1
|
Tanratana P, Seanoon K, Payongsri P, Kadegasem P, Chuansumrit A, Sirachainan N. Unraveling the Molecular Pathogenesis of Protein C Deficiency-Associated VTE: Insights from Protein C Mutations C238G and R189W in Thai Patients. Thromb Haemost 2025; 125:533-544. [PMID: 39227034 DOI: 10.1055/a-2408-9529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Protein C (PC) deficiency is a well-established risk factor for thromboembolism (TE), commonly manifesting in pediatric patients. This study aimed to elucidate the pathogenic mechanisms of two novel PC mutations, C238G and R189W, identified in Thai children with both venous and arterial TE.The effects of wild-type (WT), C238G, and R189W PC variants were investigated through transient transfection of HEK293T cells. PC secretion levels were measured, and immunofluorescence analysis was performed to assess intracellular localization. ER stress-related gene expression and UPR activation were evaluated. Structural analysis was conducted to explore the significance of the C238 and R189W residue in PC functionality.The C238G mutation led to a severe 95% reduction in PC secretion, while R189W showed a 30% decrease compared with WT. Immunofluorescence revealed that C238G-PC was predominantly retained in the ER, indicating protein misfolding. C238G-expressing cells exhibited significant upregulation of ER stress-related genes and UPR activation. In contrast, R189W resulted in only a modest increase in UPR gene expression, suggesting a less pronounced impact on protein folding and secretion. Structural analysis demonstrated the critical role of the C238 residue in maintaining PC's disulfide bond and overall conformation.This study reveals distinct molecular mechanisms by which the C238G and R189W mutations contribute to PC deficiency and increased thrombotic risk. The findings emphasize the essential role of the C238 residue in preserving PC structure and secretion, enhancing the understanding of PC deficiency-associated TE in pediatric patients.
Collapse
Affiliation(s)
- Pansakorn Tanratana
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Karnsasin Seanoon
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Panwajee Payongsri
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Praguywan Kadegasem
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nongnuch Sirachainan
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Vera SP, Lian E, Elia MWJ, Saar A, Sharon HB, Moshe P, Mia H. The modifying effect of mutant LRRK2 on mutant GBA1-associated Parkinson disease. Hum Mol Genet 2025:ddaf062. [PMID: 40315377 DOI: 10.1093/hmg/ddaf062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease. While most cases are sporadic, in ~ 5%-10% of PD patients the disease is caused by mutations in several genes, among them GBA1 (glucocerebrosidase beta 1) and LRRK2 (leucine-rich repeat kinase 2), both prevalent among the Ashkenazi Jewish population. LRRK2-associated PD tends to be milder than GBA1-associated PD. Several recent clinical studies have suggested that carriers of both GBA1 and LRRK2 mutations develop milder PD compared to that observed among GBA1 carriers. These findings strongly suggested an interplay between the two genes in the development and progression of PD. In the present study Drosophila was employed as a model to investigate the impact of mutations in the LRRK2 gene on mutant GBA1-associated PD. Our results strongly indicated that flies expressing both mutant genes exhibited milder parkinsonian signs compared to the disease developed in flies expressing only a GBA1 mutation. This was corroborated by a decrease in the ER stress response, increase in the number of dopaminergic cells, elevated levels of tyrosine hydroxylase, reduced neuroinflammation, improved locomotion and extended survival. Furthermore, a significant decrease in the steady-state levels of mutant GBA1-encoded GCase was observed in the presence of mutant LRRK2, strongly implying a role for mutant LRRK2 in degradation of mutant GCase.
Collapse
Affiliation(s)
- Serebryany-Piavsky Vera
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Egulsky Lian
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Manoim-Wolkovitz Julia Elia
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Anis Saar
- Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52620, Israel
| | - Hassin-Baer Sharon
- Movement Disorders Institute, Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 52620, Israel
| | - Parnas Moshe
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| | - Horowitz Mia
- Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Levanon St., Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Levanon St., Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Shammas H, Kloster Fog C, Klein P, Koustrup A, Pedersen MT, Bie AS, Mickle T, Petersen NHT, Kirkegaard Jensen T, Guenther S. Mechanistic insights into arimoclomol mediated effects on lysosomal function in Niemann-pick type C disease. Mol Genet Metab 2025; 145:109103. [PMID: 40215728 DOI: 10.1016/j.ymgme.2025.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025]
Abstract
Niemann-Pick disease type C (NPC) is an ultra-rare, fatal neurodegenerative disease. It is characterized by lysosomal dysfunction with cytotoxic accumulation of unesterified cholesterol and glycosphingolipids in lysosomes, which causes neurodegeneration and peripheral organ dysfunction. Arimoclomol, an orally available small molecule, is the first FDA-approved treatment for NPC when used in combination with miglustat. Here, we present the results of a series of in vitro studies performed to explore the pathways by which arimoclomol targets the fundamentals of NPC etiology. While the precise cellular interactions of arimoclomol remain unclear, the increased translocation of the transcription factors EB and E3 (TFEB and TFE3) from the cytosol to the nucleus is a key initial step for triggering a cascade of downstream events that can rescue cellular functions. Activation of TFEB and TFE3 raises the expression rates of coordinated lysosomal expression and regulation (CLEAR) genes including NPC1 that are essential for the regulation of lysosomal function. The subsequent upregulation of CLEAR network proteins combined with increased unfolded protein response activation was shown to enlarge the pool of matured NPC1 capable of reaching the lysosome to reduce cholesterol accumulation. By also amplifying expression of CLEAR genes associated with autophagy, arimoclomol has the potential to act on different pathways and improve cell viability independent of NPC1 protein levels and functionality. In summary, the findings presented illustrate how arimoclomol improves lysosomal function and potentially autophagy flux to decrease lipid burden in NPC patient fibroblasts.
Collapse
|
4
|
Krischek JO, Mannherz HG, Napirei M. Different results despite high homology: Comparative expression of human and murine DNase1 in Pichia pastoris. PLoS One 2025; 20:e0321094. [PMID: 40299953 PMCID: PMC12040185 DOI: 10.1371/journal.pone.0321094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/28/2025] [Indexed: 05/01/2025] Open
Abstract
The prolonged persistence of extracellular chromatin and DNA is a salient feature of diseases like cystic fibrosis, systemic lupus erythematosus and COVID-19 associated microangiopathy. Since deoxyribonuclease I (DNase1) is a major endonuclease involved in DNA-related waste disposal, recombinant DNase1 is an important therapeutic biologic. Recently we described the production of recombinant murine DNase1 (rmDNase1) in Pichia pastoris by employing the α-mating factor prepro signal peptide (αMF-SP) a method, which we now applied to express recombinant human DNASE1 (rhDNASE1). In addition to an impaired cleavage of the αMF pro-peptide, which we also detected previously for mDNase1, expression of hDNASE1 resulted in a 70-80 times lower yield although both orthologues share a high structural and functional homology. Using mDNase1 expression as a guideline, we were able to increase the yield of hDNASE1 fourfold by optimizing parameters like nutrients, cultivation temperature, methanol supply, and codon usage. In addition, post-translational import into the rough endoplasmic reticulum (rER) was changed to co-translational import by employing the signal peptide (SP) of the α-subunit of the Oligosaccharyltransferase complex (Ost1) from Saccharomyces cerevisiae. These improvements resulted in the purification of ~ 8 mg pure mature rmDNase1 and ~ 0.4 mg rhDNASE1 per Liter expression medium of a culture with a cell density of OD600 = 40 in 24 hours. As a main cause for the expression difference, we assume varying folding abilities to reach a native conformation, which induce an elevated unproductive unfolded protein response within the rER during hDNASE1 expression. Concerning functionality, rhDNASE1 expressed in P. pastoris is comparable to Pulmozyme®, i.e. rhDNASE1 produced in Chinese hamster ovary (CHO) cells by Roche - Genentech. With respect to the biochemical effectivity, rmDNase1 is superior to rhDNASE1 due to its higher specific activity in the presence of Ca2 + /Mg2 + and the lower inhibition by monomeric actin.
Collapse
Affiliation(s)
- Jan-Ole Krischek
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Hans Georg Mannherz
- Department of Cellular and Translational Physiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Markus Napirei
- Department of Anatomy and Molecular Embryology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
5
|
Aryal B, Kwakye J, Ariyo OW, Ghareeb AFA, Milfort MC, Fuller AL, Khatiwada S, Rekaya R, Aggrey SE. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants (Basel) 2025; 14:471. [PMID: 40298812 PMCID: PMC12023971 DOI: 10.3390/antiox14040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Heat stress (HS) is one of the most important stressors in chickens, and its adverse effects are primarily caused by disturbing the redox homeostasis. An increase in electron leakage from the mitochondrial electron transport chain is the major source of free radical production under HS, which triggers other enzymatic systems to generate more radicals. As a defense mechanism, cells have enzymatic and non-enzymatic antioxidant systems that work cooperatively against free radicals. The generation of free radicals, particularly the reactive oxygen species (ROS) and reactive nitrogen species (RNS), under HS condition outweighs the cellular antioxidant capacity, resulting in oxidative damage to macromolecules, including lipids, carbohydrates, proteins, and DNA. Understanding these detrimental oxidative processes and protective defense mechanisms is important in developing mitigation strategies against HS. This review summarizes the current understanding of major oxidative and antioxidant systems and their molecular mechanisms in generating or neutralizing the ROS/RNS. Importantly, this review explores the potential mechanisms that lead to the development of oxidative stress in heat-stressed chickens, highlighting their unique behavioral and physiological responses against thermal stress. Further, we summarize the major findings associated with these oxidative and antioxidant mechanisms in chickens.
Collapse
Affiliation(s)
- Bikash Aryal
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Josephine Kwakye
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Oluwatomide W. Ariyo
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Ahmed F. A. Ghareeb
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
- Boehringer Ingelheim Animal Health (BIAH), Gainesville, GA 30501, USA
| | - Marie C. Milfort
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Alberta L. Fuller
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| | - Saroj Khatiwada
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Romdhane Rekaya
- Department of Animal and Dairy Science, The University of Georgia, Athens, GA 30602, USA;
| | - Samuel E. Aggrey
- NutriGenomics Laboratory, Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA or (B.A.); (J.K.); (O.W.A.); (A.F.A.G.); (M.C.M.); (A.L.F.)
| |
Collapse
|
6
|
Zhou H, Zhang J, Wang R, Huang J, Xin C, Song Z. The unfolded protein response is a potential therapeutic target in pathogenic fungi. FEBS J 2025. [PMID: 40227882 DOI: 10.1111/febs.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/15/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
Pathogenic fungal infections cause significant morbidity and mortality, particularly in immunocompromised patients. The frequent emergence of multidrug-resistant strains challenges existing antifungal therapies, driving the need to investigate novel antifungal agents that target new molecular moieties. Pathogenic fungi are subjected to various environmental stressors, including pH, temperature, and pharmacological agents, both in natural habitats and the host body. These stressors elevate the risk of misfolded or unfolded protein production within the endoplasmic reticulum (ER) which, if not promptly mitigated, can lead to the accumulation of these proteins in the ER lumen. This accumulation triggers an ER stress response, potentially jeopardizing fungal survival. The unfolded protein response (UPR) is a critical cellular defense mechanism activated by ER stress to restore the homeostasis of protein folding. In recent years, the regulatory role of the UPR in pathogenic fungi has garnered significant attention, particularly for its involvement in fungal adaptation, regulation of virulence, and drug resistance. In this review, we comparatively analyze the UPRs of fungi and mammals and examine the potential utility of the UPR as a molecular antifungal target in pathogenic fungi. By clarifying the specificity and regulatory functions of the UPR in pathogenic fungi, we highlight new avenues for identifying potential therapeutic targets for antifungal treatments.
Collapse
Affiliation(s)
- Hao Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinping Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
| | - Rong Wang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ju Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Caiyan Xin
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Southwest Medical University, Luzhou, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, China
| |
Collapse
|
7
|
Dabsan S, Zur G, Abu-Freha N, Sofer S, Grossman-Haham I, Gilad A, Igbaria A. Cytosolic and endoplasmic reticulum chaperones inhibit wt-p53 to increase cancer cells' survival by refluxing ER-proteins to the cytosol. eLife 2025; 14:e102658. [PMID: 40202782 PMCID: PMC11981610 DOI: 10.7554/elife.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
The endoplasmic reticulum (ER) is an essential sensing organelle responsible for the folding and secretion of almost one-third of eukaryotic cells' total proteins. However, environmental, chemical, and genetic insults often lead to protein misfolding in the ER, accumulating misfolded proteins, and causing ER stress. To solve this, several mechanisms were reported to relieve ER stress by decreasing the ER protein load. Recently, we reported a novel ER surveillance mechanism by which proteins from the secretory pathway are refluxed to the cytosol to relieve the ER of its content. The refluxed proteins gain new prosurvival functions in cancer cells, thereby increasing cancer cell fitness. We termed this phenomenon ER to CYtosol Signaling (or 'ERCYS'). Here, we found that in mammalian cells, ERCYS is regulated by DNAJB12, DNAJB14, and the HSC70 cochaperone SGTA. Mechanistically, DNAJB12 and DNAJB14 bind HSC70 and SGTA - through their cytosolically localized J-domains to facilitate ER-protein reflux. DNAJB12 is necessary and sufficient to drive this phenomenon to increase AGR2 reflux and inhibit wt-p53 during ER stress. Mutations in DNAJB12/14 J-domain prevent the inhibitory interaction between AGR2-wt-p53. Thus, targeting the DNAJB12/14-HSC70/SGTA axis is a promising strategy to inhibit ERCYS and impair cancer cell fitness.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Gali Zur
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Naim Abu-Freha
- Institute of Gastroenterology and Liver Diseases, Soroka Medical Center, Faculty of Health Sciences, Ben Gurion University of the NegevBeer ShevaIsrael
| | - Shahar Sofer
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Iris Grossman-Haham
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Ayelet Gilad
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
8
|
Adhikari B, Verchot J, Brandizzi F, Ko DK. ER stress and viral defense: Advances and future perspectives on plant unfolded protein response in pathogenesis. J Biol Chem 2025; 301:108354. [PMID: 40015641 PMCID: PMC11982459 DOI: 10.1016/j.jbc.2025.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025] Open
Abstract
Viral infections pose significant threats to crop productivity and agricultural sustainability. The frequency and severity of these infections are increasing, and pathogens are evolving rapidly under the influence of climate change. This underscores the importance of exploring the fundamental mechanisms by which plants defend themselves against dynamic viral threats. One such mechanism is the unfolded protein response (UPR), which is activated when the protein folding demand exceeds the capacity of the endoplasmic reticulum, particularly under adverse environmental conditions. While the key regulators of the UPR in response to viral infections have been identified, our understanding of how they modulate the UPR to suppress plant viral infections at the molecular and genetic levels is still in its infancy. Recent findings have shown that, in response to plant viral infections, the UPR swiftly reprograms transcriptional changes to support cellular, metabolic, and physiological processes associated with cell viability. However, the underlying mechanisms and functional outcomes of these changes remain largely unexplored. Here, we highlight recent advances in plant UPR research and summarize key findings related to viral infection-induced UPR, focusing on the balance between prosurvival and prodeath strategies. We also discuss the potential of systems-level approaches to uncover the full extent of the functional link between the UPR and plant responses to viral infections.
Collapse
Affiliation(s)
- Binita Adhikari
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA.
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, USA; Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA; Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
9
|
Ishiwata-Kimata Y, Monguchi M, Geronimo RAC, Sugimoto M, Kimata Y. Artificial induction of the UPR by Tet-off system-dependent expression of Hac1 and its application in Saccharomyces cerevisiae cells. Biosci Biotechnol Biochem 2025; 89:562-572. [PMID: 39953902 DOI: 10.1093/bbb/zbaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/12/2025] [Indexed: 02/17/2025]
Abstract
In response to endoplasmic reticulum (ER) stress, yeast Saccharomyces cerevisiae cells produce Hac1, which is a transcription factor responsible for the unfolded protein response (UPR). When Hac1 is unregulatedly expressed from a constitutive promoter, the ER is artificially enforced and enlarged, even without ER stress stimuli. However, such cells are unsuitable for applicative bioproduction because they grow quite slowly and quickly lose their high-UPR phenotype upon their long-term storage. To avoid this problem, we constructed S. cerevisiae plasmids for Hac1 expression under the control of the inducible Tet-off promoter. Yeast cells carrying these plasmids did not exhibit a considerable UPR and grew rapidly when the Tet-off promoter was repressed by doxycycline. In contrast, under the Tet-off inducing condition, these plasmids caused UPR induction, growth retardation, and ER expansion, depending on the copy number of the plasmid. Moreover, as expected, lipidic molecule production was increased under these conditions.
Collapse
Affiliation(s)
- Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Masaki Monguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Ralph Allen Capistrano Geronimo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Maya Sugimoto
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
10
|
Makdissi S, Loudhaief R, George S, Weller T, Salim M, Malick A, Mu Y, Parsons BD, Di Cara F. Alterations in ether phospholipids metabolism activate the conserved UPR-Xbp1- PDIA3/ERp60 signaling to maintain intestinal homeostasis. iScience 2025; 28:111946. [PMID: 40034858 PMCID: PMC11872617 DOI: 10.1016/j.isci.2025.111946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/07/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Intestinal epithelium regeneration and homeostasis must be tightly regulated. Alteration of epithelial homeostasis is a major contributing factor to diseases such as colorectal cancer and inflammatory bowel diseases. Many pathways involved in epithelial regeneration have been identified, but more regulators remain undiscovered. Metabolism has emerged as an overlooked regulator of intestinal epithelium homeostasis. Using the model organism Drosophila melanogaster, we found that ether lipids metabolism is required to maintain intestinal epithelial homeostasis. Its dysregulation in intestinal progenitors causes the activation of the unfolded protein response of the endoplasmic reticulum (UPR) that triggers Xbp1 and upregulates the conserved disulfide isomerase PDIA3/ERp60. Activation of the Xbp1-ERp60 signaling causes Jak/Stat-mediated increase in progenitor cells, compromising epithelial barrier function and survival in males but not females. This study identified ether lipids-PDIA3/ERp60 as a key regulator of intestinal progenitor homeostasis in health that, if altered, causes pathological conditions in the intestinal epithelium.
Collapse
Affiliation(s)
- Stephanie Makdissi
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Rihab Loudhaief
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Smitha George
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Tabatha Weller
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Minna Salim
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Ahsan Malick
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Yizhu Mu
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brendon D. Parsons
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry -University of Alberta, Edmonton, AB, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| |
Collapse
|
11
|
Hernandez-Unzueta I, Telleria-Gonzalez U, Aransay AM, Martin Rodriguez JE, Sanz E, Márquez J. Unravelling the antitumor mechanism of Ocoxin through cancer cell genomics. Front Pharmacol 2025; 16:1540217. [PMID: 40176904 PMCID: PMC11961970 DOI: 10.3389/fphar.2025.1540217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Cancer is one of the leading causes of death worldwide. Many therapies are being used to treat this disease, however, new treatments are now being implemented, since they are not always effective and their secondary effects represent one of the main reasons for cancer patients' loss of life quality during the progression of the disease. In this scenario, Ocoxin is a mixture of plant extracts, amino acids, vitamins and minerals, known for its antioxidant, anti-inflammatory and immunoregulatory properties, which has shown to exert antitumor effects in many cancers. The aim of this study is to elucidate the mechanism of action of the compound in colorectal cancer, triple negative breast cancer, pancreatic cancer and prostate cancer. Analyses performed through RNA sequencing revealed that the main effect of Ocoxin appears to be the alteration of cell metabolism, especially inducing the process of ferroptosis. Nevertheless, the modulation of the cell cycle was also remarkable. Ocoxin altered 13 genes in common in all the four cancers that were not only associated to metabolism and cell cycle but were also involved in the integrated stress response and unfolded protein response, suggesting that the compound causes the induction of cell death through several pathways. Although the mechanisms vary according to the type of cancer, this study highlights the potential of Ocoxin as an adjunctive treatment to improve outcomes in cancer therapy.
Collapse
Affiliation(s)
- Iera Hernandez-Unzueta
- Cell Biology and Histology Department, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Uxue Telleria-Gonzalez
- Cell Biology and Histology Department, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| | - Ana María Aransay
- Genome Analysis Platform, CIC Biogune, Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Joana Márquez
- Cell Biology and Histology Department, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Spain
| |
Collapse
|
12
|
Lucas D, Sarkar T, Niemeyer CY, Harnoss JC, Schneider M, Strowitzki MJ, Harnoss JM. IRE1 is a promising therapeutic target in pancreatic cancer. Am J Physiol Cell Physiol 2025; 328:C806-C824. [PMID: 39819023 DOI: 10.1152/ajpcell.00551.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/13/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Denise Lucas
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Tamal Sarkar
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Clara Y Niemeyer
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian C Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Moritz J Strowitzki
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral, and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
- Department of General, Visceral, Thoracic, and Transplant Surgery, University Hospital Giessen, Giessen, Germany
| |
Collapse
|
13
|
Dabsan S, Twito G, Biadsy S, Igbaria A. Less is better: various means to reduce protein load in the endoplasmic reticulum. FEBS J 2025; 292:976-989. [PMID: 38865586 PMCID: PMC11880973 DOI: 10.1111/febs.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle that controls the intracellular and extracellular environments. The ER is responsible for folding almost one-third of the total protein population in the eukaryotic cell. Disruption of ER-protein folding is associated with numerous human diseases, including metabolic disorders, neurodegenerative diseases, and cancer. During ER perturbations, the cells deploy various mechanisms to increase the ER-folding capacity and reduce ER-protein load by minimizing the number of substrates entering the ER to regain homeostasis. These mechanisms include signaling pathways, degradation mechanisms, and other processes that mediate the reflux of ER content to the cytosol. In this review, we will discuss the recent discoveries of five different ER quality control mechanisms, including the unfolded protein response (UPR), ER-associated-degradation (ERAD), pre-emptive quality control, ER-phagy and ER to cytosol signaling (ERCYS). We will discuss the roles of these processes in decreasing ER-protein load and inter-mechanism crosstalk.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Gal Twito
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Suma Biadsy
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
14
|
Jo A, Jung M, Mun JY, Kim YJ, Yoo JY. Membrane-tethered SCOTIN condensates elicit an endoplasmic reticulum stress response by sequestering luminal BiP. Cell Rep 2025; 44:115297. [PMID: 39946235 DOI: 10.1016/j.celrep.2025.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
The endoplasmic reticulum (ER) stress response controls the balance between cellular survival and death. Here, we implicate SCOTIN, an interferon-inducible ER protein, in activating the ER stress response and modulating cell fate through its proline-rich domain (PRD)-mediated cytosolic condensation. SCOTIN overexpression leads to the formation of condensates enveloping multiple layers of the ER, accompanied by morphological signs of organelle stress. Luminal BiP chaperone proteins are sequestered within these SCOTIN condensates, which elicit ER stress responses. The colocalization of luminal BiP with SCOTIN is strictly contingent upon the PRD-mediated condensation of SCOTIN in the cytosolic compartment, closely associated with the ER membrane. The cysteine-rich domain (CRD) of SCOTIN, along with the condensation-prone PRD domain, is required for ER stress induction. We propose that membrane-associated condensation transduces signals across the ER membrane, leading to the induction of BiP assembly and the ER stress response.
Collapse
Affiliation(s)
- Areum Jo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Ji Young Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
15
|
Matabishi-Bibi L, Goncalves C, Babour A. RNA exosome-driven RNA processing instructs the duration of the unfolded protein response. Nucleic Acids Res 2025; 53:gkaf088. [PMID: 39995043 PMCID: PMC11850225 DOI: 10.1093/nar/gkaf088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Upon stresses, cellular compartments initiate adaptive programs meant to restore homeostasis. Dedicated to the resolution of transient perturbations, these pathways are typically maintained at a basal level, activated upon stress, and critically downregulated upon reestablishment of cellular homeostasis. As such, prolonged activation of the unfolded protein response (UPR), a conserved adaptive transcriptional response to defective endoplasmic reticulum (ER) proteostasis, leads to cell death. Here, we elucidate an unanticipated role for the nuclear RNA exosome, an evolutionarily conserved ribonuclease complex that processes multiple classes of RNAs, in the control of UPR duration. Remarkably, the inactivation of Rrp6, an exclusively nuclear catalytic subunit of the RNA exosome, curtails UPR signaling, which is sufficient to promote the cell's resistance to ER stress. Mechanistically, accumulation of unprocessed RNA species diverts the processing machinery that maturates the messenger RNA encoding the master UPR regulator Hac1, thus restricting the UPR. Significantly, Rrp6 expression is naturally dampened upon ER stress, thereby participating in homeostatic UPR deactivation.
Collapse
Affiliation(s)
- Laura Matabishi-Bibi
- Université Paris Cité, INSERM U944 and CNRS 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, 75475 Paris Cedex 10, France
| | - Coralie Goncalves
- Université Paris Cité, CNRS 7592, Institut Jacques Monod, F-75013 Paris, France
| | - Anna Babour
- Université Paris Cité, INSERM U944 and CNRS 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, 75475 Paris Cedex 10, France
- Université Paris Cité, CNRS 7592, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
16
|
Xu S, Xiao S, Qi J, Yao M, He P, Wang R, Wei E, Wang Q, Zhang Y, Tang X, Shen Z. Glucose-regulated protein 78 regulates the subunit-folding of the CCT complex by modulating gene expression and protein interaction in the microsporidian Nosema bombycis. Int J Biol Macromol 2025; 290:138971. [PMID: 39708871 DOI: 10.1016/j.ijbiomac.2024.138971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Chaperonin containing tailless complex polypeptide 1 (CCT) functions as a molecular chaperone and is essential for ensuring proper protein folding. Glucose-regulated protein 78 (GRP78/Bip), also a type of chaperone, not only assists in folding of proteins, but also facilitates the transportation of proteins into the endoplasmic reticulum (ER) via the Sec protein complex. In this study, we identified the CCTη of N. bombycis (NbCCTη) for the first time. Immunoprecipitations and mass spectrometry (IP-MS) of NbCCTη analysis showed that NbBip may interact with CCT subunits. Yeast two-hybrid assays validated that NbBip interacts with NbCCTη, as well as NbCCTα and NbCCTε. Furthermore, RNA interference on NbBip brought about radical expression of NbCCTα, NbCCTε, and NbCCTη, while RNAi on NbCCT subunits resulted in abnormal expression of NbBip. Immunofluorescence assay results showed that NbBip colocalized with NbCCTα and NbCCTη, and CCTη colocalized with Nbβ-tubulin and Nbactin in the parasite. Collectively, these findings suggest that NbBip may act as a crucial factor in the subunit-folding and assembly of CCT complex in N. bombycis.
Collapse
Affiliation(s)
- Sheng Xu
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Shengyan Xiao
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Jingru Qi
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Mingshuai Yao
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Ping He
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Runpeng Wang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Erjun Wei
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Qiang Wang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China.
| |
Collapse
|
17
|
Porter AW, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium restores electrolyte and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. Am J Physiol Renal Physiol 2025; 328:F173-F189. [PMID: 39556479 DOI: 10.1152/ajprenal.00192.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an acute kidney injury (AKI)-like phenotype, typified by tubular injury, elevation of kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers apoptosis, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in these rodents and that these and other phenotypes might be rectified by sodium supplementation. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and kidney injury markers in a sex-specific manner but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model and indicate that GRP170 function in kidney epithelia is essential to both maintain electrolyte balance and ER homeostasis.NEW & NOTEWORTHY Loss of the endoplasmic reticulum chaperone, GRP170, results in widespread kidney injury and induction of the unfolded protein response (UPR). We now show that sodium supplementation is able to at least partially restore electrolyte imbalance and reduce kidney injury markers in a sex-dependent manner.
Collapse
Affiliation(s)
- Aidan W Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hannah E Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Stephanie M Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
18
|
Chadwick SR, Stack-Couture S, Berg MD, Di Gregorio S, Lung B, Genereaux J, Moir RD, Brandl CJ, Willis IM, Snapp EL, Lajoie P. TUDCA modulates drug bioavailability to regulate resistance to acute ER stress in Saccharomyces cerevisiae. Mol Biol Cell 2025; 36:ar13. [PMID: 39661468 PMCID: PMC11809307 DOI: 10.1091/mbc.e24-04-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024] Open
Abstract
Cells counter accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) through activation of the Unfolded Protein Response (UPR). Small molecules termed chemical chaperones can promote protein folding to alleviate ER stress. The bile acid tauroursodeoxycholic acid (TUDCA) has been described as a chemical chaperone. While promising in models of protein folding diseases, TUDCA's mechanism of action remains unclear. Here, we found TUDCA can rescue growth of yeast treated with the ER stressor tunicamycin (Tm), even in the absence of a functional UPR. In contrast, TUDCA failed to rescue growth on other ER stressors. Nor could TUDCA attenuate chronic UPR associated with specific gene deletions or overexpression of a misfolded mutant secretory protein. Neither pretreatment with nor delayed addition of TUDCA conferred protection against Tm. Importantly, attenuation of Tm-induced toxicity required TUDCA's critical micelle forming concentration, suggesting a mechanism where TUDCA directly sequesters drugs. Indeed, in several assays, TUDCA-treated cells closely resembled cells treated with lower doses of Tm. In addition, we found TUDCA can inhibit dyes from labeling intracellular compartments. Thus, our study challenges the model of TUDCA as a chemical chaperone and suggests that TUDCA decreases drug bioavailability, allowing cells to adapt to ER stress.
Collapse
Affiliation(s)
- Sarah R. Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Samuel Stack-Couture
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Sonja Di Gregorio
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bryan Lung
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Christopher J. Brandl
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Erik L. Snapp
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
- Children's Health Research Institute, Lawson Health Research Institute, London, Ontario N6C 2V5, Canada
| |
Collapse
|
19
|
González-Téllez SV, Riquelme M. CSE-8, a filamentous fungus-specific Shr3-like chaperone, facilitates endoplasmic reticulum exit of chitin synthase CHS-3 (class I) in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2025; 5:1505388. [PMID: 39926406 PMCID: PMC11803449 DOI: 10.3389/ffunb.2024.1505388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Chitin is a crucial structural polysaccharide in fungal cell walls, essential for maintaining cellular plasticity and integrity. Its synthesis is orchestrated by chitin synthases (CHS), a major family of transmembrane proteins. In Saccharomyces cerevisiae, the cargo receptor Chs7, belonging to the Shr3-like chaperone family, plays a pivotal role in the exit of Chs3 from the endoplasmic reticulum (ER) and its subsequent activity in the plasma membrane (PM). However, the auxiliary machinery responsible for CHS trafficking in filamentous fungi remains poorly understood. The Neurospora crassa genome encodes two orthologues of Chs7: chitin synthase export (CSE) proteins CSE-7 (NCU05720) and CSE-8 (NCU01814), both of which are highly conserved among filamentous fungi. In contrast, yeast forms only possess a single copy CHS export receptor. Previous research highlighted the crucial role of CSE-7 in the localization of CHS-4 at sites of cell wall synthesis, including the Spitzenkörper (SPK) and septa. In this study, CSE-8 was identified as an export protein for CHS-3 (class I). In the Δcse-8 knockout strain of N. crassa, CHS-3-GFP fluorescence was absent from the SPK or septa, indicating that CSE-8 is required for the exit of CHS-3 from the ER. Additionally, sexual development was disrupted in the Δcse-8 strain, with 20% of perithecia from homozygous crosses exhibiting two ostioles. A Δcse-7;Δcse-8 double mutant strain showed reduced N-acetylglucosamine (GlcNAc) content and decreased radial growth. Furthermore, the loss of cell polarity and the changes in subcellular distribution of CSE-8-GFP and CHS-3-GFP observed in hyphae under ER stress induced by the addition of tunicamycin and dithiothreitol reinforce the hypothesis that CSE-8 functions as an ER protein. The current evidence suggests that the biogenesis of CHS exclusive to filamentous fungi may involve pathways independent of CSE-mediated receptors.
Collapse
Affiliation(s)
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| |
Collapse
|
20
|
Wright G, Chen X, Koteva K, Chou S, Guitor A, Pallant D, Lee Y, Sychantha D, French S, Hackenberger D, Robbins N, Cook M, Brown E, MacNeil L, Cowen L. A microbial natural product fractionation library screen with HRMS/MS dereplication identifies new lipopeptaibiotics against Candida auris. RESEARCH SQUARE 2025:rs.3.rs-5802877. [PMID: 39877096 PMCID: PMC11774467 DOI: 10.21203/rs.3.rs-5802877/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The rise of drug-resistant fungal pathogens, including Candida auris, highlights the urgent need for novel antifungal therapies. We developed a cost-effective platform combining microbial extract prefractionation with rapid MS/MS-bioinformatics-based dereplication to efficiently prioritize new antifungal scaffolds. Screening C. auris and C. albicans revealed novel lipopeptaibiotics, coniotins, from Coniochaeta hoffmannii WAC11161, which were undetectable in crude extracts. Coniotins exhibited potent activity against critical fungal pathogens on the WHO Fungal Priority Pathogens List, including C. albicans, C. neoformans, multidrug-resistant C. auris, and Aspergillus fumigatus, with high selectivity and low resistance potential. Coniotin A targets β-glucan, compromising fungal cell wall integrity, remodelling, and sensitizing C. auris to caspofungin. Identification of a PKS-NRPS biosynthetic gene cluster further enables the discovery of related clusters encoding potential novel lipopeptaibiotics. This study demonstrates the power of natural product prefractionation in uncovering bioactive scaffolds and introduces coniotins as promising candidates for combating multidrug-resistant fungal pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Michael Cook
- M.G. DeGroote Institute for Infectious Disease Research
| | | | | | | |
Collapse
|
21
|
St. Thomas N, Christopher BN, Reyes L, Robinson RM, Golick L, Zhu X, Chapman E, Dolloff NG. Pharmacological Modulation of the Unfolded Protein Response as a Therapeutic Approach in Cutaneous T-Cell Lymphoma. Biomolecules 2025; 15:76. [PMID: 39858470 PMCID: PMC11763779 DOI: 10.3390/biom15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a rare T-cell malignancy characterized by inflamed and painful rash-like skin lesions that may affect large portions of the body's surface. Patients experience recurrent infections due to a compromised skin barrier and generalized immunodeficiency resulting from a dominant Th2 immune phenotype of CTCL cells. Given the role of the unfolded protein response (UPR) in normal and malignant T-cell development, we investigated the impact of UPR-inducing drugs on the viability, transcriptional networks, and Th2 phenotype of CTCL. We found that CTCL cells were >5-fold more sensitive to the proteasome inhibitor bortezomib (Btz) and exhibited a distinct signaling and transcriptional response compared to normal CD4+ cells. The CTCL response was dominated by the induction of the HSP70 family member HSPA6 (HSP70B') and, to a lesser extent, HSPA5 (BiP/GRP78). To understand the significance of these two factors, we used a novel isoform selective small-molecule inhibitor of HSPA5/6 (JG-023). JG-023 induced pro-apoptotic UPR signaling and enhanced the cytotoxic effects of proteasome inhibitors and other UPR-inducing drugs in CTCL but not normal T cells. Interestingly, JG-023 also selectively suppressed the production of Th2 cytokines in CTCL and normal CD4+ T cells. Conditioned media (CM) from CTCL were immunosuppressive to normal T cells through an IL-10-dependent mechanism. This immunosuppression could be reversed by JG-023, other HSP70 inhibitors, Btz, and combinations of these UPR-targeted drugs. Our study points to the importance of the UPR in the pathology of CTCL and demonstrates the potential of proteasome and targeted HSPA5/6 inhibitors for therapy.
Collapse
Affiliation(s)
- Nadia St. Thomas
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Benjamin N. Christopher
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Leticia Reyes
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Reeder M. Robinson
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Lena Golick
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
| | - Xiaoyi Zhu
- Department of Pharmacology and Therapeutics, Center for Inflammation Science and Systems Medicine, University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (X.Z.); (E.C.)
| | - Eli Chapman
- Department of Pharmacology and Therapeutics, Center for Inflammation Science and Systems Medicine, University of Florida Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (X.Z.); (E.C.)
| | - Nathan G. Dolloff
- Department of Pharmacology and Immunology, Medical University of South Carolina, 173 Ashley Ave., MSC509, Charleston, SC 29425, USA; (N.S.T.); (B.N.C.); (L.R.); (R.M.R.); (L.G.)
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
- Zucker Institute for Innovation Commercialization, Charleston, SC 29425, USA
| |
Collapse
|
22
|
Shukla N, Neal ML, Farré JC, Mast FD, Truong L, Simon T, Miller LR, Aitchison JD, Subramani S. TOR and heat shock response pathways regulate peroxisome biogenesis during proteotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630809. [PMID: 40093121 PMCID: PMC11908190 DOI: 10.1101/2024.12.31.630809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Peroxisomes are versatile organelles mediating energy homeostasis and redox balance. While peroxisome dysfunction is linked to numerous diseases, the molecular mechanisms and signaling pathways regulating peroxisomes during cellular stress remain elusive. Using yeast, we show that perturbations disrupting protein homeostasis including loss of ER or cytosolic chaperone function, impairments in ER protein translocation, blocking ER N-glycosylation, or reductive stress, cause peroxisome proliferation. This proliferation is driven by increased de novo biogenesis from the ER as well as increased fission of pre-existing peroxisomes, rather than impaired pexophagy. Notably, peroxisome biogenesis is essential for cellular recovery from proteotoxic stress. Through comprehensive testing of major signaling pathways, we determine this response to be mediated by activation of the heat shock response and inhibition of Target of Rapamycin (TOR) signaling. Finally, the effects of proteotoxic stress and TOR inhibition on peroxisomes are also captured in human fibroblasts. Overall, our findings reveal a critical and conserved role of peroxisomes in cellular response to proteotoxic stress.
Collapse
Affiliation(s)
- Nandini Shukla
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jean-Claude Farré
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Linh Truong
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Theresa Simon
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Leslie R Miller
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Suresh Subramani
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Xu D, Wu H, Tian M, Liu Q, Zhu Y, Zhang H, Zhang X, Shen H. Isolinderalactone suppresses pancreatic ductal adenocarcinoma by activating p38 MAPK to promote DDIT3 expression and trigger endoplasmic reticulum stress. Int Immunopharmacol 2024; 143:113497. [PMID: 39486185 DOI: 10.1016/j.intimp.2024.113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, and its incidence rate is increasing. PDAC patients are prone to acquired chemotherapy resistance, necessitating the development of novel drugs to provide alternative treatment options. In recent years, traditional folk medicine and its active ingredients have garnered increasing attention for their effectiveness in treating tumors. Here, we discovered that isolinderalactone (ILL), a sesquiterpenoid compound extracted from the traditional Chinese medicine Lindera aggregata (Sims) Kosterm., possesses anti-PDAC pharmacological activity. Our results revealed that ILL decreased the proliferative capacity of PDAC cells in a time- and dose-dependent manner. The migration and invasion abilities of tumor cells were significantly suppressed due to the inhibition of epithelial-to-mesenchymal transition (EMT). Additionally, the cell cycle was arrested in the G2/M phase, leading to apoptosis, and inhibiting inflammatory responses. Mechanistically, bioinformatics analysis of molecular expression changes combined with in vivo and in vitro experiments demonstrated that ILL induces persistent ER stress by activating p38 MAPK signaling pathway, thus promoting the expression of DDIT3, and ultimately suppressing progression-related cell behaviors. Animal experiments confirmed that ILL also inhibited PDAC development in vivo with minimal toxicity. In summary, our study identified ILL as a potential therapeutic compound for PDAC treatment.
Collapse
Affiliation(s)
- Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Hao Wu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Mengyao Tian
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Yuanling Zhu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China.
| | - Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China; Hangzhou Institute of Digestive Diseases, Hangzhou 310000, China; Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
24
|
Jadhav R, Mach RL, Mach-Aigner AR. Protein secretion and associated stress in industrially employed filamentous fungi. Appl Microbiol Biotechnol 2024; 108:92. [PMID: 38204136 PMCID: PMC10781871 DOI: 10.1007/s00253-023-12985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Application of filamentous fungi for the production of commercial enzymes such as amylase, cellulase, or xylanase is on the rise due to the increasing demand to degrade several complex carbohydrates as raw material for biotechnological processes. Also, protein production by fungi for food and feed gains importance. In any case, the protein production involves both cellular synthesis and secretion outside of the cell. Unfortunately, the secretion of proteins or enzymes can be hampered due to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) as a result of too high synthesis of enzymes or (heterologous) protein expression. To cope with this ER stress, the cell generates a response known as unfolded protein response (UPR). Even though this mechanism should re-establish the protein homeostasis equivalent to a cell under non-stress conditions, the enzyme expression might still suffer from repression under secretory stress (RESS). Among eukaryotes, Saccharomyces cerevisiae is the only fungus, which is studied quite extensively to unravel the UPR pathway. Several homologs of the proteins involved in this signal transduction cascade are also found in filamentous fungi. Since RESS seems to be absent in S. cerevisiae and was only reported in Trichoderma reesei in the presence of folding and glycosylation inhibitors such as dithiothreitol and tunicamycin, more in-depth study about this mechanism, specifically in filamentous fungi, is the need of the hour. Hence, this review article gives an overview on both, protein secretion and associated stress responses in fungi. KEY POINTS: • Enzymes produced by filamentous fungi are crucial in industrial processes • UPR mechanism is conserved among many fungi, but mediated by different proteins • RESS is not fully understood or studied in industrially relevant filamentous fungi.
Collapse
Affiliation(s)
- Reshma Jadhav
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|
25
|
Rosenthal MR, Vijayrajratnam S, Firestone TM, Ng CL. Enhanced cell stress response and protein degradation capacity underlie artemisinin resistance in Plasmodium falciparum. mSphere 2024; 9:e0037124. [PMID: 39436072 PMCID: PMC11580438 DOI: 10.1128/msphere.00371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Malaria remains a global health burden, killing over half a million people each year. Decreased therapeutic efficacy to artemisinin, the most efficacious antimalarial, has been detected in sub-Saharan Africa, a worrying fact given that over 90% of deaths occur on this continent. Mutations in Kelch13 are the most well-established molecular marker for artemisinin resistance, but these do not explain all artemisinin-resistant isolates. Understanding the biological underpinnings of drug resistance is key to curbing the emergence and spread of artemisinin resistance. Artemisinin-mediated non-specific alkylation leads to the accumulation of misfolded and damaged proteins and activation of the parasite unfolded protein response (UPR). In addition, the parasite proteasome is vital to artemisinin resistance, as we have previously shown that chemical inhibition of the proteasome or mutations in the β2 proteasome subunit increase parasite susceptibility to dihydroartemisinin (DHA), the active metabolite of artemisinins. Here, we investigate parasites with mutations at the Kelch13 and/or 19S and 20S proteasome subunits with regard to UPR regulation and proteasome activity in the context of artemisinin resistance. Our data show that perturbing parasite proteostasis kills parasites, early parasite UPR signaling dictates DHA survival outcomes, and DHA susceptibility correlates with impairment of proteasome-mediated protein degradation. Importantly, we show that functional proteasomes are required for artemisinin resistance in a Kelch13-independent manner, and compound-selective proteasome inhibition demonstrates why artemisinin-resistant Kelch13 mutants remain susceptible to the related antimalarial peroxide OZ439. These data provide further evidence for targeting the parasite proteasome and UPR to overcome existing artemisinin resistance.IMPORTANCEDecreased therapeutic efficacy represents a major barrier to malaria treatment control strategies. The malaria proteasome and accompanying unfolded protein response are crucial to artemisinin resistance, revealing novel antimalarial therapeutic strategies.
Collapse
Affiliation(s)
- Melissa R. Rosenthal
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sukhithasri Vijayrajratnam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tessa M. Firestone
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Caroline L. Ng
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Global Center for Health Security, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biology, University of Omaha, Omaha, Nebraska, USA
| |
Collapse
|
26
|
Wang G, Wu Z, Li M, Liang X, Wen Y, Zheng Q, Li D, An T. Microbial production of 5- epi-jinkoheremol, a plant-derived antifungal sesquiterpene. Appl Environ Microbiol 2024; 90:e0119124. [PMID: 39283105 PMCID: PMC11497823 DOI: 10.1128/aem.01191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. In the present study, we constructed a microbial platform for the high-level production of a sesquiterpene from Catharanthus roseus, 5-epi-jinkoheremol, which exhibits strong fungicidal activity. First, the mevalonate and sterol biosynthesis pathways were optimized in engineered yeast to increase the metabolic flux toward the biosynthesis of the precursor farnesyl pyrophosphate. Then, the transcription factor Hac1- and m6A writer Ime4-based metabolic engineering strategies were implemented in yeast to increase 5-epi-jinkoheremol production further. Next, protein engineering was performed to improve the catalytic activity and enhance the stability of the 5-epi-jinkoheremol synthase TPS18, resulting in the variant TPS18I21P/T414S, with the most improved properties. Finally, the titer of 5-epi-jinkoheremol was elevated to 875.25 mg/L in a carbon source-optimized medium in shake flask cultivation. To the best of our knowledge, this is the first study to construct an efficient microbial cell factory for the sustainable production of this antifungal sesquiterpene.IMPORTANCEBiofungicides represent a new and sustainable tool for the control of crop fungal diseases. However, hindered by the high cost of biofungicide production, their use is not as popular as expected. Synthetic biology using microbial chassis is emerging as a powerful tool for the production of natural chemicals. We previously identified a promising sesquiterpenoid biofungicide, 5-epi-jinkoheremol. Here, we constructed a microbial platform for the high-level production of this chemical. The metabolic engineering of the terpene biosynthetic pathway was firstly employed to increase the metabolic flux toward 5-epi-jinkoheremol production. However, the limited catalytic activity of the key enzyme, TPS18, restricted the further yield of 5-epi-jinkoheremol. By using protein engineering, we improved its catalytic efficiency, and combined with the optimization of regulation factors, the highest production of 5-epi-jinkoheremol was achieved. Our work was useful for the larger-scale efficient production of this antifungal sesquiterpene.
Collapse
Affiliation(s)
- Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Yiwei Wen
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
27
|
Białek W, Hryniewicz-Jankowska A, Czechowicz P, Sławski J, Collawn JF, Czogalla A, Bartoszewski R. The lipid side of unfolded protein response. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159515. [PMID: 38844203 DOI: 10.1016/j.bbalip.2024.159515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.
Collapse
Affiliation(s)
- Wojciech Białek
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Czechowicz
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
28
|
Mao H, Kim GH, Pan L, Qi L. Regulation of leptin signaling and diet-induced obesity by SEL1L-HRD1 ER-associated degradation in POMC expressing neurons. Nat Commun 2024; 15:8435. [PMID: 39343970 PMCID: PMC11439921 DOI: 10.1038/s41467-024-52743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis in the hypothalamus has been implicated in the pathogenesis of diet-induced obesity (DIO) and type 2 diabetes; however, the underlying molecular mechanism remain vague and debatable. Here we report that SEL1L-HRD1 protein complex of the highly conserved ER-associated protein degradation (ERAD) machinery in POMC-expressing neurons ameliorates diet-induced obesity and its associated complications, partly by regulating the turnover of the long isoform of Leptin receptors (LepRb). Loss of SEL1L in POMC-expressing neurons attenuates leptin signaling and predisposes mice to HFD-associated pathologies including fatty liver, glucose intolerance, insulin and leptin resistance. Mechanistically, nascent LepRb, both wildtype and disease-associated Cys604Ser variant, are misfolding prone and bona fide substrates of SEL1L-HRD1 ERAD. In the absence of SEL1L-HRD1 ERAD, LepRb are largely retained in the ER, in an ER stress-independent manner. This study uncovers an important role of SEL1L-HRD1 ERAD in the pathogenesis of central leptin resistance and leptin signaling.
Collapse
Affiliation(s)
- Hancheng Mao
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Geun Hyang Kim
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York, NY, 10591, USA
| | - Linxiu Pan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
29
|
Rajakumar T, Hossain MA, Stopka SA, Micoogullari Y, Ang J, Agar NYR, Hanna J. Dysregulation of ceramide metabolism causes phytoceramide-dependent induction of the unfolded protein response. Mol Biol Cell 2024; 35:ar117. [PMID: 39024283 PMCID: PMC11449394 DOI: 10.1091/mbc.e24-03-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The unfolded protein response (UPR) detects and mitigates the harmful effects of dysregulated endoplasmic reticulum (ER) function. The UPR has been best characterized as a protein quality control response, and the sole UPR sensor in yeast, Ire1, is known to detect misfolded ER proteins. However, recent work suggests the UPR can also sense diverse defects within the ER membrane, including increased fatty acid saturation and altered phospholipid abundance. These and other lipid-related stimuli have been referred to as lipid bilayer stress and may be sensed independently through Ire1's transmembrane domain. Here, we show that the loss of Isc1, a phospholipase that catabolizes complex ceramides, causes UPR induction, even in the absence of exogenous stress. A series of chemical and genetic approaches identified a requirement for very long-chain fatty acid (VLCFA)-containing phytoceramides for UPR induction. In parallel, comprehensive lipidomics analyses identified large increases in the abundance of specific VLCFA-containing phytoceramides in the isc1Δ mutant. We failed to identify evidence of an accompanying defect in protein quality control or ER-associated protein degradation. These results extend our understanding of lipid bilayer stress in the UPR and provide a foundation for mechanistic investigation of this fascinating intersection between ceramide metabolism, membrane homeostasis, and the UPR.
Collapse
Affiliation(s)
- Tamayanthi Rajakumar
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Md Amin Hossain
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Sylwia A. Stopka
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Yagmur Micoogullari
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Jessie Ang
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - Nathalie Y. R. Agar
- Department of Neurosurgery, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115
| |
Collapse
|
30
|
Qu X, Bhalla K, Horianopoulos LC, Hu G, Alcázar Magaña A, Foster LJ, Roque da Silva LB, Kretschmer M, Kronstad JW. Phosphate availability conditions caspofungin tolerance, capsule attachment and titan cell formation in Cryptococcus neoformans. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1447588. [PMID: 39206133 PMCID: PMC11349702 DOI: 10.3389/ffunb.2024.1447588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
There is an urgent need for new antifungal drugs to treat invasive fungal diseases. Unfortunately, the echinocandin drugs that are fungicidal against other important fungal pathogens are ineffective against Cryptococcus neoformans, the causative agent of life-threatening meningoencephalitis in immunocompromised people. Contributing mechanisms for echinocandin tolerance are emerging with connections to calcineurin signaling, the cell wall, and membrane composition. In this context, we discovered that a defect in phosphate uptake impairs the tolerance of C. neoformans to the echinocandin caspofungin. Our previous analysis of mutants lacking three high affinity phosphate transporters revealed reduced elaboration of the polysaccharide capsule and attenuated virulence in mice. We investigated the underlying mechanisms and found that loss of the transporters and altered phosphate availability influences the cell wall and membrane composition. These changes contribute to the shedding of capsule polysaccharide thus explaining the reduced size of capsules on mutants lacking the phosphate transporters. We also found an influence of the calcineurin pathway including calcium sensitivity and an involvement of the endoplasmic reticulum in the response to phosphate limitation. Furthermore, we identified membrane and lipid composition changes consistent with the role of phosphate in phospholipid biosynthesis and with previous studies implicating membrane integrity in caspofungin tolerance. Finally, we discovered a contribution of phosphate to titan cell formation, a cell type that displays modified cell wall and capsule composition. Overall, our analysis reinforces the importance of phosphate as a regulator of cell wall and membrane composition with implications for capsule attachment and antifungal drug susceptibility.
Collapse
Affiliation(s)
- Xianya Qu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Kabir Bhalla
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Linda C. Horianopoulos
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Guanggan Hu
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Armando Alcázar Magaña
- Department of Biochemistry and Molecular Biology, Metabolomics Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Leonard J. Foster
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, Metabolomics Core Facility, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | - Matthias Kretschmer
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James W. Kronstad
- The Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Ernst R, Renne MF, Jain A, von der Malsburg A. Endoplasmic Reticulum Membrane Homeostasis and the Unfolded Protein Response. Cold Spring Harb Perspect Biol 2024; 16:a041400. [PMID: 38253414 PMCID: PMC11293554 DOI: 10.1101/cshperspect.a041400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The endoplasmic reticulum (ER) is the key organelle for membrane biogenesis. Most lipids are synthesized in the ER, and most membrane proteins are first inserted into the ER membrane before they are transported to their target organelle. The composition and properties of the ER membrane must be carefully controlled to provide a suitable environment for the insertion and folding of membrane proteins. The unfolded protein response (UPR) is a powerful signaling pathway that balances protein and lipid production in the ER. Here, we summarize our current knowledge of how aberrant compositions of the ER membrane, referred to as lipid bilayer stress, trigger the UPR.
Collapse
Affiliation(s)
- Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Mike F Renne
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Aamna Jain
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Alexander von der Malsburg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
- Preclinical Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
32
|
Sulaj E, Schwaigerlehner L, Sandell FL, Dohm JC, Marzban G, Kunert R. Quantitative proteomics reveals cellular responses to individual mAb expression and tunicamycin in CHO cells. Appl Microbiol Biotechnol 2024; 108:381. [PMID: 38896138 PMCID: PMC11186912 DOI: 10.1007/s00253-024-13223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Chinese hamster ovary (CHO) cells are popular in the pharmaceutical industry for their ability to produce high concentrations of antibodies and their resemblance to human cells in terms of protein glycosylation patterns. Current data indicate the relevance of CHO cells in the biopharmaceutical industry, with a high number of product commendations and a significant market share for monoclonal antibodies. To enhance the production capabilities of CHO cells, a deep understanding of their cellular and molecular composition is crucial. Genome sequencing and proteomic analysis have provided valuable insights into the impact of the bioprocessing conditions, productivity, and product quality. In our investigation, we conducted a comparative analysis of proteomic profiles in high and low monoclonal antibody-producing cell lines and studied the impact of tunicamycin (TM)-induced endoplasmic reticulum (ER) stress. We examined the expression levels of different proteins including unfolded protein response (UPR) target genes by using label-free quantification techniques for protein abundance. Our results show the upregulation of proteins associated with protein folding mechanisms in low producer vs. high producer cell line suggesting a form of ER stress related to specific protein production. Further, Hspa9 and Dnaja3 are notable candidates activated by the mitochondria UPR and play important roles in protein folding processes in mitochondria. We identified significant upregulation of Nedd8 and Lgmn proteins in similar levels which may contribute to UPR stress. Interestingly, the downregulation of Hspa5/Bip and Pdia4 in response to tunicamycin treatment suggests a low-level UPR activation. KEY POINTS: • Proteome profiling of recombinant CHO cells under mild TM treatment. • Identified protein clusters are associated with the unfolded protein response (UPR). • The compared cell lines revealed noticeable disparities in protein expression levels.
Collapse
Affiliation(s)
- Eldi Sulaj
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Linda Schwaigerlehner
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Felix L Sandell
- Department of Biotechnology, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Gorji Marzban
- Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Muthgasse 18, 1190, Vienna, Austria.
| | - Renate Kunert
- Department of Biotechnology, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
33
|
Casas-Martinez JC, Samali A, McDonagh B. Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci 2024; 81:250. [PMID: 38847861 PMCID: PMC11335286 DOI: 10.1007/s00018-024-05286-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) have a synergistic relationship and are key regulatory hubs in maintaining cell homeostasis. Communication between these organelles is mediated by mitochondria ER contact sites (MERCS), allowing the exchange of material and information, modulating calcium homeostasis, redox signalling, lipid transfer and the regulation of mitochondrial dynamics. MERCS are dynamic structures that allow cells to respond to changes in the intracellular environment under normal homeostatic conditions, while their assembly/disassembly are affected by pathophysiological conditions such as ageing and disease. Disruption of protein folding in the ER lumen can activate the Unfolded Protein Response (UPR), promoting the remodelling of ER membranes and MERCS formation. The UPR stress receptor kinases PERK and IRE1, are located at or close to MERCS. UPR signalling can be adaptive or maladaptive, depending on whether the disruption in protein folding or ER stress is transient or sustained. Adaptive UPR signalling via MERCS can increase mitochondrial calcium import, metabolism and dynamics, while maladaptive UPR signalling can result in excessive calcium import and activation of apoptotic pathways. Targeting UPR signalling and the assembly of MERCS is an attractive therapeutic approach for a range of age-related conditions such as neurodegeneration and sarcopenia. This review highlights the emerging evidence related to the role of redox mediated UPR activation in orchestrating inter-organelle communication between the ER and mitochondria, and ultimately the determination of cell function and fate.
Collapse
Affiliation(s)
- Jose C Casas-Martinez
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland
- Apoptosis Research Centre, University of Galway, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, University of Galway, Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, University of Galway, Galway, Ireland.
- Apoptosis Research Centre, University of Galway, Galway, Ireland.
| |
Collapse
|
34
|
Liu YX, Zhao M, Yu Y, Liu JP, Liu WJ, Yao RQ, Wang J, Yang RL, Wu Y, Dong N, Cao Y, Li SC, Zhang QH, Yan RM, Yao YM. Extracellular cold-inducible RNA-binding protein mediated neuroinflammation and neuronal apoptosis after traumatic brain injury. BURNS & TRAUMA 2024; 12:tkae004. [PMID: 38817684 PMCID: PMC11136617 DOI: 10.1093/burnst/tkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 06/01/2024]
Abstract
Background Extracellular cold-inducible RNA-binding protein (eCIRP) plays a vital role in the inflammatory response during cerebral ischaemia. However, the potential role and regulatory mechanism of eCIRP in traumatic brain injury (TBI) remain unclear. Here, we explored the effect of eCIRP on the development of TBI using a neural-specific CIRP knockout (KO) mouse model to determine the contribution of eCIRP to TBI-induced neuronal injury and to discover novel therapeutic targets for TBI. Methods TBI animal models were generated in mice using the fluid percussion injury method. Microglia or neuron lines were subjected to different drug interventions. Histological and functional changes were observed by immunofluorescence and neurobehavioural testing. Apoptosis was examined by a TdT-mediated dUTP nick end labelling assay in vivo or by an annexin-V assay in vitro. Ultrastructural alterations in the cells were examined via electron microscopy. Tissue acetylation alterations were identified by non-labelled quantitative acetylation via proteomics. Protein or mRNA expression in cells and tissues was determined by western blot analysis or real-time quantitative polymerase chain reaction. The levels of inflammatory cytokines and mediators in the serum and supernatants were measured via enzyme-linked immunoassay. Results There were closely positive correlations between eCIRP and inflammatory mediators, and between eCIRP and TBI markers in human and mouse serum. Neural-specific eCIRP KO decreased hemispheric volume loss and neuronal apoptosis and alleviated glial cell activation and neurological function damage after TBI. In contrast, eCIRP treatment resulted in endoplasmic reticulum disruption and ER stress (ERS)-related death of neurons and enhanced inflammatory mediators by glial cells. Mechanistically, we noted that eCIRP-induced neural apoptosis was associated with the activation of the protein kinase RNA-like ER kinase-activating transcription factor 4 (ATF4)-C/EBP homologous protein signalling pathway, and that eCIRP-induced microglial inflammation was associated with histone H3 acetylation and the α7 nicotinic acetylcholine receptor. Conclusions These results suggest that TBI obviously enhances the secretion of eCIRP, thereby resulting in neural damage and inflammation in TBI. eCIRP may be a biomarker of TBI that can mediate the apoptosis of neuronal cells through the ERS apoptotic pathway and regulate the inflammatory response of microglia via histone modification.
Collapse
Affiliation(s)
- Yu-xiao Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Ming Zhao
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing 100037, People’s Republic of China
| | - Jing-peng Liu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing 100037, People’s Republic of China
| | - Wen-jia Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, People’s Republic of China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Seventh Medical Center of the Chinese PLA General Hospital, Beijing 100700, People’s Republic of China
| | - Rong-li Yang
- Intensive Care Unit, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian 116033, People’s Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Yang Cao
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Shou-chun Li
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Qin-hong Zhang
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Run-min Yan
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| |
Collapse
|
35
|
Mbara KC, Fotsing MC, Ndinteh DT, Mbeb CN, Nwagwu CS, Khan R, Mokhetho KC, Baijnath H, Nlooto M, Mokhele S, Leonard CM, Tembu VJ, Tarirai C. Endoplasmic reticulum stress in pancreatic β-cell dysfunction: The potential therapeutic role of dietary flavonoids. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100184. [PMID: 38846008 PMCID: PMC11153890 DOI: 10.1016/j.crphar.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Diabetes mellitus (DM) is a global health burden that is characterized by the loss or dysfunction of pancreatic β-cells. In pancreatic β-cells, endoplasmic reticulum (ER) stress is a fact of life that contributes to β-cell loss or dysfunction. Despite recent advances in research, the existing treatment approaches such as lifestyle modification and use of conventional therapeutics could not prevent the loss or dysfunction of pancreatic β-cells to abrogate the disease progression. Therefore, targeting ER stress and the consequent unfolded protein response (UPR) in pancreatic β-cells may be a potential therapeutic strategy for diabetes treatment. Dietary phytochemicals have therapeutic applications in human health owing to their broad spectrum of biochemical and pharmacological activities. Flavonoids, which are commonly obtained from fruits and vegetables worldwide, have shown promising prospects in alleviating ER stress. Dietary flavonoids including quercetin, kaempferol, myricetin, isorhamnetin, fisetin, icariin, apigenin, apigetrin, vitexin, baicalein, baicalin, nobiletin hesperidin, naringenin, epigallocatechin 3-O-gallate hesperidin (EGCG), tectorigenin, liquiritigenin, and acacetin have shown inhibitory effects on ER stress in pancreatic β-cells. Dietary flavonoids modulate ER stress signaling components, chaperone proteins, transcription factors, oxidative stress, autophagy, apoptosis, and inflammatory responses to exert their pharmacological effects on pancreatic β-cells ER stress. This review focuses on the role of dietary flavonoids as potential therapeutic adjuvants in preserving pancreatic β-cells from ER stress. Highlights of the underlying mechanisms of action are also presented as well as possible strategies for clinical translation in the management of DM.
Collapse
Affiliation(s)
- Kingsley C. Mbara
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Marthe C.D. Fotsing
- Drug Discovery and Smart Molecules Research Laboratory, Centre for Natural Products Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Derek T. Ndinteh
- Drug Discovery and Smart Molecules Research Laboratory, Centre for Natural Products Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, 2028, South Africa
| | - Claudine N. Mbeb
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Chinekwu S. Nwagwu
- Drug Delivery and Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Kopang C. Mokhetho
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Himansu Baijnath
- Ward Herbarium, School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, KwaZulu-Natal, South Africa
| | - Manimbulu Nlooto
- Department of Pharmaceutical Sciences, Healthcare Sciences, University of Limpopo, South Africa
| | - Shoeshoe Mokhele
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Carmen M. Leonard
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Vuyelwa J. Tembu
- Natural Products Chemistry Research Laboratory, Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Clemence Tarirai
- Nanomedicines Manufacturing, Biopharmaceutics and Diagnostics Research Laboratory, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| |
Collapse
|
36
|
Niemelä LRK, Koskela EV, Frey AD. Modification of the endoplasmic reticulum morphology enables improved recombinant antibody expression in Saccharomyces cerevisiae. J Biotechnol 2024; 387:1-11. [PMID: 38555020 DOI: 10.1016/j.jbiotec.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/23/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The yeast Saccharomyces cerevisiae is a versatile cell factory used for manufacturing of a wide range of products, among them recombinant proteins. Protein folding is one of the rate-limiting processes and this shortcoming is often overcome by the expression of folding catalysts and chaperones in the endoplasmic reticulum (ER). In this work, we aimed to establish the impact of ER structure on cellular productivity. The reticulon proteins Rtn1p and Rtn2p, and Yop1p are membrane curvature inducing proteins that define the morphology of the ER and depletion of these proteins creates yeast cells with a higher ER sheet-to-tubule ratio. We created yeast strains with different combinations of deletions of Rtn1p, Rtn2p, and Yop1p coding genes in cells with a normal or expanded ER lumen. We identified strains that reached up to 2.2-fold higher antibody titres compared to the control strain. The expanded ER membrane reached by deletion of the lipid biosynthesis repressor OPI1 was essential for the increased productivity. The improved specific productivity was accompanied by an up to 2-fold enlarged ER surface area and a 1.5-fold increased cross-sectional cell area. Furthermore, the strains with enlarged ER displayed an attenuated unfolded protein response. These results underline the impact that ER structures have on productivity and support the notion that reprogramming subcellular structures belongs into the toolbox of synthetic biology.
Collapse
Affiliation(s)
- Laura R K Niemelä
- Aalto University, Department of Bioproducts and Biosystems, Espoo, Finland
| | - Essi V Koskela
- Aalto University, Department of Bioproducts and Biosystems, Espoo, Finland
| | - Alexander D Frey
- Aalto University, Department of Bioproducts and Biosystems, Espoo, Finland.
| |
Collapse
|
37
|
Zung N, Aravindan N, Boshnakovska A, Valenti R, Preminger N, Jonas F, Yaakov G, Willoughby MM, Homberg B, Keller J, Kupervaser M, Dezorella N, Dadosh T, Wolf SG, Itkin M, Malitsky S, Brandis A, Barkai N, Fernández-Busnadiego R, Reddi AR, Rehling P, Rapaport D, Schuldiner M. The molecular mechanism of on-demand sterol biosynthesis at organelle contact sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593285. [PMID: 38766039 PMCID: PMC11100823 DOI: 10.1101/2024.05.09.593285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Contact-sites are specialized zones of proximity between two organelles, essential for organelle communication and coordination. The formation of contacts between the Endoplasmic Reticulum (ER), and other organelles, relies on a unique membrane environment enriched in sterols. However, how these sterol-rich domains are formed and maintained had not been understood. We found that the yeast membrane protein Yet3, the homolog of human BAP31, is localized to multiple ER contact sites. We show that Yet3 interacts with all the enzymes of the post-squalene ergosterol biosynthesis pathway and recruits them to create sterol-rich domains. Increasing sterol levels at ER contacts causes its depletion from the plasma membrane leading to a compensatory reaction and altered cell metabolism. Our data shows that Yet3 provides on-demand sterols at contacts thus shaping organellar structure and function. A molecular understanding of this protein's functions gives new insights into the role of BAP31 in development and pathology.
Collapse
Affiliation(s)
- Naama Zung
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Nitya Aravindan
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Noga Preminger
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Gilad Yaakov
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
- Biochemistry and Molecular Biology Department, University of Nebraska Medical Center, USA
| | - Bettina Homberg
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Jenny Keller
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Meital Kupervaser
- The De Botton Protein Profiling institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Israel
| | - Nili Dezorella
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Tali Dadosh
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Sharon G Wolf
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Israel
| | - Maxim Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Sergey Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Rubén Fernández-Busnadiego
- University Medical Center Göttingen, Institute for Neuropathology, 37077, Germany
- Collaborative Research Center 1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077, Germany
- Faculty of Physics, University of Göttingen, 37077, Germany
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, USA
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Germany
- Max Planck Institute for Multidisciplinary Sciences, D-37077, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| |
Collapse
|
38
|
Nguyen HM, Hong UVT, Ruocco M, Dattolo E, Marín-Guirao L, Pernice M, Procaccini G. Thermo-priming triggers species-specific physiological and transcriptome responses in Mediterranean seagrasses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108614. [PMID: 38626655 DOI: 10.1016/j.plaphy.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Heat-priming improves plants' tolerance to a recurring heat stress event. The underlying molecular mechanisms of heat-priming are largely unknown in seagrasses. Here, ad hoc mesocosm experiments were conducted with two Mediterranean seagrass species, Posidonia oceanica and Cymodocea nodosa. Plants were first exposed to heat-priming, followed by a heat-triggering event. A comprehensive assessment of plant stress response across different levels of biological organization was performed at the end of the triggering event. Morphological and physiological results showed an improved response of heat-primed P. oceanica plants while in C. nodosa both heat- and non-primed plants enhanced their growth rates at the end of the triggering event. As resulting from whole transcriptome sequencing, molecular functions related to several cellular compartments and processes were involved in the response to warming of non-primed plants, while the response of heat-primed plants involved a limited group of processes. Our results suggest that seagrasses acquire a primed state during the priming event, that eventually gives plants the ability to induce a more energy-effective response when the thermal stress event recurs. Different species may differ in their ability to perform an improved heat stress response after priming. This study provides pioneer molecular insights into the emerging topic of seagrass stress priming and may benefit future studies in the field.
Collapse
Affiliation(s)
- Hung Manh Nguyen
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Uyen V T Hong
- La Trobe University, AgriBio Building, Bundoora, 3086, VIC, Australia; Department of Plant Biotechnology & Biotransformation, University of Science, Vietnam National University, 700000, Ho Chi Minh City, Viet Nam
| | - Miriam Ruocco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Emanuela Dattolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Oceanographic Center of Murcia, Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), C/Varadero, San Pedro del Pinatar, 30740, Murcia, Spain.
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
39
|
Sonsalla G, Malpartida AB, Riedemann T, Gusic M, Rusha E, Bulli G, Najas S, Janjic A, Hersbach BA, Smialowski P, Drukker M, Enard W, Prehn JHM, Prokisch H, Götz M, Masserdotti G. Direct neuronal reprogramming of NDUFS4 patient cells identifies the unfolded protein response as a novel general reprogramming hurdle. Neuron 2024; 112:1117-1132.e9. [PMID: 38266647 PMCID: PMC10994141 DOI: 10.1016/j.neuron.2023.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.
Collapse
Affiliation(s)
- Giovanna Sonsalla
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Ana Belen Malpartida
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried 82152, Germany
| | - Therese Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Giorgia Bulli
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Sonia Najas
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Aleks Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Bob A Hersbach
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Pawel Smialowski
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Micha Drukker
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, 2333 CC RA, Leiden, the Netherlands
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - Giacomo Masserdotti
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
40
|
Wang G, Zhao H, Zou J, Liang W, Zhao Z, Li D. Role of BcSfb3, the subunit of COPII vesicles, in fungal development and pathogenicity, ER-phagy and autophagy in the gray mold fungus Botrytis cinerea. Int J Biol Macromol 2024; 263:130379. [PMID: 38403214 DOI: 10.1016/j.ijbiomac.2024.130379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Cytoplasmic coat protein complex II (COPII) plays a multifunctional role in the transport of newly synthesized proteins, autophagosome formation, and endoplasmic reticulum (ER)-ER-phagy. However, the molecular mechanisms of the COPII subunit in ER-phagy in plant pathogens remain unknown. Here, we identified the subunit of COPII vesicles (BcSfb3) and explored the importance of BcSfb3 in Botrytis cinerea. BcSfb3 deletion affected vegetative growth, conidiation, conidial morphology, and plasma membrane integrity. We confirmed that the increase in infectious hyphal growth was delayed in the ΔBcSfb3 mutant, reducing its pathogenicity in the host plant. Furthermore, the ΔBcSfb3 mutant was sensitive to ER stress, which caused massive ER expansion and induced the formation of ER whorls that were taken up into the vacuole. Further examination demonstrated that BcSfb3 deletion caused ER stress initiated by unfolded protein response, and which led to the promotion of ER-phagy and autophagy that participate in sclerotia formation. In conclusion, these results demonstrate that BcSfb3 plays an important role in fungal development, pathogenesis, ER-phagy and autophagy in B. cinerea.
Collapse
Affiliation(s)
- Guanbo Wang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Haonan Zhao
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Jian Zou
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China
| | - Zhijian Zhao
- Industrial Crops Institute, Yunnan Academy of Agricultural Sciences, Kunming 650203, China.
| | - Delong Li
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, China; Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
41
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
42
|
Nickerson KW, Gutzmann DJ, Boone CHT, Pathirana RU, Atkin AL. Physiological adventures in Candida albicans: farnesol and ubiquinones. Microbiol Mol Biol Rev 2024; 88:e0008122. [PMID: 38436263 PMCID: PMC10966945 DOI: 10.1128/mmbr.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.
Collapse
Affiliation(s)
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Ruvini U. Pathirana
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
43
|
Müller R, König A, Groth S, Zarnowski R, Visser C, Handrianz T, Maufrais C, Krüger T, Himmel M, Lee S, Priest EL, Yildirim D, Richardson JP, Blango MG, Bougnoux ME, Kniemeyer O, d'Enfert C, Brakhage AA, Andes DR, Trümper V, Nehls C, Kasper L, Mogavero S, Gutsmann T, Naglik JR, Allert S, Hube B. Secretion of the fungal toxin candidalysin is dependent on conserved precursor peptide sequences. Nat Microbiol 2024; 9:669-683. [PMID: 38388771 DOI: 10.1038/s41564-024-01606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.
Collapse
Affiliation(s)
- Rita Müller
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sabrina Groth
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Robert Zarnowski
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA
| | - Corissa Visser
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Tom Handrianz
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Maximilian Himmel
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Sejeong Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Emily L Priest
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Deniz Yildirim
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Matthew G Blango
- RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - David R Andes
- Department of Medicine, Section of Infectious Diseases, University of Wisconsin-Madison, Madison, WI, USA
| | - Verena Trümper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Christian Nehls
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Kiel, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Kiel, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute (HKI), Jena, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
44
|
Liu Z, Wang G, Sheng C, Zheng Y, Tang D, Zhang Y, Hou X, Yao M, Zong Q, Zhou Z. Intracellular Protein Adsorption Behavior and Biological Effects of Polystyrene Nanoplastics in THP-1 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2652-2661. [PMID: 38294362 DOI: 10.1021/acs.est.3c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Micro(nano)plastics (MNPs) are emerging pollutants that can adsorb pollutants in the environment and biological molecules and ultimately affect human health. However, the aspects of adsorption of intracellular proteins onto MNPs and its biological effects in cells have not been investigated to date. The present study revealed that 100 nm polystyrene nanoplastics (NPs) could be internalized by THP-1 cells and specifically adsorbed intracellular proteins. In total, 773 proteins adsorbed onto NPs with high reliability were identified using the proteomics approach and analyzed via bioinformatics to predict the route and distribution of NPs following cellular internalization. The representative proteins identified via the Kyoto Encyclopedia of Genes and Genomes pathway analysis were further investigated to characterize protein adsorption onto NPs and its biological effects. The analysis revealed that NPs affect glycolysis through pyruvate kinase M (PKM) adsorption, trigger the unfolded protein response through the adsorption of ribophorin 1 (RPN1) and heat shock 70 protein 8 (HSPA8), and are chiefly internalized into cells through clathrin-mediated endocytosis with concomitant clathrin heavy chain (CLTC) adsorption. Therefore, this work provides new insights and research strategies for the study of the biological effects caused by NPs.
Collapse
Affiliation(s)
- Zijia Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guozhen Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100124, China
| | - Chao Sheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Zheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Duo Tang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaonan Hou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mengfei Yao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Qi Zong
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhixiang Zhou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
45
|
Ahlstedt BA, Ganji R, Mukkavalli S, Paulo JA, Gygi SP, Raman M. UBXN1 maintains ER proteostasis and represses UPR activation by modulating translation. EMBO Rep 2024; 25:672-703. [PMID: 38177917 PMCID: PMC10897191 DOI: 10.1038/s44319-023-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
ER protein homeostasis (proteostasis) is essential for proper folding and maturation of proteins in the secretory pathway. Loss of ER proteostasis can lead to the accumulation of misfolded or aberrant proteins in the ER and triggers the unfolded protein response (UPR). In this study, we find that the p97 adaptor UBXN1 is an important negative regulator of the UPR. Loss of UBXN1 sensitizes cells to ER stress and activates the UPR. This leads to widespread upregulation of the ER stress transcriptional program. Using comparative, quantitative proteomics we show that deletion of UBXN1 results in a significant enrichment of proteins involved in ER-quality control processes including those involved in protein folding and import. Notably, we find that loss of UBXN1 does not perturb p97-dependent ER-associated degradation (ERAD). Our studies indicate that loss of UBXN1 increases translation in both resting and ER-stressed cells. Surprisingly, this process is independent of p97 function. Taken together, our studies have identified a new role for UBXN1 in repressing translation and maintaining ER proteostasis in a p97 independent manner.
Collapse
Affiliation(s)
- Brittany A Ahlstedt
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- ALPCA diagnostics, Salem, NH, USA
| | - Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Sirisha Mukkavalli
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
- Dana Farber Cancer Research Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Steve P Gygi
- Department of Cell Biology Harvard Medical School, Boston, MA, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
46
|
Porter A, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium partially restores salt and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575426. [PMID: 38260467 PMCID: PMC10802592 DOI: 10.1101/2024.01.13.575426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of clinical kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers an apoptotic response, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in rodents, but that these and other phenotypes might be rectified by supplementation with high salt. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided with a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and reduced clinical kidney injury markers, but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model, and that the role of GRP170 in kidney epithelia is essential to both maintain electrolyte balance and cellular protein homeostasis.
Collapse
Affiliation(s)
- Aidan Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, PA
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Stephanie M. Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Arohan R. Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
47
|
Ko DK, Brandizzi F. Multi-omics Resources for Understanding Gene Regulation in Response to ER Stress in Plants. Methods Mol Biol 2024; 2772:261-272. [PMID: 38411820 PMCID: PMC11139047 DOI: 10.1007/978-1-0716-3710-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Proteotoxic stress of the endoplasmic reticulum (ER) is a potentially lethal condition that ensues when the biosynthetic capacity of the ER is overwhelmed. A sophisticated and largely conserved signaling, known as the unfolded protein response (UPR), is designed to monitor and alleviate ER stress. In plants, the emerging picture of gene regulation by the UPR now appears to be more complex than ever before, requiring multi-omics-enabled network-level approaches to be untangled. In the past decade, with an increasing access and decreasing costs of next-generation sequencing (NGS) and high-throughput protein-DNA interaction (PDI) screening technologies, multitudes of global molecular measurements, known as omics, have been generated and analyzed by the research community to investigate the complex gene regulation of plant UPR. In this chapter, we present a comprehensive catalog of omics resources at different molecular levels (transcriptomes, protein-DNA interactomes, and networks) along with the introduction of key concepts in experimental and computational tools in data generation and analyses. This chapter will serve as a starting point for both experimentalists and bioinformaticians to explore diverse omics datasets for their biological questions in the plant UPR, with likely applications also in other species for conserved mechanisms.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
48
|
Karamali N, Mahmoudi Z, Roghani SA, Assar S, Pournazari M, Soufivand P, Karaji AG, Rezaiemanesh A. Overexpression of Synoviolin and miR-125a-5p, miR-19b-3p in peripheral blood of rheumatoid arthritis patients after treatment with conventional DMARDs and methylprednisolone. Clin Rheumatol 2024; 43:147-157. [PMID: 38049563 DOI: 10.1007/s10067-023-06808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/02/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE SYVN1 is an endoplasmic reticulum (ER)-resident E3 ubiquitin ligase that has an essential function along with SEL1L in rheumatoid arthritis (RA) pathogenesis. This study aimed to investigate the changes in the expression of peripheral blood ncRNAs and SYVN1-SEL1L affected by DMARDs treatment. METHODS Twenty-five newly diagnosed RA patients were randomly assigned to receive conventional DMARDs (csDMARDs) and methylprednisolone for six months. The peripheral blood gene expression of SYVN1 and SEL1L and possible regulatory axes, NEAT1, miR-125a-5p, and miR-19b-3p, were evaluated before and after qRT-PCR. We also compared differences between the patients and healthy controls (HCs), and statistical analyses were performed to determine the correlation between ncRNAs with SYVN1-SEL1L and the clinical parameters of RA. RESULTS Expression of NEAT1 (P = 0.0001), miR-19b-3p (P = 0.007), miR-125a-5p (P = 0.005), and SYVN1 (P = 0.036) was significantly increased in newly diagnosed patients compared to HCs; also, miR-125a-5p, miR-19b-3p, and SYVN1 were significantly overexpressed after treatment (P = 0.001, P = 0.001, and P = 0.005, respectively). NEAT1 was positively correlated with SYVN1, and miR-125a-5p had a negative correlation with anti-cyclic citrullinated peptides. The ROC curve analysis showed the potential role of selected ncRNAs in RA pathogenesis. CONCLUSION The results indicate the ineffectiveness of the csDMARDs in reducing SYVN1 expression. The difference in expression of ncRNAs might be useful markers for monitoring disease activity and determining therapeutic responses in RA patients. Key Points • The expression of NEAT1 is significantly upregulated in RA patients compared to HC subjects. • miR-19b-3p, miR-125a-5p, and SYVN1 are significantly upregulated in RA patients compared to HC subjects. • The expression of miR-19b-3p and miR-125a-5p is significantly increased in RA patients after treatment with DMARDs and methylprednisolone. • NEAT1 is positively correlated with SYVN1.
Collapse
Affiliation(s)
- Negin Karamali
- Student Research Committee, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mahmoudi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Askar Roghani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, Kermanshah, 6714869914, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, Kermanshah, 6714869914, Iran.
| |
Collapse
|
49
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
50
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|