1
|
Filošević Vujnović A, Čabrijan S, Mušković M, Malatesti N, Andretić Waldowski R. Systemic Effects of Photoactivated 5,10,15,20-tetrakis( N-methylpyridinium-3-yl) Porphyrin on Healthy Drosophila melanogaster. BIOTECH 2024; 13:23. [PMID: 39051338 PMCID: PMC11270250 DOI: 10.3390/biotech13030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Porphyrins are frequently employed in photodynamic therapy (PDT), a non-invasive technique primarily utilized to treat subcutaneous cancers, as photosensitizing agents (PAs). The development of a new PA with improved tissue selectivity and efficacy is crucial for expanding the application of PDT for the management of diverse cancers. We investigated the systemic effects of 5,10,15,20-tetrakis(N-methylpyridinium-3-yl)-porphyrin (TMPyP3) using Drosophila melanogaster adult males. We established the oral administration schedule and demonstrated that TMPyP3 was absorbed and stored higher in neuronal than in non-neuronal extracts. Twenty-four hours after oral TMPyP3 photoactivation, the quantity of hydrogen peroxide (H2O2) increased, but exclusively in the head extracts. Regardless of photoactivation, TMPyP3 resulted in a reduced concentration of H2O2 after 7 days, and this was linked with a decreased capacity to climb, as indicated by negative geotaxis. The findings imply that systemic TMPyP3 therapy may disrupt redox regulation, impairing cellular signaling and behavioral outcomes in the process. To determine the disruptive effect of porphyrins on redox homeostasis, its duration, and the mechanistic variations in retention across various tissues, more research is required.
Collapse
Affiliation(s)
- Ana Filošević Vujnović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (S.Č.); (M.M.); (N.M.); (R.A.W.)
| | | | | | | | | |
Collapse
|
2
|
Yang B, Yao H, Yang J, Chen C, Shi J. Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat Commun 2022; 13:1988. [PMID: 35418125 PMCID: PMC9008001 DOI: 10.1038/s41467-022-29735-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Constructing nanomaterials mimicking the coordination environments of natural enzymes may achieve biomimetic catalysis. Here we construct a two-dimensional (2D) metal-organic framework (MOF) nanosheet catalyst as an artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. The 2D MOF periodically assembles numbers of manganese porphyrin molecules, which has a metal coordination geometry analogous to those of two typical antioxidases, human mitochondrial manganese superoxide dismutase (Mn-SOD) and human erythrocyte catalase. The zinc atoms of the 2D MOF regulate the metal-centered redox potential of coordinated manganese porphyrin ligand, endowing the nanosheet with both SOD- and catalase-like activities. Cellular experiments show unique anti-inflammatory and pro-biomineralization performances of the 2D MOF, while in vivo animal model further demonstrates its desirable antiarthritic efficacy. It is expected that such a nanocatalytic antioxidation concept may provide feasible approaches to future anti-inflammatory treatments.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Jiacai Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China.
- Tenth People's Hospital and Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, 200092, P. R. China.
| |
Collapse
|
3
|
Yang B, Yao H, Yang J, Chen C, Guo Y, Fu H, Shi J. In Situ Synthesis of Natural Antioxidase Mimics for Catalytic Anti-Inflammatory Treatments: Rheumatoid Arthritis as an Example. J Am Chem Soc 2022; 144:314-330. [PMID: 34881869 DOI: 10.1021/jacs.1c09993] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mimicking the coordination geometry of the active metal sites of natural enzymes is an efficient strategy in designing therapeutic chemicals with enzymelike in vivo reaction thermodynamics and kinetics. In this study, this chemical concept has been applied for the in situ synthesis of natural antioxidase mimics for catalytic anti-inflammatory treatment by using rheumatoid arthritis, a common and hardly curable immune-mediated diseases, as an example. Briefly, a composite nanomedicine has been first constructed by loading cationic porphyrin ligands into a manganese-engineered mesoporous silica nanocarrier, which can respond to a mildly acidic environment to concurrently release manganous ions and porphyrin ligands, enabling their subsequent coordination and synthesis of manganese porphyrin with a coordination environment of an active Mn site similar to those of the metal sites in natural superoxide dismutase (SOD) and catalase. Due to the strong metal-ligand exchange coupling enabled by the N-ethylpyridinium-2-yl groups tetrasubstituted in the meso positions of N4-macroheterocycles, such a manganese porphyrin presents the SOD-like activity of disproportionating superoxide anions via outer-sphere proton-coupled one-electron transfer (diaquamanganese(III)/monoaquamanganese(II) cycling), as well as the catalase-like activity of disproportionating hydrogen peroxide via inner-sphere proton-coupled two-electron transfer (diaquamanganese(III)/dioxomanganese(V) cycling). Cellular experiments demonstrated the high antioxidative efficacy of the composite nanomedicine in M1 macrophages by promoting their polarization shift to the anti-inflammatory M2 phenotype. Equally importantly, the silicon-containing oligomers released from the manganese silicate nanocarrier can act as heterogeneous nucleation centers of hydroxyapatite for facilitating biomineralization by bone mesenchymal stem cells. Finally, an in vivo adjuvant-induced arthritis animal model further reveals the high efficacy of the nanomedicine in treating rheumatoid arthritis.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Jiacai Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chang Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuedong Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Fu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
- Tenth People's Hospital and School of Medicine, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
4
|
Lindsay SE, Lindsay HG, Kallet J, Weaver MR, Curran-Everett D, Crapo JD, Regan EA. MnTE-2-PyP disrupts Staphylococcus aureus biofilms in a novel fracture model. J Orthop Res 2021; 39:2439-2445. [PMID: 33347639 DOI: 10.1002/jor.24967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 02/04/2023]
Abstract
Biofilm-associated infections in orthopedic surgery lead to worse clinical outcomes and greater morbidity and mortality. The scope of the problem encompasses infected total joints, internally fixed fractures, and implanted devices. Diagnosis is difficult. Cultures are often negative, and antibiotic treatments are ineffective. The infections resist killing by the immune system and antibiotics. The organized matrix structure of extracellular polymeric substances within the biofilm shields and protects the bacteria from identification and immune cell action. Bacteria in biofilms actively modulate their redox environment and can enhance the matrix structure by creating an oxidizing environment. We postulated that a potent redox-active metalloporphyrin MnTE-2-PyP (chemical name: manganese (II) meso-tetrakis-(N-methylpyridinium-2-yl) porphyrin) that scavenges reactive species and modulates the redox state to a reduced state, would improve the effect of antibiotic treatment for a biofilm-associated infection. An infected fracture model with a midshaft femoral osteotomy was created in C57B6 mice, internally fixed with an intramedullary 23-gauge needle and seeded with a biofilm-forming variant of Staphylococcus aureus. Animals were divided into three treatment groups: control, antibiotic alone, and combined antibioticplus MnTE-2-PyP. The combined treatment group had significantly decreased bacterial counts in harvested bone, compared with antibiotic alone. In vitro crystal violet assay of biofilm structure and corresponding nitroblue tetrazolium assay for reactive oxygen species (ROS) demonstrated that MnTE-2-PyP decreased the biofilm structure and reduced ROS in a correlated and dose-dependent manner. The biofilm structure is redox-sensitive in S. aureus and an ROS scavenger improved the effect of antibiotic therapy in model of biofilm-associated infections.
Collapse
|
5
|
Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021; 10:antiox10010130. [PMID: 33477607 PMCID: PMC7831323 DOI: 10.3390/antiox10010130] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species and reactive nitrogen species are highly implicated in kidney injuries that include acute kidney injury, chronic kidney disease, hypertensive nephropathy, and diabetic nephropathy. Therefore, antioxidant agents are promising therapeutic strategies for kidney diseases. Catalytic antioxidants are defined as small molecular mimics of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and some of them function as potent detoxifiers of lipid peroxides and peroxynitrite. Several catalytic antioxidants have been demonstrated to be effective in a variety of in vitro and in vivo disease models that are associated with oxidative stress, including kidney diseases. This review summarizes the evidence for the role of antioxidant enzymes in kidney diseases, the classifications of catalytic antioxidants, and their current applications to kidney diseases.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6038
| |
Collapse
|
6
|
Simonova OR, Zdanovich SA, Zaitseva SV, Koifman OI. Kinetic Study of the Redox Properties of
[5,10,15,20-Tetrakis(2,5-dimethoxyphenyl)porphyrinato]cobalt(II) in the Reaction with
Hydrogen Peroxide. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220050175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Redox-Active Drug, MnTE-2-PyP 5+, Prevents and Treats Cardiac Arrhythmias Preserving Heart Contractile Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4850697. [PMID: 32273944 PMCID: PMC7115175 DOI: 10.1155/2020/4850697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 01/11/2020] [Indexed: 01/06/2023]
Abstract
Background Cardiomyopathies remain among the leading causes of death worldwide, despite all efforts and important advances in the development of cardiovascular therapeutics, demonstrating the need for new solutions. Herein, we describe the effects of the redox-active therapeutic Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, AEOL10113, BMX-010 (MnTE-2-PyP5+), on rat heart as an entry to new strategies to circumvent cardiomyopathies. Methods Wistar rats weighing 250-300 g were used in both in vitro and in vivo experiments, to analyze intracellular Ca2+ dynamics, L-type Ca2+ currents, Ca2+ spark frequency, intracellular reactive oxygen species (ROS) levels, and cardiomyocyte and cardiac contractility, in control and MnTE-2-PyP5+-treated cells, hearts, or animals. Cells and hearts were treated with 20 μM MnTE-2-PyP5+ and animals with 1 mg/kg, i.p. daily. Additionally, we performed electrocardiographic and echocardiographic analysis. Results Using isolated rat cardiomyocytes, we observed that MnTE-2-PyP5+ reduced intracellular Ca2+ transient amplitude, without altering cell contractility. Whereas MnTE-2-PyP5+ did not alter basal ROS levels, it was efficient in modulating cardiomyocyte redox state under stress conditions; MnTE-2-PyP5+ reduced Ca2+ spark frequency and increased sarcoplasmic reticulum (SR) Ca2+ load. Accordingly, analysis of isolated perfused rat hearts showed that MnTE-2-PyP5+ preserves cardiac function, increases SR Ca2+ load, and reduces arrhythmia index, indicating an antiarrhythmic effect. In vivo experiments showed that MnTE-2-PyP5+ treatment increased Ca2+ transient, preserved cardiac ejection fraction, and reduced arrhythmia index and duration. MnTE-2-PyP5+ was effective both to prevent and to treat cardiac arrhythmias. Conclusion MnTE-2-PyP5+ prevents and treats cardiac arrhythmias in rats. In contrast to most antiarrhythmic drugs, MnTE-2-PyP5+ preserves cardiac contractile function, arising, thus, as a prospective therapeutic for improvement of cardiac arrhythmia treatment.
Collapse
|
8
|
Zheng XS, Snyder NR, Woeppel K, Barengo JH, Li X, Eles J, Kolarcik CL, Cui XT. A superoxide scavenging coating for improving tissue response to neural implants. Acta Biomater 2019; 99:72-83. [PMID: 31446048 DOI: 10.1016/j.actbio.2019.08.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
The advancement of neural prostheses requires implantable neural electrodes capable of electrically stimulating or recording signals from neurons chronically. Unfortunately, the implantation injury and presence of foreign bodies lead to chronic inflammation, resulting in neuronal death in the vicinity of electrodes. A key mediator of inflammation and neuronal loss are reactive oxygen and nitrogen species (RONS). To mitigate the effect of RONS, a superoxide dismutase mimic compound, manganese(III) meso-tetrakis-(N-(2-aminoethyl)pyridinium-2-yl) porphyrin (iSODm), was synthesized to covalently attach to the neural probe surfaces. This new compound showed high catalytic superoxide scavenging activity. In microglia cell line cultures, the iSODm coating effectively reduced superoxide production and altered expression of iNOS, NADPH oxidase, and arginase. After 1 week of implantation, iSODm coated electrodes showed significantly lower expression of markers for oxidative stress immediately adjacent to the electrode surface, as well as significantly less neurons undergoing apoptosis. STATEMENT OF SIGNIFICANCE: One critical challenge in the translation of neural electrode technology to clinically viable devices for brain computer interface or deep brain stimulation applications is the chronic degradation of the device performance due to neuronal degeneration around the implants. One of the key mediators of inflammation and neuronal degeneration is reactive oxygen and nitrogen species released by injured neurons and inflammatory microglia. This research takes a biomimetic approach to synthesize a compound having similar reactivity as superoxide dismutase, which can catalytically scavenge reactive oxygen and nitrogen species, thereby reducing oxidative stress and decreasing neuronal degeneration. By immobilizing the compound covalently on the surface of neural implants, we show that the neuronal degeneration and oxidative stress around the implants is significantly reduced.
Collapse
|
9
|
Carballal S, Valez V, Alvarez-Paggi D, Tovmasyan A, Batinic-Haberle I, Ferrer-Sueta G, Murgida DH, Radi R. Manganese porphyrin redox state in endothelial cells: Resonance Raman studies and implications for antioxidant protection towards peroxynitrite. Free Radic Biol Med 2018; 126:379-392. [PMID: 30144631 DOI: 10.1016/j.freeradbiomed.2018.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Cationic manganese(III) ortho N-substituted pyridylporphyrins (MnP) act as efficient antioxidants catalyzing superoxide dismutation and accelerating peroxynitrite reduction. Importantly, MnP can reach mitochondria offering protection against reactive species in different animal models of disease. Although an LC-MS/MS-based method for MnP quantitation and subcellular distribution has been reported, a direct method capable of evaluating both the uptake and the redox state of MnP in living cells has not yet been developed. In the present work we applied resonance Raman (RR) spectroscopy to analyze the intracellular accumulation of two potent MnP-based lipophilic SOD mimics, MnTnBuOE-2-PyP5+ and MnTnHex-2-PyP5+ within endothelial cells. RR experiments with isolated mitochondria revealed that the reduction of Mn(III)P was affected by inhibitors of the electron transport chain, supporting the action of MnP as efficient redox active compounds in mitochondria. Indeed, RR spectra confirmed that MnP added in the Mn(III) state can be incorporated into the cells, readily reduced by intracellular components to the Mn(II) state and oxidized by peroxynitrite. To assess the combined impact of reactivity and bioavailability, we studied the kinetics of Mn(III)TnBuOE-2-PyP5+ with peroxynitrite and evaluated the cytoprotective capacity of MnP by exposing the endothelial cells to nitro-oxidative stress induced by peroxynitrite. We observed a preservation of normal mitochondrial function, attenuation of cell damage and prevention of apoptotic cell death. These data introduce a novel application of RR spectroscopy for the direct detection of MnP and their redox states inside living cells, and helps to rationalize their antioxidant capacity in biological systems.
Collapse
Affiliation(s)
- Sebastián Carballal
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Valeria Valez
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gerardo Ferrer-Sueta
- Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departmento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
10
|
Patel RN, Singh Y, Singh YP, Butcher RJ. Synthesis, crystal structure and DFT calculations of octahedral nickel(II) complexes derived from N′-[(E)-phenyl(pyridin-2-yl)methylidene]benzohydrazide. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1189543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ram N. Patel
- Department of Chemistry, A.P.S. University, Rewa, India
| | | | | | - Raymond J. Butcher
- Department of Inorganic & Structural Chemistry, Howard University, Washington, DC, USA
| |
Collapse
|
11
|
Miriyala S, Thippakorn C, Chaiswing L, Xu Y, Noel T, Tovmasyan A, Batinic-Haberle I, Vander Kooi CW, Chi W, Latif AA, Panchatcharam M, Prachayasittikul V, Butterfield DA, Vore M, Moscow J, St Clair DK. Novel role of 4-hydroxy-2-nonenal in AIFm2-mediated mitochondrial stress signaling. Free Radic Biol Med 2016; 91:68-80. [PMID: 26689472 PMCID: PMC4761499 DOI: 10.1016/j.freeradbiomed.2015.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/31/2023]
Abstract
Cardiovascular complications are major side effects of many anticancer drugs. Accumulated evidence indicates that oxidative stress in mitochondria plays an important role in cardiac injury, but how mitochondrial redox mechanisms are involved in cardiac dysfunction remains unclear. Here, we demonstrate that 4-hydroxy-2-nonenal (HNE) activates the translocation of the mitochondrial apoptosis inducing factor (AIFm2) and facilitates apoptosis in heart tissue of mice and humans. Doxorubicin treatments significantly enhance cardiac levels of HNE and AIFm2. HNE adduction of AIFm2 inactivates the NADH oxidoreductase activity of AIFm2 and facilitates its translocation from mitochondria. His 174 on AIFm2 is the critical target of HNE adduction that triggers this functional switch. HNE adduction and translocation of AIFm2 from mitochondria upon Doxorubicin treatment are attenuated by superoxide dismutase mimetics. These results identify a previously unrecognized role of HNE with important consequences for mitochondrial stress signaling, heart failure, and the side effects of cancer therapy.
Collapse
Affiliation(s)
- Sumitra Miriyala
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Yong Xu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Teresa Noel
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Wang Chi
- Biostatistics Core, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ahmed Abdel Latif
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | - Manikandan Panchatcharam
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | | - D Allan Butterfield
- Department of Chemistry and Membrane Sciences, University of Kentucky, Lexington, KY, USA
| | - Mary Vore
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Jeffrey Moscow
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
12
|
Abstract
Cerium oxide nanoparticles (CeO2 NPs) have been shown to possess a substantial oxygen storage capacity via the interchangeable surface reduction and oxidation of cerium atoms, cycling between the Ce(4+) and Ce(3+) redox states. It has been well established in many studies that depending on their reactivity and surface chemistry, CeO2 NPs can effectively convert both reactive oxygen species (superoxide, O2 (•-), and hydrogen peroxide) into more inert species and scavenge reactive nitrogen species (RNS)(nitric oxide, •NO), both in vitro and in vivo. Since much of damage attributed to •NO and O2 (•-) is actually the result of oxidation or nitration by peroxynitrite or its breakdown products and due to the multiple species that these nanoparticles target in vivo, it was logical to test their interaction with the highly reactive molecule peroxynitrite (ONOO(-)). Here, we report that CeO2 NPs significantly accelerated the decay of ONOO(-) by three independent methods. Additionally, our data suggest the ability of CeO2 NPs to interact with ONOO(-) is independent of the Ce(3+)/Ce(4+) ratio on the surface of the CeO2 NPs. The accelerated decay was not observed when reactions were carried out in an inert gas (argon), suggesting strongly that the decay of peroxynitrite is being accelerated due to a reaction of CeNPs with the carbonate radical anion. These results suggest that one of the protective effects of CeO2 NPs during RNS is likely due to reduction in peroxynitrite or its reactive breakdown products.
Collapse
|
13
|
Li AM, Martins J, Tovmasyan A, Valentine JS, Batinic-Haberle I, Spasojevic I, Gralla EB. Differential localization and potency of manganese porphyrin superoxide dismutase-mimicking compounds in Saccharomyces cerevisiae. Redox Biol 2014; 3:1-6. [PMID: 25462059 PMCID: PMC4299968 DOI: 10.1016/j.redox.2014.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 09/14/2014] [Accepted: 09/15/2014] [Indexed: 11/04/2022] Open
Abstract
Cationic Mn(III) porphyrin complexes based on MnTM-2-PyP are among the most promising superoxide dismutase (SOD) mimicking compounds being considered as potential anti-inflammatory drugs. We studied four of these active compounds in the yeast Saccharomyces cerevisiae, MnTM-2-PyP, MnTE-2-PyP, MnTnHex-2-PyP, and MnTnBu-2-PyP, each of which differs only in the length of its alkyl substituents. Each was active in improving the aerobic growth of yeast lacking SOD (sod1∆) in complete medium, and the efficacy of each mimic was correlated with its characteristic catalytic activity. We also studied the partitioning of these compounds between mitochondria and cytosol and found that the more hydrophobic members of the series accumulated in the mitochondria. Moreover, the degree to which a mimic mitigated the sod1Δ auxotrophic phenotype for lysine relative to its auxotrophic phenotype for methionine depended upon its level of lipophilicity-dependent accumulation inside the mitochondria. We conclude that localization within the cell is an important factor in biological efficacy in addition to the degree of catalytic activity, and we discuss possible explanations for this effect. Cellular distribution of Mn porphyrin SOD mimics correlates with their lipophilicity. Higher lipophilicity directs Mn porphyrin SOD mimics to the mitochondria. In sod1∆ yeast, SOD mimics in mitochondria increased rescue of Lys, not Met auxotrophy. A mitochondrial target is involved in the sod1∆-dependent Lys auxotrophy.
Collapse
Affiliation(s)
- Alice Ma Li
- Department of Chemistry and Biochemistry, UCLA, 607 Charles E Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Jake Martins
- Department of Chemistry and Biochemistry, UCLA, 607 Charles E Young Drive East, Los Angeles, CA 90095-1569, USA
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, NC 27710, USA
| | - Joan S Valentine
- Department of Chemistry and Biochemistry, UCLA, 607 Charles E Young Drive East, Los Angeles, CA 90095-1569, USA
| | | | - Ivan Spasojevic
- Department of Medicine and PK/PD Shared Resource of Duke Cancer Institute, Duke University Medical Center, NC 27710, USA
| | - Edith B Gralla
- Department of Chemistry and Biochemistry, UCLA, 607 Charles E Young Drive East, Los Angeles, CA 90095-1569, USA.
| |
Collapse
|
14
|
Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, Warner DS. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal 2014; 20:2437-64. [PMID: 23706004 DOI: 10.1089/ars.2013.5413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Metalloporphyrins, characterized by a redox-active transitional metal (Mn or Fe) coordinated to a cyclic porphyrin core ligand, mitigate oxidative/nitrosative stress in biological systems. Side-chain substitutions tune redox properties of metalloporphyrins to act as potent superoxide dismutase mimics, peroxynitrite decomposition catalysts, and redox regulators of transcription factor function. With oxidative/nitrosative stress central to pathogenesis of CNS injury, metalloporphyrins offer unique pharmacologic activity to improve the course of disease. RECENT ADVANCES Metalloporphyrins are efficacious in models of amyotrophic lateral sclerosis, Alzheimer's disease, epilepsy, neuropathic pain, opioid tolerance, Parkinson's disease, spinal cord injury, and stroke and have proved to be useful tools in defining roles of superoxide, nitric oxide, and peroxynitrite in disease progression. The most substantive recent advance has been the synthesis of lipophilic metalloporphyrins offering improved blood-brain barrier penetration to allow intravenous, subcutaneous, or oral treatment. CRITICAL ISSUES Insufficient preclinical data have accumulated to enable clinical development of metalloporphyrins for any single indication. An improved definition of mechanisms of action will facilitate preclinical modeling to define and validate optimal dosing strategies to enable appropriate clinical trial design. Due to previous failures of "antioxidants" in clinical trials, with most having markedly less biologic activity and bioavailability than current-generation metalloporphyrins, a stigma against antioxidants has discouraged the development of metalloporphyrins as CNS therapeutics, despite the consistent definition of efficacy in a wide array of CNS disorders. FUTURE DIRECTIONS Further definition of the metalloporphyrin mechanism of action, side-by-side comparison with "failed" antioxidants, and intense effort to optimize therapeutic dosing strategies are required to inform and encourage clinical trial design.
Collapse
Affiliation(s)
- Huaxin Sheng
- 1 Department of Anesthesiology, Duke University Medical Center (DUMC) , Durham, North Carolina
| | | | | | | | | | | | | |
Collapse
|
15
|
Anderson M, Roshanravan H, Khine J, Dryer SE. Angiotensin II activation of TRPC6 channels in rat podocytes requires generation of reactive oxygen species. J Cell Physiol 2014; 229:434-42. [PMID: 24037962 DOI: 10.1002/jcp.24461] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/27/2013] [Indexed: 11/06/2022]
Abstract
Angiotensin II (AII) plays a major role in the progression of chronic kidney diseases. Podocytes are essential components of the ultrafiltration apparatus, and are targets for AII signaling. AII has been shown to increase generation of reactive oxygen species (ROS) in podocytes. Canonical transient receptor potential-6 (TRPC6) channels stimulate Ca(2+) influx in podocytes, and have been implicated in glomerular disease. We observed that AII increased cationic currents in rat podocytes in an isolated glomerulus preparation in which podocytes are still attached to the underlying capillary. This effect was completely blocked by SKF-96365, by micromolar La(3+) , and by siRNA knockdown of TRPC6, indicating that TRPC6 is the primary source of Ca(2+) influx mobilized by endogenously expressed angiotensin II receptors in these cells. These responses were also blocked by the AT1R antagonist losartan, the phospholipase C inhibitor D-609, and by inhibition of G protein signaling. The pan-protein kinase C inhibitor chelerythrine had no effect. Importantly, pretreating podocytes with the ROS quencher manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) eliminated AII activation of TRPC6. Significant reductions of AII effects on podocyte TRPC6 were also observed after pretreatment with NADPH oxidase inhibitors apocynin or diphenylene iodonium (DPI). These data suggest that ROS production permits activation of TRPC6 channels by G protein and PLC-dependent cascades initiated by AII acting on AT1Rs in podocytes. This pathway also provides a basis whereby two forms of cellular stress-oxidative stress and Ca(2+) overload-converge on common pathways relevant to disease.
Collapse
Affiliation(s)
- Marc Anderson
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | | | | | | |
Collapse
|
16
|
Gao Y, Hou C, Zhou L, Zhang D, Zhang C, Miao L, Wang L, Dong Z, Luo Q, Liu J. A dual enzyme microgel with high antioxidant ability based on engineered seleno-ferritin and artificial superoxide dismutase. Macromol Biosci 2013; 13:808-16. [PMID: 23606510 DOI: 10.1002/mabi.201300019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/28/2013] [Indexed: 11/09/2022]
Abstract
An antioxidant microgel with both glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities is reported. Using computational design and genetic engineering methods, the main catalytic components of GPx are fabricated onto the surface of ferritin. The resulting seleno-ferritin (Se-Fn) monomers can self-assemble into nanocomposites that exhibit remarkable GPx activity due to the well organized multi-GPx catalytic centers. Subsequently, a porphyrin derivative is synthesized as an SOD mimic, and is employed to construct a synergistic dual enzyme system by crosslinking Se-Fn nanocomposites into a microgel. Significantly, this dual enzyme microgel is demonstrated to display better antioxidant ability than single GPx or SOD mimics in protecting cells from oxidative damage.
Collapse
Affiliation(s)
- Yuzhou Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kelso GF, Maroz A, Cochemé HM, Logan A, Prime TA, Peskin AV, Winterbourn CC, James AM, Ross MF, Brooker S, Porteous CM, Anderson RF, Murphy MP, Smith RAJ. A mitochondria-targeted macrocyclic Mn(II) superoxide dismutase mimetic. ACTA ACUST UNITED AC 2013; 19:1237-46. [PMID: 23102218 DOI: 10.1016/j.chembiol.2012.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/27/2012] [Accepted: 08/04/2012] [Indexed: 12/14/2022]
Abstract
Superoxide (O(2)(·-)) is the proximal mitochondrial reactive oxygen species underlying pathology and redox signaling. This central role prioritizes development of a mitochondria-targeted reagent selective for controlling O(2)(·-). We have conjugated a mitochondria-targeting triphenylphosphonium (TPP) cation to a O(2)(·-)-selective pentaaza macrocyclic Mn(II) superoxide dismutase (SOD) mimetic to make MitoSOD, a mitochondria-targeted SOD mimetic. MitoSOD showed rapid and extensive membrane potential-dependent uptake into mitochondria without loss of Mn and retained SOD activity. Pulse radiolysis measurements confirmed that MitoSOD was a very effective catalytic SOD mimetic. MitoSOD also catalyzes the ascorbate-dependent reduction of O(2)(·-). The combination of mitochondrial uptake and O(2)(·-) scavenging by MitoSOD decreased inactivation of the matrix enzyme aconitase caused by O(2)(·-). MitoSOD is an effective mitochondria-targeted macrocyclic SOD mimetic that selectively protects mitochondria from O(2)(·-) damage.
Collapse
Affiliation(s)
- Geoffrey F Kelso
- Centre for Green Chemistry, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kalmár J, Biri B, Lente G, Bányai I, Budimir A, Biruš M, Batinić-Haberle I, Fábián I. Detailed mechanism of the autoxidation of N-hydroxyurea catalyzed by a superoxide dismutase mimic Mn(III) porphyrin: formation of the nitrosylated Mn(II) porphyrin as an intermediate. Dalton Trans 2012; 41:11875-84. [PMID: 22911446 DOI: 10.1039/c2dt31200j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The in vitro autoxidation of N-hydroxyurea (HU) is catalyzed by Mn(III)TTEG-2-PyP(5+), a synthetic water soluble Mn(III) porphyrin which is also a potent mimic of the enzyme superoxide dismutase. The detailed mechanism of the reaction is deduced from kinetic studies under basic conditions mostly based on data measured at pH = 11.7 but also including some pH-dependent observations in the pH range 9-13. The major intermediates were identified by UV-vis spectroscopy and electrospray ionization mass spectrometry. The reaction starts with a fast axial coordination of HU to the metal center of Mn(III)TTEG-2-PyP(5+), which is followed by a ligand-to-metal electron transfer to get Mn(II)TTEG-2-PyP(4+) and the free radical derived from HU (HU˙). Nitric oxide (NO) and nitroxyl (HNO) are minor intermediates. The major pathway for the formation of the most significant intermediate, the {MnNO} complex of Mn(II)TTEG-2-PyP(4+), is the reaction of Mn(II)TTEG-2-PyP(4+) with NO. We have confirmed that the autoxidation of the intermediates opens alternative reaction channels, and the process finally yields NO(2)(-) and the initial Mn(III)TTEG-2-PyP(5+). The photochemical release of NO from the {MnNO} intermediate was also studied. Kinetic simulations were performed to validate the deduced rate constants. The investigated reaction has medical implications: the accelerated production of NO and HNO from HU may be utilized for therapeutic purposes.
Collapse
Affiliation(s)
- József Kalmár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary H-4010, POB-21
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim EY, Anderson M, Dryer SE. Sustained activation of N-methyl-D-aspartate receptors in podoctyes leads to oxidative stress, mobilization of transient receptor potential canonical 6 channels, nuclear factor of activated T cells activation, and apoptotic cell death. Mol Pharmacol 2012; 82:728-37. [PMID: 22828802 PMCID: PMC3463221 DOI: 10.1124/mol.112.079376] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022] Open
Abstract
Atypical N-methyl-D-aspartate (NMDA) receptors are expressed in podocytes. Sustained (≥24 h) application of 50 to100 μM NMDA to immortalized mouse podocytes evoked a marked increase in the production of reactive oxygen species(ROS) such as H₂O₂. This effect of NMDA was associated with increased cell-surface expression of p47(phox), a cytosolic regulatory subunit of the NADPH oxidase NOX2. NMDA-evoked generation of ROS drove an increase in steady-state surface expression of transient receptor potential canonical (TRPC) 6 channels, which was blocked by the NMDA antagonist dizocilpine(MK-801) and by a membrane-permeable scavenger of ROS. The effect of NMDA on TRPC6 was observed using cell surface biotinylation assays and also with whole-cell recordings made under conditions designed to facilitate detection of current through TRPC6. NMDA mobilization of TRPC6 channels was blocked by concurrent treatment with the NMDA antagonist MK-801 and by a membrane-permeable scavenger ofROS. Mobilization of TRPC6 was also evoked by L-homocysteic acid. NMDA treatment also increased nuclear localization of endogenous nuclear factor of activated T cells, which could be blocked by MK-801, by scavenging ROS, by the calcineurin inhibitor cyclosporine, and by the TRPC channel inhibitor 1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl]imidazole (SKF-96365). NMDA treatment also evoked robust activation of Rho but not Rac,consistent with previous studies of downstream effectors of TRPC6 activation. Exposing cells to NMDA for 24 h reduced total and cell surface expression of the podocyte markers nephrin and podocin, but there was no loss of cells. With longer NMDA exposure (72 h), we observed loss of cells associated with nuclear fragmentation and increased expression of caspase-3, caspase-6, and Bax, suggesting an apoptotic process.
Collapse
Affiliation(s)
- Eun Young Kim
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | |
Collapse
|
20
|
Kim EY, Anderson M, Dryer SE. Insulin increases surface expression of TRPC6 channels in podocytes: role of NADPH oxidases and reactive oxygen species. Am J Physiol Renal Physiol 2012; 302:F298-307. [PMID: 22031853 PMCID: PMC3287354 DOI: 10.1152/ajprenal.00423.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/21/2011] [Indexed: 02/03/2023] Open
Abstract
Insulin receptors in podocytes are essential for normal kidney function. Here, we show that insulin evokes a rapid increase in the surface expression of canonical transient receptor potential-6 channel (TRPC6) channels in cultured podocytes, but caused a decrease in surface expression of TRPC5. These effects are accompanied by a marked increase in outwardly rectifying cationic currents that can be blocked by 10 μM SKF96365 or 100 μM La(3+). Application of oleoyl-2-acetyl-sn-glycerol (OAG) also increased SKF96365- and La(3+)-sensitive cationic currents in podocytes. Importantly, current responses to a combination of OAG and insulin were the same amplitude as those evoked by either agent applied alone. This occlusion effect suggests that OAG and insulin are targeting the same population of channels. In addition, shRNA knockdown of TRPC6 markedly reduced cationic currents stimulated by insulin. The effects of insulin on TRPC6 were mimicked by treating podocytes with H(2)O(2). Insulin treatment rapidly increased the generation of H(2)O(2) in podocytes, and it increased the surface expression of the NADPH oxidase NOX4 in cultured podocytes. Basal and insulin-stimulated surface expression of TRPC6 were reduced by pretreatment with diphenylene iodonium, an inhibitor of NADPH oxidases and other flavin-dependent enzymes, by siRNA knockdown of NOX4, and by manganese (III) tetrakis (4-benzoic acid) porphyrin chloride, a membrane-permeable mimetic of superoxide dismutase and catalase. These observations suggest that insulin increases generation of ROS in part through activation of NADPH oxidases, and that this step contributes to modulation of podocyte TRPC6 channels.
Collapse
Affiliation(s)
- Eun Young Kim
- Dept. of Biology and Biochemistry, Univ. of Houston, Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
21
|
Hambright P, Batinić-Haberle I, Spasojević I. Meso tetrakis ortho-, meta-, and para-N-alkylpyridiniopor-phyrins: kinetics of copper(II) and zinc(II) incorporation and zinc porphyrin demetalation. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424603000197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relative reactivities of the tetrakis( N -alkylpyridinium- X - yl )-porphyrins where X = 4 (alkyl = methyl, ethyl, n -propyl) , X = 3 (methyl) , and X = 2 (methyl, ethyl, n -propyl, n -butyl, n -hexyl, n -octyl) were studied in aqueous solution. From the ionic strength dependence of the metalation rate constants, the effective charge of a particular cationic porphyrin was usually larger when copper(II) rather than zinc(II) was the reactant. The kinetics of ZnOH + incorporation and the acid catalyzed removal of zinc from the porphyrins in 1.0 M HCl were also studied. In general, the more basic 4- (para-) and 3- (meta-) isomers were the most reactive, followed by the less basic 2- (ortho-) methyl to n -butyl derivatives, with the lipophilic ortho n -hexyl and n -octyl porphyrins the least reactive.
Collapse
Affiliation(s)
- Peter Hambright
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Ines Batinić-Haberle
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Ivan Spasojević
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
22
|
IvanoviĆ-BurmazoviĆ I, FilipoviĆ MR. Reactivity of manganese superoxide dismutase mimics toward superoxide and nitric oxide. ADVANCES IN INORGANIC CHEMISTRY 2012. [DOI: 10.1016/b978-0-12-396462-5.00003-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Araujo-Chaves JC, Yokomizo CH, Kawai C, Mugnol KCU, Prieto T, Nascimento OR, Nantes IL. Towards the mechanisms involved in the antioxidant action of MnIII [meso-tetrakis(4-N-methyl pyridinium) porphyrin] in mitochondria. J Bioenerg Biomembr 2011; 43:663-71. [PMID: 21986957 DOI: 10.1007/s10863-011-9382-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/08/2011] [Indexed: 01/17/2023]
Abstract
Aerobic organisms are afforded with an antioxidant enzymatic apparatus that more recently has been recognized to include cytochrome c, as it is able to prevent hydrogen peroxide generation by returning electrons from the superoxide ion back to the respiratory chain. The present study investigated the glutathione peroxidase (GPx), superoxide dismutase (SOD) and cytochrome c-like antioxidant activities of para Mn(III)TMPyP in isolated rat liver mitochondria (RLM) and mitoplasts. In RLM, Mn(III)TMPyP decreased the lipid-peroxide content associated with glutathione (GSH) depletion consistent with the use of GSH as a reducing agent for high valence states of Mn(III)TMPyP. SOD and cytochrome c antioxidant activities were also investigated. Mn(II)TMPyP was able to reduce ferric cytochrome c, indicating the potential to remove a superoxide ion by returning electrons back to the respiratory chain. In antimicyn A-poisoned mitoplasts, Mn(III)TMPyP efficiently decreased the EPR signal of DMPO-OH adduct concomitant with GSH depletion. The present results are consistent with SOD and GPx activities for Mn(III)TMPyP and do not exclude cytochrome c-like activity. However, considering that para Mn(III)TMPyP more efficiently reduces, rather than oxidizes, superoxide ion; electron transfer from the Mn(II)TMPyP to the respiratory chain might not significantly contribute to the superoxide ion removal, since most of Mn(II)TMPyP is expected to be produced at the expense of NADPH/GSH oxidation. The present results suggest GPx-like activity to be the principal antioxidant mechanism of Mn(III)TMPyP, whose efficiency is dependent on the NADPH/GSH content in cells.
Collapse
Affiliation(s)
- Juliana C Araujo-Chaves
- Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes-UMC, Mogi das Cruzes, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Li H, Wang Y, Pazhanisamy SK, Shao L, Batinic-Haberle I, Meng A, Zhou D. Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression. Free Radic Biol Med 2011; 51:30-7. [PMID: 21565268 PMCID: PMC3390209 DOI: 10.1016/j.freeradbiomed.2011.04.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 04/05/2011] [Accepted: 04/08/2011] [Indexed: 12/28/2022]
Abstract
Our recent studies showed that total body irradiation (TBI) induces long-term bone marrow (BM) suppression in part by induction of hematopoietic stem cell (HSC) senescence through reactive oxygen species (ROS). In this study, we examined if Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin (MnTE), a superoxide dismutase mimetic and potent antioxidant, can mitigate TBI-induced long-term BM injury in a mouse model. Our results showed that post-TBI treatment with MnTE significantly inhibited the increases in ROS production and DNA damage in HSCs and the reduction in HSC frequency and clonogenic function induced by TBI. In fact, the clonogenic function of HSCs from irradiated mice after MnTE treatment was comparable to that of HSCs from normal controls on a per-HSC basis, suggesting that MnTE treatment inhibited the induction of HSC senescence by TBI. This suggestion is supported by the finding that MnTE treatment also reduced the expression of p16(Ink4a) (p16) mRNA in HSCs induced by TBI and improved the long-term and multilineage engraftment of irradiated HSCs after transplantation. Therefore, the results from this study demonstrate that MnTE has the potential to be used as a therapeutic agent to mitigate TBI-induced long-term BM suppression by inhibiting ionizing radiation-induced HSC senescence through the ROS-p16 pathway.
Collapse
Affiliation(s)
- Hongliang Li
- Department of Biochemistry and Molecular Biology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Pathology, Medical University of South Carolina, Charleston, SC
- Division of Radiation Health, Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Yong Wang
- Department of Pathology, Medical University of South Carolina, Charleston, SC
| | - Senthil K. Pazhanisamy
- Department of Pathology, Medical University of South Carolina, Charleston, SC
- Division of Radiation Health, Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lijian Shao
- Department of Pathology, Medical University of South Carolina, Charleston, SC
- Division of Radiation Health, Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Aimin Meng
- Department of Biochemistry and Molecular Biology, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Daohong Zhou
- Department of Pathology, Medical University of South Carolina, Charleston, SC
- Division of Radiation Health, Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
25
|
Aird KM, Allensworth JL, Batinic-Haberle I, Lyerly HK, Dewhirst MW, Devi GR. ErbB1/2 tyrosine kinase inhibitor mediates oxidative stress-induced apoptosis in inflammatory breast cancer cells. Breast Cancer Res Treat 2011; 132:109-19. [PMID: 21559822 DOI: 10.1007/s10549-011-1568-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Overexpression of epidermal growth factor receptors (ErbB) is frequently seen in inflammatory breast cancer (IBC). Treatment with ErbB1/2-targeting agents (lapatinib) mediates tumor apoptosis by downregulating ErbB1/2 phosphorylation and downstream survival signaling. In this study, using carboxy-H(2)DCFDA, DHE, and MitoSOX Red to examine changes in hydrogen peroxide radicals, cytoplasmic and mitochondrial superoxide, respectively, we observed that GW583340 (a lapatinib-analog) increases reactive oxygen species (ROS) in two models of IBC (SUM149, SUM190) that are sensitive to ErbB1/2 blockade. This significant increase in ROS levels was similar to those generated by classical oxidative agents H(2)O(2) and paraquat. In contrast, minimal to basal levels of ROS were measured in a clonal population of GW583340-resistant IBC cells (rSUM149 and rSUM190). The GW583340-resistant IBC cells displayed increased SOD1, SOD2, and glutathione expression, which correlated with decreased sensitivity to the apoptotic-inducing effects of GW583340, H(2)O(2), and paraquat. The ROS increase and cell death in the GW583340-sensitive cells was reversed by simultaneous treatment with a superoxide dismutase (SOD) mimic. Additionally, overcoming the high levels of antioxidants using redox modulators induced apoptosis in the GW583340-resistant cells. Taken together, these data demonstrate a novel mechanism of lapatinib-analog-induced apoptosis and indicate that resistant cells have increased antioxidant potential, which can be overcome by treatment with SOD modulators.
Collapse
Affiliation(s)
- Katherine M Aird
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
26
|
Leu BM, Sage JT, Silvernail NJ, Scheidt WR, Alatas A, Alp EE, Sturhahn W. Bulk Modulus of a Protein Active-Site Mimic. J Phys Chem B 2011; 115:4469-73. [DOI: 10.1021/jp112007z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bogdan M. Leu
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| | - J. Timothy Sage
- Department of Physics, Northeastern University, Boston, Massachusetts, United States
| | - Nathan J. Silvernail
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States
| | - W. Robert Scheidt
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States
| | - Ahmet Alatas
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| | - Ercan E. Alp
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| | - Wolfgang Sturhahn
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, United States
| |
Collapse
|
27
|
Abstract
Mitochondria are primary loci for the intracellular formation and reactions of reactive oxygen and nitrogen species including superoxide (O₂•⁻), hydrogen peroxide (H₂O₂) and peroxynitrite (ONOO⁻). Depending on formation rates and steady-state levels, the mitochondrial-derived short-lived reactive species contribute to signalling events and/or mitochondrial dysfunction through oxidation reactions. Among relevant oxidative modifications in mitochondria, the nitration of the amino acid tyrosine to 3-nitrotyrosine has been recognized in vitro and in vivo. This post-translational modification in mitochondria is promoted by peroxynitrite and other nitrating species and can disturb organelle homeostasis. This study assesses the biochemical mechanisms of protein tyrosine nitration within mitochondria, the main nitration protein targets and the impact of 3-nitrotyrosine formation in the structure, function and fate of modified mitochondrial proteins. Finally, the inhibition of mitochondrial protein tyrosine nitration by endogenous and mitochondrial-targeted antioxidants and their physiological or pharmacological relevance to preserve mitochondrial functions is analysed.
Collapse
Affiliation(s)
- Laura Castro
- Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | |
Collapse
|
28
|
Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Julio R, Batinic-Haberle I, Vujaskovic Z. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med 2010; 48:1034-43. [PMID: 20096348 PMCID: PMC3704177 DOI: 10.1016/j.freeradbiomed.2010.01.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 01/06/2010] [Accepted: 01/13/2010] [Indexed: 12/25/2022]
Abstract
Chronic production of reactive oxygen and nitrogen species is an underlying mechanism of irradiation (IR)-induced lung injury. The purpose of this study was to determine the optimum time of delivery of an antioxidant and redox-modulating Mn porphyrin, MnTE-2-PyP(5+), to mitigate and/or treat IR-induced lung damage. Female Fischer-344 rats were irradiated to their right hemithorax (28 Gy). Irradiated animals were treated with PBS or MnTE-2-PyP(5+) (6 mg /kg/24 h) delivered for 2 weeks by sc-implanted osmotic pumps (beginning after 2, 6, 12, 24, or 72 h or 8 weeks). Animals were sacrificed 10 weeks post-IR. Endpoints were body weight, breathing frequency, histopathology, and immunohistochemistry (8-OHdG, ED-1, TGF-beta, HIF-1alpha, VEGF A). A significant radioprotective effect on functional injury, measured by breathing frequency, was observed for all animals treated with MnTE-2-PyP(5+). Treatment with MnTE-2-PyP(5+) starting 2, 6, and 12 h but not after 24 or 72 h resulted in a significant decrease in immunostaining for 8-OHdG, HIF-1alpha, TGF-beta, and VEGF A. A significant decrease in HIF-1alpha, TGF-beta, and VEGF A, as well as an overall reduction in lung damage (histopathology), was observed in animals beginning treatment at the time of fully developed lung injury (8 weeks post-IR). The catalytic manganese porphyrin antioxidant and modulator of redox-based signaling pathways MnTE-2-PyP(5+) mitigates radiation-induced lung injury when given within the first 12 h after IR. More importantly, this is the first study to demonstrate that MnTE-2-PyP(5+) can reverse overall lung damage when started at the time of established lung injury 8 weeks post-IR. The radioprotective effects are presumably mediated through its ability both to suppress oxidative stress and to decrease activation of key transcription factors and proangiogenic and profibrogenic cytokines.
Collapse
Affiliation(s)
- Benjamin Gauter-Fleckenstein
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
- Department for Anesthesiology and Intensive Care Medicine, Mannheim Medical Center, Heidelberg University, Mannheim, Germany
| | - Katharina Fleckenstein
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
- Department of Radiation Oncology, Mannheim Medical Center, Heidelberg University, Mannheim, Germany
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710
- Biostatistics and Computational Biology Core, RadCCORE, Duke University Medical Center
| | - Chen Jiang
- Biostatistics and Computational Biology Core, RadCCORE, Duke University Medical Center
| | - Reboucas Julio
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| | - Zeljko Vujaskovic
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
29
|
Budimir A, Kalmár J, Fábián I, Lente G, Bányai I, Batinić-Haberle I, Birus M. Water exchange rates of water-soluble manganese(III) porphyrins of therapeutical potential. Dalton Trans 2010; 39:4405-10. [PMID: 20422097 DOI: 10.1039/b926522h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activation parameters and the rate constants of the water-exchange reactions of Mn(III)TE-2-PyP(5+) (meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin) as cationic, Mn(III)TnHex-2-PyP(5+) (meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin) as sterically shielded cationic, and Mn(III)TSPP(3-) (meso-tetrakis(4-sulfonatophenyl)porphyrin) as anionic manganese(iii) porphyrins were determined from the temperature dependence of (17)O NMR relaxation rates. The rate constants at 298 K were obtained as 4.12 x 10(6) s(-1), 5.73 x 10(6) s(-1), and 2.74 x 10(7) s(-1), respectively. On the basis of the determined entropies of activation, an interchange-dissociative mechanism (I(d)) was proposed for the cationic complexes (DeltaS(double dagger) = approximately 0 J mol(-1) K(-1)) whereas a limiting dissociative mechanism (D) was proposed for Mn(III)TSPP(3-) complex (DeltaS(double dagger) = +79 J mol(-1) K(-1)). The obtained water exchange rate of Mn(III)TSPP(3-) corresponded well to the previously assumed value used by Koenig et al. (S. H. Koenig, R. D. Brown and M. Spiller, Magn. Reson. Med., 1987, 4, 52-260) to simulate the (1)H NMRD curves, therefore the measured value supports the theory developed for explaining the anomalous relaxivity of Mn(III)TSPP(3-) complex. A magnitude of the obtained water-exchange rate constants further confirms the suggested inner sphere electron transfer mechanism for the reactions of the two positively charged Mn(iii) porphyrins with the various biologically important oxygen and nitrogen reactive species. Due to the high biological and clinical relevance of the reactions that occur at the metal site of the studied Mn(iii) porphyrins, the determination of water exchange rates advanced our insight into their efficacy and mechanism of action, and in turn should impact their further development for both diagnostic (imaging) and therapeutic purposes.
Collapse
Affiliation(s)
- Ana Budimir
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovacića 1, 10000, Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
30
|
Pearlstein RD, Higuchi Y, Moldovan M, Johnson K, Fukuda S, Gridley DS, Crapo JD, Warner DS, Slater JM. Metalloporphyrin antioxidants ameliorate normal tissue radiation damage in rat brain. Int J Radiat Biol 2010; 86:145-63. [DOI: 10.3109/09553000903419965] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Comhair SAA, Erzurum SC. Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2010; 12:93-124. [PMID: 19634987 PMCID: PMC2824520 DOI: 10.1089/ars.2008.2425] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An imbalance in reducing and oxidizing (redox) systems favoring a more oxidative environment is present in asthma and linked to the pathophysiology of the defining symptoms and signs including airflow limitation, hyper-reactivity, and airway remodeling. High levels of hydrogen peroxide, nitric oxide ((*)NO), and 15-F(2t)-isoprostane in exhaled breath, and excessive oxidative protein products in lung epithelial lining fluid, peripheral blood, and urine provide abundant evidence for pathologic oxidizing processes in asthma. Parallel studies document loss of reducing potential by nonenzymatic and enzymatic antioxidants. The essential first line antioxidant enzymes superoxide dismutases (SOD) and catalase are reduced in asthma as compared to healthy individuals, with lowest levels in those patients with the most severe asthma. Loss of SOD and catalase activity is related to oxidative modifications of the enzymes, while other antioxidant gene polymorphisms are linked to susceptibility to develop asthma. Monitoring of exhaled (*)NO has entered clinical practice because it is useful to optimize asthma care, and a wide array of other biochemical oxidative and nitrative biomarkers are currently being evaluated for asthma monitoring and phenotyping. Novel therapeutic strategies that target correction of redox abnormalities show promise for the treatment of asthma.
Collapse
Affiliation(s)
- Suzy A A Comhair
- Pathobiology, Lerner Research Institute, and the Respiratory Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
32
|
Tauskela JS, Brunette E. Neuroprotection against staurosporine by metalloporphyrins independent of antioxidant capability. Neurosci Lett 2009; 466:41-6. [PMID: 19766169 DOI: 10.1016/j.neulet.2009.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/26/2009] [Accepted: 09/14/2009] [Indexed: 11/29/2022]
Abstract
Metalloporphyrin catalytic antioxidants are remarkably useful in protecting cells and tissues in a wide array of disease models, attributed primarily to functioning as superoxide dismutase (SOD) mimetics or by scavenging other reactive oxygen species (ROS). However, we recently showed that neuroprotection against Ca(2+)-dependent excitotoxic insults did not correlate with antioxidant strength or capability [25], raising the question of whether scavenging of ROS underlies neuroprotection in other types of neuronal injury. The protein kinase inhibitor staurosporine causes neuronal demise primarily by apoptosis. Neuroprotection from staurosporine by a limited number of metalloporphyrin antioxidants has previously been attributed to antioxidant action. In the current study, a wide array of anionic and cationic metalloporphyrins and porphyrins, ranging in antioxidant strength or capability, provided protection against staurosporine in cortical neuron and cerebellar granule neuron (CGN) culture. Neuroprotection did not correlate with antioxidant strength or capability. In CGN but not cortical neuron cultures, NMDA receptor antagonists also prevented neurotoxicity, so metalloporphyrins may also target this secondary mode of death induced by staurosporine. Neuroprotection observed with antioxidant-inactive controls raises the possibility of an additional, or perhaps alternative, mechanism by antioxidant analogs not involving ROS scavenging.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council, Institute for Biological Sciences, Synaptic Therapies & Devices Group, Montreal Rd. Campus, Ottawa, ON, Canada K1A 0R6.
| | | |
Collapse
|
33
|
Rabbani ZN, Salahuddin FK, Yarmolenko P, Batinic-Haberle I, Thrasher BA, Gauter-Fleckenstein B, Dewhirst MW, Anscher MS, Vujaskovic Z. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic Res 2008; 41:1273-82. [PMID: 17957541 DOI: 10.1080/10715760701689550] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objective of this study was to determine whether administration of a catalytic antioxidant, Mn(III) tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin, AEOL10150, reduces the severity of long-term lung injury induced by fractionated radiation (RT). Fisher 344 rats were randomized into five groups: RT+AEOL10150 (2.5 mg/kg BID), AEOL10150 (2.5 mg/kg BID) alone, RT+ AEOL10150 (5 mg/kg BID), AEOL10150 (5 mg/kg BID) alone and RT alone. Animals received five 8 Gy fractions of RT to the right hemithorax. AEOL10150 was administered 15 min before RT and 8 h later during the period of RT treatment (5 days), followed by subcutaneous injections for 30 days, twice daily. Lung histology at 26 weeks revealed a significant decrease in lung structural damage and collagen deposition in RT+AEOL10150 (5 mg/kg BID) group, in comparison to RT alone. Immunohistochemistry studies revealed a significant reduction in tissue hypoxia (HIF1alpha, CAIX), angiogenic response (VEGF, CD-31), inflammation (ED-1), oxidative stress (8-OHdG, 3-nitrotyrosine) and fibrosis pathway (TGFbeta1, Smad3, p-Smad2/3), in animals receiving RT+ AEOL10150 (5 mg/kg BID). Administration of AEOL10150 at 5 mg/kg BID during and after RT results in a significant protective effect from long-term RT-induced lung injury. Low dose (2.5 mg/kg BID) delivery of AEOL10150 has no beneficial radioprotective effects.
Collapse
Affiliation(s)
- Zahid N Rabbani
- Department of Radiation Oncology, Durham Regional Hospital/Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Batinic-Haberle I, Vujaskovic Z. Comparison of two Mn porphyrin-based mimics of superoxide dismutase in pulmonary radioprotection. Free Radic Biol Med 2008; 44:982-9. [PMID: 18082148 PMCID: PMC3684016 DOI: 10.1016/j.freeradbiomed.2007.10.058] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 02/02/2023]
Abstract
Development of radiation therapy (RT)-induced lung injury is associated with chronic production of reactive oxygen and nitrogen species (ROS/RNS). MnTE-2-PyP5+ is a catalytic Mn porphyrin mimic of SOD, already shown to protect lungs from RT-induced injury by scavenging ROS/RNS. The purpose of this study was to compare MnTE-2-PyP5+ with a newly introduced analogue MnTnHex-2-PyP5+, which is expected to be a more effective radioprotector due to its lipophilic properties. This study shows that Fischer rats which were irradiated to their right hemithorax (28 Gy) have less pulmonary injury as measured using breathing frequencies when treated with daily subcutaneous injections of MnTE-2-PyP5+ (3 and 6 mg/kg) or MnTnHex-2-PyP5+ (0.3, 0.6, or 1.0 mg/kg) for 2 weeks after RT. However, at 16 weeks post-RT, only MnTE-2-PyP5+ at a dose of 6 mg/kg is able to ameliorate oxidative damage, block activation of HIF-1alpha and TGF-beta, and impair upregulation of CA-IX and VEGF. MnTnHex-2-PyP5+ at a dose of 0.3 mg/kg is effective only in reducing RT-induced TGF-beta and CA-IX expression. Significant loss of body weight was observed in animals receiving MnTnHex-2-PyP5+ (0.3 and 0.6 mg/kg). MnTnHex-2-PyP5+ has the ability to dissolve lipid membranes, causing local irritation/necrosis at injection sites if given at doses of 1 mg/kg or higher. In conclusion, both compounds show an ability to ameliorate lung damage as measured using breathing frequencies and histopathologic evaluation. However, MnTE-2-PyP5+ at 6 mg/kg proved to be more effective in reducing expression of key molecular factors known to play an important role in radiation-induced lung injury.
Collapse
|
35
|
Samai M, Hague T, Naughton DP, Gard PR, Chatterjee PK. Reduction of paraquat-induced renal cytotoxicity by manganese and copper complexes of EGTA and EHPG. Free Radic Biol Med 2008; 44:711-21. [PMID: 18067869 DOI: 10.1016/j.freeradbiomed.2007.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potential of two novel SODm, manganese(II) and copper(II) complexes of the calcium chelator ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and of the contrast agent ethylenebis(hydroxyphenylglycine) (EHPG), against paraquat-induced renal toxicity in vitro. Incubation of renal NRK-52E cells with paraquat (1 mM) for 24 h produced submaximal, yet significant, reduction in cellular viability and cell death and produced significant increases in superoxide anion and hydroxyl radical generation. Manganese and copper complexes of EGTA (10-100 microM) and EHPG (30-100 microM) reduced paraquat-induced renal cell toxicity and reduced superoxide anion and hydroxyl radical generation significantly. Manganese complexes displayed greater efficacy than copper complexes and, at equivalent concentrations, manganese complexed with EHPG provided the greatest protection. Furthermore, these metal complexes did not interfere with the uptake of [methyl-(14)C]paraquat into NRK-52E cells, suggesting that they provided protection against paraquat cytotoxicity via intracellular mechanisms. These complexes did not display cytotoxicity at the concentrations examined. Together, these results suggest that manganese and copper complexes of EGTA and EHPG, and especially the manganese-EHPG complex, could provide benefit against paraquat nephrotoxicity.
Collapse
Affiliation(s)
- Mohamed Samai
- Department of Pharmacology and Therapeutics, University of Brighton, Brighton, East Sussex BN2 4GJ, UK
| | | | | | | | | |
Collapse
|
36
|
Lahaye D, Muthukumaran K, Hung CH, Gryko D, Rebouças JS, Spasojević I, Batinić-Haberle I, Lindsey JS. Design and synthesis of manganese porphyrins with tailored lipophilicity: investigation of redox properties and superoxide dismutase activity. Bioorg Med Chem 2007; 15:7066-86. [PMID: 17822908 PMCID: PMC2111292 DOI: 10.1016/j.bmc.2007.07.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/15/2007] [Accepted: 07/17/2007] [Indexed: 12/17/2022]
Abstract
Thirteen new manganese porphyrins and two porphodimethenes bearing one to three different substituents at the meso positions in a variety of architectures have been synthesized. The substituents employed generally are (i) electron-withdrawing to tune the reduction potential to the desirable range (near +0.3V vs NHE), and/or (ii) lipophilic to target the interior of lipid bilayer membranes and/or the blood-brain barrier. The influence of the substituents on the Mn(III)/Mn(II) reduction potentials has been characterized, and the superoxide dismutase activity of the compounds has been examined.
Collapse
Affiliation(s)
- Dorothée Lahaye
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | | | - Chen-Hsiung Hung
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Dorota Gryko
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695
| | - Júlio S. Rebouças
- Department of Radiation Oncology, Duke University Medical School, Durham, NC, 27710
| | - Ivan Spasojević
- Department of Medicine, Duke University Medical School, Durham, NC, 27710
| | - Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, NC, 27710
| | | |
Collapse
|
37
|
Spasojevic I, Chen Y, Noel TJ, Yu Y, Cole MP, Zhang L, Zhao Y, St Clair DK, Batinic-Haberle I. Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria. Free Radic Biol Med 2007; 42:1193-200. [PMID: 17382200 PMCID: PMC1931511 DOI: 10.1016/j.freeradbiomed.2007.01.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 11/21/2022]
Abstract
The Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnIIITE-2-PyP5+ (AEOL-10113) has proven effective in treating oxidative stress-induced conditions including cancer, radiation damage, diabetes, and central nervous system trauma. The ortho cationic pyridyl nitrogens of MnTE-2-PyP5+ are essential for its high antioxidant potency. The exceptional ability of MnIIITE-2-PyP5+ to dismute O2.- parallels its ability to reduce ONOO- and CO3-. Decreasing levels of these species are considered its predominant mode of action, which may also involve redox regulation of signaling pathways. Recently, Ferrer-Sueta at al. (Free Radic. Biol. Med. 41:503-512; 2006) showed, with submitochondrial particles, that>or=3 microM MnIIITE-2-PyP5+ was able to protect components of the mitochondrial electron transport chain from peroxynitrite-mediated damage. Our study complements their data in showing, for the first time that micromolar mitochondrial concentrations of MnIIITE-2-PyP5+ are obtainable in vivo. For this study we have developed a new and sensitive method for MnIIITE-2-PyP5+ determination in tissues. The method is based on the exchange of porphyrin Mn2+ with Zn2+, followed by the HPLC/fluorescence detection of ZnIITE-2-PyP4+. At 4 and 7 h after a single 10 mg/kg intraperitoneal administration of MnIIITE-2-PyP5+, the mice (8 in total) were anesthetized and perfused with saline. Mitochondria were then isolated by the method of Mela and Seitz (Methods Enzymol.55:39-46; 1979). We found MnIIITE-2-PyP5+ localized in heart mitochondria to 2.95 ng/mg protein. Given the average value of mitochondrial volume of 0.6 microL/mg protein, the calculated MnIIITE-2-PyP5+ concentration is 5.1 microM, which is sufficient to protect mitochondria from oxidative damage. This study establishes, for the first time, that MnIIITE-2-PyP5+, a highly charged metalloporphyrin, is capable of entering mitochondria in vivo at levels sufficient to exert there its antioxidant action; such a result encourages its development as a prospective therapeutic agent.
Collapse
Affiliation(s)
- Ivan Spasojevic
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Yumin Chen
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Teresa J. Noel
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Yiqun Yu
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Marsha P. Cole
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Lichun Zhang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| | - Yunfeng Zhao
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Daret K. St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
38
|
Salvemini D, Doyle TM, Cuzzocrea S. Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation. Biochem Soc Trans 2006; 34:965-70. [PMID: 17052238 DOI: 10.1042/bst0340965] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A considerable body of evidence suggests that formation of potent reactive oxygen species and resulting oxidative/nitrative stress play a major role in acute and chronic inflammation and pain. Much of the knowledge in this field has been gathered by the use of pharmacological and genetic approaches. In this mini review, we will evaluate recent advances made towards understanding the roles of reactive oxygen species in inflammation, focusing in particular on superoxide and peroxynitrite. Given the limited space to cover this broad topic, here we will refer the reader to comprehensive review articles whenever possible.
Collapse
Affiliation(s)
- D Salvemini
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Saint Louis University School of Medicine, 3635 Vista Avenue, St. Louis, MO 63110-0250, USA.
| | | | | |
Collapse
|
39
|
Snelgrove RJ, Edwards L, Williams AE, Rae AJ, Hussell T. In the absence of reactive oxygen species, T cells default to a Th1 phenotype and mediate protection against pulmonary Cryptococcus neoformans infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:5509-16. [PMID: 17015737 DOI: 10.4049/jimmunol.177.8.5509] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In recent years, the prevalence of invasive fungal infections has increased, attributed mostly to the rising population of immunocompromised individuals. Cryptococcus neoformans has been one of the most devastating, with an estimated 6-8% of AIDS-infected patients succumbing to Cryptococcus-associated meningitis. Reactive oxygen species (ROS) are potent antimicrobial agents but also play a significant role in regulating immune cell phenotype, but cause immunopathology when produced in excess. We now show that mice lacking phagocyte NADPH oxidase have heightened macrophage and Th1 responses and improved pathogen containment within pulmonary granulomatous lesions. Consequently, dissemination of this fungus to the brain is diminished, an effect that is independent of IL-12. Similar results are described using the metalloporphyrin antioxidant manganese(III) tetrakis(N-ethyl pyridinium-2-yl)porphyrin, which also promoted a protective Th1 response and reduced dissemination to the brain. These findings are in sharp contrast to the protective potential of ROS against other fungal pathogens, and highlight the pivotal role that ROS can fulfill in shaping the profile of the host's immune response.
Collapse
Affiliation(s)
- Robert J Snelgrove
- Kennedy Institute of Rheumatology, Imperial College London, Hammersmith, London, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Snelgrove RJ, Edwards L, Rae AJ, Hussell T. An absence of reactive oxygen species improves the resolution of lung influenza infection. Eur J Immunol 2006; 36:1364-73. [PMID: 16703568 DOI: 10.1002/eji.200635977] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three influenza virus pandemics occurred in the last century, in 1918 killing 40-50 million people. In the absence of strain-specific vaccines, with potential resistance to antivirals and the threat of an imminent pandemic, strategies that alleviate symptoms are a priority. Reactive oxygen species are potent antimicrobial agents but cause immunopathology when produced in excess. Mice lacking a functional phagocyte NADPH oxidase (Cybb tm1 mice) or treated with the metalloporphyrin antioxidant manganese (III) tetrakis (N-ethyl pyridinium-2-yl) porpyhrin (MnTE-2-PyP) show heightened inflammatory infiltrates in their airways in response to pulmonary influenza infection, with augmented macrophage populations and a Th1-skewed T cell infiltrate. Underlying this exuberant macrophage response was a significant reduction in apoptosis and down-regulation of the myeloid inhibitory molecule CD200. Both, Cybb tm1 and MnTE-2-PyP-treated mice exhibited a reduced influenza titer in the lung parenchyma. Inflammatory infiltrate into the lung parenchyma was markedly reduced and lung function significantly improved. Manipulation of the homeostatic control of myeloid cells by inflammatory mediators therefore represents a novel therapeutic strategy in the treatment of influenza virus infection.
Collapse
Affiliation(s)
- Robert J Snelgrove
- Kennedy Institute of Rheumatology, Imperial College London, Hammersmith, UK
| | | | | | | |
Collapse
|
41
|
Leinenweber SB, Sheng H, Lynch JR, Wang H, Batinić-Haberle I, Laskowitz DT, Crapo JD, Pearlstein RD, Warner DS. Effects of a manganese (III) porphyrin catalytic antioxidant in a mouse closed head injury model. Eur J Pharmacol 2006; 531:126-32. [PMID: 16455070 DOI: 10.1016/j.ejphar.2005.12.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Closed head injury induces cerebral oxidative stress. The efficacy of a Mn (III) porphyrin catalytic antioxidant was assessed in a mouse closed head injury model. Mice were subjected to closed head injury and treated 15 min later with an i.v. bolus of vehicle or 3 mg/kg MnTE-2-PyP5+. Aconitase activity, Fluoro-Jade staining, glial fibrillary acidic protein immunoreactivity, and rotarod falling latencies were measured. Closed head injury altered all variables. MnTE-2-PyP5+ had no effect on any variable with the exception of attenuation of aconitase inactivation at 2 h post-closed head injury. In a second experiment, mice received 3 mg/kg or 6 mg/kg MnTE-2-PyP5+ or vehicle i.v. 15 min post-closed head injury. Rotarod and Morris water maze latencies were measured. Closed head injury altered performance in both tests. No statistically significant effect of MnTE-2-PyP5+ was observed. We conclude that single dose MnTE-2-PyP5+ does not alter outcome in this mouse closed head injury model.
Collapse
|
42
|
Batinić-Haberle I, Spasojević I, Stevens RD, Bondurant B, Okado-Matsumoto A, Fridovich I, Vujasković Z, Dewhirst MW. New PEG-ylated Mn(iii) porphyrins approaching catalytic activity of SOD enzyme. Dalton Trans 2006:617-24. [PMID: 16402149 DOI: 10.1039/b513761f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two new tri(ethyleneglycol)-derivatized Mn(III) porphyrins were synthesized with the aim of increasing their bioavailability, and blood-circulating half-life. These are Mn(III) tetrakis(N-(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)pyridinium-2-yl)porphyrin, MnTTEG-2-PyP5+ and Mn(III) tetrakis(N,N'-di(1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)imidazolium-2-yl)porphyrin, MnTDTEG-2-ImP5+. Both porphyrins have ortho pyridyl or di-ortho imidazolyl electron-withdrawing substituents at meso positions of the porphyrin ring that assure highly positive metal centered redox potentials, E1/2 = +250 mV vs. NHE for MnTTEG-2-PyP5+ and E1/2 = + 412 mV vs. NHE for MnTDTEG-2-ImP5+. As expected, from established E1/2 vs. log kcat(O2 *-) structure-activity relationships for metalloporphyrins (Batinic-Haberle et al., Inorg. Chem., 1999, 38, 4011), both compounds exhibit higher SOD-like activity than any meso-substituted Mn(III) porphyrins-based SOD mimic thus far, log kcat = 8.11 (MnTTEG-2-PyP5+) and log kcat = 8.55 (MnTDTEG-2-ImP5+), the former being only a few-fold less potent in disproportionating O2*- than the SOD enzyme itself. The new porphyrins are stable to both acid and EDTA, and non toxic to E. coli. Despite elongated substituents, which could potentially lower their ability to cross the cell wall, MnTTEG-2-PyP5+ and MnTDTEG-2-ImP5+ exhibit similar protection of SOD-deficient E. coli as their much smaller ethyl analogues MnTE-2-PyP5+ and MnTDE-2-ImP5+, respectively. Consequently, with anticipated increased blood-circulating half-life, these new Mn(III) porphyrins may be more effective in ameliorating oxidative stress injuries than ethyl analogues that have been already successfully explored in vivo.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical School, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Moeller BJ, Batinic-Haberle I, Spasojevic I, Rabbani ZN, Anscher MS, Vujaskovic Z, Dewhirst MW. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness. Int J Radiat Oncol Biol Phys 2005; 63:545-52. [PMID: 16168847 DOI: 10.1016/j.ijrobp.2005.05.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 01/06/2023]
Abstract
PURPOSE To determine the effect of the superoxide dismutase mimetic Mn(III) tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)) on tumor radioresponsiveness. METHODS AND MATERIALS Various rodent tumor (4T1, R3230, B16) and endothelial (SVEC) cell lines were exposed to MnTE-2-PyP(5+) and assayed for viability and radiosensitivity in vitro. Next, tumors were treated with radiation and MnTE-2-PyP(5+)in vivo, and the effects on tumor growth and vascularity were monitored. RESULTS In vitro, MnTE-2-PyP(5+) was not significantly cytotoxic. However, at concentrations as low as 2 mumol/L it caused 100% inhibition of secretion by tumor cells of cytokines protective of irradiated endothelial cells. In vivo, combined treatment with radiation and MnTE-2-PyP(5+) achieved synergistic tumor devascularization, reducing vascular density by 78.7% within 72 h of radiotherapy (p < 0.05 vs. radiation or drug alone). Co-treatment of tumors also resulted in synergistic antitumor effects, extending tumor growth delay by 9 days (p < 0.01). CONCLUSIONS These studies support the conclusion that MnTE-2-PyP(5+), which has been shown to protect normal tissues from radiation injury, can also improve tumor control through augmenting radiation-induced damage to the tumor vasculature.
Collapse
Affiliation(s)
- Benjamin J Moeller
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Giles SS, Batinic-Haberle I, Perfect JR, Cox GM. Cryptococcus neoformans mitochondrial superoxide dismutase: an essential link between antioxidant function and high-temperature growth. EUKARYOTIC CELL 2005; 4:46-54. [PMID: 15643059 PMCID: PMC544162 DOI: 10.1128/ec.4.1.46-54.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/13/2004] [Indexed: 11/20/2022]
Abstract
Manganese superoxide dismutase is an essential component of the mitochondrial antioxidant defense system of most eukaryotes. In the present study, we used a reverse-genetics approach to assess the contribution of the Cryptococcus neoformans manganese superoxide dismutase (Sod2) for antioxidant defense. Strains with mutations in the SOD2 gene exhibited increased susceptibility to oxidative stress as well as poor growth at elevated temperatures compared to isogenic wild-type strains. The sod2Delta mutants were also avirulent in a murine model of inhaled cryptococcosis. Reconstitution of a sod2Delta mutant restored Sod2 activity, eliminated the oxidative stress and temperature-sensitive (ts) phenotypes, and complemented the virulence phenotype. Characterization of the ts phenotype revealed a dependency between Sod2 antioxidant activity and the ability of C. neoformans cells to adapt to growth at elevated temperatures. The ts phenotype could be suppressed by the addition of either ascorbic acid (10 mM) or Mn salen (200 muM) at 30 degrees C, but not at 37 degrees C. Furthermore, sod2Delta mutant cells that were incubated for 24 h at 37 degrees C under anaerobic, but not aerobic, conditions were viable when shifted to the permissive conditions of 25 degrees C in the presence of air. These data suggest that the C. neoformans Sod2 is a major component of the antioxidant defense system in this human fungal pathogen and that adaptation to growth at elevated temperatures is also dependent on Sod2 activity.
Collapse
Affiliation(s)
- Steven S Giles
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
45
|
Warner DS, Sheng H, Batinić-Haberle I. Oxidants, antioxidants and the ischemic brain. ACTA ACUST UNITED AC 2004; 207:3221-31. [PMID: 15299043 DOI: 10.1242/jeb.01022] [Citation(s) in RCA: 421] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite numerous defenses, the brain is vulnerable to oxidative stress resulting from ischemia/reperfusion. Excitotoxic stimulation of superoxide and nitric oxide production leads to formation of highly reactive products, including peroxynitrite and hydroxyl radical, which are capable of damaging lipids, proteins and DNA. Use of transgenic mutants and selective pharmacological antioxidants has greatly increased understanding of the complex interplay between substrate deprivation and ischemic outcome. Recent evidence that reactive oxygen/nitrogen species play a critical role in initiation of apoptosis, mitochondrial permeability transition and poly(ADP-ribose) polymerase activation provides additional mechanisms for oxidative damage and new targets for post-ischemic therapeutic intervention. Because oxidative stress involves multiple post-ischemic cascades leading to cell death, effective prevention/treatment of ischemic brain injury is likely to require intervention at multiple effect sites.
Collapse
Affiliation(s)
- David S Warner
- Department of Anesthesiology, The Multidisciplinary Neuroprotection Laboratories, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
46
|
Fisher AEO, Hague TA, Clarke CL, Naughton DP. Catalytic superoxide scavenging by metal complexes of the calcium chelator EGTA and contrast agent EHPG. Biochem Biophys Res Commun 2004; 323:163-7. [PMID: 15351716 DOI: 10.1016/j.bbrc.2004.08.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Indexed: 11/30/2022]
Abstract
Metal ion chelators widely used in experimental protocols and clinical diagnosis are generally assumed to be inert. We previously reported that the ubiquitous chelator EDTA has high levels of superoxide suppressing activity. Here, we report that the common chelators calcium chelator EGTA and contrast agent EHPG have significant activities in suppressing superoxide levels depending on the nature of metal ion chelated. The most active species is Mn(II)-EGTA which exhibited an IC50 value of 0.19 microM for superoxide destruction. In addition, IC50 values for Mn(II)-EHPG and 2Cu(II)-EGTA were 0.69 and 0.60 microM, respectively. In conclusion, Mn(II) and Cu(II) complexes of the common chelators EGTA and EHPG exhibit considerable superoxide scavenging activities. Caution should be employed in their use in biological systems where superoxide has a key role and they may be useful for the development of catalytic anti-oxidants.
Collapse
Affiliation(s)
- Anna E O Fisher
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton BN2 4GJ, UK
| | | | | | | |
Collapse
|
47
|
Motohashi N, Takahashi A, Mifune M, Saito Y. Inhibitory effects of water-soluble cationic manganese porphyrins on peroxynitrite-induced SOS response in Salmonella typhimurium TA4107/pSK1002. Mutat Res 2004; 554:165-74. [PMID: 15450415 DOI: 10.1016/j.mrfmmm.2004.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
We have investigated the protective effects of water-soluble cationic Mn(III) porphyrins against peroxynitrite (ONOO-)-induced DNA damage in the cells of Salmonella typhimurium TA4107/pSK1002 and lipid peroxidation of red blood cell membranes. Mn(III) tetrakis (N-methylpyridinium-4-yl) porphine (TMPyP) and the brominated form, Mn(III) octabromo-tetrakis (N-methylpyridinium-4-yl) porphine (OBTMPyP) effectively reduced the damage and peroxidation induced by N-morpholino sydnonimine (SIN-1), which gradually generates ONOO- from O2*- and *NO produced through hydrolysis. Mn(III)OBTMPyP became 10-fold more active than the non-brominated form. In the presence of authentic ONOO-, the Mn(III) porphyrins were ineffective against damage and strongly enhanced lipid peroxidation, while the coexistence of ascorbic acid inhibited peroxidation. Using a diode array spectrophotometry, the reactions of Mn(III)TMPyP with authentic ONOO- and SIN-1 were measured. Mn(III)TMPyP is known to be catalytic for ONOO- decomposition in the presence of antioxidants. OxoMn(IV)TMPyP with SIN-1 was rapidly reduced back to Mn(III) without adding any oxidants. Further, in the SIN-1 system, the concentration of NO2- and NO3- were colorimetrically determined by Griess reaction based on the two-step diazotization. NO2- increased by addition of Mn(III) porphyrin and the ratio of NO2- to NO3- was 4-7 times higher than that (1.05) of SIN-1 alone. This result suggests that O2*- from SIN-1 acts as a reductant and *NO cogenerated is oxidized to NO2-, a primarily decomposition product of *NO. Under the pathological conditions where biological antioxidants are depleted and ONOO- and O2*- are extensively generated, the Mn(III) porphyrins will effectively cycle ONOO- decomposition using O2*-.
Collapse
Affiliation(s)
- Noriko Motohashi
- Department of Radiopharmacy, Kobe Pharmaceutical University, Higashinda-Ku, Motoyamakita-machi 4-19-1, 658-8558, Japan.
| | | | | | | |
Collapse
|
48
|
Okado-Matsumoto A, Batinić-Haberle I, Fridovich I. Complementation of SOD-deficient Escherichia coli by manganese porphyrin mimics of superoxide dismutase activity. Free Radic Biol Med 2004; 37:401-10. [PMID: 15223074 DOI: 10.1016/j.freeradbiomed.2004.04.040] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/22/2004] [Accepted: 04/28/2004] [Indexed: 11/20/2022]
Abstract
Cationic Mn(III) porphyrins substituted on the methine bridge carbons (meso positions) with N-alkylpyridinium or N,N'-diethylimidazolium groups have been prepared and characterized, both chemically and as SOD mimics. The ortho tetrakis N-methylpyridinium compound was substantially more active than the corresponding para isomer. This ortho compound also exhibited a more positive redox potential and greater ability to facilitate the aerobic growth of a SOD-deficient Escherichia coli. Analogs with longer alkyl side chains and with methoxyethyl side chains, as well as with N,N'-diethylimidazolium and N,N'-dimethoxyethylimidazolium groups on the meso positions, have been prepared in anticipation of greater penetration of the cells due to greater lipophilicity. We now report that the more lipophilic compounds were effective at complementing the SOD-deficient E. coli at lower concentrations than were needed with the less lipophilic compounds. The greater efficacy of the more lipophilic compounds was achieved at the cost of greater toxicity that became apparent when these compounds were applied at higher concentrations.
Collapse
|
49
|
Sheng H, Spasojevic I, Warner DS, Batinic-Haberle I. Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy. Neurosci Lett 2004; 366:220-5. [PMID: 15276251 DOI: 10.1016/j.neulet.2004.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/15/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
This study evaluated the effects of the cationic manganese(III) tetrakis(N,N'-diethylimidazolium-2-yl)porphyrin catalytic antioxidant Mn(III)TDE-2-ImP5+ (AEOL 10150) on outcome from spinal cord compression (SCC) in the mouse. C57BL/6J mice were subjected to 60 min thoracic SCC after discontinuation of halothane anesthesia. In Experiment 1, mice were given intravenous Mn(III)TDE-2-ImP5+ (0.5 mg/kg bolus followed by 1 mg kg(-1) h(-1) for 24 h), methylprednisolone (30 mg/kg bolus followed by 5.4 mg kg(-1) h(-1) for 24 h), or vehicle (n = 25 per group). In Experiment 2, mice were given intrathecal Mn(III)TDE-2-ImP5+ (2.5 or 5.0 microg/kg) or vehicle (n = 18 per group). In both experiments, treatment began 5 min post-SCC onset. Rotarod performance was measured on post-SCC days 3, 7, 14, and 21. On post-SCC day 21, the spinal cord was histologically examined and a total damage score was calculated. Neither intravenous Mn(III)TDE-2-ImP5+ nor methylprednisolone altered rotarod performance (accelerated rate P = 0.11, fixed rate P = 0.11) or mean +/- S.D. total damage score (Mn(III)TDE-2-ImP5+ = 21 +/- 9, methylprednisolone = 24 +/- 8, vehicle = 22 +/- 10; P = 0.47; shams = 0). Intrathecal Mn(III)TDE-2-ImP5+ (both 2.5 and 5.0 microg) given at SCC-onset improved rotarod performance (P = 0.05) and total damage score (2.5 microg = 19 +/- 10, P = 0.04; 5.0 microg =19 +/- 8, P = 0.03) versus vehicle (26 +/- 10). These studies demonstrate sustained benefit from manganese(III) porphyrin catalytic antioxidant therapy after SCC. However, efficacy was dependent upon route of administration suggesting that bioavailability is critical in defining efficacy.
Collapse
Affiliation(s)
- Huaxin Sheng
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
50
|
Batinić-Haberle I, Spasojević I, Stevens RD, Hambright P, Neta P, Okado-Matsumoto A, Fridovich I. New class of potent catalysts of O2.-dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins. Dalton Trans 2004:1696-702. [PMID: 15252564 DOI: 10.1039/b400818a] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three new Mn(III) porphyrin catalysts of O2.-dismutation (superoxide dismutase mimics), bearing ether oxygen atoms within their side chains, were synthesized and characterized: Mn(III) 5,10,15,20-tetrakis[N-(2-methoxyethyl)pyridinium-2-yl]porphyrin (MnTMOE-2-PyP(5+)), Mn(III)5,10,15,20-tetrakis[N-methyl-N'-(2-methoxyethyl)imidazolium-2-yl]porphyrin (MnTM,MOE-2-ImP(5+)) and Mn(III) 5,10,15,20-tetrakis[N,N'-di(2-methoxyethyl)imidazolium-2-yl]porphyrin (MnTDMOE-2-ImP(5+)). Their catalytic rate constants for O2.-dismutation (disproportionation) and the related metal-centered redox potentials vs. NHE are: log k(cat)= 8.04 (E(1/2)=+251 mV) for MnTMOE-2-PyP(5+), log k(cat)= 7.98 (E(1/2)=+356 mV) for MnTM,MOE-2-ImP(5+) and log k(cat)= 7.59 (E(1/2)=+365 mV) for MnTDMOE-2-ImP(5+). The new porphyrins were compared to the previously described SOD mimics Mn(III) 5,10,15,20-tetrakis(N-ethylpyridinium-2-yl)porphyrin (MnTE-2-PyP(5+)), Mn(III) 5,10,15,20-tetrakis(N-n-butylpyridinium-2-yl)porphyrin (MnTnBu-2-PyP(5+)) and Mn(III) 5,10,15,20-tetrakis(N,N'-diethylimidazolium-2-yl)porphyrin (MnTDE-2-ImP(5+)). MnTMOE-2-PyP(5+) has side chains of the same length and the same E(1/2), as MnTnBu-2-PyP(5+)(k(cat)= 7.25, E(1/2)=+ 254 mV), yet it is 6-fold more potent a catalyst of O2.-dismutation , presumably due to the presence of the ether oxygen. The log k(cat)vs. E(1/2) relationship for all Mn porphyrin-based SOD mimics thus far studied is discussed. None of the new compounds were toxic to Escherichia coli in the concentration range studied (up to 30 microM), and protected SOD-deficient E. coli in a concentration-dependent manner. At 3 microM levels, the MnTDMOE-2-ImP(5+), bearing an oxygen atom within each of the eight side chains, was the most effective and offered much higher protection than MnTE-2-PyP(5+), while MnTDE-2-ImP(5+) was of very low efficacy.
Collapse
Affiliation(s)
- Ines Batinić-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|