated rat muscle. Brain Pathol 2006; 12:170-7. [PMID: 11958370 PMCID: PMC8095746 DOI: 10.1111/j.1750-3639.2002.tb00431.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The muscle-specific transcription factors of the MyoD family are altered after denervation. In order to determine whether this shift takes place in satellite cells (SC), we investigated the expression pattern of MyoD, myf5, myogenin, and MRF4 in SC. Hindlimb muscles of rats were denervated for 2 days to 4 weeks. SC were isolated, pooled and the transcription of all 4 factors was assessed by RT-PCR. Protein expression was assessed in histological sections of soleus and anterior tibial (TA) muscles; SC were identified by M-cadherin. Pooled SC from innervated muscles expressed myf5 mRNA, and very weakly MyoD and myogenin mRNA. MyoD and myogenin protein was found in only few SC. After denervation, pooled SC expressed myf5 mRNA, and very weakly myogenin and MRF4 mRNA. Myogenin protein was found in less than about 10% of the cells, whereas MRF4 protein was absent from SC. We conclude that the presence of myf5 and the absence of MyoD and MRF4 protein in SC after denervation indicated the quiescent state of the cell cycle. A subset of SC has additionally acquired myogenin. SC after denervation might be less easily recruited into the mitotic cycle than SC from normal muscle, rendering regeneration of denervated muscle less efficient than normal muscle.
Collapse
Affiliation(s)
- Annette Maier
- Institute of Brain Research, University of Tübingen, Germany
| | - Zhe Zhou
- Institute of Brain Research, University of Tübingen, Germany
| | - Antje Bornemann
- Institute of Brain Research, University of Tübingen, Germany
| |
Collapse
|
33
|
Sales KM, Salacinski HJ, Alobaid N, Mikhail M, Balakrishnan V, Seifalian AM. Advancing vascular tissue engineering: the role of stem cell technology. Trends Biotechnol 2005; 23:461-7. [PMID: 15979750 DOI: 10.1016/j.tibtech.2005.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/28/2005] [Accepted: 06/10/2005] [Indexed: 01/19/2023]
Abstract
Atherosclerosis and heart disease are still the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts but the patency of such grafts is limited compared to natural materials. Tissue engineering, whereby living tissue replacements can be constructed, has emerged as a solution to some of these difficulties. This, in turn, is limited by the availability of suitable cells from which to construct the vessels. The development of prosthesis using progenitor cells and switching these into endothelial cells is an important and exciting advance in the field of tissue engineering. Here, we describe recent developments in the use of stem cells for the development of replacement vessels. These paradigm shifts in vascular engineering now offer a new route for effective clinical therapy.
Collapse
Affiliation(s)
- Kevin M Sales
- Biomaterials & Tissue Engineering Centre (BTEC), Academic Division of Surgical and Interventional Sciences, University College London, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
34
|
Cossu G, Biressi S. Satellite cells, myoblasts and other occasional myogenic progenitors: Possible origin, phenotypic features and role in muscle regeneration. Semin Cell Dev Biol 2005; 16:623-31. [PMID: 16118057 DOI: 10.1016/j.semcdb.2005.07.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the vertebrate embryo, skeletal muscle originates from somites and is formed in discrete steps by different classes of progenitor cells. After myotome formation, embryonic myoblasts give rise to primary fibers in the embryo, while fetal myoblasts give rise to secondary fibers, initially smaller and surrounding primary fibers. Satellite cells appear underneath the newly formed basal lamina that develops around each fiber, and contribute to post-natal growth and regeneration of muscle fibers. Recently, different types of non somitic stem-progenitor cells have been shown to contribute to muscle regeneration. The origin of these different cell types and their possible lineage relationships with other myogenic cells as well as their possible role in muscle regeneration will be discussed. Finally, possible use of different myogenic cells in experimental protocols of cell therapy will be briefly outlined.
Collapse
Affiliation(s)
- Giulio Cossu
- Stem Cell Research Institute, Dibit, H. San Raffaele, via Olgettina 58, 20132 Milan, Italy.
| | | |
Collapse
|
35
|
Lynch GS. Novel therapies for muscular dystrophy and other muscle wasting conditions. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.4.587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
36
|
Vattemi G, Tomelleri G, Filosto M, Savio C, Rizzuto N, Tonin P. Expression of late myogenic differentiation markers in sarcoplasmic masses of patients with myotonic dystrophy. Neuropathol Appl Neurobiol 2005; 31:45-52. [PMID: 15634230 DOI: 10.1111/j.1365-2990.2004.00602.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sarcoplasmic masses contain disorganized myofibrillar material and are a striking feature of myotonic dystrophy. However their significance is still unclear. Using immunocytochemistry we studied the expression of cytoskeletal proteins (desmin and vimentin), dystrophin, markers of myogenic differentiation (foetal myosin, neural cell adhesion molecule, bcl-2, insulin-like growth factor-I, fibroblast growth factor, retinoblastoma protein and myoD1), cell cycle regulators (Cdk2, p16, p27 and p57) and muscle proteases (ubiquitin, micro and m calpain and cathepsin D) in muscle biopsies from four patients with myotonic dystrophy. Sarcoplasmic masses were strongly positive for desmin, neural cell adhesion molecule, bcl-2, insulin-like growth factor I, retinoblastoma protein and p57, weakly positive for dystrophin and p16 and negative for vimentin, fibroblast growth factor, myoD1, Cdk2 and p27. Immunoreactivity for foetal myosin was detected only in a few fibres (< 1%). Our data suggest that the late myogenic differentiation programme is activated in sarcoplasmic masses although these areas do not reach complete maturation.
Collapse
Affiliation(s)
- G Vattemi
- Department of Neurological Sciences and Vision, Section of Clinical Neurology, University of Verona, Verona, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Cao B, Bruder J, Kovesdi I, Huard J. Muscle stem cells can act as antigen-presenting cells: implication for gene therapy. Gene Ther 2004; 11:1321-30. [PMID: 15175641 DOI: 10.1038/sj.gt.3302293] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research has shown that the use of a muscle-specific promoter can reduce immune response and improve gene transfer to muscle fibers. We investigated the efficiency of direct and ex vivo gene transfer to the skeletal muscles of 6- to 8-week-old mdx mice by using two adenoviral vectors: adenovirus (AD) encoding the luciferase gene under the cytomegalovirus (CMV) promoter (ADCMV) and AD encoding the same gene under the muscle creatine kinase (MCK) promoter (ADMCK). Direct intramuscular injection of ADMCK triggered a lower immune response that enabled more efficient delivery and more persistent expression of the transgene than did ADCMV injection. Similarly, ex vivo gene transfer using ADCMV-transduced muscle-derived stem cells (MDSCs) induced a stronger immune response and led to shorter transgene expression than did ex vivo gene transfer using ADMCK-transduced MDSCs. This immune response was due to the release of the antigen after MDSC death or to the ADCMV-transduced MDSCs acting as antigen-presenting cells (APCs) by expressing the transgene and rapidly initiating an immune response against subsequent viral inoculation. The use of a muscle-specific promoter that restricts transgene expression to differentiated muscle cells could prevent MDSCs from becoming APCs, and thereby could improve the efficiency of ex vivo gene transfer to skeletal muscle.
Collapse
Affiliation(s)
- B Cao
- Growth and Development Laboratory, Children's Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
38
|
Huysseune A, Thesleff I. Continuous tooth replacement: the possible involvement of epithelial stem cells. Bioessays 2004; 26:665-71. [PMID: 15170864 DOI: 10.1002/bies.20039] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epithelial stem cells have been identified in integumental structures such as hairs and continuously growing teeth of various rodents, and in the gut. Here we propose the involvement of epithelial stem cells in the continuous tooth replacement that characterizes non-mammalian vertebrates, as exemplified by the zebrafish. Arguments are based on morphological observations of tooth renewal in the zebrafish and on the similarities between molecular control of hair and tooth formation. Dissection of the molecular cascades underlying the regulation of the epithelial stem cell niche might open perspectives for new regenerative treatment strategies in clinical dentistry.
Collapse
|
39
|
Natsu K, Ochi M, Mochizuki Y, Hachisuka H, Yanada S, Yasunaga Y. Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells Promote the Regeneration of Injured Skeletal Muscle without Differentiation into Myofibers. ACTA ACUST UNITED AC 2004; 10:1093-112. [PMID: 15363167 DOI: 10.1089/ten.2004.10.1093] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Half-stratum laceration was performed on the tibialis anterior muscle of Sprague-Dawley (SD) rats as a skeletal muscle injury model. Bone marrow-derived mesenchymal stromal cells (BMMSCs), which were derived from enhanced green fluorescent protein (GFP) transgenic SD rats, were transplanted into the injured site. Tensile strength produced by nerve stimulation was measured for functional evaluation before sacrifice. Specimens of the tibialis anterior muscles were stained with hematoxylin and eosin, and immunohistochemically stained for histological evaluation. Our results showed that transplanted BMMSCs promoted maturation of myofibers histologically and made the injured muscle acquire almost normal muscle power functionally by 1 month after transplantation. However, the results of immunohistochemical staining could not prove that transplanted BMMSCs differentiated into or fused to skeletal myofibers, although it showed that transplanted BMMSCs seemed to differentiate into muscle precursor cells. Therefore, our results indicated that BMMSCs contributed to the regeneration of skeletal muscle by mechanisms other than fusion to myofibers after differentiation.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/pathology
- Bone Marrow Transplantation/methods
- Bone Marrow Transplantation/pathology
- Cell Differentiation
- Cells, Cultured
- Male
- Mesenchymal Stem Cell Transplantation/methods
- Mesenchymal Stem Cells/pathology
- Muscle Contraction
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/injuries
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/surgery
- Rats
- Rats, Sprague-Dawley
- Regeneration/physiology
- Stromal Cells/pathology
- Stromal Cells/transplantation
- Transplantation, Homologous
- Wound Healing/physiology
- Wounds, Penetrating/pathology
- Wounds, Penetrating/physiopathology
- Wounds, Penetrating/surgery
Collapse
Affiliation(s)
- Koji Natsu
- Department of Orthopaedic Surgery, Programs for Applied Biomedicine, Division of Clinical Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Huard J, Cao B, Qu-Petersen Z. Muscle-derived stem cells: potential for muscle regeneration. ACTA ACUST UNITED AC 2004; 69:230-7. [PMID: 14671776 DOI: 10.1002/bdrc.10020] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating X-linked muscle disease characterized by progressive muscle weakness caused by the lack of dystrophin expression at the sarcolemma of muscle fibers. Although various approaches to delivering dystrophin in dystrophic muscle have been investigated extensively (e.g., cell and gene therapy), there is still no treatment that alleviates the muscle weakness in this common inherited muscle disease. The transplantation of myoblasts can enable transient delivery of dystrophin and improve the strength of injected dystrophic muscle, but this approach has various limitations, including immune rejection, poor cellular survival rates, and the limited spread of the injected cells. The isolation of muscle cells that can overcome these limitations would enhance the success of myoblast transplantation significantly. The efficiency of cell transplantation might be improved through the use of stem cells, which display unique features, including (1) self-renewal with production of progeny, (2) appearance early in development and persistence throughout life, and (3) long-term proliferation and multipotency. For these reasons, the development of muscle stem cells for use in transplantation or gene transfer (ex vivo approach) as treatment for patients with muscle disorders has become more attractive in the past few years. In this paper, we review the current knowledge regarding the isolation and characterization of stem cells isolated from skeletal muscle by highlighting their biological features and their relationship to satellite cells as well as other populations of stem cells derived from other tissues. We also describe the remarkable ability of stem cells to regenerate skeletal muscle and their potential use to alleviate the muscle weakness associated with DMD.
Collapse
Affiliation(s)
- Johnny Huard
- Growth and Development Laboratory, Children's Hospital of Pittsburgh, Department of Orthopaedic Surgery, Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA. jhuard+@pitt.edu
| | | | | |
Collapse
|
41
|
Abstract
Under normal circumstances, mammalian adult skeletal muscle is a stable tissue with very little turnover of nuclei. However, upon injury, skeletal muscle has the remarkable ability to initiate a rapid and extensive repair process preventing the loss of muscle mass. Skeletal muscle repair is a highly synchronized process involving the activation of various cellular responses. The initial phase of muscle repair is characterized by necrosis of the damaged tissue and activation of an inflammatory response. This phase is rapidly followed by activation of myogenic cells to proliferate, differentiate, and fuse leading to new myofiber formation and reconstitution of a functional contractile apparatus. Activation of adult muscle satellite cells is a key element in this process. Muscle satellite cell activation resembles embryonic myogenesis in several ways including the de novo induction of the myogenic regulatory factors. Signaling factors released during the regenerating process have been identified, but their functions remain to be fully defined. In addition, recent evidence supports the possible contribution of adult stem cells in the muscle regeneration process. In particular, bone marrow-derived and muscle-derived stem cells contribute to new myofiber formation and to the satellite cell pool after injury.
Collapse
|
42
|
Hawke TJ, Jiang N, Garry DJ. Absence of p21CIP rescues myogenic progenitor cell proliferative and regenerative capacity in Foxk1 null mice. J Biol Chem 2003; 278:4015-20. [PMID: 12446708 DOI: 10.1074/jbc.m209200200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Foxk1 is a forkhead/winged helix transcription factor that is restricted to myogenic progenitor cells in adult skeletal muscle. Mice lacking Foxk1 (Foxk1-/-) display growth retardation and a severe impairment in skeletal muscle regeneration following injury. Here we show that myogenic progenitor cells from Foxk1-/- mice are reduced in number and have perturbed cell cycle progression (G(0)/G(1) arrest). Molecular analysis of Foxk1-/- myogenic progenitor cells revealed increased expression of the cyclin-dependent kinase inhibitor, p21(CIP), independent of changes in other cell cycle inhibitors, including p53. Combinatorial mating of Foxk1-/- mice with p21(CIP)-/- mice, to generate double mutant progeny, resulted in a complete restoration of the growth deficit, skeletal muscle regeneration, myogenic progenitor cell number, and cell cycle progression that characterized the Foxk1-/- mice. We conclude that Foxk1 is essential for regulating cell cycle progression in the myogenic progenitor cell and that the cyclin-dependent kinase inhibitor, p21(CIP), may be a downstream target of Foxk1.
Collapse
Affiliation(s)
- Thomas J Hawke
- Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, Dallas 75390-8573, USA
| | | | | |
Collapse
|
43
|
Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL. Autoregulation of neurogenesis by GDF11. Neuron 2003; 37:197-207. [PMID: 12546816 DOI: 10.1016/s0896-6273(02)01172-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In the olfactory epithelium (OE), generation of new neurons by neuronal progenitors is inhibited by a signal from neurons themselves. Here we provide evidence that this feedback inhibitory signal is growth and differentiation factor 11 (GDF11). Both GDF11 and its receptors are expressed by OE neurons and progenitors, and GDF11 inhibits OE neurogenesis in vitro by inducing p27(Kip1) and reversible cell cycle arrest in progenitors. Mice lacking functional GDF11 have more progenitors and neurons in the OE, whereas mice lacking follistatin, a GDF11 antagonist, show dramatically decreased neurogenesis. This negative autoregulatory action of GDF11 is strikingly like that of its homolog, GDF8/myostatin, in skeletal muscle, suggesting that similar strategies establish and maintain proper cell number during neural and muscular development.
Collapse
Affiliation(s)
- Hsiao-Huei Wu
- Department of Anatomy and Neurobiology and The Developmental Biology Center, University of California, Irvine, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Shen X, Collier JM, Hlaing M, Zhang L, Delshad EH, Bristow J, Bernstein HS. Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn 2003; 226:128-38. [PMID: 12508234 DOI: 10.1002/dvdy.10200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40% fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly-6A, whose expression specifically was up-regulated during cell cycle withdrawal coincident with early myoblast differentiation.
Collapse
Affiliation(s)
- Xun Shen
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhang F, Chen Y, Yang Z, Gao X, Ma W, Li C, Kao RL. Cellular cardiomyoplasty for a patient with heart failure. CARDIOVASCULAR RADIATION MEDICINE 2003; 4:43-6. [PMID: 12892773 DOI: 10.1016/s1522-1865(03)00111-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND A 73-year-old man with a history of myocardial infarction and hypertension for 5 years suffered heart failure (NYHA III-IV). METHODS 2D echo indicated hypokinesia at septal, left ventricular anterior wall and apical regions. Coronary angiograms demonstrated 60% stenosis in distal left main and 99% stenosis in proximal and distal left anterior descending coronary arteries (LAD). Both proximal artery and middle left circumflex coronary artery (LC) had 90% stenosis, and diffuse stenosis of right coronary artery (RC) was found. Myocardial perfusion imaging using 99mTc-MIBI indicated defective perfusion of left ventricular apex, anterior wall and septal region and severe reduced perfusion of posterior inferior wall. Myocardial metabolic activities (18F-deoxyglucose) also showed comparable reductions. After exposing the heart, LAD, LC, and RC were all completely occluded and bypass procedure could not be completed. Autologous satellite cells were implanted without any complication and the patient had an uneventful recovery. RESULTS During the first 2 months, he remained in heart failure, and by the third month, he gradually improved and reached NYHA II. At fifth month after the procedure, significant increased ejection fraction (37.1-48.6%) and wall movement with modest reduction of left ventricular systolic diameter (48-45 mm) were observed. Imaging with 18F-deoxyglucose showed dramatic improvement in myocardial metabolic activity with similar improvement in myocardial perfusion (99mTc-MIBI). CONCLUSION This is the first successful case of cellular cardiomyoplasty without any conjunctional procedure for patient with severe coronary heart disease and heart failure.
Collapse
Affiliation(s)
- Fumin Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Rabinovsky ED, Gelir E, Gelir S, Lui H, Kattash M, DeMayo FJ, Shenaq SM, Schwartz RJ. Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J 2003; 17:53-5. [PMID: 12424223 DOI: 10.1096/fj.02-0183fje] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Currently, there is no known medical treatment that hastens the repair of damaged nerve and muscle. Using IGF-1 transgenic mice that specifically express human recombinant IGF-1 in skeletal muscle, we test the hypotheses that targeted gene expression of IGF-1 in skeletal muscle enhances motor nerve regeneration after a nerve crush injury. The IGF-1 transgene affects the initiation of the muscle repair process after nerve injury as shown by increased activation of SCA-1positive myogenic stem cells. Increased satellite cell differentiation and proliferation are observed in IGF-1 transgenic mice, shown by increased expression of Cyclin D1, MyoD, and myogenin. Expression of myogenin and nicotinic acetylcholine receptor subunits, initially increased in both wild-type and IGF-1 transgenic mice, are restored to normal levels at a faster rate in IGF-1 transgenic mice, which indicates a rescue of nerve-evoked muscle activity. Expression of the IGF-1 transgene in skeletal muscle results in accelerated recovery of saltatory nerve conduction, increased innervation as detected by neurofilament expression, and faster recovery of muscle mass. These studies demonstrate that local expression of IGF-1 augments the repair of injured nerve and muscle.
Collapse
Affiliation(s)
- Eric D Rabinovsky
- Michael E. Debakey Department of Surgery, Division of Plastic Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Huard J, Yokoyama T, Pruchnic R, Qu Z, Li Y, Lee JY, Somogyi GT, de Groat WC, Chancellor MB. Muscle-derived cell-mediated ex vivo gene therapy for urological dysfunction. Gene Ther 2002; 9:1617-26. [PMID: 12424614 DOI: 10.1038/sj.gt.3301816] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2001] [Accepted: 05/13/2002] [Indexed: 11/09/2022]
Abstract
We have tested the feasibility of muscle-based gene therapy and tissue engineering for urological dysfunction using highly purified muscle-derived cells (MDC) that display stem cell characteristics. We then explored the potential use of these MDC as an alternative therapy for the treatment of impaired detrusor contractility. The MDC were genetically engineered to express the gene encoding beta-galactosidase and injected into the bladder walls of SCID mice. The injected bladders were harvested at various time-points after injection and assayed for beta-galactosidase activity; the presence of myofibers within the injected tissue was determined by detection of fast myosin heavy chain isoform (MyHCs). We have demonstrated that the injected MDC are capable of not only surviving in the lower urinary tract, but also improving the contractility of the bladder following an induced injury. Two potential mechanisms can be used to explain this finding. First, we have observed that some of the beta-galactosidase-expressing cells expressed alpha-smooth muscle actin, suggesting a differentiation into smooth muscle. Second, a stain for acetylcholine receptors (AChRs), which identifies the location of neuromuscular junctions, revealed that the myofibers derived from the doner cells became innervated into the bladder as early as 2 weeks after injection. These results suggest that gene therapy and tissue engineering based on MDC potentially can be used for urological dysfunction.
Collapse
Affiliation(s)
- J Huard
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kronqvist P, Kawaguchi N, Albrechtsen R, Xu X, Schrøder HD, Moghadaszadeh B, Nielsen FC, Fröhlich C, Engvall E, Wewer UM. ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1535-40. [PMID: 12414501 PMCID: PMC1850802 DOI: 10.1016/s0002-9440(10)64431-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Muscular dystrophy is characterized by muscle degeneration and insufficient regeneration and replacement of muscle fibers by connective tissue. New therapeutic strategies directed toward various forms of muscular dystrophy are needed to preserve muscle mass and promote regeneration. In this study we examined the role of the transmembrane ADAM12, a disintegrin and metalloprotease, which is normally associated with development and regeneration of skeletal muscle. We demonstrate that ADAM12 overexpression in the dystrophin-deficient mdx mice alleviated the muscle pathology in these animals, as evidenced by less muscle cell necrosis and inflammation, lower levels of serum creatine kinase, and less uptake of Evans Blue dye into muscle fibers. These studies demonstrate that ADAM12 directly or indirectly contributes to muscle cell regeneration, stability, and survival.
Collapse
|
49
|
Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 2002; 157:851-64. [PMID: 12021255 PMCID: PMC2173424 DOI: 10.1083/jcb.200108150] [Citation(s) in RCA: 602] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Three populations of myogenic cells were isolated from normal mouse skeletal muscle based on their adhesion characteristics and proliferation behaviors. Although two of these populations displayed satellite cell characteristics, a third population of long-time proliferating cells expressing hematopoietic stem cell markers was also identified. This third population comprises cells that retain their phenotype for more than 30 passages with normal karyotype and can differentiate into muscle, neural, and endothelial lineages both in vitro and in vivo. In contrast to the other two populations of myogenic cells, the transplantation of the long-time proliferating cells improved the efficiency of muscle regeneration and dystrophin delivery to dystrophic muscle. The long-time proliferating cells' ability to proliferate in vivo for an extended period of time, combined with their strong capacity for self-renewal, their multipotent differentiation, and their immune-privileged behavior, reveals, at least in part, the basis for the improvement of cell transplantation. Our results suggest that this novel population of muscle-derived stem cells will significantly improve muscle cell-mediated therapies.
Collapse
Affiliation(s)
- Zhuqing Qu-Petersen
- Growth and Development Laboratory, Children's Hospital of Pittsburgh, Department of Orthopaedic Surgery, University of Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The existence of cells with stem cell-like abilities derived from various tissues can now be extended to include the skeletal muscle compartment. Although researchers have focused on the utilization of these cells with regard to their myogenic capacity, initially exploring more efficient cellular therapy treatments for muscular dystrophy, it is becoming increasingly apparent that such cells may one day be used in the treatment of non-myogenic disorders. Evidence regarding the existence and differentiation capacity of muscle-derived stem cells is discussed, along with current theories regarding their proposed position within the myogenic hierarchy.
Collapse
Affiliation(s)
- R J Jankowski
- Growth and Development Laboratory, Children's Hospital of Pittsburgh, Bioengineering Department, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|