1
|
Hills MH, Ma L, Fang A, Chiremba T, Malloy S, Scott AR, Perera AG, Yu CR. Molecular, cellular, and developmental organization of the mouse vomeronasal organ at single cell resolution. eLife 2024; 13:RP97356. [PMID: 39656606 PMCID: PMC11630819 DOI: 10.7554/elife.97356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors (VRs) and a population of canonical olfactory sensory neurons in the VNO. High-resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and VRs, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.
Collapse
Affiliation(s)
- Max Henry Hills
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Limei Ma
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Ai Fang
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Thelma Chiremba
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Seth Malloy
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Allison R Scott
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Anoja G Perera
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - C Ron Yu
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Cell Biology and Physiology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
2
|
Nguyen QAT, Rocha A, Chhor R, Yamashita Y, Stadler C, Pontrello C, Yang H, Haga-Yamanaka S. Hypothalamic representation of the imminence of predator threat detected by the vomeronasal organ in mice. eLife 2024; 12:RP92982. [PMID: 39412856 PMCID: PMC11483128 DOI: 10.7554/elife.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
Animals have the innate ability to select optimal defensive behaviors with appropriate intensity within specific contexts. The vomeronasal organ (VNO) serves as a primary sensory channel for detecting predator cues by relaying signals to the medial hypothalamic nuclei, particularly the ventromedial hypothalamus (VMH), which directly controls defensive behavioral outputs. Here, we demonstrate that cat saliva contains predator cues that signal the imminence of predator threat and modulate the intensity of freezing behavior through the VNO in mice. Cat saliva activates VNO neurons expressing the V2R-A4 subfamily of sensory receptors, and the number of VNO neurons activated in response to saliva correlates with both the freshness of saliva and the intensity of freezing behavior. Moreover, the number of VMH neurons activated by fresh, but not old, saliva positively correlates with the intensity of freezing behavior. Detailed analyses of the spatial distribution of activated neurons, as well as their overlap within the same individual mice, revealed that fresh and old saliva predominantly activate distinct neuronal populations within the VMH. Collectively, this study suggests that there is an accessory olfactory circuit in mice that is specifically tuned to time-sensitive components of cat saliva, which optimizes their defensive behavior to maximize their chance of survival according to the imminence of threat.
Collapse
Affiliation(s)
- Quynh Anh Thi Nguyen
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
| | - Andrea Rocha
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Ricky Chhor
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Yuna Yamashita
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Christian Stadler
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
| | - Crystal Pontrello
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Hongdian Yang
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| | - Sachiko Haga-Yamanaka
- Neuroscience Graduate Program, University of California, RiversideRiversideUnited States
- Department of Molecular, Cell and Systems Biology, University of California, RiversideRiversideUnited States
| |
Collapse
|
3
|
Hills M, Ma L, Fang A, Chiremba T, Malloy S, Scott A, Perera A, Yu CR. Molecular, Cellular, and Developmental Organization of the Mouse Vomeronasal organ at Single Cell Resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581574. [PMID: 39253476 PMCID: PMC11383295 DOI: 10.1101/2024.02.22.581574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors and a population of canonical olfactory sensory neurons in the VNO. High resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and vomeronasal receptors, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.
Collapse
Affiliation(s)
- Max Hills
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Limei Ma
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Ai Fang
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Thelma Chiremba
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Seth Malloy
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Allison Scott
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
| | - C. Ron Yu
- Stowers Institute for Medical Research, 1000 E. 50 Street, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Decoster L, Trova S, Zucca S, Bulk J, Gouveia A, Ternier G, Lhomme T, Legrand A, Gallet S, Boehm U, Wyatt A, Wahl V, Wartenberg P, Hrabovszky E, Rácz G, Luzzati F, Nato G, Fogli M, Peretto P, Schriever SC, Bernecker M, Pfluger PT, Steculorum SM, Bovetti S, Rasika S, Prevot V, Silva MSB, Giacobini P. A GnRH neuronal population in the olfactory bulb translates socially relevant odors into reproductive behavior in male mice. Nat Neurosci 2024; 27:1758-1773. [PMID: 39095587 DOI: 10.1038/s41593-024-01724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons regulate fertility and integrate hormonal status with environmental cues to ensure reproductive success. Here we show that GnRH neurons in the olfactory bulb (GnRHOB) of adult mice can mediate social recognition. Specifically, we show that GnRHOB neurons extend neurites into the vomeronasal organ and olfactory epithelium and project to the median eminence. GnRHOB neurons in males express vomeronasal and olfactory receptors, are activated by female odors and mediate gonadotropin release in response to female urine. Male preference for female odors required the presence and activation of GnRHOB neurons, was impaired after genetic inhibition or ablation of these cells and relied on GnRH signaling in the posterodorsal medial amygdala. GnRH receptor expression in amygdala kisspeptin neurons appear to be required for GnRHOB neurons' actions on male mounting behavior. Taken together, these results establish GnRHOB neurons as regulating fertility, sex recognition and mating in male mice.
Collapse
Affiliation(s)
- Laurine Decoster
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Sara Trova
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
- Centro CMP3VdA, Istituto Italiano di Tecnologia (IIT), Aosta, Italy
| | - Stefano Zucca
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Janice Bulk
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany
| | - Ayden Gouveia
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Tori Lhomme
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Amandine Legrand
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Sarah Gallet
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Vanessa Wahl
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Center for Gender-specific Biology and Medicine (CGBM), Saarland University School of Medicine, Homburg, Germany
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Hun-Ren Institute of Experimental Medicine, Budapest, Hungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Federico Luzzati
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Giulia Nato
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Marco Fogli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
| | - Miriam Bernecker
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Paul T Pfluger
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit Neurobiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, Max Planck Research Group Neurocircuit Wiring and Function, Cologne, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Serena Bovetti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Sowmyalakshmi Rasika
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
| | - Mauro S B Silva
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France.
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Labex DistAlz, Lille, France.
| |
Collapse
|
5
|
Nguyen QAT, Rocha A, Chhor R, Yamashita Y, Stadler C, Pontrello C, Yang H, Haga-Yamanaka S. Hypothalamic representation of the imminence of predator threat detected by the vomeronasal organ in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559655. [PMID: 37808690 PMCID: PMC10557655 DOI: 10.1101/2023.09.27.559655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Animals have the innate ability to select optimal defensive behaviors with appropriate intensity in response to predator threats within specific contexts. Such innate behavioral decisions are thought to be computed in the medial hypothalamic nuclei, which contain neural populations that directly control defensive behavioral outputs. The vomeronasal organ (VNO) serves as a primary sensory channel for detecting predator cues by relaying signals to the medial hypothalamic nuclei, particularly the ventromedial hypothalamus (VMH), via the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST). Here, we demonstrate that cat saliva contains predator cues that signal the imminence of predator threat and modulate the intensity of freezing behavior through the VNO in mice. Cat saliva activates neurons expressing the V2R-A4 subfamily of sensory receptors, suggesting that specific receptor groups are responsible for inducing the freezing behavior. The number of VNO neurons activated in response to saliva correlates with both the freshness of saliva and the intensity of freezing behavior. In contrast, the downstream neurons in the accessory olfactory bulb (AOB) and the defensive behavioral circuit are activated to a similar extent by fresh and old saliva. Strikingly, however, the number of VMH neurons activated by fresh, but not old, saliva positively correlates with the intensity of freezing behavior. Detailed analysis of the spatial distribution of neurons responding to fresh and old saliva, as well as the overlap of those activated within the same individual mice, revealed that fresh and old saliva predominantly activate distinct neuronal populations within the VMH. Collectively, this study suggests that there is an accessory olfactory circuit in mice that is specifically tuned to time-sensitive components of cat saliva, which optimizes their defensive behavior to maximize their chance of survival according to the imminence of threat.
Collapse
|
6
|
Forni PE, Yu CR. Two decades on: Special issue on olfaction celebrating Axel and Buck's Nobel Prize. Genesis 2024; 62:e23613. [PMID: 39054874 DOI: 10.1002/dvg.23613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Paolo E Forni
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, Albany, New York, USA
| | - C Ron Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Cell Biology and Physiology, University of Kansas School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
7
|
Rocha A, Nguyen QAT, Haga-Yamanaka S. Type 2 vomeronasal receptor-A4 subfamily: Potential predator sensors in mice. Genesis 2024; 62:e23597. [PMID: 38590121 PMCID: PMC11018355 DOI: 10.1002/dvg.23597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.
Collapse
Affiliation(s)
- Andrea Rocha
- Neuroscience Graduate Program, University of California, Riverside
| | | | - Sachiko Haga-Yamanaka
- Neuroscience Graduate Program, University of California, Riverside
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside
| |
Collapse
|
8
|
Suiwal S, Wartenberg P, Boehm U, Schmitz F, Schwarz K. A Novel Cre Recombinase Mouse Strain for Cell-Specific Deletion of Floxed Genes in Ribbon Synapse-Forming Retinal Neurons. Int J Mol Sci 2024; 25:1916. [PMID: 38339191 PMCID: PMC10856425 DOI: 10.3390/ijms25031916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
We generated a novel Cre mouse strain for cell-specific deletion of floxed genes in ribbon synapse-forming retinal neurons. Previous studies have shown that the RIBEYE promotor targets the expression of recombinant proteins such as fluorescently tagged RIBEYE to photoreceptors and retinal bipolar cells and generates fluorescent synaptic ribbons in situ in these neurons. Here, we used the same promotor to generate a novel transgenic mouse strain in which the RIBEYE promotor controls the expression of a Cre-ER(T2) recombinase (RIBEYE-Cre). To visualize Cre expression, the RIBEYE-Cre animals were crossed with ROSA26 tau-GFP (R26-τGFP) reporter mice. In the resulting RIBEYE-Cre/R26 τGFP animals, Cre-mediated removal of a transcriptional STOP cassette results in the expression of green fluorescent tau protein (tau-GFP) that binds to cellular microtubules. We detected robust tau-GFP expression in retinal bipolar cells. Surprisingly, we did not find fluorescent tau-GFP expression in mouse photoreceptors. The lack of tau-GFP reporter protein in these cells could be based on the previously reported absence of tau protein in mouse photoreceptors which could lead to the degradation of the recombinant tau protein. Consistent with this, we detected Cre and tau-GFP mRNA in mouse photoreceptor slices by RT-PCR. The transgenic RIBEYE-Cre mouse strain provides a new tool to study the deletion of floxed genes in ribbon synapse-forming neurons of the retina and will also allow for analyzing gene deletions that are lethal if globally deleted in neurons.
Collapse
Affiliation(s)
- Shweta Suiwal
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| | - Philipp Wartenberg
- Institute of Clinical and Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Medical School, Saarland University, 66421 Homburg, Germany; (P.W.); (U.B.)
| | - Ulrich Boehm
- Institute of Clinical and Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Medical School, Saarland University, 66421 Homburg, Germany; (P.W.); (U.B.)
| | - Frank Schmitz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| | - Karin Schwarz
- Institute of Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
9
|
Weiss J, Zufall F. Presynaptic GABA B receptors inhibit vomeronasal nerve transmission to accessory olfactory bulb mitral cells. Front Cell Neurosci 2023; 17:1302955. [PMID: 38130867 PMCID: PMC10733964 DOI: 10.3389/fncel.2023.1302955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023] Open
Abstract
Vomeronasal sensory neurons (VSNs) recognize pheromonal and kairomonal semiochemicals in the lumen of the vomeronasal organ. VSNs send their axons along the vomeronasal nerve (VN) into multiple glomeruli of the accessory olfactory bulb (AOB) and form glutamatergic synapses with apical dendrites of mitral cells, the projection neurons of the AOB. Juxtaglomerular interneurons release the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Besides ionotropic GABA receptors, the metabotropic GABAB receptor has been shown to modulate synaptic transmission in the main olfactory system. Here we show that GABAB receptors are expressed in the AOB and are primarily located at VN terminals. Electrical stimulation of the VN provokes calcium elevations in VSN nerve terminals, and activation of GABAB receptors by the agonist baclofen abolishes calcium influx in AOB slice preparations. Patch clamp recordings reveal that synaptic transmission from the VN to mitral cells can be completely suppressed by activation of GABAB receptors. A potent GABAB receptor antagonist, CGP 52432, reversed the baclofen-induced effects. These results indicate that modulation of VSNs via activation of GABAB receptors affects calcium influx and glutamate release at presynaptic terminals and likely balances synaptic transmission at the first synapse of the accessory olfactory system.
Collapse
Affiliation(s)
- Jan Weiss
- Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | | |
Collapse
|
10
|
Offner T, Weiss L, Daume D, Berk A, Inderthal TJ, Manzini I, Hassenklöver T. Functional odor map heterogeneity is based on multifaceted glomerular connectivity in larval Xenopus olfactory bulb. iScience 2023; 26:107518. [PMID: 37636047 PMCID: PMC10448113 DOI: 10.1016/j.isci.2023.107518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Glomeruli are the functional units of the vertebrate olfactory bulb (OB) connecting olfactory receptor neuron (ORN) axons and mitral/tufted cell (MTC) dendrites. In amphibians, these two circuit elements regularly branch and innervate multiple, spatially distinct glomeruli. Using functional multiphoton-microscopy and single-cell tracing, we investigate the impact of this wiring on glomerular module organization and odor representations on multiple levels of the Xenopus laevis OB network. The glomerular odor map to amino acid odorants is neither stereotypic between animals nor chemotopically organized. Among the morphologically heterogeneous group of uni- and multi-glomerular MTCs, MTCs can selectively innervate glomeruli formed by axonal branches of individual ORNs. We conclude that odor map heterogeneity is caused by the coexistence of different intermingled glomerular modules. This demonstrates that organization of the amphibian main olfactory system is not strictly based on uni-glomerular connectivity.
Collapse
Affiliation(s)
- Thomas Offner
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Daniela Daume
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Anna Berk
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Tim Justin Inderthal
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| |
Collapse
|
11
|
Amos C, Fox MA, Su J. Collagen XIX is required for pheromone recognition and glutamatergic synapse formation in mouse accessory olfactory bulb. Front Cell Neurosci 2023; 17:1157577. [PMID: 37091919 PMCID: PMC10113670 DOI: 10.3389/fncel.2023.1157577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
In mammals, the accessory olfactory bulb (AOB) receives input from vomeronasal sensory neurons (VSN) which detect pheromones, chemical cues released by animals to regulate the physiology or behaviors of other animals of the same species. Cytoarchitecturally, cells within the AOB are segregated into a glomerular layer (GL), mitral cell layer (MCL), and granule cell layer (GCL). While the cells and circuitry of these layers has been well studied, the molecular mechanism underlying the assembly of such circuitry in the mouse AOB remains unclear. With the goal of identifying synaptogenic mechanisms in AOB, our attention was drawn to Collagen XIX, a non-fibrillar collagen generated by neurons in the mammalian telencephalon that has previously been shown to regulate the assembly of synapses. Here, we used both a targeted mouse mutant that lacks Collagen XIX globally and a conditional allele allowing for cell-specific deletion of this collagen to test if the loss of Collagen XIX causes impaired synaptogenesis in the mouse AOB. These analyses not only revealed defects in excitatory synapse distribution in these Collagen XIX-deficient mutants, but also showed that these mutant mice exhibit altered behavioral responses to pheromones. Although this collagen has been demonstrated to play synaptogenic roles in the telencephalon, those roles are at perisomatic inhibitory synapses, results here are the first to demonstrate the function of this unconventional collagen in glutamatergic synapse formation.
Collapse
Affiliation(s)
- Chase Amos
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Jianmin Su
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
12
|
Spix B, Castiglioni AJ, Remis NN, Flores EN, Wartenberg P, Wyatt A, Boehm U, Gudermann T, Biel M, García-Añoveros J, Grimm C. Whole-body analysis of TRPML3 (MCOLN3) expression using a GFP-reporter mouse model reveals widespread expression in secretory cells and endocrine glands. PLoS One 2022; 17:e0278848. [PMID: 36520788 PMCID: PMC10045552 DOI: 10.1371/journal.pone.0278848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
TRPML3 (mucolipin 3, MCOLN3) is an endolysosomal cation channel belonging to the TRPML subfamily of transient receptor potential channels. Gain-of-function mutations in the Trpml3 gene cause deafness, circling behavior and coat color dilution in mice due to cell death of TRPML3-expressing hair cells of the inner ear or skin melanocytes, respectively. Furthermore, TRPML3 was found to play a role in the long term survival of cochlear hair cells (its absence contributing to presbycusis), in specialized giant lysosomes that neonatal (birth to weaning) enterocytes used for the uptake and digestion of maternal milk nutrients, and in the expulsion of exosome-encased bacteria such as uropathogenic E. coli, infecting bladder epithelial cells. Recently, TRPML3 was found to be expressed at high levels in alveolar macrophages and loss of TRPML3 results in a lung emphysema phenotype, confirmed in two independently engineered Trpml3 knockout lines. TRPML3 is not ubiquitously expressed like its relative TRPML1 and thus cellular expression of TRPML3 on a whole-tissue level remains, with the exceptions mentioned above, largely elusive. To overcome this problem, we generated a τGFP reporter mouse model for TRPML3 and compared expression data obtained from this model by immunofluorescence on tissue sections with immunohistochemistry using TRPML3 antibodies and in situ hybridization. We thus uncovered expression in several organs and distinct cell types. We confirmed TRPML3 expression in both neonatal and adult alveolar macrophages, in melanocytes of hair follicles and glabrous skin, in principle cells of the collecting duct of the neonatal and adult kidney, and in olfactory sensory neurons of the olfactory epithelium, including its fibres protruding to the glomeruli of the olfactory bulb. Additionally, we localized TRPML3 in several glands including parathyroid, thyroid, salivary, adrenal, and pituitary gland, testes and ovaries, suggestive of potential roles for the channel in secretion or uptake of different hormones.
Collapse
Affiliation(s)
- Barbara Spix
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Andrew J. Castiglioni
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Natalie N. Remis
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Integrated Graduate Program in the Life Sciences (IGP), Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Emma N. Flores
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Northwestern University Interdepartmental Neuroscience (NUIN) graduate program, Chicago, Illinois, United States of America
| | - Philipp Wartenberg
- Center for Molecular Signaling (PZMS), Experimental Pharmacology, Saarland University, Homburg, Germany
| | - Amanda Wyatt
- Center for Molecular Signaling (PZMS), Experimental Pharmacology, Saarland University, Homburg, Germany
| | - Ulrich Boehm
- Center for Molecular Signaling (PZMS), Experimental Pharmacology, Saarland University, Homburg, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Jaime García-Añoveros
- Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Integrated Graduate Program in the Life Sciences (IGP), Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Northwestern University Interdepartmental Neuroscience (NUIN) graduate program, Chicago, Illinois, United States of America
- Departments of Neurology and Neuroscience, and Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
13
|
Dietschi Q, Tuberosa J, Fodoulian L, Boillat M, Kan C, Codourey J, Pauli V, Feinstein P, Carleton A, Rodriguez I. Clustering of vomeronasal receptor genes is required for transcriptional stability but not for choice. SCIENCE ADVANCES 2022; 8:eabn7450. [PMID: 36383665 PMCID: PMC9668312 DOI: 10.1126/sciadv.abn7450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Rodents perceive pheromones via vomeronasal receptors encoded by highly evolutionarily dynamic Vr and Fpr gene superfamilies. We report here that high numbers of V1r pseudogenes are scattered in mammalian genomes, contrasting with the clustered organization of functional V1r and Fpr genes. We also found that V1r pseudogenes are more likely to be expressed when located in a functional V1r gene cluster than when isolated. To explore the potential regulatory role played by the association of functional vomeronasal receptor genes with their clusters, we dissociated the mouse Fpr-rs3 from its native cluster via transgenesis. Singular and specific transgenic Fpr-rs3 transcription was observed in young vomeronasal neurons but was only transient. Our study of natural and artificial dispersed gene duplications uncovers the existence of transcription-stabilizing elements not coupled to vomeronasal gene units but rather associated with vomeronasal gene clusters and thus explains the evolutionary conserved clustered organization of functional vomeronasal genes.
Collapse
Affiliation(s)
- Quentin Dietschi
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Joël Tuberosa
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Leon Fodoulian
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Madlaina Boillat
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Chenda Kan
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Julien Codourey
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Véronique Pauli
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Paul Feinstein
- Department of Biological Sciences, Hunter College, City University of New York and The Graduate Center Programs in Biochemistry, Biology and CUNY Neuroscience Collaborative, New York, NY, USA
| | - Alan Carleton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Wang J, Vaddadi N, Pak JS, Park Y, Quilez S, Roman CA, Dumontier E, Thornton JW, Cloutier JF, Özkan E. Molecular and structural basis of olfactory sensory neuron axon coalescence by Kirrel receptors. Cell Rep 2021; 37:109940. [PMID: 34731636 PMCID: PMC8628261 DOI: 10.1016/j.celrep.2021.109940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
Projections from sensory neurons of olfactory systems coalesce into glomeruli in the brain. The Kirrel receptors are believed to homodimerize via their ectodomains and help separate sensory neuron axons into Kirrel2- or Kirrel3-expressing glomeruli. Here, we present the crystal structures of homodimeric Kirrel receptors and show that the closely related Kirrel2 and Kirrel3 have evolved specific sets of polar and hydrophobic interactions, respectively, disallowing heterodimerization while preserving homodimerization, likely resulting in proper segregation and coalescence of Kirrel-expressing axons into glomeruli. We show that the dimerization interface at the N-terminal immunoglobulin (IG) domains is necessary and sufficient to create homodimers and fail to find evidence for a secondary interaction site in Kirrel ectodomains. Furthermore, we show that abolishing dimerization of Kirrel3 in vivo leads to improper formation of glomeruli in the mouse accessory olfactory bulb as observed in Kirrel3-/- animals. Our results provide evidence for Kirrel3 homodimerization controlling axonal coalescence.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Neelima Vaddadi
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Yeonwoo Park
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sabrina Quilez
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada
| | - Christina A Roman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Emilie Dumontier
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada
| | - Joseph W Thornton
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Jean-François Cloutier
- The Neuro-Montreal Neurological Institute and Hospital, McGill University, Montréal, QC H3A 2B4, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC H3A 2B4, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada.
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
15
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
16
|
Aoki M, Gamayun I, Wyatt A, Grünewald R, Simon-Thomas M, Philipp SE, Hummel O, Wagenpfeil S, Kattler K, Gasparoni G, Walter J, Qiao S, Grattan DR, Boehm U. Prolactin-sensitive olfactory sensory neurons regulate male preference in female mice by modulating responses to chemosensory cues. SCIENCE ADVANCES 2021; 7:eabg4074. [PMID: 34623921 PMCID: PMC8500514 DOI: 10.1126/sciadv.abg4074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/19/2021] [Indexed: 06/10/2023]
Abstract
Chemosensory cues detected in the nose need to be integrated with the hormonal status to trigger appropriate behaviors, but the neural circuits linking the olfactory and the endocrine system are insufficiently understood. Here, we characterize olfactory sensory neurons in the murine nose that respond to the pituitary hormone prolactin. Deletion of prolactin receptor in these cells results in impaired detection of social odors and blunts male preference in females. The prolactin-responsive olfactory sensory neurons exhibit a distinctive projection pattern to the brain that is similar across different individuals and express a limited subset of chemosensory receptors. Prolactin modulates the responses within these neurons to discrete chemosensory cues contained in male urine, providing a mechanism by which the hormonal status can be directly linked with distinct olfactory cues to generate appropriate behavioral responses.
Collapse
Affiliation(s)
- Mari Aoki
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Igor Gamayun
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Ramona Grünewald
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Martin Simon-Thomas
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Stephan E. Philipp
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Oliver Hummel
- Faculty of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Stefan Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University School of Medicine, Homburg, Germany
| | - Kathrin Kattler
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - David R. Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
17
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
18
|
TMEM16A and TMEM16B Modulate Pheromone-Evoked Action Potential Firing in Mouse Vomeronasal Sensory Neurons. eNeuro 2021; 8:ENEURO.0179-21.2021. [PMID: 34433575 PMCID: PMC8445037 DOI: 10.1523/eneuro.0179-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
The mouse vomeronasal system controls several social behaviors. Pheromones and other social cues are detected by sensory neurons in the vomeronasal organ (VNO). Stimuli activate a transduction cascade that leads to membrane potential depolarization, increase in cytosolic Ca2+ level, and increased firing. The Ca2+-activated chloride channels TMEM16A and TMEM16B are co-expressed within microvilli of vomeronasal neurons, but their physiological role remains elusive. Here, we investigate the contribution of each of these channels to vomeronasal neuron firing activity by comparing wild-type (WT) and knock-out (KO) mice. Performing loose-patch recordings from neurons in acute VNO slices, we show that spontaneous activity is modified by Tmem16a KO, indicating that TMEM16A, but not TMEM16B, is active under basal conditions. Upon exposure to diluted urine, a rich source of mouse pheromones, we observe significant changes in activity. Vomeronasal sensory neurons (VSNs) from Tmem16a cKO and Tmem16b KO mice show shorter interspike intervals (ISIs) compared with WT mice, indicating that both TMEM16A and TMEM16B modulate the firing pattern of pheromone-evoked activity in VSNs.
Collapse
|
19
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
20
|
Villamayor PR, Robledo D, Fernández C, Gullón J, Quintela L, Sánchez-Quinteiro P, Martínez P. Analysis of the vomeronasal organ transcriptome reveals variable gene expression depending on age and function in rabbits. Genomics 2021; 113:2240-2252. [PMID: 34015461 DOI: 10.1016/j.ygeno.2021.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
The vomeronasal organ (VNO) is a chemosensory organ specialized in pheromone detection that shows a broad morphofunctional and genomic diversity among mammals. However, its expression patterns have only been well-characterized in mice. Here, we provide the first comprehensive RNA sequencing study of the rabbit VNO across gender and sexual maturation stages. We characterized the VNO transcriptome, updating the number and expression of the two main vomeronasal receptor families, including 128 V1Rs and 67 V2Rs. Further, we defined the expression of formyl-peptide receptor and transient receptor potential channel families, both known to have specific roles in the VNO. Several sex hormone-related pathways were consistently enriched in the VNO, highlighting the relevance of this organ in reproduction. Moreover, whereas juvenile and adult VNOs showed significant transcriptome differences, male and female did not. Overall, these results contribute to understand the genomic basis of behavioural responses mediated by the VNO in a non-rodent model.
Collapse
Affiliation(s)
- P R Villamayor
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain; Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - C Fernández
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - J Gullón
- Conejos Gallegos, COGAL SL, Rodeiro, Pontevedra, Spain
| | - L Quintela
- Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - P Sánchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - P Martínez
- Department of Zoology Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
21
|
From immune to olfactory expression: neofunctionalization of formyl peptide receptors. Cell Tissue Res 2021; 383:387-393. [PMID: 33452930 PMCID: PMC7873101 DOI: 10.1007/s00441-020-03393-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Variations in gene expression patterns represent a powerful source of evolutionary innovation. In a rodent living about 70 million years ago, a genomic accident led an immune formyl peptide receptor (FPR) gene to hijack a vomeronasal receptor regulatory sequence. This gene shuffling event forced an immune pathogen sensor to transition into an olfactory chemoreceptor, which thus moved from sensing the internal world to probing the outside world. We here discuss the evolution of the FPR gene family, the events that led to their neofunctionalization in the vomeronasal organ and the functions of immune and vomeronasal FPRs.
Collapse
|
22
|
Tirindelli R. Coding of pheromones by vomeronasal receptors. Cell Tissue Res 2021; 383:367-386. [PMID: 33433690 DOI: 10.1007/s00441-020-03376-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/02/2020] [Indexed: 01/11/2023]
Abstract
Communication between individuals is critical for species survival, reproduction, and expansion. Most terrestrial species, with the exception of humans who predominantly use vision and phonation to create their social network, rely on the detection and decoding of olfactory signals, which are widely known as pheromones. These chemosensory cues originate from bodily fluids, causing attractive or avoidance behaviors in subjects of the same species. Intraspecific pheromone signaling is then crucial to identify sex, social ranking, individuality, and health status, thus establishing hierarchies and finalizing the most efficient reproductive strategies. Indeed, all these features require fine tuning of the olfactory systems to detect molecules containing this information. To cope with this complexity of signals, tetrapods have developed dedicated olfactory subsystems that refer to distinct peripheral sensory detectors, called the main olfactory and the vomeronasal organ, and two minor structures, namely the septal organ of Masera and the Grueneberg ganglion. Among these, the vomeronasal organ plays the most remarkable role in pheromone coding by mediating several behavioral outcomes that are critical for species conservation and amplification. In rodents, this organ is organized into two segregated neuronal subsets that express different receptor families. To some extent, this dichotomic organization is preserved in higher projection areas of the central nervous system, suggesting, at first glance, distinct functions for these two neuronal pathways. Here, I will specifically focus on this issue and discuss the role of vomeronasal receptors in mediating important innate behavioral effects through the recognition of pheromones and other biological chemosignals.
Collapse
Affiliation(s)
- Roberto Tirindelli
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
23
|
Lodovichi C. Topographic organization in the olfactory bulb. Cell Tissue Res 2021; 383:457-472. [PMID: 33404841 PMCID: PMC7873094 DOI: 10.1007/s00441-020-03348-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
24
|
Bahreini Jangjoo S, Lin JM, Etaati F, Fearnley S, Cloutier JF, Khmaladze A, Forni PE. Automated quantification of vomeronasal glomeruli number, size, and color composition after immunofluorescent staining. Chem Senses 2021; 46:6366009. [PMID: 34492099 PMCID: PMC8502234 DOI: 10.1093/chemse/bjab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glomeruli are neuropil-rich regions of the main or accessory olfactory bulbs (AOB) where the axons of olfactory or vomeronasal neurons and dendrites of mitral/tufted cells form synaptic connections. In the main olfactory system, olfactory sensory neurons (OSNs) expressing the same receptor innervate 1 or 2 glomeruli. However, in the accessory olfactory system, vomeronasal sensory neurons (VSNs) expressing the same receptor can innervate up to 30 different glomeruli in the AOB. Genetic mutation disrupting genes with a role in defining the identity/diversity of olfactory and vomeronasal neurons can alter the number and size of glomeruli. Interestingly, 2 cell surface molecules, Kirrel2 and Kirrel3, have been indicated as playing a critical role in the organization of axons into glomeruli in the AOB. Being able to quantify differences in glomeruli features, such as number, size, or immunoreactivity for specific markers, is an important experimental approach to validate the role of specific genes in controlling neuronal connectivity and circuit formation in either control or mutant animals. Since the manual recognition and quantification of glomeruli on digital images is a challenging and time-consuming task, we generated a program in Python able to identify glomeruli in digital images and quantify their properties, such as size, number, and pixel intensity. Validation of our program indicates that our script is a fast and suitable tool for high-throughput quantification of glomerular features of mouse lines with different genetic makeup.
Collapse
Affiliation(s)
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY, USA.,The RNA Institute, University at Albany, Albany, NY, USA
| | - Farhood Etaati
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Sydney Fearnley
- The Neuro, 3801 University, Montréal, QC H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Jean-François Cloutier
- The Neuro, 3801 University, Montréal, QC H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | | | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY, USA.,The RNA Institute, University at Albany, Albany, NY, USA
| |
Collapse
|
25
|
Weiss L, Manzini I, Hassenklöver T. Olfaction across the water-air interface in anuran amphibians. Cell Tissue Res 2021; 383:301-325. [PMID: 33496878 PMCID: PMC7873119 DOI: 10.1007/s00441-020-03377-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Extant anuran amphibians originate from an evolutionary intersection eventually leading to fully terrestrial tetrapods. In many ways, they have to deal with exposure to both terrestrial and aquatic environments: (i) phylogenetically, as derivatives of the first tetrapod group that conquered the terrestrial environment in evolution; (ii) ontogenetically, with a development that includes aquatic and terrestrial stages connected via metamorphic remodeling; and (iii) individually, with common changes in habitat during the life cycle. Our knowledge about the structural organization and function of the amphibian olfactory system and its relevance still lags behind findings on mammals. It is a formidable challenge to reveal underlying general principles of circuity-related, cellular, and molecular properties that are beneficial for an optimized sense of smell in water and air. Recent findings in structural organization coupled with behavioral observations could help to understand the importance of the sense of smell in this evolutionarily important animal group. We describe the structure of the peripheral olfactory organ, the olfactory bulb, and higher olfactory centers on a tissue, cellular, and molecular levels. Differences and similarities between the olfactory systems of anurans and other vertebrates are reviewed. Special emphasis lies on adaptations that are connected to the distinct demands of olfaction in water and air environment. These particular adaptations are discussed in light of evolutionary trends, ontogenetic development, and ecological demands.
Collapse
Affiliation(s)
- Lukas Weiss
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Ivan Manzini
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany
| | - Thomas Hassenklöver
- Institute of Animal Physiology, Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 38, 35392, Giessen, Germany.
| |
Collapse
|
26
|
Schmid T, Boehm U, Braun T. GnRH neurogenesis depends on embryonic pheromone receptor expression. Mol Cell Endocrinol 2020; 518:111030. [PMID: 32931849 DOI: 10.1016/j.mce.2020.111030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 01/19/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons control mammalian reproduction and migrate from their birthplace in the nasal placode to the hypothalamus during development. Despite much work on the origin and migration of GnRH neurons, the processes that control GnRH lineage formation are not fully understood. Here, we demonstrate that Nhlh genes control vomeronasal receptor expression in the developing murine olfactory placode associated with the generation of the first GnRH neurons at embryonic days (E)10-12. Inactivation of ß2-microglobulin (ß2-m), which selectively affects surface expression of V2Rs, dramatically decreased the number of GnRH neurons in the Nhlh2 mutant background, preventing rescue of fertility in female Nhlh2 mutant mice by male pheromones. In addition, we show that GnRH neurons generated after E12 fail to establish synaptic connections to the vomeronasal amygdala, suggesting the existence of functionally specialized subpopulations of GnRH neurons, which process pheromonal information.
Collapse
Affiliation(s)
- Thomas Schmid
- Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Ludwigstr. 43, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany.
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Ludwigstr. 43, Germany; Instituto de Investigacion en Biomedicina de Buenos Aires (IBioBA)-CONICET- Partner Institute of the Max Planck Society, Buenos Aires, Argentina.
| |
Collapse
|
27
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
28
|
Marom K, Horesh N, Abu-Snieneh A, Dafni A, Paul R, Fleck D, Spehr M, Ben-Shaul Y. The Vomeronasal System Can Learn Novel Stimulus Response Pairings. Cell Rep 2020; 27:676-684.e6. [PMID: 30995466 DOI: 10.1016/j.celrep.2019.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/17/2018] [Accepted: 03/12/2019] [Indexed: 01/26/2023] Open
Abstract
Behavioral responses can be classified as innate or learned and are often mediated by distinct neuronal pathways. In many animals, chemical cues are crucial for directing behaviors, and multiple chemosensory subsystems serve this purpose. The major subsystems in vertebrates are the main olfactory system (MOS) and the vomeronasal system (VNS). While the MOS has well-documented associative capabilities, the VNS is known for its role in mediating innate responses to sensory cues with clear ethological significance. However, it remains unknown whether the VNS can map arbitrary sensory activation to novel behavioral outputs. To address this question, we used several optogenetic strategies for selective vomeronasal activation and tested whether mice could associate stimulation patterns with particular reward locations. Our experiments indicate that mice can, indeed, exploit VNS activity to direct novel behavioral responses, implying that the VNS holds a substantial capacity for redirecting and adapting behavioral responses to given stimulation patterns.
Collapse
Affiliation(s)
- Karen Marom
- Hebrew University Medical School, Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel
| | - Noa Horesh
- Hebrew University Medical School, Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel
| | - Asmahan Abu-Snieneh
- Hebrew University Medical School, Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel
| | - Amnon Dafni
- Hebrew University Medical School, Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel
| | - Rachel Paul
- Hebrew University Medical School, Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Yoram Ben-Shaul
- Hebrew University Medical School, Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel.
| |
Collapse
|
29
|
Weiss L, Jungblut LD, Pozzi AG, Zielinski BS, O'Connell LA, Hassenklöver T, Manzini I. Multi-glomerular projection of single olfactory receptor neurons is conserved among amphibians. J Comp Neurol 2020; 528:2239-2253. [PMID: 32080843 DOI: 10.1002/cne.24887] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 11/07/2022]
Abstract
Individual receptor neurons in the peripheral olfactory organ extend long axons into the olfactory bulb forming synapses with projection neurons in spherical neuropil regions, called glomeruli. Generally, odor map formation and odor processing in all vertebrates is based on the assumption that receptor neuron axons exclusively connect to a single glomerulus without any axonal branching. We comparatively tested this hypothesis in multiple fish and amphibian species (both sexes) by applying sparse cell electroporation to trace single olfactory receptor neuron axons. Sea lamprey (jawless fish) and zebrafish (bony fish) support the unbranched axon concept, with 94% of axons terminating in single glomeruli. Contrastingly, axonal projections of the axolotl (salamander) branch extensively before entering up to six distinct glomeruli. Receptor neuron axons labeled in frog species (Pipidae, Bufonidae, Hylidae, and Dendrobatidae) predominantly bifurcate before entering a glomerulus and 59 and 50% connect to multiple glomeruli in larval and postmetamorphotic animals, respectively. Independent of developmental stage, lifestyle, and adaptations to specific habitats, it seems to be a common feature of amphibian olfactory receptor neuron axons to frequently bifurcate and connect to multiple glomeruli. Our study challenges the unbranched axon concept as a universal vertebrate feature and it is conceivable that also later diverging vertebrates deviate from it. We propose that this unusual wiring logic evolved around the divergence of the terrestrial tetrapod lineage from its aquatic ancestors and could be the basis of an alternative way of odor processing.
Collapse
Affiliation(s)
- Lukas Weiss
- Department of Animal Physiology and Molecular Biomedicine, University of Giessen, Giessen, Germany
| | - Lucas D Jungblut
- Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea G Pozzi
- Departamento de Biodiversidad y Biología Experimental, IBBEA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Barbara S Zielinski
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | | | - Thomas Hassenklöver
- Department of Animal Physiology and Molecular Biomedicine, University of Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, University of Giessen, Giessen, Germany
| |
Collapse
|
30
|
Structural, morphometric and immunohistochemical study of the rabbit accessory olfactory bulb. Brain Struct Funct 2019; 225:203-226. [PMID: 31802255 DOI: 10.1007/s00429-019-01997-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/23/2019] [Indexed: 10/25/2022]
Abstract
The accessory olfactory bulb (AOB) is the first neural integrative centre of the vomeronasal system (VNS), which is associated primarily with the detection of semiochemicals. Although the rabbit is used as a model for the study of chemocommunication, these studies are hampered by the lack of knowledge regarding the topography, lamination, and neurochemical properties of the rabbit AOB. To fill this gap, we have employed histological stainings: lectin labelling with Ulex europaeus (UEA-I), Bandeiraea simplicifolia (BSI-B4), and Lycopersicon esculentum (LEA) agglutinins, and a range of immunohistochemical markers. Anti-G proteins Gαi2/Gαo, not previously studied in the rabbit AOB, are expressed following an antero-posterior zonal pattern. This places Lagomorpha among the small groups of mammals that conserve a double-path vomeronasal reception. Antibodies against olfactory marker protein (OMP), growth-associated protein-43 (GAP-43), glutaminase (GLS), microtubule-associated protein-2 (MAP-2), glial fibrillary-acidic protein (GFAP), calbindin (CB), and calretinin (CR) characterise the strata and the principal components of the BOA, demonstrating several singular features of the rabbit AOB. This diversity is accentuated by the presence of a unique organisation: four neuronal clusters in the accessory bulbar white matter, two of them not previously characterised in any species (the γ and δ groups). Our morphometric study of the AOB has found significant differences between sexes in the numerical density of principal cells, with larger values in females, a pattern completely opposite to that found in rats. In summary, the rabbit possesses a highly developed AOB, with many specific features that highlight the significant role played by chemocommunication among this species.
Collapse
|
31
|
Liu Q, Zhang Y, Wang P, Guo X, Wu Y, Zhang JX, Huang L. Two Preputial Gland-Secreted Pheromones Evoke Sexually Dimorphic Neural Pathways in the Mouse Vomeronasal System. Front Cell Neurosci 2019; 13:455. [PMID: 31632243 PMCID: PMC6783556 DOI: 10.3389/fncel.2019.00455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/24/2019] [Indexed: 01/22/2023] Open
Abstract
Hexadecanol (16OH) and hexadecyl acetate (16Ac) are two pheromones secreted in a large quantity by mouse preputial glands and act on male and female mice differentially. Yet the underlying molecular and cellular mechanisms remain to be elucidated. In this study, we examined the activation of vomeronasal sensory neurons (VSNs) by these two pheromones and mapped the downstream neural circuits that process and relay their chemosignals. Using the calcium imaging method and immunohistochemistry, we found that a small number of VSNs were activated by 16OH, 16AC, or both in the male and female mice, most of which were located apically in the vomeronasal epithelium, and their numbers did not increase when the concentrations of 16OH and 16Ac were raised by 10,000-fold except that of female VSNs in response to 16OH. In the accessory olfactory bulb (AOB), the two pheromones evoked more c-Fos+ neurons in the anterior AOB (aAOB) than in the posterior AOB (pAOB); and the increases in the number of c-Fos+ neurons in both aAOB and pAOB were dose-dependent; and between sexes, the female AOB responded more strongly to 16OH than to 16Ac whereas the male AOB had the opposite response pattern. This sexual dimorphism was largely retained in the downstream brain regions, including the bed nucleus of the stria terminalis (BNST), the medial amygdaloid nucleus (MeA), the posteromedial cortical amygdaloid nucleus (PMCo), the medial preoptic area (MPA), and the ventromedial hypothalamic nucleus (VmH). Taken together, out data indicate that there is one V1r receptor each for 16OH, 16Ac, or both, and that activation of these receptors evokes sexually dimorphic neural circuits, directing different behavioral outputs and possibly modulating other pheromone-induced responses.
Collapse
Affiliation(s)
- Qun Liu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yaohua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yijun Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China.,Monell Chemical Senses Center, Philadelphia, PA, United States
| |
Collapse
|
32
|
Degl’Innocenti A, Meloni G, Mazzolai B, Ciofani G. A purely bioinformatic pipeline for the prediction of mammalian odorant receptor gene enhancers. BMC Bioinformatics 2019; 20:474. [PMID: 31521109 PMCID: PMC6744719 DOI: 10.1186/s12859-019-3012-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In most mammals, a vast array of genes coding for chemosensory receptors mediates olfaction. Odorant receptor (OR) genes generally constitute the largest multifamily (> 1100 intact members in the mouse). From the whole pool, each olfactory neuron expresses a single OR allele following poorly characterized mechanisms termed OR gene choice. OR genes are found in genomic aggregations known as clusters. Nearby enhancers, named elements, are crucial regulators of OR gene choice. Despite their importance, searching for new elements is burdensome. Other chemosensory receptor genes responsible for smell adhere to expression modalities resembling OR gene choice, and are arranged in genomic clusters - often with chromosomal linkage to OR genes. Still, no elements are known for them. RESULTS Here we present an inexpensive framework aimed at predicting elements. We redefine cluster identity by focusing on multiple receptor gene families at once, and exemplify thirty - not necessarily OR-exclusive - novel candidate enhancers. CONCLUSIONS The pipeline we introduce could guide future in vivo work aimed at discovering/validating new elements. In addition, our study provides an updated and comprehensive classification of all genomic loci responsible for the transduction of olfactory signals in mammals.
Collapse
Affiliation(s)
- Andrea Degl’Innocenti
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- Max Planck Institute for Biophysics, Max-Planck-Gesellschaft, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - Gabriella Meloni
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa), Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
33
|
Interneuron Functional Diversity in the Mouse Accessory Olfactory Bulb. eNeuro 2019; 6:ENEURO.0058-19.2019. [PMID: 31358509 PMCID: PMC6712203 DOI: 10.1523/eneuro.0058-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/30/2023] Open
Abstract
In the mouse accessory olfactory bulb (AOB), inhibitory interneurons play an essential role in gating behaviors elicited by sensory exposure to social odors. Several morphological classes have been described, but the full complement of interneurons remains incomplete. In order to develop a more comprehensive view of interneuron function in the AOB, we performed targeted patch clamp recordings from partially overlapping subsets of genetically labeled and morphologically defined interneuron types. Gad2 (GAD65), Calb2 (calretinin), and Cort (cortistatin)-cre mouse lines were used to drive selective expression of tdTomato in AOB interneurons. Gad2 and Calb2-labeled interneurons were found in the internal, external, and glomerular (GL) layers, whereas Cort-labeled interneurons were enriched within the lateral olfactory tract (LOT) and external cellular layer (ECL). We found that external granule cells (EGCs) from all genetically labeled subpopulations possessed intrinsic functional differences that allowed them to be readily distinguished from internal granule cells (IGCs). EGCs showed stronger voltage-gated Na+ and non-inactivating voltage-gated K+ currents, decreased IH currents, and robust excitatory synaptic input. These specific intrinsic properties did not correspond to any genetically labeled type, suggesting that transcriptional heterogeneity among EGCs and IGCs is not correlated with expression of these particular marker genes. Intrinsic heterogeneity was also seen among AOB juxtaglomerular cells (JGCs), with a major subset of Calb2-labeled JGCs exhibiting spontaneous and depolarization-evoked plateau potentials. These data identify specific physiological features of AOB interneurons types that will assist in future studies of AOB function.
Collapse
|
34
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
35
|
Farhoodi R, Lansdell BJ, Kording KP. Quantifying How Staining Methods Bias Measurements of Neuron Morphologies. Front Neuroinform 2019; 13:36. [PMID: 31191283 PMCID: PMC6541099 DOI: 10.3389/fninf.2019.00036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
The process through which neurons are labeled is a key methodological choice in measuring neuron morphology. However, little is known about how this choice may bias measurements. To quantify this bias we compare the extracted morphology of neurons collected from the same rodent species, experimental condition, gender distribution, age distribution, brain region and putative cell type, but obtained with 19 distinct staining methods. We found strong biases on measured features of morphology. These were largest in features related to the coverage of the dendritic tree (e.g., the total dendritic tree length). Understanding measurement biases is crucial for interpreting morphological data.
Collapse
Affiliation(s)
- Roozbeh Farhoodi
- Department of Mathematics, Sharif University of Technology, Tehran, Iran
| | | | - Konrad Paul Kording
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Kotenkova E, Romachenko A, Ambaryan A, Maltsev A. Effect of early experience on neuronal and behavioral responses to con- and heterospecific odors in closely related Mus taxa: epigenetic contribution in formation of precopulatory isolation. BMC Evol Biol 2019; 19:51. [PMID: 30813903 PMCID: PMC6391773 DOI: 10.1186/s12862-019-1373-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The most effective learning occurs during sensitive periods. Olfactory plasticity to main social olfactory cues is limited to a critical period to a large degree. The objective was to evaluate the influence of early olfactory experience on the behavioral and neuronal responses of males to con- and heterospecific odors of receptive females in two species, M. musculus (subspecies musculus, wagneri) and M. spicilegus, and thus to determine the potential role of epigenetic contribution in the formation of precopulatory isolation. RESULTS Males were reciprocally cross-fostered shortly after the birth and were tested for response to con- and heterospecific urine odors of estrus females using two-choice tests at 70-85 days of age. Neuronal activity of non- and cross-fostered males was evaluated at 90-110 days of age in the MOB and AOB to con- and heterospecific female odor using fMRI (MEMRI). Non-cross-fostered males of three taxa demonstrated a strong preference for odor of conspecific females compared to odor of heterospecific ones. Spicilegus-nursed musculus preferred odor of heterospecific females. Wagneri-nursed spicilegus and spicilegus-nursed wagneri did not demonstrate significant choice of con - or heterospecific female odor. The level of MRI signal obtained from the evaluation of manganese accumulation in AOB neurons was significantly higher when the odor of conspecific estrus females was exposed, compared to urine exposure of heterospecific females. The response pattern changed to the opposite in males raised by heterospecific females. Response patterns of neuronal activity in the MOB to con- and heterospecific female odors were different in cross-fostered and control males. CONCLUSION The maternal environment, including odor, had a greater effect on the level of MRI signal in the AOB than the genetic relationships of the recipient and the donor of the odor stimulus. Behavioral and neuronal responses to con- and heterospecific odors changed in closely related Mus taxa as a result of early experience. We demonstrated the importance of early learning in mate choice in adulthood in mice and the possibility of epigenetic contribution in the formation of precopulatory reproductive isolation.
Collapse
Affiliation(s)
- Elena Kotenkova
- Severtsov Institute of Ecology and Evolution RAS, Leninsky Prospect, 33, 119071, Moscow, Russia.
| | - Alex Romachenko
- Institute of Cytology and Genetics SB RAS, Prospekt Lavrentyeva 10, 630090, Novosibirsk, Russia
| | - Alexander Ambaryan
- Severtsov Institute of Ecology and Evolution RAS, Leninsky Prospect, 33, 119071, Moscow, Russia
| | - Aleksei Maltsev
- Severtsov Institute of Ecology and Evolution RAS, Leninsky Prospect, 33, 119071, Moscow, Russia
| |
Collapse
|
37
|
Sharma A, Kumar R, Aier I, Semwal R, Tyagi P, Varadwaj P. Sense of Smell: Structural, Functional, Mechanistic Advancements and Challenges in Human Olfactory Research. Curr Neuropharmacol 2019; 17:891-911. [PMID: 30520376 PMCID: PMC7052838 DOI: 10.2174/1570159x17666181206095626] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Olfaction, the sense of smell detects and discriminate odors as well as social cues which influence our innate responses. The olfactory system in human beings is found to be weak as compared to other animals; however, it seems to be very precise. It can detect and discriminate millions of chemical moieties (odorants) even in minuscule quantities. The process initiates with the binding of odorants to specialized olfactory receptors, encoded by a large family of Olfactory Receptor (OR) genes belonging to the G-protein-coupled receptor superfamily. Stimulation of ORs converts the chemical information encoded in the odorants, into respective neuronal action-potentials which causes depolarization of olfactory sensory neurons. The olfactory bulb relays this signal to different parts of the brain for processing. Odors are encrypted using a combinatorial approach to detect a variety of chemicals and encode their unique identity. The discovery of functional OR genes and proteins provided an important information to decipher the genomic, structural and functional basis of olfaction. ORs constitute 17 gene families, out of which 4 families were reported to contain more than hundred members each. The olfactory machinery is not limited to GPCRs; a number of non- GPCRs is also employed to detect chemosensory stimuli. The article provides detailed information about such olfaction machinery, structures, transduction mechanism, theories of odor perception, and challenges in the olfaction research. It covers the structural, functional and computational studies carried out in the olfaction research in the recent past.
Collapse
Affiliation(s)
| | | | | | | | | | - Pritish Varadwaj
- Address correspondence to this author at the Department of Applied Science, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India; E-mail:
| |
Collapse
|
38
|
Ishii KK, Touhara K. Neural circuits regulating sexual behaviors via the olfactory system in mice. Neurosci Res 2018; 140:59-76. [PMID: 30389572 DOI: 10.1016/j.neures.2018.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023]
Abstract
Reproduction is essential for any animal species. Reproductive behaviors, or sexual behaviors, are largely shaped by external sensory cues exchanged during sexual interaction. In many animals, including rodents, olfactory cues play a critical role in regulating sexual behavior. What exactly these olfactory cues are and how they impact animal behavior have been a central question in the field. Over the past few decades, many studies have dedicated to identifying an active compound that elicits sexual behavior from crude olfactory components. The identified substance has served as a tool to dissect the sensory processing mechanisms in the olfactory systems. In addition, recent advances in genetic engineering, and optics and microscopic techniques have greatly expanded our knowledge of the neural mechanisms underlying the control of sexual behavior in mice. This review summarizes our current knowledge about how sexual behaviors are controlled by olfactory cues.
Collapse
Affiliation(s)
- Kentaro K Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
39
|
Holy TE. The Accessory Olfactory System: Innately Specialized or Microcosm of Mammalian Circuitry? Annu Rev Neurosci 2018; 41:501-525. [DOI: 10.1146/annurev-neuro-080317-061916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, the accessory olfactory system is a distinct circuit that has received attention for its role in detecting and responding to pheromones. While the neuroscientific investigation of this system is comparatively new, recent advances and its compact size have made it an attractive model for developing an end-to-end understanding of such questions as regulation of essential behaviors, plasticity, and individual recognition. Recent discoveries have indicated a need to reevaluate our conception of this system, suggesting that ( a) physical principles—rather than biological necessity—play an underappreciated role in its raison d'être and that ( b) the anatomy of downstream projections is not dominated by unique specializations but instead consists of an abbreviated cortical/basal ganglia motif reminiscent of other sensorimotor systems. These observations suggest that the accessory olfactory system distinguishes itself primarily by the physicochemical properties of its ligands, but its architecture is otherwise a microcosm of mammalian neurocircuitry.
Collapse
Affiliation(s)
- Timothy E. Holy
- Department of Neuroscience, Washington University, St. Louis, Missouri 63132, USA
| |
Collapse
|
40
|
Akiyoshi S, Ishii T, Bai Z, Mombaerts P. Subpopulations of vomeronasal sensory neurons with coordinated coexpression of type 2 vomeronasal receptor genes are differentially dependent on Vmn2r1. Eur J Neurosci 2018; 47:887-900. [PMID: 29465786 PMCID: PMC5947554 DOI: 10.1111/ejn.13875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/29/2018] [Accepted: 02/15/2018] [Indexed: 11/29/2022]
Abstract
The mouse vomeronasal organ is specialized in the detection of pheromones. Vomeronasal sensory neurons (VSNs) express chemosensory receptors of two large gene repertoires, V1R and V2R, which encode G‐protein‐coupled receptors. Phylogenetically, four families of V2R genes can be discerned as follows: A, B, C, and D. VSNs located in the basal layer of the vomeronasal epithelium coordinately coexpress V2R genes from two families: Approximately half of basal VSNs coexpress Vmn2r1 of family C with a single V2R gene of family A8‐10, B, or D (‘C1 type of V2Rs’), and the other half coexpress Vmn2r2 through Vmn2r7 of family C with a single V2R gene of family A1‐6 (‘C2 type V2Rs’). The regulatory mechanisms of the coordinated coexpression of V2Rs from two families remain poorly understood. Here, we have generated two mouse strains carrying a knockout mutation in Vmn2r1 by gene targeting in embryonic stem cells. These mutations cause a differential decrease in the numbers of VSNs expressing a given C1 type of V2R. There is no compensatory expression of Vmn2r2 through Vmn2r7. VSN axons coalesce into glomeruli in the appropriate region of the accessory olfactory bulb in the absence of Vmn2r1. Gene expression profiling by NanoString reveals a differential and graded decrease in the expression levels across C1 type of V2Rs. There is no change in the expression levels of C2 type of V2Rs, with two exceptions that we reclassified as C1 type. Thus, there appears to be a fixed probability of gene choice for a given C2 type of V2R.
Collapse
Affiliation(s)
- Sachiko Akiyoshi
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Tomohiro Ishii
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Zhaodai Bai
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max-von-Laue-Strasse 4, 60438, Frankfurt, Germany
| |
Collapse
|
41
|
Abstract
Steroids play vital roles in animal physiology across species, and the production of specific steroids is associated with particular internal biological functions. The internal functions of steroids are, in most cases, quite clear. However, an important feature of many steroids (their chemical stability) allows these molecules to play secondary, external roles as chemical messengers after their excretion via urine, feces, or other shed substances. The presence of steroids in animal excretions has long been appreciated, but their capacity to serve as chemosignals has not received as much attention. In theory, the blend of steroids excreted by an animal contains a readout of its own biological state. Initial mechanistic evidence for external steroid chemosensation arose from studies of many species of fish. In sea lampreys and ray-finned fishes, bile salts were identified as potent olfactory cues and later found to serve as pheromones. Recently, we and others have discovered that neurons in amphibian and mammalian olfactory systems are also highly sensitive to excreted glucocorticoids, sex steroids, and bile acids, and some of these molecules have been confirmed as mammalian pheromones. Steroid chemosensation in olfactory systems, unlike steroid detection in most tissues, is performed by plasma membrane receptors, but the details remain largely unclear. In this review, we present a broad view of steroid detection by vertebrate olfactory systems, focusing on recent research in fishes, amphibians, and mammals. We review confirmed and hypothesized mechanisms of steroid chemosensation in each group and discuss potential impacts on vertebrate social communication.
Collapse
|
42
|
Li Y, Mathis A, Grewe BF, Osterhout JA, Ahanonu B, Schnitzer MJ, Murthy VN, Dulac C. Neuronal Representation of Social Information in the Medial Amygdala of Awake Behaving Mice. Cell 2017; 171:1176-1190.e17. [PMID: 29107332 PMCID: PMC5731476 DOI: 10.1016/j.cell.2017.10.015] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/27/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
The medial amygdala (MeA) plays a critical role in processing species- and sex-specific signals that trigger social and defensive behaviors. However, the principles by which this deep brain structure encodes social information is poorly understood. We used a miniature microscope to image the Ca2+ dynamics of large neural ensembles in awake behaving mice and tracked the responses of MeA neurons over several months. These recordings revealed spatially intermingled subsets of MeA neurons with distinct temporal dynamics. The encoding of social information in the MeA differed between males and females and relied on information from both individual cells and neuronal populations. By performing long-term Ca2+ imaging across different social contexts, we found that sexual experience triggers lasting and sex-specific changes in MeA activity, which, in males, involve signaling by oxytocin. These findings reveal basic principles underlying the brain's representation of social information and its modulation by intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Ying Li
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexander Mathis
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Benjamin F Grewe
- Howard Hughes Medical Institute, CNC Program, James H. Clark Center Biomedical Engineering & Sciences, Stanford University, Stanford, CA, USA
| | - Jessica A Osterhout
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Biafra Ahanonu
- Howard Hughes Medical Institute, CNC Program, James H. Clark Center Biomedical Engineering & Sciences, Stanford University, Stanford, CA, USA
| | - Mark J Schnitzer
- Howard Hughes Medical Institute, CNC Program, James H. Clark Center Biomedical Engineering & Sciences, Stanford University, Stanford, CA, USA
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Catherine Dulac
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA; Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
43
|
Popelář J, Díaz Gómez M, Lindovský J, Rybalko N, Burianová J, Oohashi T, Syka J. The absence of brain-specific link protein Bral2 in perineuronal nets hampers auditory temporal resolution and neural adaptation in mice. Physiol Res 2017; 66:867-880. [PMID: 29020454 DOI: 10.33549/physiolres.933605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Brain-specific link protein Bral2 represents a substantial component of perineuronal nets (PNNs) enwrapping neurons in the central nervous system. To elucidate the role of Bral2 in auditory signal processing, the hearing function in knockout Bral2(-/-) (KO) mice was investigated using behavioral and electrophysiological methods and compared with wild type Bral2(+/+) (WT) mice. The amplitudes of the acoustic startle reflex (ASR) and the efficiency of the prepulse inhibition of ASR (PPI of ASR), produced by prepulse noise stimulus or gap in continuous noise, was similar in 2-week-old WT and KO mice. Over the 2-month postnatal period the increase of ASR amplitudes was significantly more evident in WT mice than in KO mice. The efficiency of the PPI of ASR significantly increased in the 2-month postnatal period in WT mice, whereas in KO mice the PPI efficiency did not change. Hearing thresholds in 2-month-old WT mice, based on the auditory brainstem response (ABR) recordings, were significantly lower at high frequencies than in KO mice. However, amplitudes and peak latencies of individual waves of click-evoked ABR did not differ significantly between WT and KO mice. Temporal resolution and neural adaptation were significantly better in 2-month-old WT mice than in age-matched KO mice. These results support a hypothesis that the absence of perineuronal net formation at the end of the developmental period in the KO mice results in higher hearing threshold at high frequencies and weaker temporal resolution ability in adult KO animals compared to WT mice.
Collapse
Affiliation(s)
- J Popelář
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
44
|
Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc Natl Acad Sci U S A 2017; 114:10779-10784. [PMID: 28923971 DOI: 10.1073/pnas.1708025114] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pregnancy hormones, such as prolactin, sensitize neural circuits controlling parental interactions to induce timely activation of maternal behaviors immediately after parturition. While the medial preoptic area (MPOA) is known to be critical for maternal behavior, the specific role of prolactin in this brain region has remained elusive. Here, we evaluated the role of prolactin action in the MPOA using complementary genetic strategies in mice. We characterized prolactin-responsive neurons within the MPOA at different hormonal stages and delineated their projections in the brain. We found that MPOA neurons expressing prolactin receptors (Prlr) form the nexus of a complex prolactin-responsive neural circuit, indicating that changing prolactin levels can act at multiple sites and thus, impinge on the overall activity of a distributed network of neurons. Conditional KO of Prlr from neuronal subpopulations expressing the neurotransmitters GABA or glutamate within this circuit markedly reduced the capacity for prolactin action both in the MPOA and throughout the network. Each of these manipulations, however, produced only subtle impacts on maternal care, suggesting that this distributed circuit is robust with respect to alterations in prolactin signaling. In contrast, acute deletion of Prlr in all MPOA neurons of adult female mice resulted in profound deficits in maternal care soon after birth. All mothers abandoned their pups, showing that prolactin action on MPOA neurons is necessary for the normal expression of postpartum maternal behavior in mice. Our data establish a critical role for prolactin-induced behavioral responses in the maternal brain, ensuring survival of mammalian offspring.
Collapse
|
45
|
Loss of Kirrel family members alters glomerular structure and synapse numbers in the accessory olfactory bulb. Brain Struct Funct 2017; 223:307-319. [DOI: 10.1007/s00429-017-1485-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
|
46
|
Comparison of two related lines of tauGFP transgenic mice designed for lineage tracing. BMC DEVELOPMENTAL BIOLOGY 2017; 17:8. [PMID: 28662681 PMCID: PMC5492368 DOI: 10.1186/s12861-017-0149-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
Background The tauGFP reporter fusion protein is produced nearly ubiquitously by the TgTP6.3 transgene in TP6.3 mice and its localisation to microtubules offers some advantages over soluble GFP as a lineage marker. However, TgTP6.3Tg/Tg homozygotes are not viable and TgTP6.3Tg/− hemizygotes are smaller than wild-type. TP6.4 mice carry the TgTP6.4 transgene, which was produced with the same construct used to generate TgTP6.3, so we investigated whether TgTP6.4 had any advantages over TgTP6.3. Results Although TgTP6.4Tg/Tg homozygotes died before weaning, TgTP6.4Tg/− hemizygotes were viable and fertile and only males were significantly lighter than wild-type. The TgTP6.4 transgene produced the tauGFP fusion protein by the 2-cell stage and it was widely expressed in adults but tauGFP fluorescence was weak or absent in several tissues, including some neural tissues. The TgTP6.4 transgene expression pattern changed over several years of breeding and mosaic transgene expression became increasingly common in all expressing tissues. This mosaicism was used to visualise clonal lineages in the adrenal cortex of TgTP6.4Tg/− hemizygotes and these were qualitatively and quantitatively comparable to lineages reported previously for other mosaic transgenic mice, X-inactivation mosaics and chimaeras. Mosaicism occurred less frequently in TP6.3 than TP6.4 mice and was only observed in the corneal epithelium and adrenal cortex. Conclusions Mosaic expression makes the TgTP6.4 transgene unsuitable for use as a conventional cell lineage marker but such mosaicism provides a useful system for visualising clonal lineages that arise during development or maintenance of adult tissues. Differences in the occurrence of mosaicism between related transgenic lines, such as that described for lines TP6.3 and TP6.4, might provide a useful system for investigating the mechanism of transgene silencing. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0149-x) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Experience-Dependent Plasticity in Accessory Olfactory Bulb Interneurons following Male-Male Social Interaction. J Neurosci 2017; 37:7240-7252. [PMID: 28659282 DOI: 10.1523/jneurosci.1031-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022] Open
Abstract
Chemosensory information processing in the mouse accessory olfactory system guides the expression of social behavior. After salient chemosensory encounters, the accessory olfactory bulb (AOB) experiences changes in the balance of excitation and inhibition at reciprocal synapses between mitral cells (MCs) and local interneurons. The mechanisms underlying these changes remain controversial. Moreover, it remains unclear whether MC-interneuron plasticity is unique to specific behaviors, such as mating, or whether it is a more general feature of the AOB circuit. Here, we describe targeted electrophysiological studies of AOB inhibitory internal granule cells (IGCs), many of which upregulate the immediate-early gene Arc after male-male social experience. Following the resident-intruder paradigm, Arc-expressing IGCs in acute AOB slices from resident males displayed stronger excitation than nonexpressing neighbors when sensory inputs were stimulated. The increased excitability of Arc-expressing IGCs was not correlated with changes in the strength or number of excitatory synapses with MCs but was instead associated with increased intrinsic excitability and decreased HCN channel-mediated IH currents. Consistent with increased inhibition by IGCs, MCs responded to sensory input stimulation with decreased depolarization and spiking following resident-intruder encounters. These results reveal that nonmating behaviors drive AOB inhibitory plasticity and indicate that increased MC inhibition involves intrinsic excitability changes in Arc-expressing interneurons.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is a site of experience-dependent plasticity between excitatory mitral cells (MCs) and inhibitory internal granule cells (IGCs), but the physiological mechanisms and behavioral conditions driving this plasticity remain unclear. Here, we report studies of AOB neuronal plasticity following male-male social chemosensory encounters. We show that the plasticity-associated immediate-early gene Arc is selectively expressed in IGCs from resident males following the resident-intruder assay. After behavior, Arc-expressing IGCs are more strongly excited by sensory input stimulation and MC activation is suppressed. Arc-expressing IGCs do not show increased excitatory synaptic drive but instead show increased intrinsic excitability. These data indicate that MC-IGC plasticity is induced after male-male social chemosensory encounters, resulting in enhanced MC suppression by Arc-expressing IGCs.
Collapse
|
48
|
Abstract
Changes in gene expression patterns represent an essential source of evolutionary innovation. A striking case of neofunctionalization is the acquisition of neuronal specificity by immune formyl peptide receptors (Fprs). In mammals, Fprs are expressed by immune cells, where they detect pathogenic and inflammatory chemical cues. In rodents, these receptors are also expressed by sensory neurons of the vomeronasal organ, an olfactory structure mediating innate avoidance behaviors. Here we show that two gene shuffling events led to two independent acquisitions of neuronal specificity by Fprs. The first event targeted the promoter of a V1R receptor gene. This was followed some 30 million years later by a second genomic accident targeting the promoter of a V2R gene. Finally, we show that expression of a vomeronasal Fpr can reverse back to the immune system under inflammatory conditions via the production of an intergenic transcript linking neuronal and immune Fpr genes. Thus, three hijackings of regulatory elements are sufficient to explain all aspects of the complex expression patterns acquired by a receptor family that switched from sensing pathogens inside the organism to sensing the outside world through the nose.
Collapse
|
49
|
Abstract
Monoallelic expression not due to cis-regulatory sequence polymorphism poses an intriguing problem in epigenetics because it requires the unequal treatment of two segments of DNA that are present in the same nucleus and that can indeed have absolutely identical sequences. Here, I focus on a few recent developments in the field of monoallelic expression that are of particular interest and raise interesting questions for future work. One development is regarding analyses of imprinted genes, in which recent work suggests the possibility that intriguing networks of imprinted genes exist and are important for genetic and physiological studies. Another issue that has been raised in recent years by a number of publications is the question of how skewed allelic expression should be for it to be designated as monoallelic expression and, further, what methods are appropriate or inappropriate for analyzing genomic data to examine allele-specific expression. Perhaps the most exciting recent development in mammalian monoallelic expression is a clever and carefully executed analysis of genetic diversity of autosomal genes subject to random monoallelic expression (RMAE), which provides compelling evidence for distinct evolutionary forces acting on random monoallelically expressed genes.
Collapse
Affiliation(s)
- Andrew Chess
- Department of Genetics and Genomic Sciences, Department of Developmental and Regenerative Biology, Fishberg Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574;
| |
Collapse
|
50
|
Degl'Innocenti A, D'Errico A. Regulatory Features for Odorant Receptor Genes in the Mouse Genome. Front Genet 2017; 8:19. [PMID: 28270833 PMCID: PMC5318403 DOI: 10.3389/fgene.2017.00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/08/2017] [Indexed: 12/31/2022] Open
Abstract
The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron-one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice. Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci, where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus. Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes.
Collapse
Affiliation(s)
- Andrea Degl'Innocenti
- Max Planck Institute of BiophysicsFrankfurt am Main, Germany; Cell and Developmental Biology Unit, Department of Biology, University of PisaPisa, Italy; Center for Micro-BioRobotics, Italian Institute of Technology, Sant'Anna School of Advanced StudiesPisa, Italy
| | - Anna D'Errico
- Max Planck Institute of Biophysics Frankfurt am Main, Germany
| |
Collapse
|