1
|
Weinrauch AM, Bouyoucos IA, Conlon JM, Anderson WG. The chondrichthyan glucagon-like peptide 3 regulates hepatic ketone metabolism in the Pacific spiny dogfish Squalus suckleyi. Gen Comp Endocrinol 2024; 350:114470. [PMID: 38346454 DOI: 10.1016/j.ygcen.2024.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Chondrichthyans have a novel proglucagon-derived peptide, glucagon-like peptide (GLP)-3, in addition to GLP-1 and GLP-2 that occur in other vertebrates. Given that the GLPs are important regulators of metabolic homeostasis across vertebrates, we sought to investigate whether GLP-3 displays functional actions on metabolism within a representative chondrichthyan, the Pacific spiny dogfish Squalus suckleyi. There were no observed effects of GLP-3 perfusion (10 nM for 15 min) on the rate of glucose or oleic acid acquisition at the level of the spiral valve nor were there any measured effects on intermediary metabolism within this tissue. Despite no effects on apparent glucose transport or glycolysis in the liver, a significant alteration to ketone metabolism occurred. Firstly, ketone flux through the perfused liver switched from a net endogenous production to consumption following hormone application. Accompanying this change, significant increases in mRNA transcript abundance of putative ketone transporters and in the activity of β-hydroxybutyrate dehydrogenase (a key enzyme regulating ketone flux in the liver) were observed. Overall, while these results show effects on hepatic metabolism, the physiological actions of GLP are distinct between this chondrichthyan and those of GLP-1 on teleost fishes. Whether this is the result of the particular metabolic dependency on ketone bodies in chondrichthyans or a differential function of a novel GLP remains to be fully elucidated.
Collapse
Affiliation(s)
- Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada.
| | - Ian A Bouyoucos
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada
| | - J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada
| |
Collapse
|
2
|
Du Q, Shao R, Wang W, Zhang H, Liao X, Wang Z, Yin Z, Ai Q, Mai K, Tang X, Wan M. Vitamin D3 Regulates Energy Homeostasis under Short-Term Fasting Condition in Zebrafish (Danio Rerio). Nutrients 2024; 16:1271. [PMID: 38732518 PMCID: PMC11085765 DOI: 10.3390/nu16091271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Vitamin D3 (VD3) is a steroid hormone that plays pivotal roles in pathophysiology, and 1,25(OH)2D3 is the most active form of VD3. In the current study, the crucial role of VD3 in maintaining energy homeostasis under short-term fasting conditions was investigated. Our results confirmed that glucose-depriving pathways were inhibited while glucose-producing pathways were strengthened in zebrafish after fasting for 24 or 48 h. Moreover, VD3 anabolism in zebrafish was significantly suppressed in a time-dependent manner under short-fasting conditions. After fasting for 24 or 48 h, zebrafish fed with VD3 displayed a higher gluconeogenesis level and lower glycolysis level in the liver, and the serum glucose was maintained at higher levels, compared to those fed without VD3. Additionally, VD3 augmented the expression of fatty acids (FAs) transporter cd36 and lipogenesis in the liver, while enhancing lipolysis in the dorsal muscle. Similar results were obtained in cyp2r1-/- zebrafish, in which VD3 metabolism is obstructed. Importantly, it was observed that VD3 induced the production of gut GLP-1, which is considered to possess a potent gluconeogenic function in zebrafish. Meanwhile, the gene expression of proprotein convertase subtilisin/kexin type 1 (pcsk1), a GLP-1 processing enzyme, was also induced in the intestine of short-term fasted zebrafish. Notably, gut microbiota and its metabolite acetate were involved in VD3-regulated pcsk1 expression and GLP-1 production under short-term fasting conditions. In summary, our study demonstrated that VD3 regulated GLP-1 production in zebrafish by influencing gut microbiota and its metabolite, contributing to energy homeostasis and ameliorating hypoglycemia under short-term fasting conditions.
Collapse
Affiliation(s)
- Qingyang Du
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Rui Shao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Wentao Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Hui Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Xinmeng Liao
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Zhihao Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Xiao Tang
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture & Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Schoen AN, Weinrauch AM, Bouyoucos IA, Anderson WG. An adapted liver perfusion in a shark species, Squalus suckleyi: investigation of energy mobilization. Am J Physiol Regul Integr Comp Physiol 2023; 325:R534-R545. [PMID: 37602384 DOI: 10.1152/ajpregu.00132.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
The liver is an essential energy storage organ in vertebrates. In teleosts and elasmobranchs, previous studies examining hepatic energy balance have used isolated hepatocytes. Although these studies have been informative, the high-fat content in the elasmobranch liver limits isolation of hepatocytes and therefore the utility of this method to understand hepatic metabolic processes. In the present study, we developed an in situ liver perfusion in the North Pacific spiny dogfish Squalus suckleyi. Perfusions were conducted by cannulating the hepatic portal vein (inflowing cannulation) and the sinus venosus through the heart (outflowing cannulation). Changes in major elasmobranch metabolites (glucose and 3-hydroxybutarate [3-HB]) were determined by the arterial (inflow)-venous (outflow) difference in metabolite concentration. Liver preparations were considered viable due to consistent oxygen consumption over 3 h and the maintenance of predictable vasoconstriction following administration of homologous 10-7 M angiotensin II (ANG II). Removal and reintroduction from the perfusate of metabolites showed endogenous 3-HB production in the isolated perfused livers but did not affect glucose balance. However, the arterial-venous difference of both metabolites did not change following perfusion with heterologous insulin and homologous glucagon, which may be due to the glucose intolerant nature of elasmobranchs. Ultimately, we show the viability of this perfusion for the investigation of hepatic energy mobilization in sharks.NEW & NOTEWORTHY We describe a viable liver perfusion in a shark species for the first time as determined by oxygen consumption and hormone-mediated changes in hemodynamics (angiotensin II, ANG II). In addition, removal of major energy metabolites confirms hepatic ketone [3-hydroxybutyrate (3-HB)] production by an elasmobranch liver. Perfusion with heterologous insulin and homologous glucagon did not cause changes in glucose balance, however, possibly demonstrating differences in glucose metabolism in this taxon as compared with more derived vertebrates.
Collapse
Affiliation(s)
- Alexandra N Schoen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Alyssa M Weinrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - Ian A Bouyoucos
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| |
Collapse
|
4
|
Yang M, Pan M, Huang D, Liu J, Guo Y, Liu Y, Zhang W. Glucagon Promotes Gluconeogenesis through the GCGR/PKA/CREB/PGC-1α Pathway in Hepatocytes of the Japanese Flounder Paralichthys olivaceus. Cells 2023; 12:cells12071098. [PMID: 37048171 PMCID: PMC10093564 DOI: 10.3390/cells12071098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
In order to investigate the mechanism of glucagon regulation of gluconeogenesis, primary hepatocytes of the Japanese flounder (Paralichthys olivaceus) were incubated with synthesized glucagon, and methods based on inhibitors and gene overexpression were employed. The results indicated that glucagon promoted glucose production and increased the mRNA levels of glucagon receptor (gcgr), guanine nucleotide-binding protein Gs α subunit (gnas), adenylate cyclase 2 (adcy2), protein kinase A (pka), cAMP response element-binding protein 1 (creb1), peroxisome proliferator-activated receptor-γ coactivator 1α (pgc-1α), phosphoenolpyruvate carboxykinase 1 (pck1), and glucose-6-phosphatase (g6pc) in the hepatocytes. An inhibitor of GCGR decreased the mRNA expression of gcgr, gnas, adcy2, pka, creb1, pgc-1α, pck1, g6pc, the protein expression of phosphorylated CREB and PGC-1α, and glucose production. The overexpression of gcgr caused the opposite results. An inhibitor of PKA decreased the mRNA expression of pgc-1α, pck1, g6pc, the protein expression of phosphorylated-CREB, and glucose production in hepatocytes. A CREB-targeted inhibitor significantly decreased the stimulation by glucagon of the mRNA expression of creb1, pgc-1α, and gluconeogenic genes, and glucose production decreased accordingly. After incubating the hepatocytes with an inhibitor of PGC-1α, the glucagon-activated mRNA expression of pck1 and g6pc was significantly down-regulated. Together, these results demonstrate that glucagon promotes gluconeogenesis through the GCGR/PKA/CREB/PGC-1α pathway in the Japanese flounder.
Collapse
Affiliation(s)
- Mengxi Yang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Jiahuan Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yanlin Guo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), The Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
5
|
Zhang X, Huang C, Yang Y, Li X, Guo C, Yang Z, Xie S, Luo J, Zhu T, Zhao W, Jin M, Zhou Q. Dietary Corn Starch Levels Regulated Insulin-Mediated Glycemic Responses and Glucose Homeostasis in Swimming Crab ( Portunus trituberculatus). AQUACULTURE NUTRITION 2022; 2022:2355274. [PMID: 36860440 PMCID: PMC9973156 DOI: 10.1155/2022/2355274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 06/18/2023]
Abstract
Carbohydrate is the cheapest source of energy among the three major nutrient groups, an appropriate amount of carbohydrates can reduce feed cost and improve growth performance, but carnivorous aquatic animals cannot effectively utilize carbohydrates. The objectives of the present study are aimed at exploring the effects of dietary corn starch levels on glucose loading capacity, insulin-mediated glycemic responses, and glucose homeostasis for Portunus trituberculatus. After two weeks of feeding trial, swimming crabs were starved and sampled at 0, 1, 2, 3, 4, 5, 6, 12, and 24 hours, respectively. The results indicated that crabs fed diet with 0% corn starch exhibited lower glucose concentration in hemolymph than those fed with the other diets, and glucose concentration in hemolymph remained low with the extension of sampling time. The glucose concentration in hemolymph of crabs fed with 6% and 12% corn starch diets reached the peak after 2 hours of feeding; however, the glucose concentration in hemolymph of crabs fed with 24% corn starch attained the highest value after 3 hours of feeding, and the hyperglycemia lasted for 3 hours and decreased rapidly after 6 hours of feeding. Enzyme activities in hemolymph related to glucose metabolism such as pyruvate kinase (PK), glucokinase (GK), and phosphoenolpyruvate carboxykinase (PEPCK) were significantly influenced by dietary corn starch levels and sampling time. Glycogen content in hepatopancreas of crabs fed with 6% and 12% corn starch first increased and then decreased; however, the glycogen content in hepatopancreas of crabs fed with 24% corn starch significantly increased with the prolongation of feeding time. In the 24% corn starch diet, insulin-like peptide (ILP) in hemolymph reached a peak after 1 hour of feeding and then significantly decreased, whereas crustacean hyperglycemia hormone (CHH) was not significantly influenced by dietary corn starch levels and sampling time. ATP content in hepatopancreas peaked at 1 h after feeding and then decreased significantly in different corn starch feeding groups, while the opposite trend was observed in NADH. The activities of mitochondrial respiratory chain complexes I, II, III, and V of crabs fed with different corn starch diets significantly increased first and then decreased. In addition, relative expressions of genes related to glycolysis, gluconeogenesis, glucose transport, glycogen synthesis, insulin signaling pathway, and energy metabolism were significantly affected by dietary corn starch levels and sampling time. In conclusion, the results of the present study reveal glucose metabolic responses were regulated by different corn starch levels at different time points and play an important role in clearing glucose through increased activity of insulin, glycolysis, and glycogenesis, along with gluconeogenesis suppression.
Collapse
Affiliation(s)
- Xiangsheng Zhang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chaokai Huang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yuhang Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiangkai Li
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chen Guo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheng Yang
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
6
|
Dai Y, Shen Y, Guo J, Yang H, Chen F, Zhang W, Wu W, Xu X, Li J. Glycolysis and gluconeogenesis are involved of glucose metabolism adaptation during fasting and re-feeding in black carp (Mylopharyngodon piceus). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Conlon JM, O'Harte FPM, Flatt PR. Dual-agonist incretin peptides from fish with potential for obesity-related Type 2 diabetes therapy - A review. Peptides 2022; 147:170706. [PMID: 34861327 DOI: 10.1016/j.peptides.2021.170706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022]
Abstract
The long-acting glucagon-like peptide-1 receptor (GLP1R) agonist, semaglutide and the unimolecular glucose-dependent insulinotropic polypeptide receptor (GIPR)/GLP1R dual-agonist, tirzepatide have been successfully introduced as therapeutic options for patients with Type-2 diabetes (T2DM) and obesity. Proglucagon-derived peptides from phylogenetically ancient fish act as naturally occurring dual agonists at the GLP1R and the glucagon receptor (GCGR) with lamprey GLP-1 and paddlefish glucagon being the most potent and effective in stimulating insulin release from BRIN-BD11 clonal β-cells. These peptides were also the most effective in lowering blood glucose and elevating plasma insulin concentrations when administered intraperitoneally to overnight-fasted mice together with a glucose load. Zebrafish GIP acts as a dual agonist at the GIPR and GLP1R receptors. Studies with the high fat-fed mouse, an animal model with obesity, impaired glucose-tolerance and insulin-resistance, have shown that twice-daily administration of the long-acting analogs [D-Ala2]palmitoyl-lamprey GLP-1 and [D-Ser2]palmitoyl-paddlefish glucagon over 21 days improves glucose tolerance and insulin sensitivity. This was associated with β-cell proliferation, protection of β-cells against apoptosis, decreased pancreatic glucagon content, improved lipid profile, reduced food intake and selective alteration in the expression of genes involved in β-cell stimulus-secretion coupling. In insulin-deficient GluCreERT2;ROSA26-eYFP transgenic mice, the peptides promoted an increase in β-cell mass with positive effects on transdifferentiation of glucagon-producing to insulin-producing cells. Naturally occurring fish dual agonist peptides, particularly lamprey GLP-1 and paddlefish glucagon, provide templates for development into therapeutic agents for obesity-related T2DM.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK.
| | - Finbarr P M O'Harte
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
8
|
Anti-stress effects of the glucagon-like peptide-1 receptor agonist liraglutide in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110388. [PMID: 34147534 DOI: 10.1016/j.pnpbp.2021.110388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/29/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Stress-related disorders are extremely harmful and cause significant impacts on the individual and society. Despite the limited evidence regarding glucagon-like peptide-1 receptor (GLP-1R) and mental disorders, a few clinical and preclinical studies suggest that modulating this system could improve symptoms of stress-related disorders. This study aimed to investigate the effects of liraglutide, a GLP-1R agonist, on neurobehavioral phenotypes and brain oxidative status in adult zebrafish. Acute liraglutide promoted anxiolytic-like effects in the light/dark test, while chronic treatment blocked the impact of unpredictable chronic stress on behavioral and physiological parameters. Taken together, our study demonstrates that liraglutide is active on the zebrafish brain and may counteract some of the effects induced by stress. More studies are warranted to further elucidate the potential of GLP-1R agonists for the management of brain disorders.
Collapse
|
9
|
The Roles of Neuropeptide Y ( Npy) and Peptide YY ( Pyy) in Teleost Food Intake: A Mini Review. Life (Basel) 2021; 11:life11060547. [PMID: 34200824 PMCID: PMC8230510 DOI: 10.3390/life11060547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropeptide Y family (NPY) is a potent orexigenic peptide and pancreatic polypeptide family comprising neuropeptide Y (Npy), peptide YYa (Pyya), and peptide YYb (Pyyb), which was previously known as peptide Y (PY), and tetrapod pancreatic polypeptide (PP), but has not been exhaustively documented in fish. Nonetheless, Npy and Pyy to date have been the key focus of countless research studies categorizing their copious characteristics in the body, which, among other things, include the mechanism of feeding behavior, cortical neural activity, heart activity, and the regulation of emotions in teleost. In this review, we focused on the role of neuropeptide Y gene (Npy) and peptide YY gene (Pyy) in teleost food intake. Feeding is essential in fish to ensure growth and perpetuation, being indispensable in the aquaculture settings where growth is prioritized. Therefore, a better understanding of the roles of these genes in food intake in teleost could help determine their feeding regime, regulation, growth, and development, which will possibly be fundamental in fish culture.
Collapse
|
10
|
Chivite M, Naderi F, Conde-Sieira M, Soengas JL, Lopez-Patiño MA, Míguez JM. Central serotonin participates in the anorexigenic effect of GLP-1 in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 2021; 304:113716. [PMID: 33484717 DOI: 10.1016/j.ygcen.2021.113716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
The incretin, glucagon-like peptide-1 (GLP-1) is a major player in the gut-brain axis regulation of energy balance and in fish it seems to exert a negative influence on food intake. In this study, we investigated the role of the brain serotonergic system in the effects promoted by a peripheral GLP-1 injection on food intake in rainbow trout (Oncorhynchus mykiss). For this, in a first experiment the incretin was intraperitoneally injected (100 ng/g body weight) alone or in combination with a 5HT2C receptor antagonist (SB 242084, 1 µg/g body weight) and food intake was measured 30, 90, and 180 min later. In a second experiment, we studied the effect of these treatments on mRNA abundance of hypothalamic neuropeptides that control food intake. In addition, the effect of GLP-1 on serotonin metabolism was assessed in hindbrain and hypothalamus. Our results show that GLP-1 induced a significant food intake inhibition, which agreed with the increased expression of anorexigenic neuropeptides pomc and cart in the hypothalamus. Furthermore, GLP-1 stimulated the synthesis of serotonin in the hypothalamus, which might be indicative of a higher use of the neurotransmitter. The effects of GLP-1 on food intake were partially reversed when a serotonin receptor antagonist, SB 242084, was previously administered to trout. This antagonist also reversed the stimulatory effect of the hormone in hypothalamic pomca1 mRNA abundance. We conclude that hypothalamic serotonergic pathways are essential for mediating the effects of GLP-1 on food intake in rainbow trout. In addition, the 5HT2C receptor subtype seems to have a prominent role in the inhibition of food intake induced by GLP-1 in this species.
Collapse
Affiliation(s)
- Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, E-36310 Vigo, Spain
| | - Fatemeh Naderi
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, E-36310 Vigo, Spain
| | - Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, E-36310 Vigo, Spain
| | - José Luis Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, E-36310 Vigo, Spain
| | - Marcos A Lopez-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, E-36310 Vigo, Spain
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, E-36310 Vigo, Spain.
| |
Collapse
|
11
|
Yang G, Zhao W, Qin C, Yang L, Meng X, Lu R, Yan X, Cao X, Zhang Y, Nie G. Molecular identification of grass carp igfbp2 and the effect of glucose, insulin, and glucagon on igfbp2 mRNA expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1469-1482. [PMID: 32323051 DOI: 10.1007/s10695-020-00804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The GH (growth hormone)/IGFs (insulin-like growth factors) system has an important function in the regulation of growth. In this system, IGFBPs play a crucial regulatory role in IGF functions. As a member of the IGFBP family, IGFBP2 can bind to IGF and regulate IGF functions to regulate development and growth. In addition, IGFBP2 shows key regulatory functions in cell proliferation and metabolism. In this study, the igfbp2 gene was cloned from grass carp (Ctenopharyngodon idellus) liver. The ORF of grass carp igfbp2 is 834 bp long and encodes 277 amino acids. The tissue distribution results showed that igfbp2 is expressed in multiple tissues in grass carp and has a high expression level in the liver. In the OGTT, igfbp2 expression was significantly decreased in the liver and brain after 6 h of treatment with glucose. In vitro, igfbp2 expression in grass carp's primary hepatocytes was significantly suppressed by insulin after treatment for 6 and 12 h. Moreover, igfbp2 expression was markedly increased in a dose-dependent manner with glucagon incubation in grass carp's primary hepatocytes. To the best of our knowledge, this is the first report about Igfbp2 in grass carp. These results will provide a basis for the in-depth study of grass carp Igfbp2.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Wenli Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Liping Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China.
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
12
|
Zhang C, Lian A, Xu Y, Jiang Q. Signal Transduction Mechanisms for Glucagon-Induced Somatolactin Secretion and Gene Expression in Nile Tilapia ( Oreochromis niloticus) Pituitary Cells. Front Endocrinol (Lausanne) 2020; 11:629077. [PMID: 33613457 PMCID: PMC7890253 DOI: 10.3389/fendo.2020.629077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Glucagon (GCG) plays a stimulatory role in pituitary hormone regulation, although previous studies have not defined the molecular mechanism whereby GCG affects pituitary hormone secretion. To this end, we identified two distinct proglucagons, Gcga and Gcgb, as well as GCG receptors, Gcgra and Gcgrb, in Nile tilapia (Oreochromis niloticus). Using the cAMP response element (CRE)-luciferase reporter system, tilapia GCGa and GCGb could reciprocally activate the two GCG receptors expressed in human embryonic kidney 293 (HEK293) cells. Quantitative real-time PCR analysis revealed that differential expression of the Gcga and Gcgb and their cognate receptors Gcgra and Gcgrb was found in the various tissues of tilapia. In particular, the Gcgrb is abundantly expressed in the neurointermediate lobe (NIL) of the pituitary gland. In primary cultures of tilapia NIL cells, GCGb effectively stimulated SL release, with parallel rises in the mRNA levels, and co-incubation with the GCG antagonist prevented GCGb-stimulated SL release. In parallel experiments, GCGb treatment dose-dependently enhanced intracellular cyclic adenosine monophosphate (cAMP) accumulation with increasing inositol 1,4,5-trisphosphate (IP3) concentration and the resulting in transient increases of Ca2+ signals in the primary NIL cell culture. Using selective pharmacological approaches, the adenylyl cyclase (AC)/cAMP/protein kinase A (PKA) and phospholipase C (PLC)/IP3/Ca2+/calmodulin (CaM)/CaMK-II pathways were shown to be involved in GCGb-induced SL release and mRNA expression. Together, these results provide evidence for the first time that GCGb can act at the pituitary level to stimulate SL release and gene expression via GCGRb through the activation of the AC/cAMP/PKA and PLC/IP3/Ca2+/CaM/CaMK-II cascades.
Collapse
|
13
|
Yang G, Zhao W, Qin C, Yang L, Meng X, Lu R, Yan X, Cao X, Zhang Y, Nie G. Igfbp3 in grass carp (Ctenopharyngodon idellus): Molecular identification and mRNA expression under glucose, insulin and glucagon. Comp Biochem Physiol B Biochem Mol Biol 2019; 242:110394. [PMID: 31866567 DOI: 10.1016/j.cbpb.2019.110394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
IGFBPs play a pivotal role in regulating the physiological function of IGFs (insulin-like growth factors). As an important member of IGFBPs, IGFBP3 is involved in the regulation of physiological functions of IGFs. To investigate the functional role of Igfbp3 in a herbivorous fish species, grass carp igfbp3 (GenBank accession no. MN251843) was isolated from the liver by molecular cloning. The ORF of grass carp igfbp3 was 882 bp, which encoded 293 amino acids, and the first 22 amino acids comprised the signal peptide. The predicted molecular weight of grass carp Igfbp3 is 31.95 kDa, and the theoretical isoelectric point is 8.32. Grass carp Igfbp3 displayed a high identity with its counterparts of common carp and zebrafish. And phylogenetic tree analysis showed that the grass carp Igfbp3 was clustered into the Igfbp3 subgroups of common carp and zebrafish. Tissue distribution study showed that igfbp3 was ubiquitously expressed in all tissues examined in the present study. High expression level of igfbp3 was detected in the heart, brain and fat of grass carp. The OGTT demonstrated that igfbp3 mRNA expression was significantly elevated in the liver of grass carp in response to glucose treatment. In vitro study showed that insulin could markedly stimulated igfbp3 mRNA expression in primary grass carp hepatocytes. Moreover, igfbp3 mRNA levels were also regulated by glucagon in grass carp primary hepatocytes. These results may provide the theoretical foundation for investigating the role of Igfbp3 in fish metabolism.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Wenli Zhao
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Liping Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang 453007, People's Republic of China; College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, People's Republic of China.
| |
Collapse
|
14
|
Forbes JLI, Kostyniuk DJ, Mennigen JA, Weber JM. Glucagon regulation of carbohydrate metabolism in rainbow trout: in vivo glucose fluxes and gene expression. ACTA ACUST UNITED AC 2019; 222:jeb.211730. [PMID: 31767730 DOI: 10.1242/jeb.211730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/20/2019] [Indexed: 01/25/2023]
Abstract
Glucagon increases fish glycaemia, but how it affects glucose fluxes in vivo has never been characterized. The goal of this study was to test the hypothesis that glucagon stimulates hepatic glucose production (rate of appearance, R a) and inhibits disposal (rate of disposal, R d) in rainbow trout. Changes in the mRNA abundance of key proteins involved in glycolysis, gluconeogenesis and glycogen breakdown were also monitored. The results show that glucagon increases glycaemia (+38%) by causing a temporary mismatch between R a and R d before the two fluxes converge below baseline (-17%). A novel aspect of the regulation of trout gluconeogenesis is also demonstrated: the completely different effects of glucagon on the expression of three Pepck isoforms (stimulation of pck1, inhibition of pck2a and no response of pck2b). Glycogen phosphorylase was modulated differently among tissues, and muscle upregulated pygb and downregulated pygm Glucagon failed to activate the cAMP-dependent protein kinase or FoxO1 signalling cascades. We conclude that trout hyperglycaemia results from the combination of two responses: (i) an increase in R a glucose induced by the stimulation of gluconeogenesis through transcriptional activation of pck1 (and possibly glycogen phosphorylase), and (ii) a decrease in R d glucose via inhibition of glycogen synthase and glycolysis. The observed decrease in glucose fluxes after 4 h of glucagon administration may be caused by a counter-regulatory response of insulin, potentially linked to the decrease in pygm transcript abundance. Overall, however, these integrated effects of glucagon only lead to modest changes in glucose fluxes that partly explain why trout seem to be unable to control glycaemia very tightly.
Collapse
Affiliation(s)
| | | | - Jan A Mennigen
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Jean-Michel Weber
- Biology Department, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
15
|
Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon-like peptides-1 from phylogenetically ancient fish show potent anti-diabetic activities by acting as dual GLP1R and GCGR agonists. Mol Cell Endocrinol 2019; 480:54-64. [PMID: 30312651 DOI: 10.1016/j.mce.2018.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/24/2022]
Abstract
Glucagon-like peptides-1 (GLP-1)from phylogenetically ancient fish (lamprey, dogfish, ratfish, paddlefish and bowfin) and from a teleost, the rainbow trout produced concentration-dependent stimulations of insulin release from clonal β-cells and isolated mouse islets. Lamprey and paddlefish GLP-1 were the most potent and effective. Incubation of BRIN-BD11 cells with GLP-1 receptor (GLP1R) antagonist, exendin-4 (9-39) attenuated insulinotropic activity of all peptides whereas glucagon receptor (GCGR) antagonist [des-His1,Pro4,Glu9] glucagon amide significantly decreased the activities of lamprey and paddlefish GLP-1 only. The GIP receptor antagonist GIP (6-30) Cex-K40 [Pal] attenuated the activity of bowfin GLP-1. All peptides (1 μM) produced significant increases in cAMP concentration in CHL cells transfected with GLP1R but only lamprey and paddlefish GLP-1 stimulated cAMP production in HEK293 cells transfected with GCGR. Intraperitoneal administration of lamprey and paddlefish GLP-1 (25 nmol/kg body weight) in mice produced significant decreases in blood glucose and increased insulin concentrations comparable to the effects of human GLP-1. Lamprey and paddlefish GLP-1 display potent insulinotropic activity in vitro and glucose-lowering activity in vivo that is mediated through GLP1R and GCGR so that these peptides may constitute templates for design of new antidiabetic drugs.
Collapse
Affiliation(s)
- Galyna V Graham
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Yasser H Abdel-Wahab
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
16
|
Bertucci JI, Blanco AM, Sundarrajan L, Rajeswari JJ, Velasco C, Unniappan S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front Endocrinol (Lausanne) 2019; 10:83. [PMID: 30873115 PMCID: PMC6403160 DOI: 10.3389/fendo.2019.00083] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endocrine factors regulate food intake and growth, two interlinked physiological processes critical for the proper development of organisms. Somatic growth is mainly regulated by growth hormone (GH) and insulin-like growth factors I and II (IGF-I and IGF-II) that act on target tissues, including muscle, and bones. Peptidyl hormones produced from the brain and peripheral tissues regulate feeding to meet metabolic demands. The GH-IGF system and hormones regulating appetite are regulated by both internal (indicating the metabolic status of the organism) and external (environmental) signals. Among the external signals, the most notable are diet availability and diet composition. Macronutrients and micronutrients act on several hormone-producing tissues to regulate the synthesis and secretion of appetite-regulating hormones and hormones of the GH-IGF system, eventually modulating growth and food intake. A comprehensive understanding of how nutrients regulate hormones is essential to design diet formulations that better modulate endogenous factors for the benefit of aquaculture to increase yield. This review will discuss the current knowledge on nutritional regulation of hormones modulating growth and food intake in fish.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
17
|
Graham GV, Conlon JM, Abdel-Wahab YH, Flatt PR. Glucagon-related peptides from phylogenetically ancient fish reveal new approaches to the development of dual GCGR and GLP1R agonists for type 2 diabetes therapy. Peptides 2018; 110:19-29. [PMID: 30391422 DOI: 10.1016/j.peptides.2018.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/11/2022]
Abstract
The insulinotropic and antihyperglycaemic properties of glucagons from the sea lamprey (Petromyzontiformes), paddlefish (Acipenseriformes) and trout (Teleostei) and oxyntomodulin from dogfish (Elasmobranchii) and ratfish (Holocephali) were compared with those of human glucagon and GLP-1 in mammalian test systems. All fish peptides produced concentration-dependent stimulation of insulin release from BRIN-BD11 rat and 1.1 B4 human clonal β-cells and isolated mouse islets. Paddlefish glucagon was the most potent and effective peptide. The insulinotropic activity of paddlefish glucagon was significantly (P < 0.01) decreased after incubating BRIN-BD11 cells with the GLP1R antagonist, exendin-4(9-39) and the GCGR antagonist [des-His1,Pro4, Glu9] glucagon amide but GIPR antagonist, GIP(6-30)Cex-K40[palmitate] was without effect. Paddlefish and lamprey glucagons and dogfish oxyntomodulin (10 nmol L-1) produced significant (P < 0.01) increases in cAMP concentration in Chinese hamster lung (CHL) cells transfected with GLP1R and human embryonic kidney (HEK293) cells transfected with GCGR. The insulinotropic activity of paddlefish glucagon was attenuated in CRISPR/Cas9-engineered GLP1R knock-out INS-1 cells but not in GIPR knock-out cells. Intraperitoneal administration of all fish peptides, except ratfish oxyntomodulin, to mice together with a glucose load produced significant (P < 0.05) decreases in plasma glucose concentrations and paddlefish glucagon produced a greater release of insulin compared with GLP-1. Paddlefish glucagon shares the sequences Glu15-Glu16 and Glu24-Trp25-Leu26-Lys27-Asn28-Gly29 with the potent GLP1R agonist, exendin-4 so may be regarded as a naturally occurring, dual-agonist hybrid peptide that may serve as a template design of new drugs for type 2 diabetes therapy.
Collapse
Affiliation(s)
- Galyna V Graham
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK.
| | - Yasser H Abdel-Wahab
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland, BT52 1SA, UK
| |
Collapse
|
18
|
Cardoso JCR, Félix RC, Costa C, Palma PFS, Canário AVM, Power DM. Evolution of the glucagon-like system across fish. Gen Comp Endocrinol 2018; 264:113-130. [PMID: 29056448 DOI: 10.1016/j.ygcen.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
In fishes, including the jawless lampreys, the most ancient lineage of extant vertebrates, plasma glucose levels are highly variable and regulation is more relaxed than in mammals. The regulation of glucose and lipid in fishes in common with mammals involves members of the glucagon (GCG)-like family of gastrointestinal peptides. In mammals, four peptides GCG, glucagon-like peptide 1 and 2 (GLP1 and GLP2) and glucose-dependent insulinotropic peptide (GIP) that activate four specific receptors exist. However, in lamprey and other fishes the glucagon-like family evolved differently and they retained additional gene family members (glucagon-related peptide, gcrp and its receptor, gcrpr) that are absent from mammals. In the present study, we analysed the evolution of the glucagon-like system in fish and characterized gene expression of the family members in the European sea bass (Dicentrarchus labrax) a teleost fish. Phylogenetic analysis revealed that multiple receptors and peptides of the glucagon-like family emerged early during the vertebrate radiation and evolved via lineage specific events. Synteny analysis suggested that family member gene loss is likely to be the result of a single gene deletion event. Lamprey was the only fish where a putative glp1r persisted and the presence of the receptor gene in the genomes of the elephant shark and coelacanth remains unresolved. In the coelacanth and elephant shark, unique proglucagon genes were acquired which in the former only encoded Gcg and Glp2 and in the latter, shared a similar structure to the teleost proglucagon gene but possessed an extra exon coding for Glp-like peptide that was most similar to Glp2. The variable tissue distribution of the gene transcripts encoding the ligands and receptors of the glucagon-like system in an advanced teleost, the European sea bass, suggested that, as occurs in mammals, they have acquired distinct functions. Statistically significant (p < .05) down-regulation of teleost proglucagon a in sea bass with modified plasma glucose levels confirmed the link between these peptides and metabolism. The tissue distribution of members of the glucagon-like system in sea bass and human suggests that evolution of the brain-gut-peptide regulatory loop diverged between teleosts and mammals despite the overall conservation and similarity of glucagon-like family members.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Carina Costa
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro F S Palma
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Adelino V M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
19
|
Irwin DM, Mojsov S. Diversification of the functions of proglucagon and glucagon receptor genes in fish. Gen Comp Endocrinol 2018; 261:148-165. [PMID: 29510149 DOI: 10.1016/j.ygcen.2018.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/05/2018] [Accepted: 03/02/2018] [Indexed: 01/30/2023]
Abstract
The teleost fish-specific genome duplication gave rise to a great number of species inhabiting diverse environments with different access to nutrients and life histories. This event produced duplicated gcg genes, gcga and gcgb, for proglucagon-derived peptides, glucagon and GLP-1 and duplicated gcgr receptor genes, gcgra and gcgrb, which play key roles connecting the consumption of nutrients with glucose metabolism. We conducted a systematic survey of the genomes from 28 species of fish (24 bony (Superclass Osteichthyes), 1 lobe-finned (Class Sarcoperygii), 1 cartilaginous (Superclass Chondrichthyes), and 2 jawless (Superclass Agnatha)) and find that almost all surveyed ray-finned fish contain gcga and gcgb genes with different coding potential and duplicated gcgr genes, gcgra and gcgrb that form two separate clades in the phylogenetic tree consistent with the accepted species phylogeny. All gcgb genes encoded only glucagon and GLP-1 and gcga genes encoded glucagon, GLP-1, and GLP-2, indicating that gcga was subfunctionalized to produce GLP-2. We find a single glp2r, but no glp1r suggesting that duplicated gcgrb was neofunctionalized to bind GLP-1, as demonstrated for the zebrafish gcgrb (Oren et al., 2016). In functional experiments with zebrafish gcgrb and GLP-1 from diverse fish we find that anglerfish GLP-1a, encoded by gcga, is less biologically active than the gcgb anglerfish GLP-1b paralog. But some other fish (zebrafish, salmon, and catfish) gcga GLP-1a display similar biological activities, indicating that the regulation of glucose metabolism by GLP-1 in ray-finned fish is species-specific. Searches of genomes in cartilaginous fish identified a proglucagon gene that encodes a novel GLP-3 peptide in addition to glucagon, GLP-1, and GLP-2, as well as a single gcgr, glp2r, and a new glucagon receptor-like receptor whose identity still needs to be confirmed. The sequence of the shark GLP-1 contained an N-terminal mammalian-like extension that in mammals undergoes a proteolytic cleavage to release biologically active GLP-1. Our results indicate that early in vertebrate evolution diverse regulatory mechanisms emerged for the control of glucose metabolism by proglucagon-derived peptides and their receptors and that in ray-finned fish they included subfunctionalization and neofunctionalization of these genes.
Collapse
Affiliation(s)
- David M Irwin
- Department of Laboratory Medicine and Pathobiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ont M5S 1A8, Canada.
| | - Svetlana Mojsov
- The Rockefeller University, New York, NY 10065, United States
| |
Collapse
|
20
|
Shi HJ, Liu WB, Xu C, Zhang DD, Wang BK, Zhang L, Li XF. Molecular Characterization of the RNA-Binding Protein Quaking-a in Megalobrama amblycephala: Response to High-Carbohydrate Feeding and Glucose/Insulin/Glucagon Treatment. Front Physiol 2018; 9:434. [PMID: 29740344 PMCID: PMC5928497 DOI: 10.3389/fphys.2018.00434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/06/2018] [Indexed: 11/13/2022] Open
Abstract
The RNA-binding protein quaking-a (Qkia) was cloned from the liver of blunt snout bream Megalobrama amblycephala through the rapid amplification of cDNA ends method, with its potential role in glucose metabolism investigated. The full-length cDNA of qkia covered 1,718 bp, with an open reading frame of 1,572 bp, which encodes 383 AA. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (97–99%) among most fish and other higher vertebrates. The mRNA of qkia was detected in all examined organs/tissues. Then, the plasma glucose levels and tissue qkia expressions were determined in fish intraperitoneally injected with glucose [1.67 g per kg body weight (BW)], insulin (0.052 mg/kg BW), and glucagon (0.075 mg/kg BW) respectively, as well as in fish fed two dietary carbohydrate levels (31 and 41%) for 12 weeks. Glucose administration induced a remarkable increase of plasma glucose with the highest value being recorded at 1 h. Thereafter, it reduced to the basal value. After glucose administration, qkia expressions significantly decreased with the lowest value being recorded at 1 h in liver and muscle and 8 h in brain, respectively. Then they gradually returned to the basal value. The insulin injection induced a significant decrease of plasma glucose with the lowest value being recorded at 1 h, whereas the opposite was true after glucagon load (the highest value was gained at 4 h). Subsequently, glucose levels gradually returned to the basal value. After insulin administration, the qkia expressions significantly decreased with the lowest value being attained at 2 h in brain and muscle and 1 h in liver, respectively. However, glucagon significantly stimulated the expressions of qkia in tissues with the highest value being gained at 6 h. Moreover, high dietary carbohydrate levels remarkably increased plasma glucose levels, but down-regulated the transcriptions of qkia in tissues. These results indicated that the gene of blunt snout bream shared a high similarity with that of the other vertebrates. Glucose and insulin administration, as well as high-carbohydrate feeding, remarkably down-regulated its transcriptions in brain, muscle and liver, whereas the opposite was true after the glucagon load.
Collapse
Affiliation(s)
- Hua-Juan Shi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chao Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ding-Dong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bing-Ke Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Li Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Graham GV, Conlon JM, Abdel-Wahab YH, Gault VA, Flatt PR. Evaluation of the insulinotropic and glucose-lowering actions of zebrafish GIP in mammalian systems: Evidence for involvement of the GLP-1 receptor. Peptides 2018; 100:182-189. [PMID: 29157578 DOI: 10.1016/j.peptides.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022]
Abstract
The insulinotropic properties of zebrafish GIP (zfGIP) were assessed in vitro using clonal pancreatic β-cell lines and isolated mouse islets and acute effects on glucose tolerance and insulin release in vivo were evaluated in mice. The peptide produced a dose-dependent increase in the rate of insulin release from BRIN-BD11 rat clonal β-cells at concentrations ≥30nM. Insulin release from 1.1 B4 human clonal β-cells and mouse islets was significantly increased by zfGIP (10nM and 1μM). The in vitro insulinotropic activity of zfGIP was decreased after incubating BRIN-BD11 cells with the GLP-1 receptor antagonist, exendin-4(9-39) (p<0.001) and the GIP receptor antagonist, GIP (6-30) Cex-K40[Pal] (p<0.05) but the glucagon receptor antagonist [des-His1,Pro4,Glu9]glucagon amide was without effect. zfGIP (10nM and 1μM) produced significant increases in cAMP concentration in CHL cells transfected with the human GLP-1 receptor but was without effect on HEK293 cells transfected with the human glucagon receptor. Conversely, zfGIP, but not human GIP, significantly stimulated insulin release from CRISPR/Cas9-engineered INS-1 clonal β-cells from which the GIP receptor had been deleted. Intraperitoneal administration of zfGIP (25 and 75nmol/kg body weight) to mice together with an intraperitoneal glucose load (18mmol/kg body weight) produced a significant decrease in plasma glucose concentrations concomitant with an increase in insulin concentrations. The study provides evidence that the insulinotropic action of zfGIP in mammalian systems involves activation of both the GLP-1 and the GIP receptors but not the glucagon receptor.
Collapse
Affiliation(s)
- Galyna V Graham
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Yasser H Abdel-Wahab
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
22
|
Kim JH, Chatchaiphan S, Crown MT, White SL, Devlin RH. Effect of growth hormone overexpression on gastric evacuation rate in coho salmon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:119-135. [PMID: 28894993 DOI: 10.1007/s10695-017-0418-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Growth hormone (GH) transgenic (T) coho salmon consistently show remarkably enhanced growth associated with increased appetite and food consumption compared to non-transgenic wild-type (NT) coho salmon. To improve understanding of the mechanism by which GH overexpression mediates food intake and digestion in T fish, feed intake and gastric evacuation rate (over 7 days) were measured in size-matched T and NT coho salmon. T fish displayed greatly enhanced feed intake levels (~ 2.5-fold), and more than 3-fold increase in gastric evacuation rates relative to NT coho salmon. Despite the differences in feed intake, no differences were noted in the time taken from first ingestion of food to stomach evacuation between genotypes. These results indicate that enhanced feed intake is coupled with an overall increased processing rate to enhance energy intake by T fish. To further investigate the molecular basis of these responses, we examined the messenger RNA (mRNA) levels of several genes in appetite- and gastric-regulation pathways (Agrp1, Bbs, Cart, Cck, Glp, Ghrelin, Grp, Leptin, Mc4r, Npy, and Pomc) by qPCR analyses in the brain (hypothalamus, preoptic area) and pituitary, and in peripheral tissues associated with digestion (liver, stomach, intestine, and adipose tissue). Significant increases in mRNA levels were found for Agrp1 in the preoptic area (POA) of the brain, and Grp and Pomc in pituitary for T coho salmon relative to NT. Mch and Npy showed significantly lower mRNA levels than NT fish in all brain tissues examined across all time-points after feeding. Mc4r and Cart for T showed significantly lower mRNA levels than NT in the POA and hypothalamus, respectively. In the case of peripheral tissues, T fish had lower mRNA levels of Glp and Leptin than NT fish in the intestine and adipose tissue, respectively. Grp, Cck, Bbs, Glp, and Leptin in stomach, adipose tissue, and/or intestine showed significant differences across the time-points after feeding, but Ghrelin showed no significant difference between T and NT fish in all tested tissues.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada
- Unit of Polar Genomics, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, Republic of Korea
| | - Satid Chatchaiphan
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Phaholyothin Road, Bangkok, Thailand
| | - Michelle T Crown
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada
| | - Samantha L White
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC, Canada.
| |
Collapse
|
23
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
24
|
Oren DA, Wei Y, Skrabanek L, Chow BKC, Mommsen T, Mojsov S. Structural Mapping and Functional Characterization of Zebrafish Class B G-Protein Coupled Receptor (GPCR) with Dual Ligand Selectivity towards GLP-1 and Glucagon. PLoS One 2016; 11:e0167718. [PMID: 27930690 PMCID: PMC5145181 DOI: 10.1371/journal.pone.0167718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022] Open
Abstract
GLP-1 and glucagon regulate glucose metabolism through a network of metabolic pathways initiated upon binding to their specific receptors that belong to class B G-protein coupled receptors (GPCRs). The therapeutic potential of glucagon is currently being evaluated, while GLP-1 is already used in the treatment of type 2 diabetes and obesity. Development of a second generation of GLP-1 based therapeutics depends on a molecular and structural understanding of the interactions between the GLP-1 receptor (GLP-1R) and its ligand GLP-1. There is considerable sequence conservation between GLP-1 and glucagon and between the hGLP-1R and human glucagon receptor (hGCGR), yet each receptor recognizes only its own specific ligand. Glucagon receptors in fish and frogs also exhibit ligand selectivity only towards glucagon and not GLP-1. Based on competitive binding experiments and assays of increase in intracellular cAMP, we demonstrate here that a GPCR in zebrafish (Danio rerio) exhibits dual ligand selectivity towards GLP-1 and glucagon, a characteristic not found in mammals. Further, many structural features found in hGLP-1R and hGCGR are also found in this zebrafish GPCR (zfGPCR). We show this by mapping of its sequence and structural features onto the hGLP-1R and hGCGR based on their partial and complementary crystal structures. Thus, we propose that zfGPCR represents a dual GLP-1R/GCGR. The main differences between the three receptors are in their stalk regions that connect their N-terminal extracellular domains (NECDs) with their transmembrane domains and the absence of loop 3 in the NECD in zfGLP-1R/GCGR. These observations suggest that the interactions between GLP-1 and glucagon with loop 3 and the stalk regions may induce different conformational changes in hGLP-1R and hGCGR upon ligand binding and activation that lead to selective recognition of their native ligands.
Collapse
Affiliation(s)
- Deena A. Oren
- The Rockefeller University, New York, New York, United States of America
| | - Yang Wei
- The Rockefeller University, New York, New York, United States of America
| | - Luce Skrabanek
- Applied Bioinformatics Core, Weill Cornell Medical College, New York, New York, United States of America
| | - Billy K. C. Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Thomas Mommsen
- Department of Biochemistry, University of Victoria, Victoria, British Columbia, Canada
| | - Svetlana Mojsov
- The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
25
|
Mechanisms of cortisol action in fish hepatocytes. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:136-145. [DOI: 10.1016/j.cbpb.2016.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 12/17/2022]
|
26
|
O'Harte FPM, Ng MT, Lynch AM, Conlon JM, Flatt PR. Novel dual agonist peptide analogues derived from dogfish glucagon show promising in vitro insulin releasing actions and antihyperglycaemic activity in mice. Mol Cell Endocrinol 2016; 431:133-44. [PMID: 27179756 DOI: 10.1016/j.mce.2016.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
The antidiabetic potential of thirteen novel dogfish glucagon derived analogues were assessed in vitro and in acute in vivo studies. Stable peptide analogues enhanced insulin secretion from BRIN-BD11 β-cells (p < 0.001) and reduced acute glycaemic responses following intraperitoneal glucose (25 nmol/kg) in healthy NIH Swiss mice (p < 0.05-p<0.001). The in vitro insulinotropic actions of [S2a]dogfish glucagon, [S2a]dogfish glucagon-exendin-4(31-39) and [S2a]dogfish glucagon-Lys(30)-γ-glutamyl-PAL, were blocked (p < 0.05-p<0.001) by the specific GLP-1 and glucagon receptor antagonists, exendin-4(9-39) and (desHis(1)Pro(4)Glu(9))glucagon amide but not by (Pro(3))GIP, indicating lack of GIP receptor involvement. These analogues dose-dependently stimulated cAMP production in GLP-1 and glucagon (p < 0.05-p<0.001) but not GIP-receptor transfected cells. They improved acute glycaemic and insulinotropic responses in high-fat fed diabetic mice and in wild-type C57BL/6J and GIPR-KO mice (p < 0.05-p<0.001), but not GLP-1R-KO mice, confirming action on GLP-1 but not GIP receptors. Overall, dogfish glucagon analogues have potential for diabetes therapy, exerting beneficial metabolic effects via GLP-1 and glucagon receptors.
Collapse
Affiliation(s)
- F P M O'Harte
- The Saad Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Co. Derry, BT52 1SA, Northern Ireland, UK.
| | - M T Ng
- The Saad Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Co. Derry, BT52 1SA, Northern Ireland, UK
| | - A M Lynch
- The Saad Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Co. Derry, BT52 1SA, Northern Ireland, UK
| | - J M Conlon
- The Saad Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Co. Derry, BT52 1SA, Northern Ireland, UK
| | - P R Flatt
- The Saad Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, Co. Derry, BT52 1SA, Northern Ireland, UK
| |
Collapse
|
27
|
Busby ER, Mommsen TP. Proglucagons in vertebrates: Expression and processing of multiple genes in a bony fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:58-66. [PMID: 26927880 DOI: 10.1016/j.cbpb.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
In contrast to mammals, where a single proglucagon (PG) gene encodes three peptides: glucagon, glucagon-like peptide 1 and glucagon-like peptide 2 (GLP-1; GLP-2), many non-mammalian vertebrates carry multiple PG genes. Here, we investigate proglucagon mRNA sequences, their tissue expression and processing in a diploid bony fish. Copper rockfish (Sebastes caurinus) express two independent genes coding for distinct proglucagon sequences (PG I, PG II), with PG II lacking the GLP-2 sequence. These genes are differentially transcribed in the endocrine pancreas, the brain, and the gastrointestinal tract. Alternative splicing identified in rockfish is only one part of this complex regulation of the PG transcripts: the system has the potential to produce two glucagons, four GLP-1s and a single GLP-2, or any combination of these peptides. Mass spectrometric analysis of partially purified PG-derived peptides in endocrine pancreas confirms translation of both PG transcripts and differential processing of the resulting peptides. The complex differential regulation of the two PG genes and their continued presence in this extant teleostean fish strongly suggests unique and, as yet largely unidentified, roles for the peptide products encoded in each gene.
Collapse
Affiliation(s)
- Ellen R Busby
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada.
| | - Thomas P Mommsen
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
28
|
Irwin DM. Evolution of receptors for peptides similar to glucagon. Gen Comp Endocrinol 2014; 209:50-60. [PMID: 24650782 DOI: 10.1016/j.ygcen.2014.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/24/2014] [Accepted: 03/05/2014] [Indexed: 12/25/2022]
Abstract
The genes encoding the peptide precursors for glucagon (GCG), glucose-dependent insulinotropic peptide (GIP), and ortholog of exendin belong to the same family as shown by sequence similarity. The peptides similar to glucagon encoded by these genes signal through a closely related subfamily of G-protein coupled receptors. A total of five types of genes for receptors for these peptides have been identified, three for the products of GCG (GCGR, GLP1R, and GLP2R) and one each for the products of GIP (GIPR) and the ortholog of exendin (Grlr). Phylogenetic and genomic neighborhood analyses clearly show that these genes originated very early in vertebrate evolution and all were present in the common ancestor of tetrapods and bony fish. Despite their ancient origins, some of these genes are dispensable, with the Glp1r, Gipr, and Grlr being lost on the lineages leading to bony fish, birds, and mammals, respectively. The loss of the genes for these receptors may have been driving forces in the evolution of new functions for these peptides similar to glucagon.
Collapse
Affiliation(s)
- David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont. M5S 1A8, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ont. M5S 1A8, Canada.
| |
Collapse
|
29
|
Soengas JL. Contribution of glucose- and fatty acid sensing systems to the regulation of food intake in fish. A review. Gen Comp Endocrinol 2014; 205:36-48. [PMID: 24530522 DOI: 10.1016/j.ygcen.2014.01.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/13/2014] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
Food intake in fish is a complex process regulated through many different factors including abundance of energy and nutrients. In recent years, evidence have been obtained in several fishes, mainly in rainbow trout, regarding the presence and functioning in brain areas of metabolic sensors informing about changes in the levels of nutrients like glucose and fatty acids. The activity of these sensors relate to the control of food intake through changes in the expression of anorexigenic and orexigenic neuropeptides. The present review will provide a picture of the main results obtained to date in these studies, as well as perspectives for future research in the field.
Collapse
Affiliation(s)
- José L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Spain.
| |
Collapse
|
30
|
Latorre R, Mazzoni M, De Giorgio R, Vallorani C, Bonaldo A, Gatta PP, Corinaldesi R, Ruggeri E, Bernardini C, Chiocchetti R, Sternini C, Clavenzani P. Enteroendocrine profile of α-transducin immunoreactive cells in the gastrointestinal tract of the European sea bass (Dicentrarchus labrax). FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1555-1565. [PMID: 23748963 PMCID: PMC3825768 DOI: 10.1007/s10695-013-9808-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
In vertebrates, chemosensitivity of nutrients occurs through the activation of taste receptors coupled with G-protein subunits, including α-transducin (G(αtran)) and α-gustducin (G(αgust)). This study was aimed at characterising the cells expressing G(αtran) immunoreactivity throughout the mucosa of the sea bass gastrointestinal tract. G(αtran) immunoreactive cells were mainly found in the stomach, and a lower number of immunopositive cells were detected in the intestine. Some G(αtran) immunoreactive cells in the stomach contained G(αgust) immunoreactivity. Gastric G(αtran) immunoreactive cells co-expressed ghrelin, obestatin and 5-hydroxytryptamine immunoreactivity. In contrast, G(αtran) immunopositive cells did not contain somatostatin, gastrin/cholecystokinin, glucagon-like peptide-1, substance P or calcitonin gene-related peptide immunoreactivity in any investigated segments of the sea bass gastrointestinal tract. Specificity of G(αtran) and G(αgust) antisera was determined by Western blot analysis, which identified two bands at the theoretical molecular weight of ~45 and ~40 kDa, respectively, in sea bass gut tissue as well as in positive tissue, and by immunoblocking with the respective peptide, which prevented immunostaining. The results of the present study provide a molecular and morphological basis for a role of taste-related molecules in chemosensing in the sea bass gastrointestinal tract.
Collapse
Affiliation(s)
- Rocco Latorre
- Department of Veterinary Medical Science, University of Bologna,
Italy, via Tolara di Sopra, 50, 40064 - Ozzano dell’Emilia, Bologna,
Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Science, University of Bologna,
Italy, via Tolara di Sopra, 50, 40064 - Ozzano dell’Emilia, Bologna,
Italy
| | - Roberto De Giorgio
- Department of Medical and Surgical Sciences, University of Bologna,
Italy, St. Orsola-Malpighi Hospital, via Massarenti, 40138 - Bologna,
Italy
| | - Claudia Vallorani
- Department of Veterinary Medical Science, University of Bologna,
Italy, via Tolara di Sopra, 50, 40064 - Ozzano dell’Emilia, Bologna,
Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Science, University of Bologna,
Italy, via Tolara di Sopra, 50, 40064 - Ozzano dell’Emilia, Bologna,
Italy
| | - Pier Paolo Gatta
- Department of Veterinary Medical Science, University of Bologna,
Italy, via Tolara di Sopra, 50, 40064 - Ozzano dell’Emilia, Bologna,
Italy
| | - Roberto Corinaldesi
- Department of Medical and Surgical Sciences, University of Bologna,
Italy, St. Orsola-Malpighi Hospital, via Massarenti, 40138 - Bologna,
Italy
| | - Eugenio Ruggeri
- Department of Medical and Surgical Sciences, University of Bologna,
Italy, St. Orsola-Malpighi Hospital, via Massarenti, 40138 - Bologna,
Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Science, University of Bologna,
Italy, via Tolara di Sopra, 50, 40064 - Ozzano dell’Emilia, Bologna,
Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Science, University of Bologna,
Italy, via Tolara di Sopra, 50, 40064 - Ozzano dell’Emilia, Bologna,
Italy
| | - Catia Sternini
- CURE/DDRC, Division of Digestive Diseases, Departments Medicine
and Neurobiology, UCLA, Los Angeles, and Veterans Administration Greater Los
Angeles Health System, Bldg 115 Room 223, VAGLAHS, 11301 Wilshire Blvd, Los
Angeles, CA 90073, USA, , Tel:
+1-310-312-9477, Fax: +1-310-825-3133
| | - Paolo Clavenzani
- Department of Veterinary Medical Science, University of Bologna,
Italy, via Tolara di Sopra, 50, 40064 - Ozzano dell’Emilia, Bologna,
Italy
| |
Collapse
|
31
|
Wang Y, Meng F, Zhong Y, Huang G, Li J. Discovery of a novel glucagon-like peptide (GCGL) and its receptor (GCGLR) in chickens: evidence for the existence of GCGL and GCGLR genes in nonmammalian vertebrates. Endocrinology 2012; 153:5247-60. [PMID: 23015292 DOI: 10.1210/en.2012-1586] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucagon (GCG), glucagon-related peptides, and their receptors have been reported to play important roles including the regulation of glucose homeostasis, gastrointestinal activity, and food intake in vertebrates. In this study, we identified genes encoding a novel glucagon-like peptide (named GCGL) and its receptor (GCGLR) from adult chicken brain using RACE and/or RT-PCR. GCGL was predicted to encode a peptide of 29 amino acids (cGCGL(1-29)), which shares high amino acid sequence identity with mammalian and chicken GCG (62-66%). GCGLR is a receptor of 430 amino acids and shares relatively high amino acid sequence identity (53-55%) with the vertebrate GCG receptor (GCGR). Using a pGL3-CRE-luciferase reporter system, we demonstrated that synthetic cGCGL(1-29), but not its structurally related peptides, i.e. exendin-4 and GCG, could potently activate GCGLR (EC(50): 0.10 nm) expressed in Chinese hamster ovary cells, indicating that GCGLR can function as a GCGL-specific receptor. RT-PCR assay revealed that GCGL expression is mainly restricted to several tissues including various brain regions, spinal cord, and testes, whereas GCGLR mRNA is widely expressed in adult chicken tissues with abundant expression noted in the pituitary, spinal cord, and various brain regions. Using synteny analysis, GCGL and GCGLR genes were also identified in the genomes of fugu, tetraodon, tilapia, medaka, coelacanth, and Xenopus tropicalis. As a whole, the discovery of GCGL and GCGLR genes in chickens and other nonmammalian vertebrates clearly indicates a previously unidentified role of GCGL-GCGLR in nonmammalian vertebrates and provides important clues to the evolutionary history of GCG and GCGL genes in vertebrates.
Collapse
Affiliation(s)
- Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| | | | | | | | | |
Collapse
|
32
|
Bednářová A, Kodrík D, Krishnan N. Unique roles of glucagon and glucagon-like peptides: Parallels in understanding the functions of adipokinetic hormones in stress responses in insects. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:91-100. [PMID: 23085293 DOI: 10.1016/j.cbpa.2012.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/07/2012] [Accepted: 10/15/2012] [Indexed: 12/20/2022]
Abstract
Glucagon is conventionally regarded as a hormone, counter regulatory in function to insulin and plays a critical anti-hypoglycemic role by maintaining glucose homeostasis in both animals and humans. Glucagon performs this function by increasing hepatic glucose output to the blood by stimulating glycogenolysis and gluconeogenesis in response to starvation. Additionally it plays a homeostatic role by decreasing glycogenesis and glycolysis in tandem to try and maintain optimal glucose levels. To perform this action, it also increases energy expenditure which is contrary to what one would expect and has actions which are unique and not entirely in agreement with its role in protection from hypoglycemia. Interestingly, glucagon-like peptides (GLP-1 and GLP-2) from the major fragment of proglucagon (in non-mammalian vertebrates, as well as in mammals) may also modulate response to stress in addition to their other physiological actions. These unique modes of action occur in response to psychological, metabolic and other stress situations and mirror the role of adipokinetic hormones (AKHs) in insects which perform a similar function. The findings on the anti-stress roles of glucagon and glucagon-like peptides in mammalian and non-mammalian vertebrates may throw light on the multiple stress responsive mechanisms which operate in a concerted manner under regulation by AKH in insects thus functioning as a stress responsive hormone while also maintaining organismal homeostasis.
Collapse
Affiliation(s)
- Andrea Bednářová
- Institute of Entomology, Biology Centre, Academy of Science, Branišovská 31, České Budějovice, 370 05-CZ, Czech Republic
| | | | | |
Collapse
|
33
|
Huang G, Li J, Fu H, Yan Z, Bu G, He X, Wang Y. Characterization of glucagon-like peptide 1 receptor (GLP1R) gene in chickens: functional analysis, tissue distribution, and identification of its transcript variants. Domest Anim Endocrinol 2012; 43:1-15. [PMID: 22417644 DOI: 10.1016/j.domaniend.2012.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/18/2012] [Accepted: 01/22/2012] [Indexed: 01/01/2023]
Abstract
Glucagon-like peptide 1 (GLP1) receptor plays a critical role in mediating the biological actions of GLP1 in mammals and fish; however, the gene structure, expression, and functionality of GLP1 receptor (GLP1R) remain largely unknown in birds. In this study, the full-length cDNA of chicken GLP1R (cGLP1R) was first cloned from brain tissue by reverse transcription PCR. The putative cGLP1R is 459 amino acids in length and shares high amino acid sequence identity with that of human (79%), rat (80%), and Xenopus (75%). Using a pGL3-CRE luciferase reporter system, we found that cGLP1R expressed in Chinese hamster ovary cells could be potently activated by cGLP1 (EC(50), 0.11 nM) but not by other structurally related peptides, indicating that cGLP1R is a functional receptor specific to cGLP1. Interestingly, in addition to identification of the transcript encoding cGLP1R of 459 amino acids, eight transcript variants, which were generated by alternative mRNA splicing and predicted to encode either C-terminally or N-terminally truncated cGLP1Rs, were also identified from chicken brain or testis. In line with this finding, multiple cGLP1R transcripts were detected to be expressed in most chicken tissues examined, including pancreas, gastrointestinal tract, and various brain regions by reverse transcription PCR. Using the dual-luciferase reporter assay system, we further found that the 5'-flanking region of cGLP1R gene displays promoter activities in cultured HepG2 and HEK293 cells, suggesting that it may control cGLP1R gene transcription in chicken tissues, including nonpancreatic tissues. Taken together, the results from the present study establish a molecular basis to investigate the roles of GLP1 in chickens.
Collapse
Affiliation(s)
- G Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Glucose metabolism in fish: a review. J Comp Physiol B 2012; 182:1015-45. [PMID: 22476584 DOI: 10.1007/s00360-012-0658-7] [Citation(s) in RCA: 411] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 03/06/2012] [Accepted: 03/10/2012] [Indexed: 02/07/2023]
Abstract
Teleost fishes represent a highly diverse group consisting of more than 20,000 species living across all aquatic environments. This group has significant economical, societal and environmental impacts, yet research efforts have concentrated primarily on salmonid and cyprinid species. This review examines carbohydrate/glucose metabolism and its regulation in these model species including the role of hormones and diet. Over the past decade, molecular tools have been used to address some of the downstream components of these processes and these are incorporated to better understand the roles played by carbohydrates and their regulatory paths. Glucose metabolism remains a contentious area as many fish species are traditionally considered glucose intolerant and, therefore, one might expect that the use and storage of glucose would be considered of minor importance. However, the actual picture is not so clear since the apparent intolerance of fish to carbohydrates is not evident in herbivorous and omnivorous species and even in carnivorous species, glucose is important for specific tissues and/or for specific activities. Thus, our aim is to up-date carbohydrate metabolism in fish, placing it to the context of these new experimental tools and its relationship to dietary intake. Finally, we suggest that new research directions ultimately will lead to a better understanding of these processes.
Collapse
|
35
|
Moon MJ, Park S, Kim DK, Cho EB, Hwang JI, Vaudry H, Seong JY. Structural and molecular conservation of glucagon-like Peptide-1 and its receptor confers selective ligand-receptor interaction. Front Endocrinol (Lausanne) 2012; 3:141. [PMID: 23181056 PMCID: PMC3500760 DOI: 10.3389/fendo.2012.00141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a major player in the regulation of glucose homeostasis. It acts on pancreatic beta cells to stimulate insulin secretion and on the brain to inhibit appetite. Thus, it may be a promising therapeutic agent for the treatment of type 2 diabetes mellitus and obesity. Despite the physiological and clinical importance of GLP-1, molecular interaction with the GLP-1 receptor (GLP1R) is not well understood. Particularly, the specific amino acid residues within the transmembrane helices and extracellular loops of the receptor that may confer ligand-induced receptor activation have been poorly investigated. Amino acid sequence comparisons of GLP-1 and GLP1R with their orthologs and paralogs in vertebrates, combined with biochemical approaches, are useful to determine which amino acid residues in the peptide and the receptor confer selective ligand-receptor interaction. This article reviews how the molecular evolution of GLP-1 and GLP1R contributes to the selective interaction between this ligand-receptor pair, providing critical clues for the development of potent agonists for the treatment of diabetes mellitus and obesity.
Collapse
Affiliation(s)
- Mi Jin Moon
- Graduate School of Medicine, Korea UniversitySeoul, Republic of Korea
| | - Sumi Park
- Graduate School of Medicine, Korea UniversitySeoul, Republic of Korea
| | - Dong-Kyu Kim
- Graduate School of Medicine, Korea UniversitySeoul, Republic of Korea
| | - Eun Bee Cho
- Graduate School of Medicine, Korea UniversitySeoul, Republic of Korea
| | - Jong-Ik Hwang
- Graduate School of Medicine, Korea UniversitySeoul, Republic of Korea
| | - Hubert Vaudry
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, University of RouenMont-Saint-Aignan, France
| | - Jae Young Seong
- Graduate School of Medicine, Korea UniversitySeoul, Republic of Korea
- *Correspondence: Jae Young Seong, Graduate School of Medicine, Korea University, Seoul 136-705, Republic of Korea. e-mail:
| |
Collapse
|
36
|
Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 2011; 173:227-47. [PMID: 21726560 DOI: 10.1016/j.ygcen.2011.06.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
Fish have provided essential information about the structure, biosynthesis, evolution, and function of insulin (INS) as well as about the structure, evolution, and mechanism of action of insulin receptors (IR). INS, insulin-like growth factor (IGF)-1, and IGF-2 share a common ancestor; INS and a single IGF occur in Agnathans, whereas INS and distinct IGF-1 and IGF-2s appear in Chondrichthyes. Some but not all teleost fish possess multiple INS genes, but it is not clear if they arose from a common gene duplication event or from multiple separate gene duplications. INS is produced by the endocrine pancreas of fish as well as by several other tissues, including brain, pituitary, gastrointestinal tract, and adipose tissue. INS regulates various aspects of feeding, growth, development, and intermediary metabolism in fish. The actions of INS are mediated through the insulin receptor (IR), a member of the receptor tyrosine kinase family. IRs are widely distributed in peripheral tissues of fish, and multiple IR subtypes that derive from distinct mRNAs have been described. The IRs of fish link to several cellular effector systems, including the ERK and IRS-PI3k-Akt pathways. The diverse effects of INS can be modulated by altering the production and release of INS as well as by adjusting the production/surface expression of IR. The diverse actions of INS in fish as well as the diverse nature of the neural, hormonal, and environmental factors known to affect the INS signaling system reflects the various life history patterns that have evolved to enable fish to occupy a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
37
|
Musson MC, Jepeal LI, Finnerty JR, Wolfe MM. Evolutionary expression of glucose-dependent-insulinotropic polypeptide (GIP). ACTA ACUST UNITED AC 2011; 171:26-34. [PMID: 21723886 DOI: 10.1016/j.regpep.2011.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 06/08/2011] [Accepted: 06/20/2011] [Indexed: 01/25/2023]
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a mammalian incretin hormone released into the circulation following nutrient ingestion. We examined the functional evolution of GIP and its relationship with insulin to delineate their respective roles in promoting nutrient efficiency. Expression patterns were examined in the sea lamprey (Petromyzon marinus), a basal vertebrate lacking a distinct pancreas, and in the zebrafish, Xenopus laevis, chicken, and mouse, organisms possessing extraintestinal pancreata. Although sea lamprey genomic analysis predicted a potential GIP-like gene, transcripts were not detected, and insulin expression was confined to the caudal pancreatic bud. GIP was detected in both the intestine and pancreas of the zebrafish and X. laevis. In contrast, GIP and insulin expression were limited to the intestine and pancreas, respectively, in chicken and mouse. Phylogenetic analysis of the glucagon-like ligands suggested proglucagon as the common ancestor, supporting the theory that GIP arose as a gene duplication of proglucagon. Insulin-secreting cells in the sea lamprey intestine may have obviated the need for an enteroinsular axis, and zebrafish may represent an evolutionary transition where GIP does not yet function as an incretin hormone. These observations are consistent with the hypothesis that GIP and insulin influence survival advantage by enhancing the efficiency of nutrient absorption and energy storage.
Collapse
Affiliation(s)
- Michelle C Musson
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, United States
| | | | | | | |
Collapse
|
38
|
Polakof S, Míguez JM, Soengas JL. Evidence for a gut-brain axis used by glucagon-like peptide-1 to elicit hyperglycaemia in fish. J Neuroendocrinol 2011; 23:508-18. [PMID: 21564347 DOI: 10.1111/j.1365-2826.2011.02137.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In mammals, glucagon-like peptide-1 (GLP-1) produces changes in glucose and energy homeostasis through a gut-pancreas-brain axis. In fish, the effects of GLP-1 are opposed to those described in other vertebrates, such as stimulation of hyperglycaemia and the lack of an effect of incretin. In the present study conducted in a teleost fish such as the rainbow trout, we present evidence of a gut-brain axis used by GLP-1 to exert its actions on glucose and energy homeostasis. We have assessed the effects of GLP-1 on glucose metabolism in the liver as well as the glucose-sensing potential in the hypothalamus and hindbrain. We confirm that peripheral GLP-1 administration elicits sustained hyperglycaemia, whereas, for the first time in a vertebrate species, we report that central GLP-1 treatment increases plasma glucose levels. We have observed (using capsaicin) that at least part of the action of GLP-1 on glucose homeostasis was mediated by vagal and splanchnic afferents. GLP-1 has a direct effect in parameters involved in glucose sensing in the hindbrain, whereas, in the hypothalamus, changes occurred indirectly through hyperglycaemia. Moreover, in the hindbrain, GLP-1 altered the expression of peptides involved in the control of food intake. We have elaborated a model for the actions of GLP-1 in fish in which this peptide uses a mammalian-like ancestral gut-brain axis to elicit the regulation of glucose homeostasis in different manner than the model described in mammals. Finally, it is worth noting that the hyperglycaemia induced by this peptide and the lack of incretin function could be related to the glucose intolerance observed in carnivorous teleost fish species such as the rainbow trout.
Collapse
Affiliation(s)
- S Polakof
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain.
| | | | | |
Collapse
|
39
|
Pirone A, Ding BA, Lenzi C, Baglini A, Giannessi E, Romboli I. The small intestine of the adult New Hampshire chicken: an immunohistochemical study. Anat Histol Embryol 2010; 40:163-8. [PMID: 21133986 DOI: 10.1111/j.1439-0264.2010.01055.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The presence and distribution of glucose-dependent insulinotropic polypeptide or gastric inhibitory polypeptide (GIP), gastric-releasing peptide (GRP) and glucagon immunoreactivity were studied in the small intestine of the New Hampshire chicken using immunohistochemistry. This is the first report of the presence of GIP-immunoreactive (ir) cells in avian small intestine. GIP, GRP and glucagon immunoreactivity was localized in the epithelium of the villi and crypts of the duodenum, jejunum and ileum. In particular, both in the duodenum and in the jejunum immunoreactive endocrine cells to GIP, GRP and glucagon were observed. In the ileum, we noticed GIP-ir and glucagon-ir cells. GRP-ir was found in nerve fibres of all three segments of the small intestine. The distribution of these bioactive agents in the intestinal tract of the chicken suggests that GIP and glucagon may play a role in the enteropancreatic axis in which intestinal peptides modulate pancreas secretion.
Collapse
Affiliation(s)
- A Pirone
- Department of Animal Productions, Section of Anatomy, University of Pisa, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Ng SYL, Lee LTO, Chow BKC. Insights into the evolution of proglucagon-derived peptides and receptors in fish and amphibians. Ann N Y Acad Sci 2010; 1200:15-32. [PMID: 20633130 DOI: 10.1111/j.1749-6632.2010.05505.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Glucagon and the glucagon-like peptides (GLP-1 and GLP-2) share a common evolutionary origin and are triplication products of an ancestral glucagon exon. In mammals, a standard scenario is found where only a single proglucagon-derived peptide set exists. However, fish and amphibians have either multiple proglucagon genes or exons that are likely resultant of duplication events. Through phylogenetic analysis and examination of their respective functions, the proglucagon ligand-receptor pairs are believed to have evolved independently before acquiring specificity for one another. This review will provide a comprehensive overview of current knowledge of proglucagon-derived peptides and receptors, with particular focus on fish and amphibian species.
Collapse
Affiliation(s)
- Stephanie Y L Ng
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | | |
Collapse
|
41
|
|
42
|
Musson MC, Jepeal LI, Mabray PD, Zhdanova IV, Cardoso WV, Wolfe MM. Expression of glucose-dependent insulinotropic polypeptide in the zebrafish. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1803-12. [PMID: 19793957 DOI: 10.1152/ajpregu.00288.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In mammals, glucose-dependent insulinotropic polypeptide (GIP) is synthesized predominately in the small intestine and functions in conjunction with insulin to promote nutrient deposition. However, little is known regarding GIP expression and function in early vertebrates like the zebrafish, a model organism representing an early stage in the evolutionary development of the compound vertebrate pancreas. Analysis of GIP and insulin (insa) expression in zebrafish larvae by RT-PCR demonstrated that although insa was detected as early as 24 h postfertilization (hpf), GIP expression was not demonstrated until 72 hpf, shortly after the completion of endocrine pancreatic development but prior to the commencement of independent feeding. Furthermore, whole mount in situ hybridization of zebrafish larvae showed expression of GIP and insa in the same tissues, and in adult zebrafish, RT-PCR and immunohistochemistry demonstrated GIP expression in both the intestine and the pancreas. Receptor activation studies showed that zebrafish GIP was capable of activating the rat GIP receptor. Although previous studies have identified four receptors with glucagon receptor-like sequences in the zebrafish, one of which possesses the capacity to bind GIP, a functional analysis of these receptors has not been performed. This study demonstrates interactions between the latter receptor and zebrafish GIP, identifying it as a potential in vivo target for the ligand. Finally, food deprivation studies in larvae demonstrated an increase in GIP and proglucagon II mRNA levels in response to fasting. In conclusion, the results of these studies suggest that although the zebrafish appears to be a model of an early stage of evolutionary development of GIP expression, the peptide may not possess incretin properties in this species.
Collapse
Affiliation(s)
- Michelle C Musson
- Section of Gastroenterology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
43
|
Shimizu M, Cooper KA, Dickhoff WW, Beckman BR. Postprandial changes in plasma growth hormone, insulin, insulin-like growth factor (IGF)-I, and IGF-binding proteins in coho salmon fasted for varying periods. Am J Physiol Regul Integr Comp Physiol 2009; 297:R352-61. [DOI: 10.1152/ajpregu.90939.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined postprandial changes in circulating growth hormone (GH), insulin, insulin-like growth factor (IGF)-I, and IGF-binding proteins (IGFBPs) in yearling coho salmon under different feeding regimes. Fish were initially fasted for 1 day, 1 wk, or 3 wk. Fasted fish were then fed, and blood was collected at 4-h intervals over 26 h. After the various periods of fasting, basal levels of insulin were relatively constant, whereas those of IGF-I, IGFBPs and GH changed in proportion to the duration of the fast. A single meal caused a rapid, large increase in the circulating insulin levels, but the degree of the increase was influenced by the fasting period. IGF-I showed a moderate increase 2 h after the meal but only in the regularly fed fish. Plasma levels of 41-kDa IGFBP were increased in all groups within 6 h after the single meal. The fasting period did not influence the response of 41-kDa IGFBP to the meal. IGFBP-1 and GH decreased after the meal to the same extent among groups regardless of the fasting period. The present study shows that insulin and IGF-I respond differently to long (weeks)- and short (hours)-term nutritional changes in salmon; insulin maintains its basal level but changes acutely in response to food intake, whereas IGF-I adjusts its basal levels to the long-term nutritional status and is less responsive to acute nutritional input. IGFBPs maintain their sensitivity to food intake, even after prolonged fasting, suggesting their critical role in the nutritional regulation of salmon growth.
Collapse
|
44
|
Wang J, Wang Y, Li X, Li J, Leung F. Cloning, Tissue Distribution, and Functional Characterization of Chicken Glucagon Receptor. Poult Sci 2008; 87:2678-88. [DOI: 10.3382/ps.2008-00260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Richards MP, McMurtry JP. Expression of proglucagon and proglucagon-derived peptide hormone receptor genes in the chicken. Gen Comp Endocrinol 2008; 156:323-38. [PMID: 18299131 DOI: 10.1016/j.ygcen.2008.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/13/2007] [Accepted: 01/16/2008] [Indexed: 11/24/2022]
Abstract
To better understand how the proglucagon system functions in birds, we utilized a molecular cloning strategy to sequence and characterize the chicken proglucagon gene that encodes glucagon, glucagon-like peptide (GLP)-1 and GLP-2. This gene has seven exons and six introns with evidence for an additional (alternate) first exon and two promoter regions. We identified two distinct classes of proglucagon mRNA transcripts (PGA and PGB) produced by alternative splicing at their 3'-ends. These were co-expressed in all tissues examined with pancreas and proventriculus showing the highest levels of each. Although both mRNA classes contained coding sequence for glucagon and GLP-1, class A mRNA lacked that portion of the coding region (CDS) containing GLP-2; whereas, class B mRNA had a larger CDS that included GLP-2. Both classes of mRNA transcripts exhibited two variants, each with a different 5'-end arising from alternate promoter and alternate first exon usage. Fasting and refeeding had no effect on proglucagon mRNA expression despite significant changes in plasma glucagon levels. To investigate potential differences in proglucagon precursor processing among tissues, mRNA expression for two prohormone convertase (PC) genes was analyzed. PC2 mRNA was predominantly expressed in pancreas and proventriculus, whereas PC1/3 mRNA was more highly expressed in duodenum and brain. We also determined mRNA expression of the specific receptor genes for glucagon, GLP-1 and GLP-2 to help define major sites of hormone action. Glucagon receptor mRNA was most highly expressed in liver and abdominal fat, whereas GLP-1 and GLP-2 receptor genes were highly expressed in the gastrointestinal tract, brain, pancreas and abdominal fat. These results offer new insights into structure and function of the chicken proglucagon gene, processing of the precursor proteins produced from it and potential activity sites for proglucagon-derived peptide hormones mediated by their cognate receptors.
Collapse
Affiliation(s)
- Mark P Richards
- Animal Biosciences and Biotechnology Laboratory, USDA, ARS, Animal and Natural Resources Institute, Beltsville Agricultural Research Center, BARC-East, Beltsville, MD 20705-2350, USA.
| | | |
Collapse
|
46
|
Bermúdez R, Vigliano F, Quiroga MI, Nieto JM, Bosi G, Domeneghini C. Immunohistochemical study on the neuroendocrine system of the digestive tract of turbot, Scophthalmus maximus (L.), infected by Enteromyxum scophthalmi (Myxozoa). FISH & SHELLFISH IMMUNOLOGY 2007; 22:252-63. [PMID: 16844386 DOI: 10.1016/j.fsi.2006.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 05/23/2006] [Accepted: 05/30/2006] [Indexed: 05/10/2023]
Abstract
In recent years a new parasite, causing severe losses, has been detected in farmed turbot, Scophthalmus maximus (L.), in Northwestern Spain. Dead fish showed emaciation and cachexia caused by severe necrotizing enteritis, which affected all areas of the digestive tract. The parasite was classified as a myxosporean and named Enteromyxum scophthalmi. This study was designed to assess the response of the turbot neuroendocrine system against E. scophthalmi infection. Immunohistochemical tests were applied to sections of the gastrointestinal tract of uninfected and E. scophthalmi-infected turbot, and the presence of cholecystokinin (CCK-8), serotonin (5-HT), substance P (SP), calcitonin gene-related peptide (CGRP) and vasoactive intestinal peptide (VIP) were documented. A higher abundance of both endocrine epithelial cells (ECs) and nerve cell bodies and fibres for CCK-8, 5-HT and SP were recorded in the gastrointestinal tract of infected turbot, whereas VIP-like substance decreased. The results indicate that E. scophthalmi infection in turbot induced changes in the neuroendocrine system, which may cause alterations in gut motility, electrolyte and fluid secretion, and vascular and immune functions.
Collapse
Affiliation(s)
- R Bermúdez
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, University of Santiago de Compostela, 27002 Lugo, Spain.
| | | | | | | | | | | |
Collapse
|
47
|
Youson JH. Peripheral Endocrine Glands. I. The Gastroenteropancreatic Endocrine System and the Thyroid Gland. FISH PHYSIOLOGY 2007. [DOI: 10.1016/s1546-5098(07)26008-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
48
|
Nelson LE, Sheridan MA. Gastroenteropancreatic hormones and metabolism in fish. Gen Comp Endocrinol 2006; 148:116-24. [PMID: 16516213 DOI: 10.1016/j.ygcen.2006.01.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/20/2006] [Accepted: 01/21/2006] [Indexed: 11/26/2022]
Abstract
Metabolism of vertebrates integrates a vast array of systems and processes, including the pursuit and capture of food, feeding and digestion of ingested food, absorption and transport of nutrients, assimilation, partitioning and utilization of energy, and the processing and elimination of wastes. Fish, which are the most diverse group of vertebrates and occupy a wide range of habitats and display numerous life history patterns, have proven to be important models for the study of the structure, biosynthesis, evolution, and function of gastroenteropancreatic (GEP) hormones. Food intake is promoted by galanin, neuropeptide Y, and pancreatic polypeptide (PP), while cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1) inhibit food intake. Digestion of ingested food is facilitated by CCK, PP, and secretin by coordinating gastrointestinal tract motility and regulation of exocrine secretion. Somatostatins (SS), on the other hand, generally inhibit exocrine secretions. Insulin facilitates assimilation by promoting the uptake of nutrient molecules (e.g., glucose, amino acids, and fatty acids) into cells. Insulin also is generally anabolic and stimulates the synthesis and deposition of energy reserves (e.g., glycogen, triacylglycerol) as well as of proteins, thereby facilitating organismal growth. Insulin-like growth factors (e.g., IGF-1) also promote cell proliferation and organismal growth. Breakdown and mobilization of stored energy reserves is stimulated by glucagon, GLP-1, and SS. Somatostatins also affect metabolism and reproduction via their effects on the thyroid axis as well as growth via effects on growth hormone (GH) release and perhaps directly via modulation of GH sensitivity. Studies in fish have revealed that GEP hormones play an important role in coordinating the various aspects of metabolism with each other and with the physiological and developmental status of the animal as well as with the environment.
Collapse
Affiliation(s)
- Laura E Nelson
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | |
Collapse
|
49
|
Alexander ELR, Dooley KC, Pohajdak B, Xu BY, Wright JR. Things we have learned from tilapia islet xenotransplantation. Gen Comp Endocrinol 2006; 148:125-31. [PMID: 16413551 DOI: 10.1016/j.ygcen.2005.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 11/18/2022]
Abstract
An islet xenotransplantation model has been developed using tilapia (Oreochromis niloticus) as the donors. Studies using this model for the treatment of experimental type 1 diabetes in mice have produced promising results including the maintenance of long-term normoglycemia and mammalian-like glucose tolerance profiles in islet graft recipients. Islet encapsulation has also provided a promising method for the prevention of graft rejection, and strains of transgenic tilapia expressing a [desThrB30] human insulin molecule have been produced. In addition to studying islet transplantation for the treatment of type 1 diabetes, these studies have also produced insights into piscine glucose homeostasis. Studies demonstrating the glucose responsiveness of tilapia islets are described. In addition, work performed by our group and by others pertaining to presence and nature of piscine glucose transporters is reviewed. Finally, studies addressing some of the broader challenges of islet xenotransplantation are discussed with particular attention paid to the post-transplantation fate of the various islet cell populations and the proteins they produce.
Collapse
Affiliation(s)
- Emily L R Alexander
- Department of Pathology and Laboratory Medicine, IWK Health Centre and Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
50
|
Youson JH, Al-Mahrouki AA, Amemiya Y, Graham LC, Montpetit CJ, Irwin DM. The fish endocrine pancreas: review, new data, and future research directions in ontogeny and phylogeny. Gen Comp Endocrinol 2006; 148:105-15. [PMID: 16430894 DOI: 10.1016/j.ygcen.2005.12.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/01/2005] [Indexed: 11/26/2022]
Abstract
The literature on the ontogeny and phylogeny of the endocrine pancreas of ray-finned fishes is summarized since the latest review in fish [Youson, J.H., Al-Mahrouki, A.A., 1999. Review. Ontogenetic and phylogenetic development of the endocrine pancreas (islet organ) in fishes. Gen. Comp. Endocrinol. 116, 303-335]. A basic description and a demonstration of the diversity of the fish islet organ is provided through new immunohistochemical data on islet tissue from a basal teleost, an osteoglossomorph, and a more derived teleost, a perciforme. Unlike the previous review, the present report provides a review and discussion of the utility of sequence data of insulin, somatostatin, and NPY- and glucagon-family peptides in phylogenetic analyses of jawed and jawless fishes. The present study also provides the first comparative analysis of sequences of preprohormones of endocrine peptides from closely related basal teleost species. Some nucleotide and deduced amino acid sequence data for preprosomatostatins (PPSS-I and/or -II) are compared for four species of bonytongues, Osteoglossomorpha, and with PPSSs of the white sucker, Catostomus commersoni, representing Cypriniformes, a more generalized teleost order. Phylogenetic analysis of deduced amino acid sequences of the PPSSs of these species and others from databases indicates good support for the monophyly of Osteoglossomorpha and some support for the present taxonomic grouping of the osteoglossomorphs examined, and also the white sucker. However, PPSS may have limited phylogenetic utility due to the relative short sequence, particularly in resolving relationships among lineages that diverged over a short period of time. Since in the few fish species examined we have just touched the surface in describing the diversity of structure of the islet organ, and likely the nature of the products of its cells, this report promotes the continued study of this organ.
Collapse
Affiliation(s)
- J H Youson
- Department of Life Sciences (Scarborough), University of Toronto, Toronto, Ont., Canada M1C 1A4.
| | | | | | | | | | | |
Collapse
|