1
|
Zhu S, He J, Yin L, Zhou J, Lian J, Ren Y, Zhang X, Yuan J, Wang G, Li X. Matrix metalloproteinases targeting in prostate cancer. Urol Oncol 2024; 42:275-287. [PMID: 38806387 DOI: 10.1016/j.urolonc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
Prostate cancer (PCa) is one of the most common tumors affecting men all over the world. PCa has brought a huge health burden to men around the world, especially for elderly men, but its pathogenesis is unclear. In prostate cancer, epigenetic inheritance plays an important role in the development, progression, and metastasis of the disease. An important role in cancer invasion and metastasis is played by matrix metalloproteinases (MMPs), zinc-dependent proteases that break down extracellular matrix. We review two important forms of epigenetic modification and the role of matrix metalloproteinases in tumor regulation, both of which may be of significant value as novel biomarkers for early diagnosis and prognosis monitoring. The author considers that both mechanisms have promising therapeutic applications for therapeutic agent research in prostate cancer, but that efforts should be made to mitigate or eliminate the side effects of drug therapy in order to maximize quality of life of patients. The understanding of epigenetic modification, MMPs, and their inhibitors in the functional regulation of prostate cancer is gradually advancing, it will provide a new technical means for the prevention of prostate cancer, early diagnosis, androgen-independent prostate cancer treatment, and drug research.
Collapse
Affiliation(s)
- Shuying Zhu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jing He
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Liliang Yin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiawei Zhou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jiayi Lian
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Yanli Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xinling Zhang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jinghua Yuan
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Gang Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Xiaoping Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China.
| |
Collapse
|
2
|
Liu J, Zhao P, Zhang X, Gao J, Han H, Qin J. Acquired reactive perforating collagenosis triggered by trauma with eosinophilia: a case report and literature review. Front Med (Lausanne) 2024; 11:1415545. [PMID: 38988359 PMCID: PMC11233541 DOI: 10.3389/fmed.2024.1415545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Acquired reactive perforating collagenosis (ARPC) is a rare dermatological disorder condition defined by the perforation of altered collagen fibers through the epidermis. The presence of underlying conditions such as diabetes or renal disease is helpful in the ARPC diagnosis. Although skin rashes related to ARPC have been reported, the exact causative factors and mechanisms remain unclear. Here, we present a unique case of ARPC triggered by trauma in a 67-year-old male without concurrent systemic alterations. The diagnosis of ARPC with eosinophilia was made following comprehensive diagnostic testing, including clinical presentation, histological results, and blood tests, ruling out other possible diseases. Intriguingly, the histopathological examination revealed collagen penetration into the epidermis at different tissue sections. In addition, we reviewed existing literature on ARPC, which documented the causation. To help confirm the diagnosis, clinicians have to pay attention to traumatic triggers for ARPC and its rare manifestation with eosinophilia.
Collapse
Affiliation(s)
- Jie Liu
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, China
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peng Zhao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhong Zhang
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Gao
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, China
| | - Haozhi Han
- Department of Minimally Invasive Spine Surgery, The Affiliated Shanxi Provincial People's Hospital of Shanxi Medical University, Taiyuan, China
| | - Junxia Qin
- The Dermatology Department of Shanxi Provincial People's Hospital, Five Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Ye Z, Cheng P, Huang Q, Hu J, Huang L, Hu G. Immunocytes interact directly with cancer cells in the tumor microenvironment: one coin with two sides and future perspectives. Front Immunol 2024; 15:1388176. [PMID: 38840908 PMCID: PMC11150710 DOI: 10.3389/fimmu.2024.1388176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The tumor microenvironment is closely linked to the initiation, promotion, and progression of solid tumors. Among its constitutions, immunologic cells emerge as critical players, facilitating immune evasion and tumor progression. Apart from their indirect impact on anti-tumor immunity, immunocytes directly influence neoplastic cells, either bolstering or impeding tumor advancement. However, current therapeutic modalities aimed at alleviating immunosuppression from regulatory cells on effector immune cell populations may not consistently yield satisfactory results in various solid tumors, such as breast carcinoma, colorectal cancer, etc. Therefore, this review outlines and summarizes the direct, dualistic effects of immunocytes such as T cells, innate lymphoid cells, B cells, eosinophils, and tumor-associated macrophages on tumor cells within the tumor microenvironment. The review also delves into the underlying mechanisms involved and presents the outcomes of clinical trials based on these direct effects, aiming to propose innovative and efficacious therapeutic strategies for addressing solid tumors.
Collapse
Affiliation(s)
- Zhiyi Ye
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Pu Cheng
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, Anhui Medical University, Hefei, Anhui, China
| | - Jingjing Hu
- School of Medicine, Shaoxing University, Zhejiang, China
| | - Liming Huang
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital; Shaoxing Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Guoming Hu
- Department of General Surgery (Breast and Thyroid Surgery), Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Gong X, Han Z, Fan H, Wu Y, He Y, Fu Y, Zhu T, Li H. The interplay of inflammation and remodeling in the pathogenesis of chronic rhinosinusitis: current understanding and future directions. Front Immunol 2023; 14:1238673. [PMID: 37771597 PMCID: PMC10523020 DOI: 10.3389/fimmu.2023.1238673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Chronic rhinosinusitis (CRS), a common clinical condition characterized by persistent mucosal inflammation and tissue remodeling, has a complex pathogenesis that is intricately linked to innate and adaptive immunity. A number of studies have demonstrated that a variety of immune cells and cytokines that play a vital role in mediating inflammation in CRS are also involved in remodeling of the nasal mucosa and the cells as well as different cytokines involved in remodeling in CRS are also able to exert some influence on inflammation, even though the exact relationship between inflammation and remodeling in CRS has not yet been fully elucidated. In this review, the potential role of immune cells and cytokines in regulating inflammation and remodeling of CRS mucosa has been described, starting with the immune cells and cytokines that act together in inflammation and remodeling. The goal is to aid researchers in understanding intimate connection between inflammation and remodeling of CRS and to offer novel ideas for future research.
Collapse
Affiliation(s)
- Xinru Gong
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhoutong Han
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongli Fan
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Wu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuanqiong He
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yijie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Tianmin Zhu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
5
|
Majewska A, Gajewska M, Dembele K. Effect of Allergen-Specific Immunotherapy on Transcriptomic Changes in Canine Atopic Dermatitis. Int J Mol Sci 2023; 24:11616. [PMID: 37511372 PMCID: PMC10380577 DOI: 10.3390/ijms241411616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Canine atopic dermatitis (cAD) is a genetic, chronic, and recurrent inflammatory and pruritic skin disorder. Allergen-specific immunotherapy (ASIT) is presently recognized as the only clinically effective disease-modifying treatment for allergies. The aim of our study was to analyze the changes in gene expression observed in the peripheral blood nuclear cells of cAD patients subjected to ASIT. Blood samples designated for transcriptomic analyses were collected from AD dogs twice, before and six months after ASIT, and also from healthy dogs. Statistical analysis revealed 521 differentially expressed transcripts, among which 241 transcripts represented genes with well-described functions. Based on the available literature, we chose nine differentially expressed genes (RARRES2, DPP10, SLPI, PLSCR4, MMP9, NTSR1, CBD103, DEFB122, and IL36G) which may be important in the context of the dysregulated immune response observed in cAD patients. The expressions of five out of the nine described genes (DPP10, PLSCR4, NTSR1, DEFB122, and IL36G) changed after the application of ASIT. The expressions of three of these genes returned to the level observed in the healthy control group. The genes listed above need further investigation to determine details of their role in the molecular mechanism of immune tolerance induction in response to allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Alicja Majewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kourou Dembele
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
6
|
Limberg MM, Weihrauch T, Gray N, Ernst N, Hartmann K, Raap U. Eosinophils, Basophils, and Neutrophils in Bullous Pemphigoid. Biomolecules 2023; 13:1019. [PMID: 37509055 PMCID: PMC10377006 DOI: 10.3390/biom13071019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering skin disease, of which the incidence has increased in recent years. BP is characterized by circulating IgG and IgE autoantibodies against the hemidesmosomal proteins BP180 and BP230. Although autoantibodies trigger inflammatory cascades that lead to blister formation, effector cells and cell-mediated autoimmunity must also be considered as important factors in the pathogenesis of BP. The aim of this review is to outline the current knowledge on the role of eosinophils, basophils, and neutrophils in BP.
Collapse
Affiliation(s)
- Maren M. Limberg
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Tobias Weihrauch
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Natalie Gray
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Division of Anatomy, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Nancy Ernst
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Karin Hartmann
- Division of Allergy, Departments of Dermatology and Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Ulrike Raap
- Division of Experimental Allergy and Immunodermatology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
- University Clinic of Dermatology and Allergy, University of Oldenburg, 26133 Oldenburg, Germany
| |
Collapse
|
7
|
Lee TL, Chen TH, Kuo YJ, Lan HY, Yang MH, Chu PY. Tumor-associated tissue eosinophilia promotes angiogenesis and metastasis in head and neck squamous cell carcinoma. Neoplasia 2022; 35:100855. [PMID: 36410227 PMCID: PMC9677212 DOI: 10.1016/j.neo.2022.100855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Eosinophils are terminally differentiated leukocytes that participate in the process of chronic inflammation and allergy and are able to release multiple cytokines into the surrounding tissue environment. Tumor-associated tissue eosinophilia (TATE) is the presence of eosinophils in the tumor or in the neighboring stroma and has been observed in various types of cancer. In head and neck squamous cell carcinoma (HNSCC), the clinical relevance of TATE has not been concluded yet because of the inconsistent results in different studies. In our study, we focus on the prognostic effects of TATE on HNSCC and how TATE can influence tumor behavior and tumor microenvironment. We first showed that in both the TCGA-HNSC cohort and our cohort of patients with HNSCC who had received curative surgery, TATE is correlated with worse overall survival. To investigate the underlying mechanism of how TATE leads to poor clinical outcomes, we showed that activated eosinophils produce a variety of cytokines and chemokines, and activated TATE-derived culture medium promotes tumor migration mainly through CCL2. We also showed that eosinophils are capable of inducing angiogenesis and that HNSCC samples enriched with TATE are highly correlated with tumor angiogenesis. Furthermore, HNSCC enriched with TATE had more aggressive pathological features, including regional lymph node metastasis, perineural invasion, lymphovascular invasion, and tumor growth. Lastly, we showed that HNSCC enriched with TATE is associated with immunosuppressive tumor microenvironment. Taken together, our results suggest that TATE promotes cancer metastasis and angiogenesis which results in a poor clinical outcomes in HNSCC.
Collapse
Affiliation(s)
- Tsung-Lun Lee
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tien-Hua Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Ju Kuo
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-Yi Lan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Pen-Yuan Chu
- Department of Otolaryngology, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
8
|
Akkaya I, Oylumlu E, Ozel I, Uzel G, Durmus L, Ciraci C. NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions. Immune Netw 2022; 21:e42. [PMID: 35036029 PMCID: PMC8733190 DOI: 10.4110/in.2021.21.e42] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.
Collapse
Affiliation(s)
- Ilgin Akkaya
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ece Oylumlu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Irem Ozel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Goksu Uzel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Lubeyne Durmus
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ceren Ciraci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey.,Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
9
|
Cañas JA, Rodrigo-Muñoz JM, Gil-Martínez M, Sastre B, del Pozo V. Exosomes: A Key Piece in Asthmatic Inflammation. Int J Mol Sci 2021; 22:963. [PMID: 33478047 PMCID: PMC7835850 DOI: 10.3390/ijms22020963] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic disease of the airways that has an important inflammatory component. Multiple cells are implicated in asthma pathogenesis (lymphocytes, eosinophils, mast cells, basophils, neutrophils), releasing a wide variety of cytokines. These cells can exert their inflammatory functions throughout extracellular vesicles (EVs), which are small vesicles released by donor cells into the extracellular microenvironment that can be taken up by recipient cells. Depending on their size, EVs can be classified as microvesicles, exosomes, or apoptotic bodies. EVs are heterogeneous spherical structures secreted by almost all cell types. One of their main functions is to act as transporters of a wide range of molecules, such as proteins, lipids, and microRNAs (miRNAs), which are single-stranded RNAs of approximately 22 nucleotides in length. Therefore, exosomes could influence several physiological and pathological processes, including those involved in asthma. They can be detected in multiple cell types and biofluids, providing a wealth of information about the processes that take account in a pathological scenario. This review thus summarizes the most recent insights concerning the role of exosomes from different sources (several cell populations and biofluids) in one of the most prevalent respiratory diseases, asthma.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
10
|
Mattei F, Andreone S, Marone G, Gambardella AR, Loffredo S, Varricchi G, Schiavoni G. Eosinophils in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:1-28. [PMID: 33119873 DOI: 10.1007/978-3-030-49270-0_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eosinophils are rare blood-circulating and tissue-infiltrating immune cells studied for decades in the context of allergic diseases and parasitic infections. Eosinophils can secrete a wide array of soluble mediators and effector molecules, with potential immunoregulatory activities in the tumor microenvironment (TME). These findings imply that these cells may play a role in cancer immunity. Despite these cells were known to infiltrate tumors since many years ago, their role in TME is gaining attention only recently. In this chapter, we will review the main biological functions of eosinophils that can be relevant within the TME. We will discuss how these cells may undergo phenotypic changes acquiring pro- or antitumoricidal properties according to the surrounding stimuli. Moreover, we will analyze canonical (i.e., degranulation) and unconventional mechanisms (i.e., DNA traps, exosome secretion) employed by eosinophils in inflammatory contexts, which can be relevant for tumor immune responses. Finally, we will review the available preclinical models that could be employed for the study of the role in vivo of eosinophils in cancer.
Collapse
Affiliation(s)
- Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli - Monaldi Hospital Pharmacy, Naples, Italy
| | | | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy. .,WAO Center of Excellence, Naples, Italy. .,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
11
|
IL-33 induces type-2-cytokine phenotype but exacerbates cardiac remodeling post-myocardial infarction with eosinophil recruitment, worsened systolic dysfunction, and ventricular wall rupture. Clin Sci (Lond) 2020; 134:1191-1218. [PMID: 32432676 DOI: 10.1042/cs20200402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/02/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is the leading cause of mortality worldwide. Interleukin (IL)-33 (IL-33) is a cytokine present in most cardiac cells and is secreted on necrosis where it acts as a functional ligand for the ST2 receptor. Although IL-33/ST2 axis is protective against various forms of cardiovascular diseases, some studies suggest potential detrimental roles for IL-33 signaling. The aim of the present study was to examine the effect of IL-33 administration on cardiac function post-MI in mice. MI was induced by coronary artery ligation. Mice were treated with IL-33 (1 μg/day) or vehicle for 4 and 7 days. Functional and molecular changes of the left ventricle (LV) were assessed. Single cell suspensions were obtained from bone marrow, heart, spleen, and peripheral blood to assess the immune cells using flow cytometry at 1, 3, and 7 days post-MI in IL-33 or vehicle-treated animals. The results of the present study suggest that IL-33 is effective in activating a type 2 cytokine milieu in the damaged heart, consistent with reduced early inflammatory and pro-fibrotic response. However, IL-33 administration was associated with worsened cardiac function and adverse cardiac remodeling in the MI mouse model. IL-33 administration increased infarct size, LV hypertrophy, cardiomyocyte death, and overall mortality rate due to cardiac rupture. Moreover, IL-33-treated MI mice displayed a significant myocardial eosinophil infiltration at 7 days post-MI when compared with vehicle-treated MI mice. The present study reveals that although IL-33 administration is associated with a reparative phenotype following MI, it worsens cardiac remodeling and promotes heart failure.
Collapse
|
12
|
Xu P, Gärtner F, Gihring A, Liu C, Burster T, Wabitsch M, Knippschild U, Paschke S. Influence of obesity on remodeling of lung tissue and organization of extracellular matrix after blunt thorax trauma. Respir Res 2020; 21:238. [PMID: 32943048 PMCID: PMC7496205 DOI: 10.1186/s12931-020-01502-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Previously, it has been shown that obesity is a risk factor for recovery, regeneration, and tissue repair after blunt trauma and can affect the rate of muscle recovery and collagen deposition after trauma. To date, lung tissue regeneration and extracellular matrix regulation in obese mice after injury has not been investigated in detail yet. Methods This study uses an established blunt thorax trauma model to analyze morphological changes and alterations on gene and protein level in lean or obese (diet-induced obesity for 16 ± 1 week) male C57BL/6 J mice at various time-points after trauma induction (1 h, 6 h, 24 h, 72 h and 192 h). Results Morphological analysis after injury showed lung parenchyma damage at early time-points in both lean and obese mice. At later time-points a better regenerative capacity of lean mice was observed, since obese animals still exhibited alveoli collapse, wall thickness as well as remaining filled alveoli structures. Although lean mice showed significantly increased collagen and fibronectin gene levels, analysis of collagen deposition showed no difference based on colorimetric quantification of collagen and visual assessment of Sirius red staining. When investigating the organization of the ECM on gene level, a decreased response of obese mice after trauma regarding extracellular matrix composition and organization was detectable. Differences in the lung tissue between the diets regarding early responding MMPs (MMP8/9) and late responding MMPs (MMP2) could be observed on gene and protein level. Obese mice show differences in regulation of extracellular matrix components compared to normal weight mice, which results in a decreased total MMP activity in obese animals during the whole regeneration phase. Starting at 6 h post traumatic injury, lean mice show a 50% increase in total MMP activity compared to control animals, while MMP activity in obese mice drops to 50%. Conclusions In conclusion, abnormal regulation of the levels of extracellular matrix genes in the lung may contribute to an aberrant regeneration after trauma induction with a delay of repair and pathological changes of the lung tissue in obese mice.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan, 010000, Republic of Kazakhstan
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Hospital for Pediatrics and Adolescent Medicine, Eythstraße 24, 89075, Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Stephan Paschke
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
13
|
Janulaityte I, Januskevicius A, Kalinauskaite-Zukauske V, Bajoriuniene I, Malakauskas K. In Vivo Allergen-Activated Eosinophils Promote Collagen I and Fibronectin Gene Expression in Airway Smooth Muscle Cells via TGF- β1 Signaling Pathway in Asthma. Int J Mol Sci 2020; 21:E1837. [PMID: 32155894 PMCID: PMC7084581 DOI: 10.3390/ijms21051837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 12/30/2022] Open
Abstract
Eosinophils infiltration and releasing TGF-β1 in the airways has been implicated in the pathogenesis of asthma, especially during acute episodes provoked by an allergen. TGF-β1 is a major mediator involved in pro-inflammatory responses and fibrotic tissue remodeling in asthma. We aimed to evaluate the effect of in vivo allergen-activated eosinophils on the expression of COL1A1 and FN in ASM cells in asthma. A total of 12 allergic asthma patients and 11 healthy subjects were examined. All study subjects underwent bronchial challenge with D. pteronyssinus allergen. Eosinophils from peripheral blood were isolated before and 24 h after the bronchial allergen challenge using high-density centrifugation and magnetic separation. Individual co-cultures of blood eosinophils and immortalized human ASM cells were prepared. The TGF-β1 concentration in culture supernatants was analyzed using ELISA. Gene expression was analyzed using qRT-PCR. Eosinophils integrins were suppressed with linear RGDS peptide before co-culture with ASM cells. Results: The expression of TGF-β1 in asthmatic eosinophils significantly increased over non-activated asthmatic eosinophils after allergen challenge, p < 0.001. The TGF-β1 concentration in culture supernatants was significantly higher in samples with allergen-activated asthmatic eosinophils compared to baseline, p < 0.05. The effect of allergen-activated asthmatic eosinophils on the expression of TGF-β1, COL1A1, and FN in ASM cells was more significant compared to non-activated eosinophils, p < 0.05, however, no difference was found on WNT-5A expression. The incubation of allergen-activated asthmatic eosinophils with RGDS peptide was more effective compared to non-activated eosinophils as the gene expression in ASM cells was downregulated equally to the same level as healthy eosinophils.
Collapse
Affiliation(s)
- Ieva Janulaityte
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (K.M.)
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (K.M.)
| | | | - Ieva Bajoriuniene
- Department of Immunology and Allergology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
14
|
Shin NR, Lee AY, Song JH, Yang S, Park I, Lim JO, Jung TY, Ko JW, Kim JC, Lim KS, Lee MY, Shin IS, Kim JS. Scrophularia buergeriana attenuates allergic inflammation by reducing NF-κB activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153159. [PMID: 31901567 DOI: 10.1016/j.phymed.2019.153159] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Scrophularia buergeriana Miq. (Scrophulariaceae) (SB) has been used as an oriental medicine for the treatment of inflammatory diseases, such as neuritis and pharyngolaryngitis. PURPOSE We explored the therapeutic effects of S. buergeriana ethanol extract (SBE) on airway inflammation in ovalbumin (OVA)-induced asthmatic mice and lipopolysaccharide (LPS)-stimulated RAW264.7 cells. METHODS Mice were intraperitoneally injected with OVA on days 0 and 14 to elevate the immune response. On days 21 to 23, the mice were challenged with OVA solution and SBE (20 and 40 mg/kg) was administered daily by oral gavage from days 18 to 23. RAW264.7 cells were pretreated with SBE 1 h before LPS stimulation. RESULTS SBE administration effectively suppressed inflammatory cell infiltration, the expression of interleukin (IL)-5, IL-13, and IL-17, immunoglobulin E, and airway hyperresponsiveness in an OVA-induced allergic asthma model. A reduction in histological alterations, including airway inflammation and mucus hypersecretion, was observed. These effects of SBE were accompanied by a decrease in matrix metalloproteinase-9 (MMP-9) expression and nuclear factor kappa B (NF-κB) phosphorylation. These responses were observed in LPS-stimulated RAW264.7 cells. SBE treatment reduced the mRNA expression of tumor necrosis factor (TNF)-α, IL-6, and MMP-9, and NF-κB phosphorylation, in LPS-stimulated RAW264.7 cells. CONCLUSION Our results indicated that SBE effectively attenuated airway inflammation in an OVA-induced allergic asthma model. These properties of SBE were thought to be involved in the suppression of NF-κB phosphorylation, suggesting that the material has the potential to regulate the development of allergic asthma.
Collapse
Affiliation(s)
- Na-Rae Shin
- College of Veterinary Medicine (BK21 Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - A Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, South Korea
| | - Jun-Ho Song
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, South Korea
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, South Korea
| | - Inkyu Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, South Korea
| | - Je-Oh Lim
- College of Veterinary Medicine (BK21 Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Tae-Yang Jung
- College of Veterinary Medicine (BK21 Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116, South Korea
| | - Min Young Lee
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, South Korea
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Project Team), Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| | - Joong Sun Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, South Korea.
| |
Collapse
|
15
|
Leija-Martínez JJ, Huang F, Del-Río-Navarro BE, Sanchéz-Muñoz F, Romero-Nava R, Muñoz-Hernandez O, Rodríguez-Cortés O, Hall-Mondragon MS. Decreased methylation profiles in the TNFA gene promoters in type 1 macrophages and in the IL17A and RORC gene promoters in Th17 lymphocytes have a causal association with non-atopic asthma caused by obesity: A hypothesis. Med Hypotheses 2019; 134:109527. [PMID: 31877441 DOI: 10.1016/j.mehy.2019.109527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
Abstract
Obesity is a serious public health problem worldwide and has been associated in epidemiological studies with a unique type of non-atopic asthma, although the causal association of asthma and obesity has certain criteria, such as the strength of association, consistency, specificity, temporality, biological gradient, coherence, analogy and experimentation; nevertheless, the biological plausibility of this association remains uncertain. Various mechanisms have been postulated, such as immunological, hormonal, mechanical, environmental, genetic and epigenetic mechanisms. Our hypothesis favours immunological mechanisms because some cytokines, such as tumour necrosis factor alpha (TNF-α) and interleukin (IL)-17A, are responsible for orchestrating low-grade systemic inflammation associated with obesity; however, these cytokines are regulated by epigenetic mechanisms, such as gene promoter methylation.
Collapse
Affiliation(s)
- José J Leija-Martínez
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico.
| | - Blanca E Del-Río-Navarro
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Mexico City, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Rodrigo Romero-Nava
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico; Laboratory of Pharmacology, Department of Health Sciences, Division of Health and Biological Sciences, Metropolitan Autonomous University of Iztapalapa, Mexico City, Mexico
| | | | - Octavio Rodríguez-Cortés
- Laboratorio 103, SEPI, Escuela Superior de Medicina, Instituto Politécnico Nacional, Calle Plan de San Luis y Díaz Mirón S/N, Casco de Santo Tomas, Miguel Hidalgo, 11340 Ciudad de México, Mexico
| | | |
Collapse
|
16
|
Zhu J, Wang H, Gao MJ, Li YF, Huang YQ, Shi JP, Wang WJ. Prognostic values of lymphocyte and eosinophil counts in resectable cervical squamous cell carcinoma. Future Oncol 2019; 15:3467-3481. [PMID: 31580723 DOI: 10.2217/fon-2018-0879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Cervical cancer is one of the leading causes of cancer mortality in women. Peripheral white blood cell parameters such as neutrophil (NE), eosinophil (EO), basophil (BA), as well as lymphocyte (LY) and monocyte (MO), are correlated with tumor outcomes. Methods: In total, 110 cervical squamous cell carcinoma patients were recruited in this study. The potential prognostic factors were evaluated by univariate and multivariate survival analysis. Results: Cox regression analysis model indicated that higher pretreatment EO level and increased post-/preradiotherapy EO ratio were independently associated with worse progression-free survival. Lower pretreatment LY or higher EO levels and increased post-/preradiotherapy EO ratio were independently associated with worse overall survival. Conclusion: LY and EO are correlated with outcomes of cervical squamous cell cancer.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Oncology, Changzhou Traditional Chinese Medical Hospital, Changzhou, Jiangsu 213003, PR China
| | - Han Wang
- Department of Oncology, Jining Cancer Hospital, Jining, Shandong 272000, PR China
| | - Min-Jie Gao
- Department of Radio-Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, PR China
| | - Yi-Fan Li
- Department of Oncology, Binzhou People's Hospital, Binzhou, Shandong 256600, PR China
| | - Yue-Qing Huang
- Department of General Practice, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, PR China
| | - Jian-Ping Shi
- Department of Radio-Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, PR China
| | - Wen-Jie Wang
- Department of Radio-Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215001, PR China
| |
Collapse
|
17
|
Severe Eosinophilic Asthma. J Clin Med 2019; 8:jcm8091375. [PMID: 31480806 PMCID: PMC6780074 DOI: 10.3390/jcm8091375] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a heterogeneous disease with varying severity. Severe asthma is a subject of constant research because it greatly affects patients’ quality of life, and patients with severe asthma experience symptoms, exacerbations, and medication side effects. Eosinophils, although at first considered insignificant, were later specifically associated with features of the ongoing inflammatory process in asthma, particularly in the severe case. In this review, we discuss new insights into the pathogenesis of severe asthma related to eosinophilic inflammation and the pivotal role of cytokines in a spectrum that is usually referred to as “T2-high inflammation” that accounts for almost half of patients with severe asthma. Recent literature is summarized as to the role of eosinophils in asthmatic inflammation, airway remodeling, and airway hypersensitivity. Major advances in the management of severe asthma occurred the past few years due to the new targeted biological therapies. Novel biologics that are already widely used in severe eosinophilic asthma are discussed, focusing on the choice of the right treatment for the right patient. These monoclonal antibodies primarily led to a significant reduction of asthma exacerbations, as well as improvement of lung function and patient quality of life.
Collapse
|
18
|
Huang WC, Wu LY, Hu S, Wu SJ. Spilanthol Inhibits COX-2 and ICAM-1 Expression via Suppression of NF-κB and MAPK Signaling in Interleukin-1β-Stimulated Human Lung Epithelial Cells. Inflammation 2019; 41:1934-1944. [PMID: 29959625 DOI: 10.1007/s10753-018-0837-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spilanthol a phytochemical derived from the Spilanthes acmella plant has antimicrobial, antioxidant, and anti-inflammatory properties. This study evaluated its effects on the expression of intercellular adhesion molecule 1 (ICAM-1) and inflammation-related mediators in IL-1β-stimulated human lung epithelial A549 cells. Human lung epithelial A549 cells were pretreated with various concentrations of spilanthol (3-100 μM) followed by treatment with IL-1β to induce inflammation. The protein levels of pro-inflammatory cytokines, chemokines, and prostaglandin E2 (PGE2) were measured using ELISA. Cyclooxygenase-2 (COX-2), heme oxygenase (HO-1), nuclear transcription factor kappa-B (NF-κB), and mitogen-activated protein kinase (MAPK) were measured by immunoblotting. The mRNA expression levels of ICAM-1 and MUC5AC were determined by real-time polymerase chain reaction. Spilanthol decreased the expression of PGE2, COX-2, TNF-α, and MCP-1. It also decreased ICAM-1 expression and suppressed monocyte adhesion to IL-1β-stimulated A549 cells. Spilanthol also significantly inhibited the phosphorylation of MAPK and I-κB. These results suggest that spilanthol exerts anti-inflammatory effects by inhibiting the expression of the pro-inflammatory cytokines, COX-2, and ICAM-1 by inhibiting the NF-κB and MAPK signaling pathways. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan.,Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan, 33303, Taiwan
| | - Ling-Yu Wu
- Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan, 33303, Taiwan.,Department of Cosmetic Science, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan
| | - Shu-Ju Wu
- Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan. .,Department of Nutrition and Health Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Guishan Dist., Taoyuan, 33303, Taiwan. .,Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan, 33303, Taiwan.
| |
Collapse
|
19
|
Varricchi G, Loffredo S, Galdiero MR, Marone G, Cristinziano L, Granata F, Marone G. Innate effector cells in angiogenesis and lymphangiogenesis. Curr Opin Immunol 2018; 53:152-160. [PMID: 29778674 DOI: 10.1016/j.coi.2018.05.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Angiogenesis and lymphangiogenesis are distinct and complex processes requiring a finely tuned balance between stimulatory and inhibitory signals. During adulthood, angiogenesis and lymphangiogenesis are activated at sites of tumor growth, tissue injury and remodeling, and chronic inflammation. Vascular endothelial growth factors (VEGFs), angiopoietin (ANGPTs) and a multitude of additional signaling molecules play distinct roles in the modulation of angiogenesis/lymphangiogenesis. VEGFs and ANGPTs activate specific tyrosine kinase receptor (e.g., VEGFR1, VEGFR-2, VEGFR-3 and TIE2 respectively), expressed on blood endothelial cells (angiogenesis) and lymphatic endothelial cells (lymphangiogenesis). Although tumor cells produce VEGFs and other proangiogenic mediators, tissue resident (e.g., macrophages, mast cells) and circulating immune cells (e.g., basophils, neutrophils, monocytes, eosinophils) are an important source of angiogenic/lymphangiogenic mediators in inflammation and in tumor microenvironment and at site of chronic inflammation. Certain immune cells can also release anti-angiogenic factors. Mast cells, basophils, neutrophils and presumably other immune cells are not only a source of angiogenic/lymphangiogenic molecules, but also their target. Cells of the immune system need consideration as major players and possible targets for therapeutic manipulation of angiogenesis/lymphangiogenesis in chronic inflammatory disorders and tumors.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy.
| | - Stefania Loffredo
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, Section of Hygiene, University of Naples Federico II, Naples, Italy; Monaldi Hospital Pharmacy, Naples, Italy
| | - Leonardo Cristinziano
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy
| | - Francescopaolo Granata
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Traslational Medicine, University of Naples Federico II, Naples, Italy; Center for Basic and Clinical Immunology Research (CISI), Naples, Italy; World Allergy Organization (WAO), Center of Excellence, Naples, Italy; Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council, Naples, Italy.
| |
Collapse
|
20
|
Hajizadeh R, Ghaffari S, Separham A, Shokouhi B, Kavandi H, Pourafkari L, Nader ND. The value of peripheral blood eosinophil count in predicting in-stent restenosis in patients with stable angina pectoris undergoing drug eluting stenting. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MÉDECINE INTERNE 2017; 55:229-236. [PMID: 28672766 DOI: 10.1515/rjim-2017-0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In-stent restenosis (ISR) remains a major limitation of percutaneous coronary intervention (PCI). A role for peripheral blood cells as major regulators of immune and inflammatory systems has been proposed. We aim to evaluate the relationship between eosinophil count and development of restenosis after drug-eluting stent (DES) implantation. METHODS In this prospective study, all consecutive patients undergoing elective DES implantation for chronic stable angina (CSA) in a university-affiliated heart center within a 6-month period were enrolled and followed for another 6 months. Complete blood count with differentiation was performed 6 weeks after the index procedure. During the follow-up period, the cohort of patients who developed ISR was compared to the cohort of patients without ISR, descriptively and the total number of eosinophilic white cells was used to predict the occurrence of ISR. RESULTS 153 men and 48 women with CSA underwent PCI with DES implantation, from which, 26 patients needed repeat coronary angiography for recurrent symptoms. There was an established ISR in 17 (8.5%) patients. The total number of eosinophils in their peripheral blood was 267 ± 132 cells/μL in patients with ISR, significantly higher than the number of eosinophils in those without ISR 174 ± 133 cells/μL (P-value < 0.010). Eosinophil count remained an independent predictor of ISR in multivariate analysis as the eosinophil count value over 242 cells/μL had sensitivity of 66.7% and specificity of 84.5% for the presence of ISR. CONCLUSION The total number of eosinophils, counted 6 weeks after DES implantation, prevails as the sole predictor of ISR occurrence in our study. This suggests an association between immune sensitivity reaction to DES material and development of ISR in patients after PCI.
Collapse
|
21
|
Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, Marone G, Schiavoni G. Eosinophils: The unsung heroes in cancer? Oncoimmunology 2017; 7:e1393134. [PMID: 29308325 DOI: 10.1080/2162402x.2017.1393134] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of a cancer. Eosinophils are components of the immune microenvironment that modulates tumor initiation and progression. Although canonically associated with a detrimental role in allergic disorders, these cells can induce a protective immune response against helminthes, viral and bacterial pathogens. Eosinophils are a source of anti-tumorigenic (e.g., TNF-α, granzyme, cationic proteins, and IL-18) and protumorigenic molecules (e.g., pro-angiogenic factors) depending on the milieu. In several neoplasias (e.g., melanoma, gastric, colorectal, oral and prostate cancer) eosinophils play an anti-tumorigenic role, in others (e.g., Hodgkin's lymphoma, cervical carcinoma) have been linked to poor prognosis, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of eosinophils and their mediators could be cancer-dependent. The microlocalization (e.g., peritumoral vs intratumoral) of eosinophils could be another important aspect in the initiation/progression of solid and hematological tumors. Increasing evidence in experimental models indicates that activation/recruitment of eosinophils could represent a new therapeutic strategy for certain tumors (e.g., melanoma). Many unanswered questions should be addressed before we understand whether eosinophils are an ally, adversary or neutral bystanders in different types of human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital Pharmacy, Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
22
|
Chauhan PS, Dash D, Singh R. Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9 (MMP-9) in Ovalbumin-Induced Chronic Asthma. Inflammation 2017; 40:248-258. [PMID: 27866296 DOI: 10.1007/s10753-016-0475-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pulmonary fibrosis is associated with irreversible, or partially reversible, airflow obstruction and ultimately unresponsiveness to asthma therapies such as corticosteroids. Intranasal curcumin, an anti-inflammatory molecule, has been found effective in allergic asthma. To study the effect of intranasal curcumin on airway remodeling and fibrosis in murine model of chronic asthma, BALB/c mice were sensitized to ovalbumin (OVA) and exposed to OVA aerosol (2%) from day 21 (after sensitization) for 5 weeks (twice/week). Curcumin (intranasal) was administered during the OVA aerosol challenge. Mice exposed to OVA developed inflammation dominated by eosinophils which lead to fibrosis and airway remodeling. Intranasal administration of curcumin significantly inhibited airway inflammation and pulmonary fibrosis, where MMP-9 activities were decreased along with α-smooth muscle actin (α-SMA), MMP-9, TIMP-1, and eotaxin expressions. These results suggest that intranasal curcumin regulates airway inflammation and remodeling in chronic asthma.
Collapse
Affiliation(s)
| | - D Dash
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV Unit, Varanasi, India.
| |
Collapse
|
23
|
Catal F, Mete E, Tayman C, Topal E, Albayrak A, Sert H. A human monoclonal anti-TNF alpha antibody (adalimumab) reduces airway inflammation and ameliorates lung histology in a murine model of acute asthma. Allergol Immunopathol (Madr) 2015; 43:14-8. [PMID: 24882395 DOI: 10.1016/j.aller.2013.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/08/2013] [Accepted: 11/14/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND A few experimental studies related to asthma have unveiled the beneficial effects of TNF alpha blocking agents on the airway histology, cytokine levels in bronchoalveolar lavage and bronchial hyper-responsiveness. In the current study, we aimed to assess the effect of adalimumab on the inflammation and histology of asthma in a murine model. METHOD Twelve-week-old BALB/c (H-2d/d) female rats (n=18) were allocated into three groups, including (group I) control (phosphate-buffered saline was implemented), (group II) asthma induced with OVA (n=6), and (group III) asthma induced with OVA+treated with adalimumab (n=6). Rats were executed on the 28th day of the study. The lung samples were fixed in 10% neutral buffered formalin. Lung parenchyma, alveolus, peribronchial and perivascular inflammation were assessed. Lung pathological scoring was performed. RESULT Severity of lung damage was found to be reduced significantly in the asthma induced with OVA+treated with adalimumab group. When compared with the untreated group, adalimumab significantly reduced the inflammatory cells around the bronchi and bronchioles, and reduced inflammation of the alveolar wall and alveolar wall thickness as well (median score=1, p=0.52). Peribronchial smooth muscle hypertrophy and oedema were significantly reduced after adalimumab administration. CONCLUSION Adalimumab (a human monoclonal anti-TNF alpha antibody) therapy significantly reduced the severity of lung damage by decreasing cellular infiltration and improvement on the lung histology in a murine model of acute asthma.
Collapse
Affiliation(s)
- F Catal
- Department of Pediatric Allergy and Asthma, Fatih University Faculty of Medicine, Ankara, Turkey; Department of Anesthesia, Fatih University Faculty of Medicine, Ankara, Turkey
| | - E Mete
- Department of Pediatric Allergy and Asthma, Fatih University Faculty of Medicine, Ankara, Turkey
| | - C Tayman
- Department of Pediatric Allergy and Asthma, Fatih University Faculty of Medicine, Ankara, Turkey
| | - E Topal
- Department of Pediatric Allergy and Asthma, Gazi University Faculty of Medicine, Ankara, Turkey.
| | - A Albayrak
- Department of Pathology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - H Sert
- Department of Anesthesia, Fatih University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
24
|
Oh JE, Kim MS, Jeon WK, Seo YK, Kim BC, Hahn JH, Park CS. A nuclear factor kappa B-derived inhibitor tripeptide inhibits UVB-induced photoaging process. J Dermatol Sci 2014; 76:196-205. [DOI: 10.1016/j.jdermsci.2014.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 09/18/2014] [Accepted: 10/02/2014] [Indexed: 12/11/2022]
|
25
|
Chen CK, Chen PR, Huang HC, Lin YS, Fang HY. Overexpression of matrix metalloproteinases in lung tissue of patients with primary spontaneous pneumothorax. Respiration 2014; 88:418-25. [PMID: 25300296 DOI: 10.1159/000366065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/22/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although blebs and bullae are frequently found in the apexes of lungs of patients with primary spontaneous pneumothorax (PSP), its pathogens remain unclear. OBJECTIVES To examine the role of proteases [matrix metalloproteinase (MMP)-2, MMP-7 and MMP-9] and antiproteases [tissue inhibitors of metalloproteinase (TIMP)-1, TIMP-2, TIMP-3 and TIMP-4] in the pathogenesis of PSP. METHOD Fifty consecutive PSP patients who received standard surgical care were enrolled in the study. Lung tissues from 20 patients with stage I non-small cell lung cancer were used as a control. Immunohistochemistry (IHC), reverse transcription-polymerase chain reaction (RT-PCR) and gelatin zymography were used to evaluate the expression of MMP and TIMP in the lung tissue of patients with PSP. RESULTS Overexpression of MMP-2, MMP-7 and MMP-9 was found in the afflicted lung by IHC, zymography and RT-PCR. By IHC, higher expression of MMP-2 and MMP-9 in PSP patients was identified in alveolar macrophages and type II pneumocytes (88 and 92% of patients in macrophages, and 72 and 70% of patients in type II pneumocytes, respectively). MMP-2, MMP-7 and MMP-9 expression in patients was higher in mesothelial cells (66, 76 and 76%). Overexpression of TIMP-2 was detected in the extracellular matrix around bullae and blebs. Expression levels of TIMP-1, TIMP-3 and TIMP-4 were negligible (<10% of cells) in both PSP patients and controls. CONCLUSIONS MMP-2, MMP-9, MMP-7 and TIMP-2 were upregulated in PSP lesions. These results suggest that an imbalance between the expression of proteases and antiproteases may be involved in the pathogeneses of PSP.
Collapse
Affiliation(s)
- Chien-Kuang Chen
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
26
|
Felsen CN, Savariar EN, Whitney M, Tsien RY. Detection and monitoring of localized matrix metalloproteinase upregulation in a murine model of asthma. Am J Physiol Lung Cell Mol Physiol 2014; 306:L764-74. [PMID: 24508733 DOI: 10.1152/ajplung.00371.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular proteases including matrix metalloproteinases (MMPs) are speculated to play a significant role in chronic lung diseases, such as asthma. Although increased protease expression has been correlated with lung pathogenesis, the relationship between localized enzyme activity and disease progression remains poorly understood. We report the application of MMP-2/9 activatable cell-penetrating peptides (ACPPs) and their ratiometric analogs (RACPPs) for in vivo measurement of protease activity and distribution in the lungs of mice that were challenged with the allergen ovalbumin. MMP-2/9 activity was increased greater than twofold in whole, dissected lungs from acutely challenged mice compared with control mice (P=1.8×10(-4)). This upregulation of MMP-2/9 activity was localized around inflamed airways with 1.6-fold higher protease-dependent ACPP uptake surrounding diseased airways compared with adjacent, pathologically normal lung parenchyma (P=0.03). MMP-2/9 activity detected by ACPP cleavage colocalized with gelatinase activity measured with in situ dye-quenched gelatin. For comparison, neutrophil elastase activity and thrombin activity, detected with elastase- and thrombin-cleavable RACPPs, respectively, were not significantly elevated in acutely allergen-challenged mouse lungs. The results demonstrate that ACPPs, like the MMP-2/9-activated and related ACPPs, allow for real-time detection of protease activity in a murine asthma model, which should improve our understanding of protease activation in asthma disease progression and help elucidate new therapy targets or act as a mechanism for therapeutic drug delivery.
Collapse
Affiliation(s)
- Csilla N Felsen
- Howard Hughes Medical Institute, Univ. California San Diego, 9500 Gilman Dr., George Palade 310, La Jolla, CA 92093-0647.
| | | | | | | |
Collapse
|
27
|
Vandooren J, Van Damme J, Opdenakker G. On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation. PROGRESS IN BRAIN RESEARCH 2014; 214:193-206. [PMID: 25410359 DOI: 10.1016/b978-0-444-63486-3.00009-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The blood-brain barrier (BBB) is a specific structure that is composed of two basement membranes (BMs) and that contributes to the control of neuroinflammation. As long as the BBB is intact, extravasated leukocytes may accumulate between two BMs, generating vascular cuffs. Specific matrix metalloproteinases, MMP-2 and MMP-9, have been shown to cleave BBB beta-dystroglycan and to disintegrate thereby the parenchymal BM, resulting in encephalomyelitis. This knowledge has been added to the molecular basis of the REGA model to understand the pathogenesis of multiple sclerosis, and it gives further ground for the use of MMP inhibitors for the treatment of acute neuroinflammation. MMP-9 is associated with central nervous system inflammation and occurs in various forms: monomers and multimers. None of the various neurological and neuropathologic functions of MMP-9 have been associated with either molecular structure or molecular form, and therefore, in-depth structure-function studies are needed before medical intervention with MMP-9-specific inhibitors is initiated.
Collapse
Affiliation(s)
- Jennifer Vandooren
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- Department of Microbiology and Immunology, Laboratory of Immunobiology, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium.
| |
Collapse
|
28
|
Bera A, Zhao S, Cao L, Chiao PJ, Freeman JW. Oncogenic K-Ras and loss of Smad4 mediate invasion by activating an EGFR/NF-κB Axis that induces expression of MMP9 and uPA in human pancreas progenitor cells. PLoS One 2013; 8:e82282. [PMID: 24340014 PMCID: PMC3855364 DOI: 10.1371/journal.pone.0082282] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/22/2013] [Indexed: 01/12/2023] Open
Abstract
Activating K-Ras mutations and inactivating mutations of Smad4 are two common genetic alterations that occur in the development and progression of pancreatic ductal adenocarcinomas (PDAC). To further study the individual and combinatorial roles of these two mutations in the pathogenesis of PDAC, immortalized human pancreas nestin postive cells (HPNE) were genetically modified by either expressing oncogenic K-Ras (HPNE/K-Ras), by shRNA knock down of Smad4 (HPNE/ShSmad4) or by creating both alterations in the same cell line (HPNE/K-Ras/ShSmad4). We previously found that expression of oncogenic K-Ras caused an increase in expression of EGFR and loss of Smad4 further enhanced the up regulation in expression of EGFR and that this increase in EGFR was sufficient to induce invasion. Here we further investigated the mechanism that links mutational alterations and EGFR expression with invasion. The increase in EGFR signaling was associated with up regulation of MMP9 and uPA protein and activity. Moreover, the increase in EGFR signaling promoted a nuclear translocation and binding of RelA (p65), a subunit of NF-κB, to the promoters of both MMP-9 and uPA. Treatment of HPNE/K-Ras/ShSmad4 cells with an inhibitor of EGFR reduced EGF-mediated NF-κB nuclear translocation and inhibitors of either EGFR or NF-κB reduced the increase in MMP-9 or uPA expression. In conclusion, this study provides the mechanism of how a combination of oncogenic K-Ras and loss of Smad4 causes invasion and provides the basis for new strategies to inhibit metastases.
Collapse
Affiliation(s)
- Alakesh Bera
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Shujie Zhao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Lin Cao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James W. Freeman
- Department of Medicine, Division of Medical Oncology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Cancer Therapy and Research Center, Experimental and Developmental Therapeutics Program, San Antonio, Texas, United States of America
- Research and Development, Audie Murphy Veterans Administration Hospital, San Antonio, Texas, United States of America
| |
Collapse
|
29
|
|
30
|
Kelly EAB, Liu LY, Esnault S, Quinchia Johnson BH, Jarjour NN. Potent synergistic effect of IL-3 and TNF on matrix metalloproteinase 9 generation by human eosinophils. Cytokine 2012; 58:199-206. [PMID: 22321809 DOI: 10.1016/j.cyto.2012.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/13/2011] [Accepted: 01/13/2012] [Indexed: 01/15/2023]
Abstract
TNF (designated as TNF-α under previous nomenclature) is the preeminent activator of MMP-9 generation from a variety of cells including eosinophils. We have previously established that TNF strongly synergizes with IFN-γ and IL-4 for eosinophil synthesis of Th1- and Th2-type chemokines respectively. Thus, we sought to determine if TNF-induced synthesis of MMP-9 would be enhanced by the presence of Th1, Th2, or the eosinophil-associated common beta chain (βc) cytokines. Human blood eosinophils were cultured with TNF alone or in combination with either IFN-γ, IL-4, IL-3, IL-5, or GM-CSF. Concentrations and activities of MMP-9 in eosinophil culture supernates were measured by ELISA and gelatin zymography, mRNA transcription and stabilization by quantitative real-time PCR, and signaling events by immunoblotting and intracellular flow cytometric analysis. Individually, TNF, GM-CSF, or IL-3, but not IL-4 or IFN-γ, induced relatively small (<0.2 ng/ml) but statistically significant quantities of MMP-9. Remarkable synergistic synthesis of MMP-9 (ng/ml levels) occurred in response to TNF plus IL-3, GM-CSF or IL-5, in the order of IL-3>GM-CSF>IL-5. Zymography revealed that eosinophils release MMP-9 in its pro-form. Eosinophil stimulation with the combination of IL-3 plus TNF led to increased steady-state levels of MMP-9 mRNA, prolonged mRNA stabilization, and enhanced activation of ERK1/2 phosphorylation. Inhibition of NF-κB, MEK kinase, or p38 MAP kinase, but not JNK signaling pathways, diminished IL-3/TNF-induced MMP-9 mRNA and protein production. Thus, the synergistic regulation of eosinophil MMP-9 by IL-3 plus TNF likely involves cooperative interaction of multiple transcription factors downstream from ERK, p38, and NF-κB activation as well as post-transcriptional regulation of MMP-9 mRNA stabilization. Our data indicate that within microenvironments rich in βc-family cytokines and TNF, eosinophils are an important source of proMMP-9 and highlight a previously unrecognized role for synergistic interaction between TNF and βc-family cytokines, particularly IL-3, for proMMP-9 synthesis.
Collapse
Affiliation(s)
- Elizabeth A B Kelly
- Allergy, Pulmonary and Critical Care Medicine Division, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | | | | | | | |
Collapse
|
31
|
Haraguchi T, Tani K, Koga M, Oda Y, Itamoto K, Yamamoto N, Terai S, Sakaida I, Nakazawa H, Taura Y. Matrix metalloproteinases (MMPs) activity in cultured canine bone marrow stromal cells (BMSCs). J Vet Med Sci 2011; 74:633-6. [PMID: 22167104 DOI: 10.1292/jvms.11-0395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autologous bone marrow stromal cells (BMSCs) infusion therapy improves the hepatic fibrosis. To investigate the mechanism of remission, we evaluated the matrix metalloproteinase (MMP)-2 and -9 activity in canine BMSCs and the effect of pro-inflammatory cytokines on their expression. The activity and the gene expression of MMPs were analyzed by gelatin zymography and quantitative RT-PCR, respectively. The specific gelatinase bands were indicative effect of MMP-2 and -9 in canine BMSCs. MMP-2 expression seemed to be increased by TNF-α and IL-1β while MMP-9 was enhanced by TNF-α and IL-6. These results suggested that remissive effect on liver fibrosis might be partly attributable to the MMP-2 and -9 activity in BMSCs under the inflammatory condition.
Collapse
Affiliation(s)
- Tomoya Haraguchi
- Department of Veterinary Surgery, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yang H, Dai Y, Dong H, Zang D, Liu Q, Duan H, Niu Y, Bin P, Zheng Y. Trichloroethanol up-regulates matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in HaCaT cells. Toxicol In Vitro 2011; 25:1638-43. [DOI: 10.1016/j.tiv.2011.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/22/2011] [Indexed: 11/25/2022]
|
33
|
Zou J, du Prel Carroll X, Liang X, Wang D, Li C, Yuan B, Leeper-Woodford S. Alterations of serum biomarkers associated with lung ventilation function impairment in coal workers: a cross-sectional study. Environ Health 2011; 10:83. [PMID: 21943057 PMCID: PMC3192731 DOI: 10.1186/1476-069x-10-83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 09/27/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Previous studies have demonstrated that alterations in certain circulating biomarkers may be correlated with Coal workers' pneumoconiosis (CWP). This study investigated the relationship between changes of serum biomarkers and pulmonary function during the development of CWP. METHODS Lung function parameters and specific serum indices were measured in 69 non-smoking coal workers, including 34 miners with CWP, 24 asymptomatic miners and 11 miners with minimal symptoms. The associations between changes in pulmonary function and serum indices were tested with Pearson's correlation coefficients. Multivariable analysis was used to estimate the predictive power of potential determinant variables for lung function. RESULTS Compared to healthy miners, lung function (FVC, FEV1, FEF50, FEF75, FEF25-75 % of predicted values) was decreased in miners with CWP (p < 0.05). Increased serum matrix metalloproteinase-9 (MMP-9) was associated with decreased FVC% of predicted values in the asymptomatic miners (r = -0.503, p = 0.014). CONCLUSIONS In coal mine workers, alterations of lung function parameters are associated with the development of CWP and with changes in circulating MMP-9, TIMP-9, IL-13 and IL-18R. These serum biomarkers may likely reflect the pathogenesis and progression of CWP in coal workers, and may provide for the importance of serum indicators in the early diagnosis of lung function injury in coal miners.
Collapse
Affiliation(s)
- Jimin Zou
- Department of Clinical Laboratory, Attached Kai Luan Hospital of North China Coal Medical College, Tangshan, 063000, China
| | - Xianming du Prel Carroll
- Department of Community Medicine, Mercer University School of Medicine, 1550 College Street, Macon, GA 31207, USA
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Xianhong Liang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No. 6 Tiantan Xili, Beijing, 100050, China
| | - Dongmei Wang
- Department of Clinical Laboratory, Attached Kai Luan Hospital of North China Coal Medical College, Tangshan, 063000, China
| | - Chao Li
- Department of Clinical Laboratory, Attached Kai Luan Hospital of North China Coal Medical College, Tangshan, 063000, China
| | - Baojun Yuan
- Department of Clinical Laboratory, Attached Kai Luan Hospital of North China Coal Medical College, Tangshan, 063000, China
| | - Sandra Leeper-Woodford
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, 1550 College Street, Macon, GA 31207, USA
| |
Collapse
|
34
|
Tung WH, Tsai HW, Lee IT, Hsieh HL, Chen WJ, Chen YL, Yang CM. Japanese encephalitis virus induces matrix metalloproteinase-9 in rat brain astrocytes via NF-κB signalling dependent on MAPKs and reactive oxygen species. Br J Pharmacol 2011; 161:1566-83. [PMID: 20698853 DOI: 10.1111/j.1476-5381.2010.00982.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Japanese encephalitis virus (JEV) is a member of the family Flaviviridae and JEV infection is a major cause of acute encephalopathy in children, which destroys cells in the CNS, including astrocytes and neurons. However, the detailed mechanisms underlying the inflammatory action of JEV are largely unclear. EXPERIMENTAL APPROACH The effect of JEV on the expression of matrix metalloproteinase (MMP)-9 was determined by gelatin zymography, Western blot analysis, real-time PCR and promoter assay. The involvement of the NADPH oxidase and reactive oxygen species (ROS), MAPKs, and the transcription factor NF-κB in these responses was investigated by using selective pharmacological inhibitors and transfection with appropriate siRNAs. KEY RESULTS JEV induced the expression of the pro-form of MMP-9 in rat brain astrocytes (RBA-1 cells). In RBA-1 cells, JEV induced MMP-9 expression and promoter activity, which was inhibited by pretreatment with inhibitors of NADPH oxidase (diphenylene iodonium chloride or apocynin), MAPKs (U0126, SB203580 or SP600125) and a ROS scavenger (N-acetylcysteine), or transfection with siRNAs of p47(phox) , ERK1, JNK2 and p38. In addition, JEV-induced MMP-9 expression was reduced by pretreatment with an inhibitor of NF-κB (helenalin) or transfection with p65 siRNA. Moreover, JEV-stimulated NF-κB activation was inhibited by pretreatment with the inhibitors of NADPH oxidase and MAPKs. CONCLUSIONS AND IMPLICATIONS MMP-9 expression induced by JEV infection of RBA-1 cells was mediated through the generation of ROS and activation of p42/p44 MAPK, p38 MAPK and JNK1/2, leading to NF-κB activation.
Collapse
Affiliation(s)
- Wei-Hsuan Tung
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
35
|
Niebuhr M, Heratizadeh A, Wichmann K, Satzger I, Werfel T. Intrinsic alterations of pro-inflammatory mediators in unstimulated and TLR-2 stimulated keratinocytes from atopic dermatitis patients. Exp Dermatol 2011; 20:468-72. [DOI: 10.1111/j.1600-0625.2011.01277.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Schubert K, Polte T, Bönisch U, Schader S, Holtappels R, Hildebrandt G, Lehmann J, Simon JC, Anderegg U, Saalbach A. Thy-1 (CD90) regulates the extravasation of leukocytes during inflammation. Eur J Immunol 2011; 41:645-56. [DOI: 10.1002/eji.201041117] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/11/2010] [Accepted: 12/16/2010] [Indexed: 11/08/2022]
|
37
|
Orihara K, Dil N, Anaparti V, Moqbel R. What's new in asthma pathophysiology and immunopathology? Expert Rev Respir Med 2011; 4:605-29. [PMID: 20923340 DOI: 10.1586/ers.10.57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Research on asthma pathophysiology over the past decade has expanded the complex repertoire involved in the pathophysiology of asthma to include inflammatory, immune and structural cells, as well as a wide range of mediators. Studies have identified a role for connective and other mesenchymal tissues involved in airway remodeling. Recent findings have implicated the innate immune response in asthma and have revealed interesting patterns of interaction between the innate and adaptive immune response and the associated complex chronic inflammatory reaction. New immune cell populations have also been added to this repertoire, including Tregs, natural killer T cells and Th17 cells. The role of the eosinophil, a prominent pathological feature in most asthma phenotypes, has also been expanding to include roles such as tissue modifiers and immune regulators via a number of fascinating and hitherto unexplored mechanistic pathways. In addition, new and significant roles have been proposed for airway smooth muscle cells, fibroblasts, epithelial and endothelial cells. Tissue remodeling is now considered an integral element of asthma pathophysiology. Finally, an intricate network of mediators, released from both immune and inflammatory cells, including thymus stromal lymphopoietin and matrix metalloproteinases, have added to the complex milieu of asthma immunity and inflammation. These findings have implications for therapy and the search for novel strategies towards better disease management. Sadly, and perhaps due to the complex nature of asthma, advances in therapeutic discoveries and developments have been limited. Thus, understanding the precise roles played by the numerous dramatis personae in this odyssey, both individually and collectively within the context of asthma pathophysiology, continues to pose new challenges. It is clear that the next stage in this saga is to embark on studies that transcend reductionist approaches to involve system analysis of the complex and multiple variables involved in asthma, including the need to narrow down the phenotypes of this condition based on careful analysis of the organs (lung and airways), cells, mediators and other factors involved in bronchial asthma.
Collapse
Affiliation(s)
- Kanami Orihara
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
38
|
Niebuhr M, Baumert K, Werfel T. TLR-2-mediated cytokine and chemokine secretion in human keratinocytes. Exp Dermatol 2010; 19:873-7. [DOI: 10.1111/j.1600-0625.2010.01140.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Morjaria JB, Babu KS, Polosa R, Holgate ST. Tumor necrosis factor-alpha in severe corticosteroid-refractory asthma. Expert Rev Respir Med 2010; 1:51-63. [PMID: 20477266 DOI: 10.1586/17476348.1.1.51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tumor necrosis factor (TNF)-alpha is a proinflammatory cytokine. Blocking TNF-alpha has been demonstrated to be effective in various diseases, including both rheumatoid and psoriatic arthritis. There is evidence to show that levels of TNF-alpha are elevated in patients with severe asthma. TNF-alpha is involved in the initiation and perpetuation of the inflammatory process, epithelial damage and remodeling, and mucin hypersecretion. Furthermore, TNF-alpha polymorphism has also been reported in the asthmatic population. Based on the necessity for alternative treatments for asthmatics with severe disease and those who are particularly resistant to conventional asthma therapy, it has been shown that molecules targeted at blocking the effects of TNF-alpha probably constitute a considerable advance in the management of these difficult patients. This review focuses on the evidence of TNF-alpha axis upregulation in severe corticosteroid-refractory asthma, as well as the role of TNF-alpha inhibition and the adverse effects of treatment.
Collapse
Affiliation(s)
- Jaymin B Morjaria
- Southampton General Hospital, Asthma Allergy Inflammation & Repair, Level F, South Academic Block, Mailpoint 810, Southampton SO16 6YD, UK.
| | | | | | | |
Collapse
|
40
|
Lin CC, Kuo CT, Cheng CY, Wu CY, Lee CW, Hsieh HL, Lee IT, Yang CM. IL-1β promotes A549 cell migration via MAPKs/AP-1- and NF-κB-dependent matrix metalloproteinase-9 expression. Cell Signal 2009; 21:1652-62. [DOI: 10.1016/j.cellsig.2009.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
|
41
|
Fillon S, Robinson ZD, Colgan SP, Furuta GT. Epithelial function in eosinophilic gastrointestinal diseases. Immunol Allergy Clin North Am 2009; 29:171-8, xii-xiii. [PMID: 19141352 DOI: 10.1016/j.iac.2008.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Eosinophilic gastrointestinal diseases (EGIDs) are characterized by a wide variety of gastrointestinal symptoms that occur in conjunction with increased numbers of eosinophils in intestinal tissues. With the precise role or roles of eosinophils in gastrointestinal dysfunction incompletely understood, this subject remains an area of intense investigation. Most studies suggest that the intimate anatomic association of eosinophils with the intestinal epithelium implicates participation in the pathophysiology of EGIDs. This article reviews the limited evidence suggesting that the epithelium and eosinophils interact in the gastrointestinal tract and in other organ systems and describes how the epithelium and eosinophils might participate in gastrointestinal inflammatory diseases.
Collapse
Affiliation(s)
- Sophie Fillon
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado Denver School of Medicine, 13123 East 16th Avenue, B290, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
42
|
Hogan SP. Functional role of eosinophils in gastrointestinal inflammation. Immunol Allergy Clin North Am 2009; 29:129-40, xi. [PMID: 19141348 DOI: 10.1016/j.iac.2008.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eosinophilic gastrointestinal (GI) diseases (EGIDs) are characterized by a rich eosinophilic inflammation of the GI tract. Clinical and experimental studies suggest that eosinophils have a pathogenic role in EGIDs; however, the function of eosinophils in these diseases remains an enigma. This article describes eosinophil immunoregulatory and effector function and discusses the possible involvement of these pathways in EGIDs.
Collapse
Affiliation(s)
- Simon P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
43
|
Tariverdian N, Siedentopf F, Rücke M, Blois S, Klapp B, Kentenich H, Arck P. Intraperitoneal immune cell status in infertile women with and without endometriosis. J Reprod Immunol 2009; 80:80-90. [DOI: 10.1016/j.jri.2008.12.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 12/22/2022]
|
44
|
Nissim Ben Efraim AH, Levi-Schaffer F. Tissue remodeling and angiogenesis in asthma: the role of the eosinophil. Ther Adv Respir Dis 2009; 2:163-71. [PMID: 19124368 DOI: 10.1177/1753465808092281] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review covers the role of eosinophils in asthma-associated tissue remodeling and angiogenesis focusing on angiogenesis which is a recently discovered feature of asthma. In addition, novel directions for eosinophil-targeted/angiogenesis-targeted pharmacological intervention are discussed as new approaches in the treatment of asthma.
Collapse
Affiliation(s)
- A H Nissim Ben Efraim
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
45
|
Abu-Ghefreh AA, Canatan H, Ezeamuzie CI. In vitro and in vivo anti-inflammatory effects of andrographolide. Int Immunopharmacol 2008; 9:313-8. [PMID: 19110075 DOI: 10.1016/j.intimp.2008.12.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2008] [Revised: 11/29/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
Andrographolide - the major active principle isolated from the plant Andrographis paniculata, has been shown to possess a strong anti-inflammatory activity. The possibility that the drug may affect asthmatic inflammation, through inhibition of the relevant inflammatory cytokines, has not been explored. The purpose of this study was, firstly, to investigate the ability of andrographolide to inhibit the release of inflammatory cytokines in vitro in a model of non-specific inflammation and subsequently to determine whether such effect can also be exerted in vivo in allergic lung inflammation. LPS-induced TNF-alpha and GM-CSF release from mouse peritoneal macrophages was inhibited by andrographolide in a concentration-dependent manner. The concentration of the drug producing 50% inhibition was 0.6 microM for TNF-alpha and 3.3 microM for GM-CSF. The maximal inhibition achieved (at 50 microM) was 77% and 94%, respectively, for the two cytokines. The drug was as efficacious as dexamethasone, but about 8-12 times less potent. The drug also suppressed LPS-induced expression of mRNA for the two cytokines, suggesting that this effect may contribute to the mechanism underlying its anti-inflammatory effects. In the in vivo study, intra-peritoneal treatment of ovalbumin-immunized and nasally-challenged mice with andrographolide significantly inhibited the elevation of bronchoalveolar fluid (BAF) levels of TNF-alpha and GM-CSF in a dose-dependent manner, with 30 mg/kg producing an inhibition of 92% and 65% of the cytokines, respectively) and almost completely abolishing the accumulation of lymphocytes and eosinophils. These results provide evidence that andrographolide is an effective anti-inflammatory drug that is active in vitro and in vivo, and affects both non-specific as well as antigen/antibody-dependent lung inflammation. Thus, andrographolide has the potential to be used in a variety of inflammatory conditions, including allergic lung inflammation.
Collapse
Affiliation(s)
- Ala'a A Abu-Ghefreh
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait
| | | | | |
Collapse
|
46
|
Histamine Upregulates Keratinocyte MMP-9 Production via the Histamine H1 Receptor. J Invest Dermatol 2008; 128:2783-91. [DOI: 10.1038/jid.2008.153] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Hur GY, Sheen SS, Kang YM, Koh DH, Park HJ, Ye YM, Yim HE, Kim KS, Park HS. Histamine release and inflammatory cell infiltration in airway Mucosa in methylene diphenyl diisocyanate (MDI)-induced occupational asthma. J Clin Immunol 2008; 28:571-80. [PMID: 18484168 DOI: 10.1007/s10875-008-9199-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/13/2008] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Although methylene diphenyl diisocyanate (MDI) is widely used in industries, there have been few studies of the pathogenic mechanisms of MDI-induced occupational asthma (MDI-OA). METHODS We performed immunohistochemical analyses, measured inflammatory mediators and cytokines, and quantified histamine release (HR) from peripheral basophils in MDI-OA patients. Thirteen MDI-exposed workers (five MDI-OA, two MDI-induced esoinophilic bronchitis, and six asymptomatic exposed controls, AEC) were enrolled. RESULTS AND DISCUSSION Immunochemical analyses indicated significantly increased anti-eosinophilic cationic protein-stained cells in MDI-OA patients as compared with controls (P < 0.05). Sputum eosinophil cationic protein levels were increased after MDI-specific inhalation challenge test in MDI-OA/EB patients (P < 0.02). Sputum eosinophil counts were highly correlated with IL-8 and MMP-9 levels (P < 0.05 and P < 0.01, respectively). Basophil HR was significantly increased in MDI-OA patients after stimulations with anti-IgG4 and MDI-human serum albumin conjugates (both P < 0.05). Eosinophil activation is a major feature of airway inflammation in MDI-OA patients. Increased HR by MDI may contribute to the pathogenic mechanisms of MDI-OA.
Collapse
Affiliation(s)
- Gyu-Young Hur
- Department of Allergy and Rheumatology, Ajou University School of Medicine, San-5, Wonchun-dong, Youngtong-gu, Suwon 443-721, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 2008; 38:709-50. [PMID: 18384431 DOI: 10.1111/j.1365-2222.2008.02958.x] [Citation(s) in RCA: 568] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of diverse inflammatory responses, as well as modulators of innate and adaptive immunity. In this review, the biology of eosinophils is summarized, focusing on transcriptional regulation of eosinophil differentiation, characterization of the growing properties of eosinophil granule proteins, surface proteins and pleiotropic mediators, and molecular mechanisms of eosinophil degranulation. New views on the role of eosinophils in homeostatic function are examined, including developmental biology and innate and adaptive immunity (as well as their interaction with mast cells and T cells) and their proposed role in disease processes including infections, asthma, and gastrointestinal disorders. Finally, strategies for targeted therapeutic intervention in eosinophil-mediated mucosal diseases are conceptualized.
Collapse
|
49
|
Hutchison S, Choo-Kang BSW, Bundick RV, Leishman AJ, Brewer JM, McInnes IB, Garside P. Tumour necrosis factor-alpha blockade suppresses murine allergic airways inflammation. Clin Exp Immunol 2008; 151:114-22. [PMID: 17931392 PMCID: PMC2276921 DOI: 10.1111/j.1365-2249.2007.03509.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2007] [Indexed: 11/29/2022] Open
Abstract
Asthma is a heterogeneous disease that has been increasing in incidence throughout western societies and cytokines, including proinflammatory tumour necrosis factor alpha (TNF-alpha), have been implicated in the pathogenesis of asthma. Anti-TNF-alpha therapies have been established successfully in the clinic for diseases such as rheumatoid arthritis and Crohn's disease. TNF-alpha-blocking strategies are now being trialled in asthma; however, their mode of action is poorly understood. Based on the observation that TNF-alpha induces lymph node hypertrophy we have attempted to investigate this as a mechanism of action of TNF-alpha in airway inflammation by employing two models of murine airway inflammation, that we have termed short and long models, representing severe and mild/moderate asthma, respectively. The models differ by their immunization schedules. In the short model, characterized by eosinophilic and neutrophilic airway inflammation the effect of TNF-alpha blockade was a reduction in draining lymph node (DLN) hypertrophy, eosinophilia, interleukin (IL)-5 production and immunoglobulin E (IgE) production. In the long model, characterized by eosinophilic inflammation, TNF-alpha blockade produced a reduction in DLN hypertrophy and IL-5 production but had limited effects on eosinophilia and IgE production. These results indicate that anti-TNF-alpha can suppress DLN hypertrophy and decrease airway inflammation. Further investigations showed that anti-TNF-alpha-induced inhibition of DLN hypertrophy cannot be explained by preventing l-selectin-dependent capture of lymphocytes into the DLN. Given that overall TNF blockade was able to suppress the short model (severe) more effectively than the long model (mild/moderate), the results suggest that TNF-alpha blocking therapies may be more effective in the treatment of severe asthma.
Collapse
Affiliation(s)
- S Hutchison
- Centre for Biophotonics, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
50
|
Swaisgood CM, Aronica MA, Swaidani S, Plow EF. Plasminogen is an important regulator in the pathogenesis of a murine model of asthma. Am J Respir Crit Care Med 2007; 176:333-42. [PMID: 17541016 PMCID: PMC1994216 DOI: 10.1164/rccm.200609-1345oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 05/30/2007] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Asthma is a syndrome whose common pathogenic expression is inflammation of the airways. Plasminogen plays an important role in cell migration and is also implicated in tissue remodeling, but its role in asthma has not been defined. OBJECTIVES To test whether plasminogen is a critical component in the development of asthma. METHODS We used a mouse model of ovalbumin-induced pulmonary inflammation in Plg(+/+), Plg(+/-), and Plg(-/-) mice. MEASUREMENTS AND MAIN RESULTS The host responses measured included lung morphometry, and inflammatory mediators and cell counts were assessed in bronchoalveolar lavage fluid. Bronchoalveolar lavage demonstrated a marked increase in eosinophils and lymphocytes in ovalbumin-treated Plg(+/+) mice, which were reduced to phosphate-buffered saline-treated control levels in Plg(+/-) or Plg(-/-) mice. Lung histology revealed peribronchial and perivascular leukocytosis, mucus production, and increased collagen deposition in ovalbumin-treated Plg(+/+) but not in Plg(+/-) or Plg(-/-) mice. IL-5, tumor necrosis factor-alpha, and gelatinases, known mediators of asthma, were detected in bronchoalveolar lavage fluid of ovalbumin-treated Plg(+/+) mice, yet were reduced in Plg(-/-) mice. Administration of the plasminogen inhibitor, tranexamic acid, reduced eosinophil and lymphocyte numbers, mucus production, and collagen deposition in the lungs of ovalbumin-treated Plg(+/+) mice. CONCLUSIONS The decreased inflammation in the lungs of Plg(-/-) mice and its blockade with a plasminogen inhibitor indicate that plasminogen plays an important role in orchestrating the asthmatic response and suggests that plasminogen may be a therapeutic target for the treatment of asthma.
Collapse
Affiliation(s)
- Carmen M Swaisgood
- Cleveland Clinic, Department of Molecular Cardiology, NB50, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|