1
|
Falck D, Sokolova MV, Koeleman CAM, Irumva V, Kirchner P, Schulz SR, Schmidt KG, Harrer T, Ekici AB, Spriewald B, Schett G, Wuhrer M, Herrmann M, Steffen U. IgA displays site- and subclass-specific glycoform differences despite equal glycoenzyme expression. Cell Commun Signal 2025; 23:92. [PMID: 39962487 PMCID: PMC11834270 DOI: 10.1186/s12964-025-02088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Glycosylation is an important posttranslational modification of proteins and in most cases indispensable for proper protein function. Like most soluble proteins, IgA, the second most prevalent antibody in human serum, contains several N- and O-glycosylation sites. While for IgG the impact of Fc glycosylation on effector functions and inflammatory potential has been studied intensively, only little is known for IgA. In addition, only glimpses exist regarding the regulation of IgA glycosylation. We have previously shown that IgA1 and IgA2 differ functionally and also show differences in their glycosylation pattern. The more pro-inflammatory IgA2 which is linked to autoimmune diseases displays decreased sialylation, galactosylation, fucosylation and bisection as compared to IgA1. In the present study, we aimed to investigate these differences in glycosylation in detail and to explore the mechanisms underlying them. METHODS IgA1 and IgA2 was isolated from serum of 12 healthy donors. Site specific glycosylation was analyzed by mass spectrometry. In addition, human bone marrow plasma cells were investigated using single cell mRNA sequencing, flow cytometry and ELISpot. RESULTS We found that certain glycoforms greatly differ in their abundance between IgA1 and IgA2 while others are equally abundant. Overall, the IgA2 glycans displayed a more immature phenotype with a higher prevalence of oligomannose and fewer fully processed glycans. Of note, these differences can't be explained by differences in the glycosylation enzyme machinery as mRNA sequencing and flow cytometry analysis showed equal enzyme expression in IgA1 and IgA2 producing plasma cells. ELISpot analysis suggested a slightly increased antibody production rate in IgA2 producing plasma cells which might contribute to its lower glycan processing rates. But this difference was only minor, suggesting that further factors such as steric accessibility determine glycan processing. This is supported by the fact that glycans at different positions on the same IgA chain differ dramatically in fucosylation, sialylation and bisection. CONCLUSION In summary, our detailed overview of IgA1 and IgA2 glycosylation shows a class, subclass, and site-specific glycosylation fingerprint, most likely due to structural differences of the protein backbones.
Collapse
Affiliation(s)
- David Falck
- Center for Proteomics and Metabolomics, Glycomics and Clinical Proteomics Group, Leiden University Medical Center, Leiden, Netherlands
| | - Maria V Sokolova
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine I, Subsection Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Glycomics and Clinical Proteomics Group, Leiden University Medical Center, Leiden, Netherlands
| | - Vanessa Irumva
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Internal Medicine 3, Nikolaus-Fiebiger Center, Friedrich-Alexander- Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Katja G Schmidt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Thomas Harrer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Bernd Spriewald
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 5 - Haematology and Clinical Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen- Nürnberg, Erlangen, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Glycomics and Clinical Proteomics Group, Leiden University Medical Center, Leiden, Netherlands
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Uniklinikum Erlangen, Erlangen, Germany.
- FAU Profile Center Immunomedicine (FAU I-MED), Friedrich-Alexander-Universität (FAU) Erlangen- Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Peris-Díaz MD, Deslignière E, Jager S, Mokiem N, Barendregt A, Bondt A, Heck AJR. Asymmetric N-Glycosylation in the Tailpiece of Recombinant IgA1. J Am Chem Soc 2024; 146:34720-34732. [PMID: 39641195 DOI: 10.1021/jacs.4c13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Here, we employed a variety of mass spectrometry (MS)-based approaches, both (glyco)peptide-centric and protein-centric, to resolve the complex glycoproteoform landscape of recombinant IgA1 produced in HEK293 cells. These key immunoglobulins harbor several N- and O-glycosylation sites, making them considerably more heterogeneous than their IgG counterparts. We provide quantitative data on the occupancy and glycan composition for each IgA1 glycosylation site. Combining all data, we revealed that IgA1 molecules consist of at least three distinct populations with varying N-glycosylation site occupancies at the C-terminal tailpiece, namely, one with both glycosylation sites occupied, another with both glycosylation sites unoccupied, and a third asymmetric population with one glycosylation site occupied and the other unoccupied, challenging the prevailing acceptance that IgA1 N-glycosylation is symmetrical. This finding is significant, given that the tailpiece is involved in interactions with the J-chain and the Polymeric Immunoglobulin Receptor, and in general as antibody glycosylation is a quality attribute that needs to be carefully monitored, as the presence and nature of these modifications can affect the antibody's efficacy, lifetime, stability, and binding and/or neutralizing capacities. Optimizing strategies to produce recombinant IgA1 requires efficient and specific quality control analytical strategies, as presented here, which is essential for therapeutic IgA1-based antibody development. We expect that the integrated MS-based strategy presented here may be beneficial to comprehensively characterize the glycoproteoform profiles of IgA1-based therapeutics, thereby improving their production and optimization processes and facilitating the pathway to bring more IgA1-based therapeutics into clinical applications.
Collapse
Affiliation(s)
- Manuel David Peris-Díaz
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław 50-383, Poland
| | - Evolène Deslignière
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Shelley Jager
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Nadia Mokiem
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Arjan Barendregt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Albert Bondt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
3
|
Li JP, Du YT, Guo C, Rao XR, Li S. IgA nephropathy to proliferative glomerulonephritis with monoclonal IgAκ deposits: a pattern switch. J Nephrol 2023; 36:2375-2380. [PMID: 36913081 PMCID: PMC10638190 DOI: 10.1007/s40620-023-01583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 01/13/2023] [Indexed: 03/14/2023]
Abstract
We report the case of a 31-year-old male who presented with repeated episodes of nephritic-nephrotic syndrome in concomitance with infection. IgA was diagnosed and was initially responsive to treatment with immunosuppressors but further disease flare did not respond to treatment. Based on three consecutive renal biopsies over 8 years, a pattern switch from endocapillary proliferative IgA nephropathy to membranous proliferative glomerulonephritis with monoclonal IgAκ deposits was observed. Bortezomib-dexamethasone combination therapy finally led to a favorable renal response. This case provides new insights into the pathophysiological mechanisms of proliferative glomerulonephritis with monoclonal immunoglobin deposits (PGNMID), highlighting the importance of repeat renal biopsies and routine evaluation of monoclonal immunoglobin deposits in proliferative glomerulonephritis with refractory nephrotic syndrome.
Collapse
Affiliation(s)
- Jin-Pu Li
- Renal Division, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St. Xicheng District, Beijing, People's Republic of China
| | - Ya-Ting Du
- Renal Division, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St. Xicheng District, Beijing, People's Republic of China
| | - Chuan Guo
- Renal Division, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St. Xicheng District, Beijing, People's Republic of China
| | - Xiang-Rong Rao
- Renal Division, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St. Xicheng District, Beijing, People's Republic of China.
| | - Shen Li
- Renal Division, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Beixiange St. Xicheng District, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Mestecky J, Julian BA, Raska M. IgA Nephropathy: Pleiotropic impact of Epstein-Barr virus infection on immunopathogenesis and racial incidence of the disease. Front Immunol 2023; 14:1085922. [PMID: 36865536 PMCID: PMC9973316 DOI: 10.3389/fimmu.2023.1085922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
IgA nephropathy (IgAN) is an autoimmune disease in which poorly galactosylated IgA1 is the antigen recognized by naturally occurring anti-glycan antibodies, leading to formation of nephritogenic circulating immune complexes. Incidence of IgAN displays geographical and racial disparity: common in Europe, North America, Australia, and east Asia, uncommon in African Americans, many Asian and South American countries, Australian Aborigines, and rare in central Africa. In analyses of sera and cells from White IgAN patients, healthy controls, and African Americans, IgAN patients exhibited substantial enrichment for IgA-expressing B cells infected with Epstein-Barr virus (EBV), leading to enhanced production of poorly galactosylated IgA1. Disparities in incidence of IgAN may reflect a previously disregarded difference in the maturation of the IgA system as related to the timing of EBV infection. Compared with populations with higher incidences of IgAN, African Americans, African Blacks, and Australian Aborigines are more frequently infected with EBV during the first 1-2 years of life at the time of naturally occurring IgA deficiency when IgA cells are less numerous than in late childhood or adolescence. Therefore, in very young children EBV enters "non-IgA" cells. Ensuing immune responses prevent infection of IgA B cells during later exposure to EBV at older ages. Our data implicate EBV-infected cells as the source of poorly galactosylated IgA1 in circulating immune complexes and glomerular deposits in patients with IgAN. Thus, temporal differences in EBV primo-infection as related to naturally delayed maturation of the IgA system may contribute to geographic and racial variations in incidence of IgAN.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Laboratory of Cellular and Molecular Immunology Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bruce A. Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czechia
| |
Collapse
|
5
|
Argentova V, Aliev T, Dolgikh D, Pakanová Z, Katrlík J, Kirpichnikov M. Features, modulation and analysis of glycosylation patterns of therapeutic recombinant immunoglobulin A. Biotechnol Genet Eng Rev 2022; 38:247-269. [PMID: 35377278 DOI: 10.1080/02648725.2022.2060594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increasing the production of recombinant antibodies while ensuring high and stable protein quality remains a challenge in mammalian cell culture. This review is devoted to advances in the field of obtaining stable and optimal glycosylation of therapeutic antibodies based on IgA, as well as the subsequent issues of glycosylation control of glycoproteins during their production. Current studies also demonstrate a general need for a more fundamental understanding of the use of CHO cell-based producer cell lines, through which the glycoprofile of therapeutic IgA antibodies is produced and the dependence of glycosylation on culture conditions could be controlled. Optimization of glycosylation improves the therapeutic efficacy and can expand the possibilities for the creation of highly effective glycoprotein therapeutic drugs. Current status and trends in glycan analysis of therapeutic IgA, dominantly based on mass spectrometry and lectin microarrays are herein summarised as well.
Collapse
Affiliation(s)
- Victoria Argentova
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Teimur Aliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Dolgikh
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mikhail Kirpichnikov
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.,Institute of Bioorganic Chemistry, Russian Academy of SciencesShemyakin-Ovchinnikov, Moscow, Russia
| |
Collapse
|
6
|
Ding L, Chen X, Cheng H, Zhang T, Li Z. Advances in IgA glycosylation and its correlation with diseases. Front Chem 2022; 10:974854. [PMID: 36238099 PMCID: PMC9552352 DOI: 10.3389/fchem.2022.974854] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant immunoglobulin synthesized in the human body. It has the highest concentration in the mucosa and is second only to IgG in serum. IgA plays an important role in mucosal immunity, and is the predominant antibody used to protect the mucosal surface from pathogens invasion and to maintain the homeostasis of intestinal flora. Moreover, The binding IgA to the FcαRI (Fc alpha Receptor I) in soluble or aggregated form can mediate anti- or pro- inflammatory responses, respectively. IgA is also known as one of the most heavily glycosylated antibodies among human immunoglobulins. The glycosylation of IgA has been shown to have a significant effect on its immune function. Variation in the glycoform of IgA is often the main characteration of autoimmune diseases such as IgA nephropathy (IgAN), IgA vasculitis (IgAV), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). However, compared with the confirmed glycosylation function of IgG, the pathogenic mechanism of IgA glycosylation involved in related diseases is still unclear. This paper mainly summarizes the recent reports on IgA's glycan structure, its function, its relationship with the occurrence and development of diseases, and the potential application of glycoengineered IgA in clinical antibody therapeutics, in order to provide a potential reference for future research in this field.
Collapse
Affiliation(s)
| | | | | | | | - Zheng Li
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
7
|
Yu G, Cheng J, Li H, Li X, Chen J. Comparison of 24-h Urine Protein, Urine Albumin-to-Creatinine Ratio, and Protein-to-Creatinine Ratio in IgA Nephropathy. Front Med (Lausanne) 2022; 9:809245. [PMID: 35295594 PMCID: PMC8918683 DOI: 10.3389/fmed.2022.809245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Proteinuria is a strong risk factor for renal outcomes in IgA nephropathy. Random urine protein-to-creatinine ratio (PCR), random albumin-to-creatinine ratio (ACR), and 24-h urine protein excretion (24-h UP) have been widely used in clinical practice. However, the measurement which is the best predictor of long-term renal outcomes remains controversial. This study aimed to compare the three measurements in IgA nephropathy. Methods We conducted a retrospective study of 766 patients with IgA nephropathy. The associations among baseline ACR, PCR, and 24-h UP with chronic kidney disease (CKD) progression event, defined as 50% estimated glomerular filtration rate (eGFR) decline or end stage kidney disease (ESKD), were tested and compared. Results In this study, ACR, PCR, and 24-h UP showed high correlation (r = 0.671-0.847, P < 0.001). After a median follow-up of 29.88 (14.65-51.65) months, 51 (6.66%) patients reached the CKD progression event. In univariate analysis, ACR performed better in predicting the prognosis of IgA nephropathy, with a higher area under the receiver operating curve (ROC) curve than PCR and 24-h UP. After adjustment for traditional risk factors, ACR was most associated with composite CKD progression event [per log-transformed ACR, hazard ratio (HR): 2.82; 95% (95% CI): 1.31-6.08; P = 0.008]. Conclusions In IgA nephropathy, ACR, PCR, and 24-h UP had a high correlation. ACR performed better in predicting the prognosis of IgA nephropathy.
Collapse
Affiliation(s)
- Guizhen Yu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Zhejiang University, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- The Third Grade Laboratory Under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Jun Cheng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Zhejiang University, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- The Third Grade Laboratory Under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Heng Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Zhejiang University, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- The Third Grade Laboratory Under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Xiayu Li
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Zhejiang University, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- The Third Grade Laboratory Under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang University, Hangzhou, China
- National Key Clinical Department of Kidney Diseases, Zhejiang University, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- The Third Grade Laboratory Under the National State, Administration of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
8
|
Hansen AL, Reily C, Novak J, Renfrow MB. Immunoglobulin A Glycosylation and Its Role in Disease. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:433-477. [PMID: 34687019 DOI: 10.1007/978-3-030-76912-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human IgA is comprised of two subclasses, IgA1 and IgA2. Monomeric IgA (mIgA), polymeric IgA (pIgA), and secretory IgA (SIgA) are the main molecular forms of IgA. The production of IgA rivals all other immunoglobulin isotypes. The large quantities of IgA reflect the fundamental roles it plays in immune defense, protecting vulnerable mucosal surfaces against invading pathogens. SIgA dominates mucosal surfaces, whereas IgA in circulation is predominately monomeric. All forms of IgA are glycosylated, and the glycans significantly influence its various roles, including antigen binding and the antibody effector functions, mediated by the Fab and Fc portions, respectively. In contrast to its protective role, the aberrant glycosylation of IgA1 has been implicated in the pathogenesis of autoimmune diseases, such as IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). Furthermore, detailed characterization of IgA glycosylation, including its diverse range of heterogeneity, is of emerging interest. We provide an overview of the glycosylation observed for each subclass and molecular form of IgA as well as the range of heterogeneity for each site of glycosylation. In many ways, the role of IgA glycosylation is in its early stages of being elucidated. This chapter provides an overview of the current knowledge and research directions.
Collapse
Affiliation(s)
- Alyssa L Hansen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Raskova Kafkova L, Brokesova D, Krupka M, Stehlikova Z, Dvorak J, Coufal S, Fajstova A, Srutkova D, Stepanova K, Hermanova P, Stepankova R, Uberall I, Skarda J, Novak Z, Vannucci L, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z, Sinkora M, Mestecky J, Raska M. Secretory IgA N-glycans contribute to the protection against E. coli O55 infection of germ-free piglets. Mucosal Immunol 2021; 14:511-522. [PMID: 32973324 PMCID: PMC7946640 DOI: 10.1038/s41385-020-00345-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 02/04/2023]
Abstract
Mucosal surfaces are colonized by highly diverse commensal microbiota. Coating with secretory IgA (SIgA) promotes the survival of commensal bacteria while it inhibits the invasion by pathogens. Bacterial coating could be mediated by antigen-specific SIgA recognition, polyreactivity, and/or by the SIgA-associated glycans. In contrast to many in vitro studies, only a few reported the effect of SIgA glycans in vivo. Here, we used a germ-free antibody-free newborn piglets model to compare the protective effect of SIgA, SIgA with enzymatically removed N-glycans, Fab, and Fc containing the secretory component (Fc-SC) during oral necrotoxigenic E. coli O55 challenge. SIgA, Fab, and Fc-SC were protective, whereas removal of N-glycans from SIgA reduced SIgA-mediated protection as demonstrated by piglets' intestinal histology, clinical status, and survival. In vitro analyses indicated that deglycosylation of SIgA did not reduce agglutination of E. coli O55. These findings highlight the role of SIgA-associated N-glycans in protection. Further structural studies of SIgA-associated glycans would lead to the identification of those involved in the species-specific inhibition of attachment to corresponding epithelial cells.
Collapse
Affiliation(s)
- Leona Raskova Kafkova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Diana Brokesova
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Michal Krupka
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zuzana Stehlikova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Dvorak
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stepan Coufal
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Fajstova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Srutkova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Katerina Stepanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Petra Hermanova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Renata Stepankova
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Ivo Uberall
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jozef Skarda
- grid.10979.360000 0001 1245 3953Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zdenek Novak
- grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Luca Vannucci
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.418800.50000 0004 0555 4846Laboratory of Immunotherapy, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Jiraskova Zakostelska
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Sinkora
- grid.418800.50000 0004 0555 4846Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jiri Mestecky
- grid.418800.50000 0004 0555 4846Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic ,grid.265892.20000000106344187Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Milan Raska
- grid.10979.360000 0001 1245 3953Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
10
|
Sjögren J, Lood R, Nägeli A. On enzymatic remodeling of IgG glycosylation; unique tools with broad applications. Glycobiology 2020; 30:254-267. [PMID: 31616919 PMCID: PMC7109354 DOI: 10.1093/glycob/cwz085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/05/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023] Open
Abstract
The importance of IgG glycosylation has been known for many years not only by scientists in glycobiology but also by human pathogens that have evolved specific enzymes to modify these glycans with fundamental impact on IgG function. The rise of IgG as a major therapeutic scaffold for many cancer and immunological indications combined with the availability of unique enzymes acting specifically on IgG Fc-glycans have spurred a range of applications to study this important post-translational modification on IgG. This review article introduces why the IgG glycans are of distinguished interest, gives a background on the unique enzymatic tools available to study the IgG glycans and finally presents an overview of applications utilizing these enzymes for various modifications of the IgG glycans. The applications covered include site-specific glycan transglycosylation and conjugation, analytical workflows for monoclonal antibodies and serum diagnostics. Additionally, the review looks ahead and discusses the importance of O-glycosylation for IgG3, Fc-fusion proteins and other new formats of biopharmaceuticals.
Collapse
Affiliation(s)
| | - Rolf Lood
- Genovis AB, Scheelevägen 2, 223 63 Lund, Sweden
| | | |
Collapse
|
11
|
Perše M, Večerić-Haler Ž. The Role of IgA in the Pathogenesis of IgA Nephropathy. Int J Mol Sci 2019; 20:6199. [PMID: 31818032 PMCID: PMC6940854 DOI: 10.3390/ijms20246199] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/03/2019] [Accepted: 12/07/2019] [Indexed: 11/16/2022] Open
Abstract
Immunoglobulin A (IgA) is the most abundant antibody isotype produced in humans, predominantly present in the mucosal areas where its main functions are the neutralization of toxins, prevention of microbial invasion across the mucosal epithelial barrier, and simultaneous maintenance of a physiologically indispensable symbiotic relationship with commensal bacteria. The process of IgA biosynthesis, interaction with receptors, and clearance can be disrupted in certain pathologies, like IgA nephropathy, which is the most common form of glomerulonephritis worldwide. This review summarizes the latest findings in the complex characteristics of the molecular structure and biological functions of IgA antibodies, offering an in-depth overview of recent advances in the understanding of biochemical, immunologic, and genetic factors important in the pathogenesis of IgA nephropathy.
Collapse
Affiliation(s)
- Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Željka Večerić-Haler
- Department of Nephrology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Stewart TJ, Takahashi K, Whitaker RH, Raska M, Placzek WJ, Novak J, Renfrow MB. IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2. Glycobiology 2019; 29:543-556. [PMID: 30759204 PMCID: PMC6583770 DOI: 10.1093/glycob/cwz007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/13/2019] [Accepted: 02/04/2019] [Indexed: 01/03/2023] Open
Abstract
GalNAc-type O-glycans are often added to proteins post-translationally in a clustered manner in repeat regions of proteins, such as mucins and IgA1. Observed IgA1 glycosylation patterns show that glycans occur at similar sites with similar structures. It is not clear how the sites and number of glycans added to IgA1, or other proteins, can follow a conservative process. GalNAc-transferases initiate GalNAc-type glycosylation. In IgA nephropathy, an autoimmune disease, the sites and O-glycan structures of IgA1 hinge-region are altered, giving rise to a glycan autoantigen. To better understand how GalNAc-transferases determine sites and densities of clustered O-glycans, we used IgA1 hinge-region (HR) segment as a probe. Using LC-MS, we demonstrated a semi-ordered process of glycosylation by GalNAc-T2 towards the IgA1 HR. The catalytic domain was responsible for selection of four initial sites based on amino-acid sequence recognition. Both catalytic and lectin domains were involved in multiple second site-selections, each dependent on initial site-selection. Our data demonstrated that multiple start-sites and follow-up pathways were key to increasing the number of glycans added. The lectin domain predominately enhanced IgA1 HR glycan density by increasing synthesis pathway exploration by GalNAc-T2. Our data indicated a link between site-specific glycan addition and clustered glycan density that defines a mechanism of how conserved clustered O-glycosylation patterns and glycoform populations of IgA1 can be controlled by GalNAc-T2. Together, these findings characterized a correlation between glycosylation pathway diversity and glycosylation density, revealing mechanisms by which a single GalNAc-T isozyme can limit and define glycan heterogeneity in a disease-relevant context.
Collapse
Affiliation(s)
- Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Nephrology, Fujita Health University, Toyoake, Japan
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Palacky University and University Hospital, Olomouc, Czech Republic
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ. Improving Immunotherapy Through Glycodesign. Front Immunol 2018; 9:2485. [PMID: 30450094 PMCID: PMC6224361 DOI: 10.3389/fimmu.2018.02485] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is revolutionizing health care, with the majority of high impact "drugs" approved in the past decade falling into this category of therapy. Despite considerable success, glycosylation-a key design parameter that ensures safety, optimizes biological response, and influences the pharmacokinetic properties of an immunotherapeutic-has slowed the development of this class of drugs in the past and remains challenging at present. This article describes how optimizing glycosylation through a variety of glycoengineering strategies provides enticing opportunities to not only avoid past pitfalls, but also to substantially improve immunotherapies including antibodies and recombinant proteins, and cell-based therapies. We cover design principles important for early stage pre-clinical development and also discuss how various glycoengineering strategies can augment the biomanufacturing process to ensure the overall effectiveness of immunotherapeutics.
Collapse
Affiliation(s)
- Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Pharmacology/Toxicology Branch I, Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
14
|
FcαRI binding at the IgA1 C H2-C H3 interface induces long-range conformational changes that are transmitted to the hinge region. Proc Natl Acad Sci U S A 2018; 115:E8882-E8891. [PMID: 30181292 DOI: 10.1073/pnas.1807478115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
IgA effector functions include proinflammatory immune responses triggered upon clustering of the IgA-specific receptor, FcαRI, by IgA immune complexes. FcαRI binds to the IgA1-Fc domain (Fcα) at the CH2-CH3 junction and, except for CH2 L257 and L258, all side-chain contacts are contributed by the CH3 domain. In this study, we used experimental and computational approaches to elucidate energetic and conformational aspects of FcαRI binding to IgA. The energetic contribution of each IgA residue in the binding interface was assessed by alanine-scanning mutagenesis and equilibrium surface plasmon resonance (SPR). As expected, hydrophobic residues central to the binding site have strong energetic contributions to the FcαRI:Fcα interaction. Surprisingly, individual mutation of CH2 residues L257 and L258, found at the periphery of the FcαRI binding site, dramatically reduced binding affinity. Comparison of antibody:receptor complexes involving IgA or its precursor IgY revealed a conserved receptor binding site at the CH2-CH3 junction (or its equivalent). Given the importance of residues near the CH2-CH3 junction, we used coarse-grained Langevin dynamics simulations to understand the functional dynamics in Fcα. Our simulations indicate that FcαRI binding, either in an asymmetric (1:1) or symmetric (2:1) complex with Fcα, propagated long-range conformational changes across the Fc domains, potentially impacting the hinge and Fab regions. Subsequent SPR experiments confirmed that FcαRI binding to the Fcα CH2-CH3 junction altered the kinetics of HAA lectin binding at the IgA1 hinge. Receptor-induced long-distance conformational transitions have important implications for the interaction of aberrantly glycosylated IgA1 with anti-glycan autoantibodies in IgA nephropathy.
Collapse
|
15
|
Glyco-Engineering of Plant-Based Expression Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:137-166. [PMID: 30069741 DOI: 10.1007/10_2018_76] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most secreted proteins in eukaryotes are glycosylated, and after a number of common biosynthesis steps the glycan structures mature in a species-dependent manner. Therefore, human therapeutic proteins produced in plants often carry plant-like rather than human-like glycans, which can affect protein stability, biological function, and immunogenicity. The glyco-engineering of plant-based expression systems began as a strategy to eliminate plant-like glycans and produce human proteins with authentic or at least compatible glycan structures. The precise replication of human glycans is challenging, owing to the absence of a pathway in plants for the synthesis of sialylated proteins and the necessary precursors, but this can now be achieved by the coordinated expression of multiple human enzymes. Although the research community has focused on the removal of plant glycans and their replacement with human counterparts, the presence of plant glycans on proteins can also provide benefits, such as boosting the immunogenicity of some vaccines, facilitating the interaction between therapeutic proteins and their receptors, and increasing the efficacy of antibody effector functions. Graphical Abstract Typical structures of native mammalian and plant glycans with symbols indicating sugar residues identified by their short form and single-letter codes. Both glycans contain fucose, albeit with different linkages.
Collapse
|
16
|
Hart F, Danielczyk A, Goletz S. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy. Bioengineering (Basel) 2017; 4:bioengineering4020042. [PMID: 28952521 PMCID: PMC5590476 DOI: 10.3390/bioengineering4020042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich) and hematological (CD20) cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.
Collapse
Affiliation(s)
- Felix Hart
- Glycotope GmbH, Robert-Roessle-Street 10, 13125 Berlin, Germany.
| | - Antje Danielczyk
- Glycotope GmbH, Robert-Roessle-Street 10, 13125 Berlin, Germany.
| | - Steffen Goletz
- Glycotope GmbH, Robert-Roessle-Street 10, 13125 Berlin, Germany.
| |
Collapse
|
17
|
Mestecky J, Novak J, Moldoveanu Z, Raska M. IgA nephropathy enigma. Clin Immunol 2016; 172:72-77. [PMID: 27444044 DOI: 10.1016/j.clim.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 01/03/2023]
Abstract
IgA nephropathy (IgAN) is the leading cause of primary glomerulonephritis in the world. The disease is characterized by the presence of IgA-containing immune complexes in the circulation and in mesangial deposits with ensuing glomerular injury. Although in humans there are two IgA subclasses, only IgA1 molecules are involved. The exclusivity of participation of IgA1 in IgAN prompted extensive structural and immunological studies of the unique hinge region (HR) of IgA1, which is absent in otherwise highly homologous IgA2. HR of IgA1 with altered O-glycans serves as an antigen recognized by autoantibodies specific for aberrant HR glycans leading to the generation of nephritogenic immune complexes. However, there are several unresolved questions concerning the phylogenetic origin of human IgA1 HR, the structural basis of its antigenicity, the origin of antibodies specific for HR with altered glycan moieties, the regulatory defects in IgA1 glycosylation pathways, and the potential approaches applicable to the disease-specific interventions in the formation of nephritogenic immune complexes. This review focuses on the gaps in our knowledge of molecular and cellular events that are involved in the immunopathogenesis of IgAN.
Collapse
Affiliation(s)
- Jiri Mestecky
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL, USA; First School of Medicine, Department of Immunology and Microbiology, Charles University, Prague, Czech Republic; Czech Academy of Sciences, Institute of Microbiology, Prague, Czech Republic.
| | - Jan Novak
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL, USA
| | - Zina Moldoveanu
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL, USA
| | - Milan Raska
- University of Alabama at Birmingham, Department of Microbiology, Birmingham, AL, USA; Palacky University, Faculty of Medicine and Dentistry and University Hospital, Department of Immunology, Olomouc, Czech Republic
| |
Collapse
|
18
|
Zhao YF, Zhu L, Liu LJ, Shi SF, Lv JC, Zhang H. Measures of Urinary Protein and Albumin in the Prediction of Progression of IgA Nephropathy. Clin J Am Soc Nephrol 2016; 11:947-955. [PMID: 27026518 PMCID: PMC4891752 DOI: 10.2215/cjn.10150915] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/17/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Proteinuria is an independent predictor for IgA nephropathy (IgAN) progression. Urine albumin-to-creatinine ratio (ACR), protein-to-creatinine ratio, and 24-hour urine protein excretion (UPE) are widely used for proteinuria evaluation in clinical practice. Here, we evaluated the association of these measurements with clinical and histologic findings of IgAN and explored which was the best predictor of IgAN prognosis. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Patients with IgAN were followed up for ≥12 months, were diagnosed between 2003 and 2012, and had urine samples available (438 patients). Spot urine ACR, protein-to-creatinine ratio, and 24-hour UPE at the time of renal biopsy were measured on a Hitachi Automatic Biochemical Analyzer 7180 (Hitachi, Yokohama, Japan). RESULTS In our patients, ACR, protein-to-creatinine ratio, and 24-hour UPE were highly correlated (correlation coefficients: 0.71-0.87). They showed good relationships with acknowledged markers reflecting IgAN severity, including eGFR, hypertension, and the biopsy parameter (Oxford severity of tubular atrophy/interstitial fibrosis parameter). However, only ACR presented with positive association with the Oxford segmental glomerulosclerosis/adhesion parameter and extracapillary proliferation lesions. The follow-up time was 37.0 (22.0-58.0) months, with the last follow-up on April 18, 2014. In total, 124 patients reached the composite end point (30% eGFR decline, ESRD, or death). In univariate survival analysis, ACR consistently had better performance than protein-to-creatinine ratio and 24-hour UPE as represented by higher area under the curve using time-dependent survival analysis. When adjusted for well known risk factors for IgAN progression, ACR was most significantly associated with the composite end point (hazard ratio, 1.56 per 1-SD change of standard normalized square root-transformed ACR; 95% confidence interval, 1.29 to 1.89; P<0.001). Compared with protein-to-creatinine ratio and 24-hour UPE, addition of ACR to traditional risk factors resulted in more improvement in the predictive ability of IgAN progression (c statistic: ACR=0.70; protein-to-creatinine ratio =0.68; 24-hour UPE =0.69; Akaike information criterion: ACR=1217.85; protein-to-creatinine ratio =1229.28; 24-hour UPE =1234.96; P<0.001). CONCLUSIONS In IgAN, ACR, protein-to-creatinine ratio, and 24-hour UPE had comparable association with severe clinical and histologic findings. Compared with protein-to-creatinine ratio and 24-hour UPE, ACR showed slightly better performance in predicting IgAN progression.
Collapse
Affiliation(s)
- Yan-feng Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li Zhu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li-jun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-fang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Ji-cheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; and
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
19
|
Knoppova B, Reily C, Maillard N, Rizk DV, Moldoveanu Z, Mestecky J, Raska M, Renfrow MB, Julian BA, Novak J. The Origin and Activities of IgA1-Containing Immune Complexes in IgA Nephropathy. Front Immunol 2016; 7:117. [PMID: 27148252 PMCID: PMC4828451 DOI: 10.3389/fimmu.2016.00117] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 03/15/2016] [Indexed: 12/12/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis, frequently leading to end-stage renal disease, as there is no disease-specific therapy. IgAN is diagnosed from pathological assessment of a renal biopsy specimen based on predominant or codominant IgA-containing immunodeposits, usually with complement C3 co-deposits and with variable presence of IgG and/or IgM. The IgA in these renal deposits is galactose-deficient IgA1, with less than a full complement of galactose residues on the O-glycans in the hinge region of the heavy chains. Research from the past decade led to the definition of IgAN as an autoimmune disease with a multi-hit pathogenetic process with contributing genetic and environmental components. In this process, circulating galactose-deficient IgA1 (autoantigen) is bound by antiglycan IgG or IgA (autoantibodies) to form immune complexes. Some of these circulating complexes deposit in glomeruli, and thereby activate mesangial cells and induce renal injury through cellular proliferation and overproduction of extracellular matrix components and cytokines/chemokines. Glycosylation pathways associated with production of the autoantigen and the unique characteristics of the corresponding autoantibodies in patients with IgAN have been uncovered. Complement likely plays a significant role in the formation and the nephritogenic activities of these complexes. Complement activation is mediated through the alternative and lectin pathways and probably occurs systemically on IgA1-containing circulating immune complexes as well as locally in glomeruli. Incidence of IgAN varies greatly by geographical location; the disease is rare in central Africa but accounts for up to 40% of native-kidney biopsies in eastern Asia. Some of this variation may be explained by genetically determined influences on the pathogenesis of the disease. Genome-wide association studies to date have identified several loci associated with IgAN. Some of these loci are associated with the increased prevalence of IgAN, whereas others, such as deletion of complement factor H-related genes 1 and 3, are protective against the disease. Understanding the molecular mechanisms and genetic and biochemical factors involved in formation and activities of pathogenic IgA1-containing immune complexes will enable the development of future disease-specific therapies as well as identification of non-invasive disease-specific biomarkers.
Collapse
Affiliation(s)
- Barbora Knoppova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Colin Reily
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicolas Maillard
- Université Jean Monnet, Saint Etienne, France
- PRES Université de Lyon, Lyon, France
| | - Dana V. Rizk
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Matthew B. Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A. Julian
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
20
|
Solecka BA, Weise C, Laffan MA, Kannicht C. Site-specific analysis of von Willebrand factor O-glycosylation. J Thromb Haemost 2016; 14:733-46. [PMID: 26784534 DOI: 10.1111/jth.13260] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/30/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND O-glycosylation of von Willebrand factor (VWF) affects many of its functions; however, there is currently no information on the occupancy of the 10 putative O-glycosylation sites. OBJECTIVES The aim of this study was the site-specific analysis of VWF O-glycosylation. METHODS Tryptic VWF-O-glycopeptides were isolated by lectin affinity chromatography and/or by reverse-phase high-performance liquid chromatography. Subsequently, the purified glycopeptides were analyzed by glycosidase digestion and mass spectrometry. RESULTS We found that all 10 predicted O-glycosylation sites in VWF are occupied. The majority of the glycan structures on all glycosylation sites is represented by disialyl core 1 O-glycan. The presence of core 2 O-glycan was also confirmed; interestingly, this structure was not evenly distributed among all 10 glycosylation sites. Analysis of the glycopeptides flanking the A1 domain revealed that generally more core-2-type O-glycan was present on the C-terminal Cluster 2 glycopeptide (encompassing T(1468) , T(1477) , S(1486) and T(1487) ) compared with the N-terminal Cluster 1 glycopeptide (encompassing T(1248) , T(1255) , T(1256) and S(1263) ). Disialosyl motifs were present on both glycopeptides flanking the A1 domain and on the glycosylation site T(2298) in the C1 domain. In addition, we identify sulfation of core 2 O-glycans and the presence of the rare Tn antigen. CONCLUSIONS This is the first study to describe the qualitative and semi-quantitative distribution of O-glycan structures on all 10 O-glycosylation sites, which will provide a valuable starting point for further studies exploring the functional and structural implications of O-glycosylation in VWF.
Collapse
Affiliation(s)
- B A Solecka
- Molecular Biochemistry, Octapharma, Berlin, Germany
| | - C Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - M A Laffan
- Department of Haematology, Faculty of Medicine, Hammersmith Hospital Campus, Imperial College, London, UK
| | - C Kannicht
- Molecular Biochemistry, Octapharma, Berlin, Germany
| |
Collapse
|
21
|
Salvadori M, Rosso G. Update on immunoglobulin A nephropathy, Part I: Pathophysiology. World J Nephrol 2015; 4:455-467. [PMID: 26380197 PMCID: PMC4561843 DOI: 10.5527/wjn.v4.i4.455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/24/2015] [Accepted: 08/30/2015] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is one of the most common glomerulonephritis and its frequency is probably underestimated because in most patients the disease has an indolent course and the kidney biopsy is essential for the diagnosis. In the last years its pathogenesis has been better identified even if still now several questions remain to be answered. The genetic wide association studies have allowed to identifying the relevance of genetics and several putative genes have been identified. The genetics has also allowed explaining why some ancestral groups are affected with higher frequency. To date is clear that IgA nephropathy is related to auto antibodies against immunoglobulin A1 (IgA1) with poor O-glycosylation. The role of mucosal infections is confirmed, but which are the pathogens involved and which is the role of Toll-like receptor polymorphism is less clear. Similarly to date whether the disease is due to the circulating immunocomplexes deposition on the mesangium or whether the antigen is already present on the mesangial cell as a "lanthanic" deposition remains to be clarified. Finally also the link between the mesangial and the podocyte injury and the tubulointerstitial scarring, as well as the mechanisms involved need to be better clarified.
Collapse
|
22
|
Novak J, Rizk D, Takahashi K, Zhang X, Bian Q, Ueda H, Ueda Y, Reily C, Lai LY, Hao C, Novak L, Huang ZQ, Renfrow MB, Suzuki H, Julian BA. New Insights into the Pathogenesis of IgA Nephropathy. KIDNEY DISEASES 2015; 1:8-18. [PMID: 26568951 DOI: 10.1159/000382134] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND IgA nephropathy, a frequent cause of end-stage renal disease, is an autoimmune disease wherein immune complexes consisting of IgA1 with galactose-deficient O-glycans (autoantigen) and anti-glycan autoantibodies deposit in glomeruli and induce renal injury. Multiple genetic loci associated with disease risk have been identified. The prevalence of risk alleles varies geographically, highest in eastern Asia and northern Europe, fewer in other parts of Europe and North America, and the least in Africa. IgA nephropathy is diagnosed from pathological assessment of a renal biopsy specimen. Currently, therapy is not disease-targeted but rather is focused on maintaining control of blood pressure and proteinuria, ideally with suppression of angiotensin II. Possible additional approaches differ between countries. Disease-specific therapy as well as new tools for diagnosis, prognosis, and assessment of responses to therapy are needed. SUMMARY Glycosylation pathways associated with aberrant O-glycosylation of IgA1 and, thus, production of autoantigen, have been identified. Furthermore, unique characteristics of the autoantibodies in IgA nephropathy have been uncovered. Many of these biochemical features are shared by patients with IgA nephropathy and Henoch-Schönlein purpura nephritis, suggesting that the two diseases may represent opposite ends of a spectrum of a disease process. Understanding the molecular mechanisms involved in formation of pathogenic IgA1-containing immune complexes will enable development of disease-specific therapies as well as diagnostic and prognostic biomarkers. KEY MESSAGES IgA nephropathy is an autoimmune disease caused by glomerular deposition of nephritogenic circulating immune complexes consisting of galactose-deficient IgA1 (autoantigen) bound by anti-glycan autoantibodies. A better understanding of the multi-step process of pathogenesis of IgA nephropathy and the genetic and environmental contributing factors will lead to development of biomarkers to identify patients with progressive disease who would benefit from a future disease-specific therapy.
Collapse
Affiliation(s)
- Jan Novak
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana Rizk
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazuo Takahashi
- University of Alabama at Birmingham, Birmingham, AL, USA ; School of Medicine, Fujita Health University, Toyoake, Japan
| | - XianWen Zhang
- University of Alabama at Birmingham, Birmingham, AL, USA ; Longhua Hospital, Shanghai University of TCM, Shanghai, China
| | - Qi Bian
- University of Alabama at Birmingham, Birmingham, AL, USA ; Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hirouki Ueda
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yoshimi Ueda
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ling-Yun Lai
- University of Alabama at Birmingham, Birmingham, AL, USA ; Fudan University Huashan Hospital, Shanghai, China
| | | | - Lea Novak
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Hitoshi Suzuki
- University of Alabama at Birmingham, Birmingham, AL, USA ; Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Bruce A Julian
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Zhao Y, Zhu L, Zhou T, Zhang Q, Shi S, Liu L, Lv J, Zhang H. Urinary CXCL1: a novel predictor of IgA nephropathy progression. PLoS One 2015; 10:e0119033. [PMID: 25816025 PMCID: PMC4376727 DOI: 10.1371/journal.pone.0119033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/09/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide. In recent years, consistent efforts have been made to develop new non-invasive biomarkers for IgAN progression. In our previous in vitro study we found mesangial derived CXCL1 as a contributor for kidney injury, and observed higher urinary CXCL1 levels in patients with IgAN. It implied that the urinary CXCL1 might be a potential biomarker. METHODS In the present study, we enrolled 425 IgAN patients with follow-up data and detected their urinary CXCL1 levels at the time of renal biopsy, to explore the predictive value of urinary CXCL1 in IgAN progression. Urinary CXCL1 levels were measured using enzyme-linked immunosorbent assay. RESULTS Urinary CXCL1 levels were associated with presently well established predictors of IgAN progression, including SBP (r = 0.138, p = 0.004), DBP (r = 0.114, p = 0.019), proteinuria (r = 0.155, p = 0.001), eGFR (r = -0.259, p<0.001) and tubular atrophy and interstitial fibrosis (r = 0.181, p<0.001). After adjusted for them, higher levels of urinary CXCL1 were independently associated with a greater risk of deterioration in renal function (HR, per s.d. increment of natural log-transformed CXCL1: 1.748; 95% CI: 1.222-2.499, P = 0.002). Furthermore, time-dependent receiver operating characteristic (ROC) curve showed that urinary CXCL1, when combined with proteinuria and eGFR, could enhance the prognostic value of these traditional predictors for IgAN progression. CONCLUSIONS The results in our present study suggested urinary CXCL1 as a new non-invasive predictor of IgAN progression.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Li Zhu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
- * E-mail:
| | - Tong Zhou
- Renal Division, Department of Medicine, The First People’s Hospital of Aksu District, Xinjiang, China
| | - Qingxian Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Sufang Shi
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Lijun Liu
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Jicheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education, Beijing, China
| |
Collapse
|
24
|
|
25
|
Abstract
PURPOSE OF REVIEW In this article, we review recent findings on the pathogenesis and genetics of immunoglobulin A (IgA) nephropathy. RECENT FINDINGS During the past 2 years, the understanding of the pathogenesis of IgA nephropathy has evolved as a result of progress in technology and new tools that have been developed. Since 1968, when IgA nephropathy was described as an IgA-IgG immune-complex disease, the knowledge base expanded to allow definition of IgA nephropathy as an autoimmune disease with a multihit pathogenetic process. Specifically, galactose-deficient immunoglobulin A1 (IgA1) is recognized by unique autoantibodies, resulting in the formation of pathogenic immune complexes that ultimately deposit in the glomerular mesangium and induce renal injury. New approaches using high-resolution mass spectrometry have provided unique insight at the molecular level into IgA1 O-glycosylation. Cutting-edge genome-wide association studies revealed multiple disease-associated risk loci and have mapped their geographic and racial distribution. SUMMARY Recent studies of molecular and genetic defects operating in IgA nephropathy can define new biomarkers specific for the disease that can be developed into clinical assays to aid in the diagnosis, assessment of prognosis, and monitoring of disease progression. Moreover, disease-specific targets are being discovered that may lead to development of new approaches for treatment.
Collapse
|
26
|
Lehoux S, Mi R, Aryal RP, Wang Y, Schjoldager KTBG, Clausen H, van Die I, Han Y, Chapman AB, Cummings RD, Ju T. Identification of distinct glycoforms of IgA1 in plasma from patients with immunoglobulin A (IgA) nephropathy and healthy individuals. Mol Cell Proteomics 2014; 13:3097-113. [PMID: 25071157 DOI: 10.1074/mcp.m114.039693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common form of glomerulonephritis worldwide and is histologically characterized by the deposition of IgA1 and consequent inflammation in the glomerular mesangium. Prior studies suggested that serum IgA1 from IgAN patients contains aberrant, undergalactosylated O-glycans, for example, Tn antigen and its sialylated version, SialylTn (STn), but the mechanisms underlying aberrant O-glycosylation are not well understood. Here we have used serial lectin separation technologies, Western blot, enzymatic modifications, and mass spectrometry to explore whether there are different glycoforms of IgA1 in plasma from patients with IgAN and healthy individuals. Although total plasma IgA in IgAN patients was elevated ∼ 1.6-fold compared with that in healthy donors, IgA1 in all samples was unexpectedly separable into two distinct glycoforms: one with core 1 based O-glycans, and the other exclusively containing Tn/STn structures. Importantly, Tn antigen present on IgA1 from IgAN patients and controls was convertible into the core 1 structure in vitro by recombinant T-synthase. Our results demonstrate that undergalactosylation of O-glycans in IgA1 is not restricted to IgAN and suggest that in vivo inefficiency of T-synthase toward IgA1 in a subpopulation of B or plasma cells, as well as overall elevation of IgA, may contribute to IgAN pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Katrine T-B G Schjoldager
- §Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, Copenhagen, Denmark
| | - Henrik Clausen
- §Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, Copenhagen, Denmark
| | - Irma van Die
- ¶Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yoosun Han
- ‖Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Arlene B Chapman
- ‖Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | | | | |
Collapse
|
27
|
Abstract
IgA nephropathy (IgAN) represents the leading cause of kidney failure among East Asian populations and the most frequent form of primary glomerulonephritis among Europeans. Patients with IgAN develop characteristic IgA1-containing immune complexes that deposit in the glomerular mesangium, producing progressive kidney injury. Recent studies define IgAN as an autoimmune trait of complex architecture with a strong genetic determination. This Review summarizes new insights into the role of the O-glycosylation pathway, anti-glycan immune response, mucosal immunity, antigen processing and presentation, and the alternative complement pathway in the pathogenesis of IgAN.
Collapse
|
28
|
Schmitt R, Ståhl AL, Olin AI, Kristoffersson AC, Rebetz J, Novak J, Lindahl G, Karpman D. The combined role of galactose-deficient IgA1 and streptococcal IgA-binding M Protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy. THE JOURNAL OF IMMUNOLOGY 2014; 193:317-26. [PMID: 24850720 DOI: 10.4049/jimmunol.1302249] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IgA nephropathy (IgAN) is characterized by mesangial cell proliferation and extracellular matrix expansion associated with immune deposits consisting of galactose-deficient polymeric IgA1 and C3. We have previously shown that IgA-binding regions of streptococcal M proteins colocalize with IgA in mesangial immune deposits in patients with IgAN. In the present study, the IgA-binding M4 protein from group A Streptococcus was found to bind to galactose-deficient polymeric IgA1 with higher affinity than to other forms of IgA1, as shown by surface plasmon resonance and solid-phase immunoassay. The M4 protein was demonstrated to bind to mesangial cells not via the IgA-binding region but rather via the C-terminal region, as demonstrated by flow cytometry. IgA1 enhanced binding of M4 to mesangial cells, but not vice versa. Costimulation of human mesangial cells with M4 and galactose-deficient polymeric IgA1 resulted in a significant increase in IL-6 secretion compared with each stimulant alone. Galactose-deficient polymeric IgA1 alone, but not M4, induced C3 secretion from the cells, and costimulation enhanced this effect. Additionally, costimulation enhanced mesangial cell proliferation compared with each stimulant alone. These results indicate that IgA-binding M4 protein binds preferentially to galactose-deficient polymeric IgA1 and that these proteins together induce excessive proinflammatory responses and proliferation of human mesangial cells. Thus, tissue deposition of streptococcal IgA-binding M proteins may contribute to the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Roland Schmitt
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Anders I Olin
- Department of Infection Medicine, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | | | - Johan Rebetz
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Gunnar Lindahl
- Division of Medical Microbiology, Department of Laboratory Medicine, Lund University, 22362 Lund, Sweden
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, 22185 Lund, Sweden;
| |
Collapse
|
29
|
Johnson QR, Lindsay RJ, Raval SR, Dobbs JS, Nellas RB, Shen T. Effects of Branched O-Glycosylation on a Semiflexible Peptide Linker. J Phys Chem B 2014; 118:2050-7. [DOI: 10.1021/jp410788r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Quentin R. Johnson
- UT-ORNL
Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Richard J. Lindsay
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sherin R. Raval
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeremy S. Dobbs
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ricky B. Nellas
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tongye Shen
- UT-ORNL
Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
30
|
Paul M, Reljic R, Klein K, Drake PMW, van Dolleweerd C, Pabst M, Windwarder M, Arcalis E, Stoger E, Altmann F, Cosgrove C, Bartolf A, Baden S, Ma JKC. Characterization of a plant-produced recombinant human secretory IgA with broad neutralizing activity against HIV. MAbs 2014; 6:1585-97. [PMID: 25484063 PMCID: PMC4622858 DOI: 10.4161/mabs.36336] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 08/15/2014] [Accepted: 09/03/2014] [Indexed: 12/16/2022] Open
Abstract
Recombinant Secretory IgA (SIgA) complexes have the potential to improve antibody-based passive immunotherapeutic approaches to combat many mucosal pathogens. In this report, we describe the expression, purification and characterization of a human SIgA format of the broadly neutralizing anti-HIV monoclonal antibody (mAb) 2G12, using both transgenic tobacco plants and transient expression in Nicotiana benthamiana as expression hosts (P2G12 SIgA). The resulting heterodecameric complexes accumulated in intracellular compartments in leaf tissue, including the vacuole. SIgA complexes could not be detected in the apoplast. Maximum yields of antibody were 15.2 μg/g leaf fresh mass (LFM) in transgenic tobacco and 25 μg/g LFM after transient expression, and assembly of SIgA complexes was superior in transgenic tobacco. Protein L purified antibody specifically bound HIV gp140 and neutralised tier 2 and tier 3 HIV isolates. Glycoanalysis revealed predominantly high mannose structures present on most N-glycosylation sites, with limited evidence for complex glycosylation or processing to paucimannosidic forms. O-glycan structures were not identified. Functionally, P2G12 SIgA, but not IgG, effectively aggregated HIV virions. Binding of P2G12 SIgA was observed to CD209 / DC-SIGN, but not to CD89 / FcalphaR on a monocyte cell line. Furthermore, P2G12 SIgA demonstrated enhanced stability in mucosal secretions in comparison to P2G12 IgG mAb.
Collapse
MESH Headings
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Binding Sites/immunology
- Body Fluids/immunology
- Body Fluids/metabolism
- Female
- Glycosylation
- HIV/drug effects
- HIV/immunology
- HIV/metabolism
- Humans
- Immunoblotting
- Immunoglobulin A, Secretory/genetics
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Microscopy, Electron
- Microscopy, Fluorescence
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plant Leaves/ultrastructure
- Plants, Genetically Modified
- Polysaccharides/analysis
- Polysaccharides/immunology
- Protein Binding/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Nicotiana/genetics
- Nicotiana/metabolism
- Vagina/immunology
- Vagina/metabolism
- Virion/drug effects
- Virion/immunology
- Virion/metabolism
- env Gene Products, Human Immunodeficiency Virus/immunology
- env Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Matthew Paul
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Rajko Reljic
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Katja Klein
- Faculty of Medicine; Department of Medicine; Imperial College; London, UK
| | - Pascal MW Drake
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Craig van Dolleweerd
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| | - Martin Pabst
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Markus Windwarder
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Elsa Arcalis
- Institute of Applied Genetics and Cell Biology (IAGZ); Universität für Bodenkultur; Vienna, Austria
| | - Eva Stoger
- Institute of Applied Genetics and Cell Biology (IAGZ); Universität für Bodenkultur; Vienna, Austria
| | - Friedrich Altmann
- Division of Biochemistry; Universität für Bodenkultur; Vienna, Austria
| | - Catherine Cosgrove
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Angela Bartolf
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Susan Baden
- St. George's Vaccine Institute, St. George's, University of London, London, UK
| | - Julian K-C Ma
- The Hotung Molecular Immunology Group; Institute for Infection & Immunity; St George's; University of London; London, UK
| |
Collapse
|
31
|
Franc V, Řehulka P, Raus M, Stulík J, Novak J, Renfrow MB, Šebela M. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J Proteomics 2013; 92:299-312. [PMID: 23891555 DOI: 10.1016/j.jprot.2013.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/19/2013] [Accepted: 07/11/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED Determining disease-associated changes in protein glycosylation provides a better understanding of pathogenesis. This work focuses on human immunoglobulin A1 (IgA1), where aberrant O-glycosylation plays a key role in the pathogenesis of IgA nephropathy (IgAN). Normal IgA1 hinge region carries 3 to 6 O-glycans consisting of N-acetylgalactosamine (GalNAc) and galactose (Gal); both sugars may be sialylated. In IgAN patients, some O-glycans on a fraction of IgA1 molecules are Gal-deficient. Here we describe a sample preparation protocol with optimized cysteine alkylation of a Gal-deficient polymeric IgA1 myeloma protein prior to in-gel digestion and analysis of the digest by MALDI-TOF/TOF mass spectrometry (MS). Following a novel strategy, IgA1 hinge-region O-glycopeptides were fractionated by reversed-phase liquid chromatography using a microgradient device and identified by MALDI-TOF/TOF tandem MS (MS/MS). The acquired MS/MS spectra were interpreted manually and by means of our own software. This allowed assigning up to six O-glycosylation sites and demonstration, for the first time, of the distribution of isomeric O-glycoforms having the same molecular mass, but a different glycosylation pattern. The most abundant Gal-deficient O-glycoforms were GalNAc4Gal3 and GalNAc5Gal4 with one Gal-deficient site and GalNAc5Gal3 and GalNAc4Gal2 with two Gal-deficient sites. The most frequent Gal-deficient sites were at Ser230 and/or Thr236. BIOLOGICAL SIGNIFICANCE In this work, we studied the O-glycosylation in the hinge region of human immunoglobulin A1 (IgA1). Aberrant glycosylation of the protein plays a key role in the pathogenesis of IgA nephropathy. Thus identification of the O-glycan composition of IgA1 is important for a deeper understanding of the disease mechanism, biomarker discovery and validation, and implementation and monitoring of disease-specific therapies. We developed a new procedure for elucidating the heterogeneity of IgA1 O-glycosylation. After running a polyacrylamide gel electrophoresis under denaturing conditions, the heavy chain of IgA1 was subjected to in-gel digestion by trypsin. O-glycopeptides were separated from the digest on capillary columns using a microgradient chromatographic device (replacing commonly used liquid chromatographs) and subjected to MALDI-TOF/TOF mass spectrometry (MS) and tandem mass spectrometry (MS/MS) involving post-source decay fragmentation. We show that the complete modification of cysteines by iodoacetamide prior to electrophoresis is critical for successful MS/MS analyses on the way to deciphering the microheterogeneity of O-glycosylation in IgA1. Similarly, the removal of the excess of the reagent is equally important. The acquired MS/MS allowed assigning up to six O-glycosylation sites and identification of isomeric O-glycoforms. We show that our simplified approach is efficient and has a high potential to provide a method for the rapid assessment of IgA1 heterogeneity that is a less expensive and yet corroborating alternative to LC-(high-resolution)-MS protocols. The novelty and biological significance reside in the demonstration, for the first time, of the distribution of the most abundant isoforms of HR O-glycopeptides of IgA1. As another new feature, we introduce a software solution for the interpretation of MS/MS data of O-glycopeptide isoforms, which provides the possibility of fast and easier data processing. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Vojtěch Franc
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, Gharavi AG, Novak J, Zhang H. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int 2012; 82:790-6. [PMID: 22673888 PMCID: PMC3443545 DOI: 10.1038/ki.2012.197] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although high serum levels of galactose-deficient IgA1 (an important biomarker of IgA nephropathy (IgAN)) are found in most patients with IgAN, their relationship to disease severity and progression remains unclear. To help clarify this we prospectively enrolled 275 patients with IgAN and followed them for a median of 47 months (range 12-96 months). Serum galactose-deficient IgA1 was measured at the time of diagnosis using a lectin-based ELISA, and renal survival was modeled using the Cox proportional hazards method. The serum levels of galactose-deficient IgA1 were higher in patients with IgAN compared to those in healthy controls. Importantly, in adjusted analysis, higher levels of galactose-deficient IgA1 were independently associated with a greater risk of deterioration in renal function with a hazard ratio of 1.44 per standard deviation of the natural log-transformed galactose-deficient IgA1 concentration. In reference to the first quartile, the risk of kidney failure increased such that the hazard ratio for the second quartile was 2.47, 3.86 for the third, and 4.76 for the fourth quartile of the galactose-deficient IgA1 concentration. Hence, elevated serum levels of galactose-deficient IgA1 are associated with a poor prognosis in IgAN.
Collapse
Affiliation(s)
- Na Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Beijing, China
| | - Ping Hou
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Beijing, China
| | - Jicheng Lv
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Beijing, China
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yifu Li
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Krzysztof Kiryluk
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Ali G. Gharavi
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hong Zhang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Beijing, China
| |
Collapse
|
33
|
Novak J, Julian BA, Mestecky J, Renfrow MB. Glycosylation of IgA1 and pathogenesis of IgA nephropathy. Semin Immunopathol 2012; 34:365-82. [PMID: 22434325 DOI: 10.1007/s00281-012-0306-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 03/02/2012] [Indexed: 12/18/2022]
Abstract
IgA nephropathy, described in 1968 as IgA-IgG immune-complex disease, is an autoimmune disease. Galactose-deficient IgA1 is recognized by unique autoantibodies, resulting in the formation of pathogenic immune complexes that ultimately induce glomerular injury. Thus, formation of the galactose-deficient IgA1-containing immune complexes is a critical factor in the pathogenesis of IgA nephropathy. Studies of molecular defects of IgA1 can define new biomarkers specific for IgA nephropathy that can be developed into clinical assays to aid in the diagnosis, assessment of prognosis, and monitoring of disease progression.
Collapse
Affiliation(s)
- Jan Novak
- University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
34
|
Yanagihara T, Brown R, Hall S, Moldoveanu Z, Goepfert A, Tomana M, Julian BA, Mestecky J, Novak J. In vitro-generated immune complexes containing galactose-deficient IgA1 stimulate proliferation of mesangial cells. RESULTS IN IMMUNOLOGY 2012; 2:166-172. [PMID: 24052934 DOI: 10.1016/j.rinim.2012.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IgA nephropathy (IgAN) patients have elevated serum levels of immune complexes consisting of IgA1 with galactose-deficient hinge-region O-glycans (Gd-IgA1) and anti-glycan IgG. These immune complexes deposit in the kidney and activate mesangial cells. To confirm that the activity of these immune complexes depends on the interaction of Gd-IgA1 with anti-glycan IgG, we generated in vitro analogous immune complexes using Gd-IgA1 myeloma protein and anti-glycan IgG from cord blood of healthy women. The Gd-IgA1 and anti-glycan IgG from cord-blood serum formed IgA1-IgG immune complexes that resembled those in sera of patients with IgAN. Furthermore, the ability to activate cellular proliferation was dependent on a heat-sensitive serum factor. In summary, we developed a new protocol for in-vitro formation of IgA1-IgG immune complexes, thus providing a new tool for studies of the pathogenesis of IgAN.
Collapse
Affiliation(s)
- Takeshi Yanagihara
- Department of Microbiology, University of Alabama, Birmingham, AL, USA ; Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Takahashi K, Smith AD, Poulsen K, Kilian M, Julian BA, Mestecky J, Novak J, Renfrow MB. Naturally occurring structural isomers in serum IgA1 o-glycosylation. J Proteome Res 2011; 11:692-702. [PMID: 22067045 DOI: 10.1021/pr200608q] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IgA is the most abundantly produced antibody and plays an important role in the mucosal immune system. Human IgA is represented by two isotypes, IgA1 and IgA2. The major structural difference between these two subclasses is the presence of nine potential sites of O-glycosylation in the hinge region between the first and second constant region domains of the heavy chain. Thr(225), Thr(228), Ser(230), Ser(232) and Thr(236) have been identified as the predominant sites of O-glycan attachment. The range and distribution of O-glycan chains at each site within the context of adjacent sites in this clustered region create a complex heterogeneity of surface epitopes that is incompletely defined. We previously described the analysis of IgA1 O-glycan heterogeneity by use of high resolution LC-MS and electron capture dissociation tandem MS to unambiguously localize all amino acid attachment sites in IgA1 (Ale) myeloma protein. Here, we report the identification and elucidation of IgA1 O-glycopeptide structural isomers that occur based on amino acid position of the attached glycans (positional isomers) and the structure of the O-glycan chains at individual sites (glycan isomers). These isomers are present in a model IgA1 (Mce1) myeloma protein and occur naturally in normal human serum IgA1. Variable O-glycan chains attached to Ser(230), Thr(233) or Thr(236) produce the predominant positional isomers, including O-glycans composed of a single GalNAc residue. These findings represent the first definitive identification of structural isomeric IgA1 O-glycoforms, define the single-site heterogeneity for all O-glycan sites in a single sample, and have implications for defining epitopes based on clustered O-glycan variability.
Collapse
Affiliation(s)
- Kazuo Takahashi
- UAB Biomedical FT-ICR MS Laboratory, MCLM 570, 1530 3rd Avenue South, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Klapoetke SC, Zhang J, Becht S. Glycosylation characterization of Human IgA1 with differential deglycosylation by UPLC–ESI TOF MS. J Pharm Biomed Anal 2011; 56:513-20. [DOI: 10.1016/j.jpba.2011.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/16/2011] [Accepted: 06/15/2011] [Indexed: 11/30/2022]
|
37
|
Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol Adv 2011; 30:410-8. [PMID: 21839159 DOI: 10.1016/j.biotechadv.2011.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/18/2011] [Accepted: 07/25/2011] [Indexed: 11/23/2022]
Abstract
The complex and diverse nature of the post-translational modification (PTM) of proteins represents an efficient and cost-effective mechanism for the exponential diversification of the genome. PTMs have been shown to affect almost every aspect of protein activity, including function, localisation, stability, and dynamic interactions with other molecules. Although many PTMs are evolutionarily conserved there are also important kingdom-specific modifications which should be considered when expressing recombinant proteins. Plants are gaining increasing acceptance as an expression system for recombinant proteins, particularly where eukaryotic-like PTMs are required. Glycosylation is the most extensively studied PTM of plant-made recombinant proteins. However, other types of protein processing and modification also occur which are important for the production of high quality recombinant protein, such as hydroxylation and lipidation. Plant and/or protein engineering approaches offer many opportunities to exploit PTM pathways allowing the molecular farmer to produce a humanised product with modifications functionally similar or identical to the native protein. Indeed, plants have demonstrated a high degree of tolerance to changes in PTM pathways allowing recombinant proteins to be modified in a specific and controlled manner, frequently resulting in a homogeneity of product which is currently unrivalled by alternative expression platforms. Whether a recombinant protein is intended for use as a scientific reagent, a cosmetic additive or as a pharmaceutical, PTMs through their presence and complexity, offer an extensive range of options for the rational design of humanised (biosimilar), enhanced (biobetter) or novel products.
Collapse
|
38
|
Takahashi K, Wall SB, Suzuki H, Smith AD, Hall S, Poulsen K, Kilian M, Mobley JA, Julian BA, Mestecky J, Novak J, Renfrow MB. Clustered O-glycans of IgA1: defining macro- and microheterogeneity by use of electron capture/transfer dissociation. Mol Cell Proteomics 2010; 9:2545-57. [PMID: 20823119 PMCID: PMC2984237 DOI: 10.1074/mcp.m110.001834] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/29/2010] [Indexed: 01/11/2023] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis in the world. Aberrantly glycosylated IgA1, with galactose (Gal)-deficient hinge region (HR) O-glycans, plays a pivotal role in the pathogenesis of the disease. It is not known whether the glycosylation defect occurs randomly or preferentially at specific sites. We have described the utility of activated ion-electron capture dissociation (AI-ECD) mass spectrometric analysis of IgA1 O-glycosylation. However, locating and characterizing the entire range of O-glycan attachment sites are analytically challenging due to the clustered serine and threonine residues in the HR of IgA1 heavy chain. To address this problem, we analyzed all glycoforms of the HR glycopeptides of a Gal-deficient IgA1 myeloma protein, mimicking the aberrant IgA1 in patients with IgAN, by use of a combination of IgA-specific proteases + trypsin and AI-ECD Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry (MS/MS). The IgA-specific proteases provided a variety of IgA1 HR fragments that allowed unambiguous localization of all O-glycosylation sites in the six most abundant glycoforms, including the sites deficient in Gal. Additionally, this protocol was adapted for on-line liquid chromatography (LC)-AI-ECD MS/MS and LC-electron transfer dissociation MS/MS analysis. Our results thus represent a new clinically relevant approach that requires ECD/electron transfer dissociation-type fragmentation to define the molecular events leading to pathogenesis of a chronic kidney disease. Furthermore, this work offers generally applicable principles for the analysis of clustered sites of O-glycosylation.
Collapse
Affiliation(s)
- Kazuo Takahashi
- From the §Biomedical FT-ICR MS Laboratory, Department of Biochemistry and Molecular Genetics and
- the Departments of ‡Microbiology
| | - Stephanie B. Wall
- From the §Biomedical FT-ICR MS Laboratory, Department of Biochemistry and Molecular Genetics and
| | - Hitoshi Suzuki
- **Surgery, University of Alabama, at Birmingham, Alabama 35294
- |Current address: Department of Medicine, Division of Nephrology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Archer D. Smith
- From the §Biomedical FT-ICR MS Laboratory, Department of Biochemistry and Molecular Genetics and
| | | | - Knud Poulsen
- ‖Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, DK-8000 Denmark, and
| | - Mogens Kilian
- ‖Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, DK-8000 Denmark, and
| | - James A. Mobley
- **Surgery, University of Alabama, at Birmingham, Alabama 35294
| | - Bruce A. Julian
- the Departments of ‡Microbiology
- ‡‡Medicine, and
- **Surgery, University of Alabama, at Birmingham, Alabama 35294
| | - Jiri Mestecky
- the Departments of ‡Microbiology
- ‡‡Medicine, and
- §§Department of Immunology and Microbiology, School of Medicine, Charles University, Prague 12800, Czech Republic
| | | | - Matthew B. Renfrow
- From the §Biomedical FT-ICR MS Laboratory, Department of Biochemistry and Molecular Genetics and
| |
Collapse
|
39
|
Gomes MM, Suzuki H, Brooks MT, Tomana M, Moldoveanu Z, Mestecky J, Julian BA, Novak J, Herr AB. Recognition of galactose-deficient O-glycans in the hinge region of IgA1 by N-acetylgalactosamine-specific snail lectins: a comparative binding study. Biochemistry 2010; 49:5671-82. [PMID: 20507092 PMCID: PMC3721678 DOI: 10.1021/bi9019498] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aberrancies in IgA1 glycosylation have been linked to the pathogenesis of IgA nephropathy (IgAN), a kidney disease characterized by deposits of IgA1-containing immune complexes in the glomerular mesangium. IgA1 from IgAN patients is characterized by the presence of galactose (Gal)-deficient O-glycans in the hinge region that can act as epitopes for anti-glycan IgG or IgA1 antibodies. The resulting circulating immune complexes are trapped in the glomerular mesangium of the kidney where they trigger localized inflammatory responses by activating mesangial cells. Certain lectins recognize the terminal N-acetylgalactosamine (GalNAc)-containing O-glycans on Gal-deficient IgA1 and can be potentially used as diagnostic tools. To improve our understanding of GalNAc recognition by these lectins, we have conducted binding studies to assess the interaction of Helix aspersa agglutinin (HAA) and Helix pomatia agglutinin (HPA) with Gal-deficient IgA1. Surface plasmon resonance spectroscopy revealed that both HAA and HPA bind to a Gal-deficient synthetic hinge region glycopeptide (HR-GalNAc) as well as various aberrantly glycosylated IgA1 myeloma proteins. Despite having six binding sites, both HAA and HPA bind IgA1 in a functionally bivalent manner, with the apparent affinity for IgA1 related to the number of exposed GalNAc groups in the IgA1 hinge. Finally, HAA and HPA were shown to discriminate very effectively between the IgA1 secreted by cell lines derived from peripheral blood cells of patients with IgAN and that from cells of healthy controls. These studies provide insight into lectin recognition of the Gal-deficient IgA1 hinge region and lay the groundwork for the development of reliable diagnostic tools for IgAN.
Collapse
Affiliation(s)
- Michelle M. Gomes
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524
| | - Hitoshi Suzuki
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Nephrology, Juntendo University School of Medicine, Tokyo, Japan
| | - Monica T. Brooks
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524
| | - Milan Tomana
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Zina Moldoveanu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Bruce A. Julian
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Andrew B. Herr
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0524
| |
Collapse
|
40
|
Pathogenesis of Henoch-Schönlein purpura nephritis. Pediatr Nephrol 2010; 25:19-26. [PMID: 19526254 PMCID: PMC2778786 DOI: 10.1007/s00467-009-1230-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 11/05/2022]
Abstract
The severity of renal involvement is the major factor determining the long-term outcome of children with Henoch-Schönlein purpura (HSP) nephritis (HSPN). Approximately 40% children with HSP develop nephritis, usually within 4 to 6 weeks after the initial onset of the typical purpuric rashes. Although the pathogenetic mechanisms are still not fully delineated, several studies suggest that galactose-deficient IgA1 (Gd-IgA1) is recognized by anti-glycan antibodies, leading to the formation of the circulating immune complexes and their mesangial deposition that induce renal injury in HSPN.
Collapse
|
41
|
CHISHIKI MINA, KAWASAKI YUKIHIKO, KANEKO MARIKO, USHIJIMA YUMIKO, OHARA SHINICHIRO, ABE YUSAKU, SUYAMA KAZUHIDE, HASHIMOTO KOICHI, HOSOYA MITSUAKI. A 10-YEAR-OLD GIRL WITH IGA NEPHROPATHY WHO 5 YEARS LATER DEVELOPED THE CHARACTERISTIC FEATURES OF HENOCH-SCHÖNLEIN PURPURA NEPHRITIS. Fukushima J Med Sci 2010; 56:157-61. [DOI: 10.5387/fms.56.157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Wada Y, Dell A, Haslam SM, Tissot B, Canis K, Azadi P, Bäckström M, Costello CE, Hansson GC, Hiki Y, Ishihara M, Ito H, Kakehi K, Karlsson N, Hayes CE, Kato K, Kawasaki N, Khoo KH, Kobayashi K, Kolarich D, Kondo A, Lebrilla C, Nakano M, Narimatsu H, Novak J, Novotny MV, Ohno E, Packer NH, Palaima E, Renfrow MB, Tajiri M, Thomsson KA, Yagi H, Yu SY, Taniguchi N. Comparison of methods for profiling O-glycosylation: Human Proteome Organisation Human Disease Glycomics/Proteome Initiative multi-institutional study of IgA1. Mol Cell Proteomics 2009; 9:719-27. [PMID: 20038609 DOI: 10.1074/mcp.m900450-mcp200] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiative's activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.
Collapse
Affiliation(s)
- Yoshinao Wada
- Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mestecky J, Russell MW. Specific antibody activity, glycan heterogeneity and polyreactivity contribute to the protective activity of S-IgA at mucosal surfaces. Immunol Lett 2009; 124:57-62. [PMID: 19524784 PMCID: PMC2697127 DOI: 10.1016/j.imlet.2009.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 03/26/2009] [Indexed: 01/19/2023]
Abstract
An explanation of the principles and mechanisms involved in peaceful co-existence between animals and the huge, diverse, and ever-changing microbiota that resides on their mucosal surfaces represents a challenging puzzle that is fundamental in everyday survival. In addition to mechanical barriers and a variety of innate defense factors, mucosal immunoglobulins (Igs) provide protection by two complementary mechanisms: specific antibody activity and innate, Ig glycan-mediated binding, both of which serve to contain the mucosal microbiota in its physiological niche. Thus, the interaction of bacterial ligands with IgA glycans constitutes a discrete mechanism that is independent of antibody specificity and operates primarily in the intestinal tract. This mucosal site is by far the most heavily colonized with an enormously diverse bacterial population, as well as the most abundant production site for antibodies, predominantly of the IgA isotype, in the entire immune system. In embodying both adaptive and innate immune mechanisms within a single molecule, S-IgA maintains comprehensive protection of mucosal surfaces with economy of structure and function.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35295-2170, USA.
| | | |
Collapse
|
44
|
Mestecky J, Tomana M, Moldoveanu Z, Julian BA, Suzuki H, Matousovic K, Renfrow MB, Novak L, Wyatt RJ, Novak J. Role of aberrant glycosylation of IgA1 molecules in the pathogenesis of IgA nephropathy. Kidney Blood Press Res 2008; 31:29-37. [PMID: 18182777 DOI: 10.1159/000112922] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 11/02/2007] [Indexed: 01/29/2023] Open
Abstract
Studies of the properties of immune complexes (IC) in the circulation, urine, and mesangium of IgA nephropathy (IgAN) patients have provided data relevant to the pathogenesis of this disease. IC contain predominantly polymeric IgA1 molecules which are deficient in galactose (Gal) residues on O-linked glycan chains in the hinge region (HR) of their heavy (H) chains. As a result of this aberrancy, a novel antigenic determinant(s) involving N-acetylgalactosamine (GalNAc) and perhaps sialic acid (SA) of O-linked glycans is generated and recognized by naturally occurring GalNAc-specific antibodies. Thus, IC in IgAN consist of Gal-deficient IgA1 molecules as an antigen, and GalNAc-specific IgG and/or IgA1 as an antibody. IgG antibodies to Gal-deficient IgA1 are probably induced by cross-reactive microbial antigens; they are present at variable levels not only in humans with or without IgAN but also in many phylogenetically diverse vertebrate species. Incubation of human mesangial cells with IC from sera of IgAN patients indicated that stimulation of cellular proliferative activity was restricted to the large (>800 kDa) complexes. These findings suggest that experimental approaches that prevent the formation of large Gal-deficient IgA1-IgG IC may be applied ultimately in an immunologically mediated therapy.
Collapse
Affiliation(s)
- J Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-2170, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Novak J, Julian BA, Tomana M, Mestecky J. IgA glycosylation and IgA immune complexes in the pathogenesis of IgA nephropathy. Semin Nephrol 2008; 28:78-87. [PMID: 18222349 PMCID: PMC2241661 DOI: 10.1016/j.semnephrol.2007.10.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circulating immune complexes containing aberrantly glycosylated IgA1 play a pivotal role in the pathogenesis of IgA nephropathy (IgAN). A portion of IgA1 secreted by IgA1-producing cells in patients with IgAN is galactose-deficient and consequently recognized by anti-glycan IgG or IgA1 antibodies. Some of the resultant immune complexes in the circulation escape normal clearance mechanisms, deposit in the renal mesangium, and induce glomerular injury. Recent studies of the origin of these aberrant molecules, their glycosylation profiles, and mechanisms of biosynthesis have provided new insight into the autoimmune nature of the pathogenesis of this common renal disease. An imbalance in the activities of the pertinent glycosyltransferases in the IgA1-producing cells favors production of molecules with galactose-deficient O-linked glycans at specific sites in the hinge region of the alpha heavy chains. By using sophisticated analytic methods, it may be possible to define biomarkers for diagnostic purposes and identify new therapeutic targets for a future disease-specific therapy.
Collapse
Affiliation(s)
- Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
46
|
Coppo R, Amore A, Chiesa M, Lombardo F, Cirina P, Andrulli S, Passerini P, Conti G, Peruzzi L, Giraudi R, Messina M, Segoloni G, Ponticelli C. Serological and genetic factors in early recurrence of IgA nephropathy after renal transplantation. Clin Transplant 2007; 21:728-737. [PMID: 17988266 DOI: 10.1111/j.1399-0012.2007.00730.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The relative role of IgA anomalies and genetic factors in IgA nephropathy (IgAN) recurrence after transplantation has never been investigated in a single cohort. METHODS Sixty-one transplanted patients who had IgAN as an original disease (30 with biopsy-proved early recurrence, median 2.9 yr post-transplant), and 120 controls, were investigated for aberrantly glycosylated IgA1, IgA binding to mesangial matrix, macromolecular IgA (IgA/fibronectin and uteroglobulin/IgA/fibronectin complexes), and polymorphisms of cytokines [tumor necrosis factor alpha (TNFalpha), interleukin 10 (IL-10), IL-6, interferon gamma and transforming growth factor beta 1] and renin-angiotensin system (angiotensinogen converting enzyme, angiotensin II receptor 1, and angiotensinogen) genes. RESULTS At multivariate logistic regression analysis, recurrence showed a border-line association with aberrantly glycosylated IgA1 [odds ratio (OR) 8.172, p = 0.077], and was significantly less frequent in carriers of -308 AG/AA TNF-alpha"high producer" genotype (OR 0.125, p = 0.036) and -1082, -819, -592 ACC/ATA IL-10 "low producer" (OR 0.038, p = 0.009) genotypes. CONCLUSION High levels of aberrantly glycosylated IgA1 do not appear to play a strong crucial role in recurrence of IgAN. Polymorphisms of TNFalpha and IL-10 known to condition Th1 prevalence were associated with protection from early recurrence of IgAN.
Collapse
Affiliation(s)
- Rosanna Coppo
- Nephrology, Dialysis and Transplantation Unit, Regina Margherita (Turin), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Renfrow MB, Mackay CL, Chalmers MJ, Julian BA, Mestecky J, Kilian M, Poulsen K, Emmett MR, Marshall AG, Novak J. Analysis of O-glycan heterogeneity in IgA1 myeloma proteins by Fourier transform ion cyclotron resonance mass spectrometry: implications for IgA nephropathy. Anal Bioanal Chem 2007; 389:1397-407. [PMID: 17712550 DOI: 10.1007/s00216-007-1500-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/05/2007] [Accepted: 07/10/2007] [Indexed: 11/30/2022]
Abstract
IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis. In IgAN, IgA1 molecules with incompletely galactosylated O-linked glycans in the hinge region (HR) are present in mesangial immunodeposits and in circulating immune complexes. It is not known whether the galactose deficiency in IgA1 proteins occurs randomly or preferentially at specific sites. We have previously demonstrated the first direct localization of multiple O-glycosylation sites on a single IgA1 myeloma protein by use of activated ion-electron capture dissociation (AI-ECD) Fourier transform ion cyclotron resonance (FT-ICR) tandem mass spectrometry. Here, we report the analysis of IgA1 O-glycan heterogeneity by use of FT-ICR MS and liquid chromatography FT-ICR MS to obtain unbiased accurate mass profiles of IgA1 HR glycopeptides from three different IgA1 myeloma proteins. Additionally, we report the first AI-ECD fragmentation on an individual IgA1 O-glycopeptide from an IgA1 HR preparation that is reproducible for each IgA1 myeloma protein. These results suggest that future analysis of IgA1 HR from IgAN patients and normal healthy controls should be feasible.
Collapse
Affiliation(s)
- Matthew B Renfrow
- UAB Biomedical FT-ICR MS Laboratory, Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, MCLM 570 1530 3rd AVE S, Birmingham, AL 35294-0005, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Raska M, Moldoveanu Z, Suzuki H, Brown R, Kulhavy R, Andrasi J, Hall S, Vu HL, Carlsson F, Lindahl G, Tomana M, Julian BA, Wyatt RJ, Mestecky J, Novak J. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 alpha2,6-sialyltransferase in IgA1-producing cells. J Mol Biol 2007; 369:69-78. [PMID: 17418236 PMCID: PMC1995659 DOI: 10.1016/j.jmb.2007.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/04/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
Glycosylation defects occur in several human diseases. In IgA nephropathy, IgA1 contains O-glycans that are galactose-deficient and consist mostly of core 1 alpha2,6 sialylated N-acetylgalactosamine, a configuration suspected to prevent beta1,3 galactosylation. We confirmed the same aberrancy in IgA1 secreted by the human DAKIKI B cell line. Biochemical assays indicated CMP-NeuAc:GalNAc-IgA1 alpha2,6-sialyltransferase activity in this cell line. However, a candidate enzyme, ST6-GalNAcI, was not transcribed in DAKIKI cells, B cells isolated from blood, or Epstein-Barr virus (EBV)-immortalized IgA1-producing cells from the blood of IgAN patients and healthy controls. Instead, ST6-GalNAcII transcription was detected at a high level. Expression of the ST6-GalNAcII gene and activity of the CMP-NeuAc:GalNAc-IgA1 alpha2,6-sialyltransferase were higher in IgA1-producing cell lines from IgAN patients than in such cells from healthy controls. These data are the first evidence that human cells that lack ST6-GalNAcI can sialylate core 1 GalNAc-Ser/Thr.
Collapse
Affiliation(s)
- Milan Raska
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zina Moldoveanu
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hitoshi Suzuki
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rhubell Brown
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rose Kulhavy
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Judit Andrasi
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Stacy Hall
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huong L. Vu
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | | - Milan Tomana
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Bruce A. Julian
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Robert J. Wyatt
- University of Tennessee Health Sciences Center and Children’s Foundation Research Center, Memphis, TN, 38103, USA
| | - Jiri Mestecky
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jan Novak
- University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
49
|
Moore JS, Kulhavy R, Tomana M, Moldoveanu Z, Suzuki H, Brown R, Hall S, Kilian M, Poulsen K, Mestecky J, Julian BA, Novak J. Reactivities of N-acetylgalactosamine-specific lectins with human IgA1 proteins. Mol Immunol 2007; 44:2598-604. [PMID: 17275907 PMCID: PMC2788496 DOI: 10.1016/j.molimm.2006.12.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 12/07/2006] [Accepted: 12/13/2006] [Indexed: 12/12/2022]
Abstract
Lectins are proteins with specificity of binding to certain monosaccharides or oligosaccharides. They can detect abnormal glycosylation patterns on immunoglobulins in patients with various chronic inflammatory diseases, including rheumatoid arthritis and IgA nephropathy (IgAN). However, lectins exhibit binding heterogeneity, depending on their source and methods of isolation. To characterize potential differences in recognition of terminal N-acetylgalactosamine (GalNAc) on IgA1, we evaluated the binding characteristics of several commercial preparations of GalNAc-specific lectins using a panel of IgA1 and, as controls, IgA2 and IgG myeloma proteins. These lectins originated from snails Helix aspersa (HAA) and Helix pomatia (HPA), and the plant Vicia villosa (VV). Only HAA and HPA bound exclusively to IgA1, with its O-linked glycans composed of GalNAc, galactose, and sialic acid. In contrast, VV reacted with sugars of both IgA subclasses and IgG, indicating that it also recognized N-linked glycans without GalNAc. Furthermore, HAA and HPA from several manufacturers differed in their ability to bind various IgA1 myeloma proteins and other GalNAc-containing glycoproteins in ELISA and Western blot. For serum samples from IgAN patients, HAA was the optimal lectin to study IgA1 glycosylation in ELISA and Western blot assays, including identification of the sites of attachment of the aberrant glycans. The galactose-deficient glycans were site-specific, localized mostly at Thr228 and/or Ser230. Because of the heterogeneity of GalNAc-specific lectins, they should be carefully characterized with appropriate substrates before undertaking any study.
Collapse
Affiliation(s)
- Jennifer S Moore
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Smith AC, Molyneux K, Feehally J, Barratt J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J Am Soc Nephrol 2006; 17:3520-8. [PMID: 17093066 DOI: 10.1681/asn.2006060658] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In IgA nephropathy (IgAN), serum IgA1 with abnormal O-glycosylation deposits in the glomerular mesangium. The underlying mechanism of this IgA1 O-glycosylation abnormality is poorly understood, but recent evidence argues against a generic defect in B cell glycosyltransferases, suggesting that only a subpopulation of IgA1-committed B cells are affected. For investigation of whether the site of antigen encounter influences IgA1 O-glycosylation, the O-glycosylation of serum IgA1 antibodies against a systemic antigen, tetanus toxoid (TT), and a mucosal antigen, Helicobacter pylori (HP), was studied in patients with IgAN and control subjects. Serum IgA1 was purified from cohorts of patients with IgAN and control subjects with HP infection and after systemic TT immunization. The IgA1 samples were applied to HP- and TT-coated immunoplates to immobilize specific antibodies, and IgA1 O-glycosylation profiles were assessed by binding of the O-glycan-specific lectin Vicia villosa using a modified ELISA technique. Although total serum IgA1 had raised lectin binding in IgAN, the O-glycosylation of the specific IgA1 antibodies to TT and HP did not differ between patients and control subjects. In both groups, IgA1 anti-HP had higher lectin binding than IgA1 anti-TT. This study demonstrates that IgA1 O-glycosylation normally varies in different immune responses and that patients produce the full spectrum of IgA1 O-glycoforms. IgA1 with high lectin binding was produced in response to mucosal HP infection in all subjects. The raised circulating level of this type of IgA1 in IgAN is likely to be a consequence of abnormal systemic responses to mucosally encountered antigens rather than a fundamental defect in B cell O-glycosylation pathways.
Collapse
Affiliation(s)
- Alice C Smith
- University of Leicester Department of Infection, Immunity and Inflammation, and John Walls Renal Unit, Leicester General Hospital, Leicester, United Kingdom.
| | | | | | | |
Collapse
|