1
|
Lucia U, Grisolia G, Ponzetto A, Deisboeck TS. Thermophysical Insights into the Anti-Inflammatory Potential of Magnetic Fields. Biomedicines 2024; 12:2534. [PMID: 39595100 PMCID: PMC11592124 DOI: 10.3390/biomedicines12112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Inflammation is caused by an excess of Sodium ions inside the cell. This generates a variation in the cell's membrane electric potential, becoming a steady state from a thermodynamic viewpoint. Methods: This paper introduces a thermodynamic approach to inflammation based on the fundamental role of the electric potential of the cell membrane, introducing an analysis of the effect of heat transfer related to the inflammation condition. Results: The direct proportionality between the reduction in temperature and the increase of Na+ outflow may ameliorate the inflammation cascade. Conclusions: Based on these ion fluxes, we suggest the consideration of a 'companion' electromagnetic therapeutic wave concept in support of the present anti-inflammatory treatment.
Collapse
Affiliation(s)
- Umberto Lucia
- Dipartimento Energia “Galileo Ferraris”, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Giulia Grisolia
- Dipartimento di Ingegneria dell’Ambiente, del Territorio e delle Infrastrutture, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Antonio Ponzetto
- Dipartimento di Scienze Mediche, Università di Torino, Corso Dogliotti 14, 10126 Torino, Italy
| | - Thomas S. Deisboeck
- Department of Radiology, Harvard-MIT Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA
| |
Collapse
|
2
|
Fallon D, Huang CS, Ma J, Morgan C, Zhou ZS. Agonistic anti-NKG2D antibody structure reveals unique stoichiometry and epitope compared to natural ligands. MAbs 2024; 16:2433121. [PMID: 39582357 PMCID: PMC11591474 DOI: 10.1080/19420862.2024.2433121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
Natural killer (NK) cells are effector cells of the innate immune system that distinguish between healthy and abnormal cells through activating and inhibitory receptor signaling. NKG2D, a homodimeric activating receptor expressed on NK cells, recognizes a diverse class of stress ligands expressed by cells experiencing infection, malignant transformation, chronic inflammation, and other cellular stresses. Despite the variety of NKG2D ligands, they all bind the receptor asymmetrically in a 1:1 ligand to homodimeric NKG2D stoichiometry. In contrast, as we report herein, the agonistic antibody 2D3 binds NKG2D with a 2:1 stoichiometry of its antigen binding fragments to homodimeric NKG2D and a largely distinct epitope. This binding interaction, as compared to NKG2D natural ligands, suggests there may be unique mechanisms to engage this receptor while offering possible benefits when incorporated into an IgG-based therapeutic.
Collapse
Affiliation(s)
- Daniel Fallon
- Dragonfly Therapeutics, Inc., Waltham, MA, USA
- Department of Chemistry and Chemical Biology, Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | | | - Jingya Ma
- Dragonfly Therapeutics, Inc., Waltham, MA, USA
| | | | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| |
Collapse
|
3
|
Petersdorf EW, McKallor C, Malkki M, He M, Spellman SR, Hsu KC, Strong RK, Gooley T, Stevenson P. Role of NKG2D ligands and receptor in haploidentical related donor hematopoietic cell transplantation. Blood Adv 2023; 7:2888-2896. [PMID: 36763517 PMCID: PMC10300293 DOI: 10.1182/bloodadvances.2022008922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
The recurrence of malignancy after hematopoietic cell transplantation (HCT) is the primary cause of transplantation failure. The NKG2D axis is a powerful pathway for antitumor responses, but its role in the control of malignancy after HCT is not well-defined. We tested the hypothesis that gene variation of the NKG2D receptor and its ligands MICA and MICB affect relapse and survival in 1629 patients who received a haploidentical HCT for the treatment of a malignant blood disorder. Patients and donors were characterized for MICA residue 129, the exon 5 short tandem repeat (STR), and MICB residues 52, 57, 98, and 189. Donors were additionally defined for the presence of NKG2D residue 72. Mortality was higher in patients with MICB-52Asn relative to those with 52Asp (hazard ratio [HR], 1.83; 95% confidence interval [CI], 1.24-2.71; P = .002) and lower in those with MICA-STR mismatch than in those with STR match (HR, 0.66; 95% CI, 0.54-0.79; P = .00002). Relapse was lower with NKG2D-72Thr donors than with 72Ala donors (relapse HR, 0.57; 95% CI, 0.35-0.91; P = .02). The protective effects of patient MICB-52Asp with donor MICA-STR mismatch and NKG2D-72Thr were enhanced when all 3 features were present. The NKG2D ligand/receptor pathway is a transplantation determinant. The immunobiology of relapse is defined by the concerted effects of MICA, MICB, and NKG2D germ line variation. Consideration of NKG2D ligand/receptor pairings may improve survival for future patients.
Collapse
Affiliation(s)
- Effie W. Petersdorf
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| | - Caroline McKallor
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Mari Malkki
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Meilun He
- National Marrow Donor Program/BeTheMatch, Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Stephen R. Spellman
- National Marrow Donor Program/BeTheMatch, Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Katharine C. Hsu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Roland K. Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ted Gooley
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Phil Stevenson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
4
|
Thompson AA, Harbut MB, Kung PP, Karpowich NK, Branson JD, Grant JC, Hagan D, Pascual HA, Bai G, Zavareh RB, Coate HR, Collins BC, Côte M, Gelin CF, Damm-Ganamet KL, Gholami H, Huff AR, Limon L, Lumb KJ, Mak PA, Nakafuku KM, Price EV, Shih AY, Tootoonchi M, Vellore NA, Wang J, Wei N, Ziff J, Berger SB, Edwards JP, Gardet A, Sun S, Towne JE, Venable JD, Shi Z, Venkatesan H, Rives ML, Sharma S, Shireman BT, Allen SJ. Identification of small-molecule protein-protein interaction inhibitors for NKG2D. Proc Natl Acad Sci U S A 2023; 120:e2216342120. [PMID: 37098070 PMCID: PMC10160951 DOI: 10.1073/pnas.2216342120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/10/2023] [Indexed: 04/26/2023] Open
Abstract
NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.
Collapse
Affiliation(s)
- Aaron A. Thompson
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Michael B. Harbut
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Pei-Pei Kung
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Nathan K. Karpowich
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Jeffrey D. Branson
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Joanna C. Grant
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Deborah Hagan
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Heather A. Pascual
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Guoyun Bai
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | | | - Heather R. Coate
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Bernard C. Collins
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Marjorie Côte
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Christine F. Gelin
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | | | - Hadi Gholami
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Adam R. Huff
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Luis Limon
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Kevin J. Lumb
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Puiying A. Mak
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Kohki M. Nakafuku
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Edmund V. Price
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Amy Y. Shih
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Mandana Tootoonchi
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | - Nadeem A. Vellore
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Jocelyn Wang
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Na Wei
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Jeannie Ziff
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Scott B. Berger
- Discovery Immunology, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - James P. Edwards
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Agnès Gardet
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | - Siquan Sun
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | - Jennifer E. Towne
- Discovery Immunology, Janssen Research & Development, San Diego, CA92121
| | | | - Zhicai Shi
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | | | - Marie-Laure Rives
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Sujata Sharma
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| | - Brock T. Shireman
- Therapeutics Discovery, Janssen Research & Development, San Diego, CA92121
| | - Samantha J. Allen
- Therapeutics Discovery, Janssen Research & Development, Lower Gwynedd Township, PA19002
| |
Collapse
|
5
|
Fan J, Shi J, Zhang Y, Liu J, An C, Zhu H, Wu P, Hu W, Qin R, Yao D, Shou X, Xu Y, Tong Z, Wen X, Xu J, Zhang J, Fang W, Lou J, Yin W, Chen W. NKG2D discriminates diverse ligands through selectively mechano-regulated ligand conformational changes. EMBO J 2022; 41:e107739. [PMID: 34913508 PMCID: PMC8762575 DOI: 10.15252/embj.2021107739] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.
Collapse
Affiliation(s)
- Juan Fan
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
| | - Yong Zhang
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huaying Zhu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peng Wu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danmei Yao
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xin Shou
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Yibing Xu
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhou Tong
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xue Wen
- Department of PathologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jianpo Xu
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jin Zhang
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
| | - Weijia Fang
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jizhong Lou
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Thoracic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalCollege of Biomedical Engineering and Instrument of ScienceZhejiang UniversityHangzhouChina
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- The MOE Frontier Science Center for Brain Science & Brain‐machine IntegrationZhejiang UniversityHangzhouChina
| |
Collapse
|
6
|
Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D Stress Ligands and Its Relevance in Cancer Progression. Cancers (Basel) 2022; 14:2339. [PMID: 35565467 PMCID: PMC9105350 DOI: 10.3390/cancers14092339] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Under cellular distress, multiple facets of normal homeostatic signaling are altered or disrupted. In the context of the immune landscape, external and internal stressors normally promote the expression of natural killer group 2 member D (NKG2D) ligands that allow for the targeted recognition and killing of cells by NKG2D receptor-bearing effector populations. The presence or absence of NKG2D ligands can heavily influence disease progression and impact the accessibility of immunotherapy options. In cancer, tumor cells are known to have distinct regulatory mechanisms for NKG2D ligands that are directly associated with tumor progression and maintenance. Therefore, understanding the regulation of NKG2D ligands in cancer will allow for targeted therapeutic endeavors aimed at exploiting the stress response pathway. In this review, we summarize the current understanding of regulatory mechanisms controlling the induction and repression of NKG2D ligands in cancer. Additionally, we highlight current therapeutic endeavors targeting NKG2D ligand expression and offer our perspective on considerations to further enhance the field of NKG2D ligand biology.
Collapse
Affiliation(s)
- Amber B. Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Abbey Rocco
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | | | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (A.R.); (G.K.F.)
| | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
7
|
Zhang C, Röder J, Scherer A, Bodden M, Pfeifer Serrahima J, Bhatti A, Waldmann A, Müller N, Oberoi P, Wels WS. Bispecific antibody-mediated redirection of NKG2D-CAR natural killer cells facilitates dual targeting and enhances antitumor activity. J Immunother Cancer 2021; 9:jitc-2021-002980. [PMID: 34599028 PMCID: PMC8488744 DOI: 10.1136/jitc-2021-002980] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Natural killer group 2D (NKG2D) is an activating receptor of natural killer (NK) cells and other lymphocytes that mediates lysis of malignant cells through recognition of stress-induced ligands such as MICA and MICB. Such ligands are broadly expressed by cancer cells of various origins and serve as targets for adoptive immunotherapy with effector cells endogenously expressing NKG2D or carrying an NKG2D-based chimeric antigen receptor (CAR). However, shedding or downregulation of NKG2D ligands (NKG2DL) can prevent NKG2D activation, resulting in escape of cancer cells from NKG2D-dependent immune surveillance. METHODS To enable tumor-specific targeting of NKG2D-expressing effector cells independent of membrane-anchored NKG2DLs, we generated a homodimeric recombinant antibody which harbors an N-terminal single-chain fragment variable (scFv) antibody domain for binding to NKG2D, linked via a human IgG4 Fc region to a second C-terminal scFv antibody domain for recognition of the tumor-associated antigen ErbB2 (HER2). The ability of this molecule, termed NKAB-ErbB2, to redirect NKG2D-expressing effector cells to ErbB2-positive tumor cells of different origins was investigated using peripheral blood mononuclear cells, ex vivo expanded NK cells, and NK and T cells engineered with an NKG2D-based chimeric receptor. RESULTS On its own, bispecific NKAB-ErbB2 increased lysis of ErbB2-positive breast carcinoma cells by peripheral blood-derived NK cells endogenously expressing NKG2D more effectively than an ErbB2-specific IgG1 mini-antibody able to induce antibody-dependent cell-mediated cytotoxicity via activation of CD16. Furthermore, NKAB-ErbB2 synergized with NK-92 cells or primary T cells engineered to express an NKG2D-CD3ζ chimeric antigen receptor (NKAR), leading to targeted cell killing and greatly enhanced antitumor activity, which remained unaffected by soluble MICA known as an inhibitor of NKG2D-mediated natural cytotoxicity. In an immunocompetent mouse glioblastoma model mimicking low or absent NKG2DL expression, the combination of NKAR-NK-92 cells and NKAB-ErbB2 effectively suppressed outgrowth of ErbB2-positive tumors, resulting in treatment-induced endogenous antitumor immunity and cures in the majority of animals. CONCLUSIONS Our results demonstrate that combining an NKAB antibody with effector cells expressing an activating NKAR receptor represents a powerful and versatile approach to simultaneously enhance tumor antigen-specific as well as NKG2D-CAR and natural NKG2D-mediated cytotoxicity, which may be particularly useful to target tumors with heterogeneous target antigen expression.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Jasmin Röder
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Anne Scherer
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Malena Bodden
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | | | - Anita Bhatti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Nina Müller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany .,German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
8
|
Biofuels from Micro-Organisms: Thermodynamic Considerations on the Role of Electrochemical Potential on Micro-Organisms Growth. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofuels from micro-organisms represents a possible response to the carbon dioxide mitigation. One open problem is to improve their productivity, in terms of biofuels production. To do so, an improvement of the present model of growth and production is required. However, this implies an understanding of the growth spontaneous conditions of the bacteria. In this paper, a thermodynamic approach is developed in order to highlight the fundamental role of the electrochemical potential in bacteria proliferation. Temperature effect on the biosystem behaviour has been pointed out. The results link together the electrochemical potential, the membrane electric potential, the pH gradient through the membrane, and the temperature, with the result of improving the thermodynamic approaches, usually introduced in this topic of research.
Collapse
|
9
|
Non-Equilibrium Thermodynamic Approach to Ca2+-Fluxes in Cancer. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Living systems waste heat in their environment. This is the measurable effect of the irreversibility of the biophysical and biochemical processes fundamental to their life. Non-equilibrium thermodynamics allows us to analyse the ion fluxes through the cell membrane, and to relate them to the membrane electric potential, in order to link this to the biochemical and biophysical behaviour of the living cells. This is particularly interesting in relation to cancer, because it could represent a new viewpoint, in order to develop new possible anticancer therapies, based on the thermoelectric behaviour of cancer itself. Here, we use a new approach, recently introduced in thermodynamics, in order to develop the analysis of the ion fluxes, and to point out consequences related to the membrane electric potential, from a thermodynamic viewpoint. We show how any increase in the cell temperature could generate a decrease in the membrane electric potential, with a direct relation between cancer and inflammation. Moreover, a thermal threshold, for the cell membrane electric potential gradient, has been obtained, and related to the mitotic activity. Finally, we obtained the external surface growth of the cancer results related (i) to the Ca2+-fluxes, (ii) to the temperature difference between the the system and its environment, and (iii) to the chemical potential of the ion species.
Collapse
|
10
|
Kale A, Sharma A, Stolzing A, Desprez PY, Campisi J. Role of immune cells in the removal of deleterious senescent cells. Immun Ageing 2020; 17:16. [PMID: 32518575 PMCID: PMC7271494 DOI: 10.1186/s12979-020-00187-9] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Cellular senescence is an essentially irreversible arrest of cell proliferation coupled to a complex senescence-associated secretory phenotype (SASP). The senescence arrest prevents the development of cancer, and the SASP can promote tissue repair. Recent data suggest that the prolonged presence of senescent cells, and especially the SASP, could be deleterious, and their beneficial effects early in life can become maladaptive such that they drive aging phenotypes and pathologies late in life. It is therefore important to develop strategies to eliminate senescent cells. There are currently under development or approved several immune cell-based therapies for cancer, which could be redesigned to target senescent cells. This review focuses on this possible use of immune cells and discusses how current cell-based therapies could be used for senescent cell removal.
Collapse
Affiliation(s)
- Abhijit Kale
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945 USA
| | - Amit Sharma
- SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA 94041 USA
| | - Alexandra Stolzing
- SENS Research Foundation, 110 Pioneer Way, Suite J, Mountain View, CA 94041 USA
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Pierre-Yves Desprez
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945 USA
- California Pacific Medical Center, Research Institute, San Francisco, CA 94107 USA
| | - Judith Campisi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945 USA
- Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
11
|
Zhao P, Chen D, Cheng H. Prognostic significance of soluble major histocompatibility complex class I-related chain A (sMICA) in gastric cancer. Br J Biomed Sci 2018; 75:203-205. [PMID: 30058458 DOI: 10.1080/09674845.2018.1505188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- P Zhao
- a Department of General Surgery , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - D Chen
- a Department of General Surgery , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - H Cheng
- a Department of General Surgery , The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| |
Collapse
|
12
|
Zuo J, Mohammed F, Moss P. The Biological Influence and Clinical Relevance of Polymorphism Within the NKG2D Ligands. Front Immunol 2018; 9:1820. [PMID: 30166984 PMCID: PMC6105697 DOI: 10.3389/fimmu.2018.01820] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/24/2018] [Indexed: 01/23/2023] Open
Abstract
NKG2D is a major regulator of the activity of cytotoxic cells and interacts with eight different ligands (NKG2DL) from two families of MIC and ULBP proteins. The selective forces that drove evolution of NKG2DL are uncertain, but are likely to have been dominated by infectious disease and cancer. Of interest, NKG2DL are some of the most polymorphic genes outside the MHC locus and the study of these is uncovering a range of novel observations regarding the structure and function of NKG2DL. Polymorphism is present within all NKG2DL members and varies markedly within different populations. Allelic variation influences functional responses through three major mechanisms. First, it may drive differential levels of protein expression, modulate subcellular trafficking, or regulate release of soluble isoforms. In addition, it may alter the affinity of interaction with NKG2D or modulate cytotoxic activity from the target cell. In particular, ligands with high affinity for NKG2D are associated with down regulation of this protein on the effector cell, effectively limiting cytotoxic activity in a negative-feedback circuit. Given these observations, it is not surprising that NKG2DL alleles are associated with relative risk for development of several clinical disorders and the critical role of the NKG2D:NKG2DL interaction is demonstrated in many murine models. Increased understanding of the biophysical and functional consequences of this polymorphism is likely to provide insights into novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Jianmin Zuo
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
13
|
Gavlovsky PJ, Tonnerre P, Gérard N, Nedellec S, Daman AW, McFarland BJ, Charreau B. Alternative Splice Transcripts for MHC Class I-like MICA Encode Novel NKG2D Ligands with Agonist or Antagonist Functions. THE JOURNAL OF IMMUNOLOGY 2016; 197:736-46. [PMID: 27342847 DOI: 10.4049/jimmunol.1501416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/28/2016] [Indexed: 11/19/2022]
Abstract
MHC class I chain-related proteins A and B (MICA and MICB) and UL16-binding proteins are ligands of the activating NKG2D receptor involved in cancer and immune surveillance of infection. Structurally, MICA/B proteins contain an α3 domain, whereas UL16-binding proteins do not. We identified novel alternative splice transcripts for MICA encoding five novel MICA isoforms: MICA-A, -B1, -B2, -C, and -D. Alternative splicing associates with MICA*015 and *017 and results from a point deletion (G) in the 5' splice donor site of MICA intron 4 leading to exon 3 and exon 4 skipping and/or deletions. These changes delete the α3 domain in all isoforms, and the α2 domain in the majority of isoforms (A, B1, C, and D). Endothelial and hematopoietic cells contained endogenous alternative splice transcripts and isoforms. MICA-B1, -B2, and -D bound NKG2D by surface plasmon resonance and were expressed at the cell surface. Functionally, MICA-B2 contains two extracellular domains (α1 and α2) and is a novel potent agonist ligand for NKG2D. We found that MICA-D is a new truncated form of MICA with weak affinity for NKG2D despite lacking α2 and α3 domains. MICA-D may functionally impair NKG2D activation by competing with full-length MICA or MICA-B2 for NKG2D engagement. Our study established NKG2D binding for recombinant MICA-B1 but found no function for this isoform. New truncated MICA isoforms exhibit a range of functions that may drive unexpected immune mechanisms and provide new tools for immunotherapy.
Collapse
Affiliation(s)
- Pierre-Jean Gavlovsky
- INSERM, UMR1064, LabEx Transplantex, LabEx Immunology-Graft-Oncology, and Hospital/University Institute European Center for Transplantation and Immunotherapy Sciences, Nantes, F44000 France; Centre Hospitalo-Universitaire Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Nantes, F44000 France; L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France
| | - Pierre Tonnerre
- INSERM, UMR1064, LabEx Transplantex, LabEx Immunology-Graft-Oncology, and Hospital/University Institute European Center for Transplantation and Immunotherapy Sciences, Nantes, F44000 France; Centre Hospitalo-Universitaire Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Nantes, F44000 France; L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France
| | - Nathalie Gérard
- INSERM, UMR1064, LabEx Transplantex, LabEx Immunology-Graft-Oncology, and Hospital/University Institute European Center for Transplantation and Immunotherapy Sciences, Nantes, F44000 France; Centre Hospitalo-Universitaire Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Nantes, F44000 France; L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France
| | - Steven Nedellec
- L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France; Plateforme MicroPICell Structure Fédérative de Recherche Santé-Institut de Recherche Thérapeutique, Nantes F44000, France; and
| | - Andrew W Daman
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 98119
| | - Benjamin J McFarland
- Department of Chemistry and Biochemistry, Seattle Pacific University, Seattle, WA 98119
| | - Béatrice Charreau
- INSERM, UMR1064, LabEx Transplantex, LabEx Immunology-Graft-Oncology, and Hospital/University Institute European Center for Transplantation and Immunotherapy Sciences, Nantes, F44000 France; Centre Hospitalo-Universitaire Nantes, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Institut de Transplantation et de Recherche en Transplantation-Urologie-Néphrologie, Nantes, F44000 France; L'Université Nantes Angers Le Mans, Université de Nantes, Faculté de Médecine, Nantes, F44000 France;
| |
Collapse
|
14
|
Lu S, Zhang J, Liu D, Li G, Staveley-O'Carroll KF, Li Z, Wu JD. Nonblocking Monoclonal Antibody Targeting Soluble MIC Revamps Endogenous Innate and Adaptive Antitumor Responses and Eliminates Primary and Metastatic Tumors. Clin Cancer Res 2015; 21:4819-30. [PMID: 26106076 DOI: 10.1158/1078-0432.ccr-15-0845] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/12/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE The human tumor-derived soluble MHC I-chain-related molecule (sMIC) is highly immune suppressive in cancer patients and correlates with poor prognosis. However, the therapeutic effect of targeting sMIC has not been determined, due to the limitation that mice do not express homologs of human MIC. This study is to evaluate the therapeutic effect of a monoclonal antibody (mAb) targeting sMIC in a clinically relevant transgenic animal model. EXPERIMENTAL DESIGN We treated the engineered MIC-expressing "humanized" TRAMP/MIC bitransgenic mice at advanced disease stages with a sMIC-neutralizing nonblocking anti-MIC mAb and assessed the therapeutic efficacy and associated mechanisms. RESULTS A sMIC-neutralizing nonblocking anti-MIC mAb effectively induced regression of primary tumors and eliminated metastasis without inducing systemic toxicity. The therapeutic effect is conferred by revamping endogenous antitumor immune responses, exemplified by restoring natural killer (NK) cell homeostasis and function, enhancing susceptibility of MIC(+)-tumor cells to NK cell killing, reviving and sustaining antigen-specific CD8 T-cell responses, augmenting CD4 T cells to Th1 responses, priming dendritic cells for antigen presentation, and remodeling tumor microenvironment to be more immune reactive. CONCLUSIONS Therapy with a sMIC-neutralizing nonblocking anti-MIC mAb can effectuate antitumor immune responses against advanced MIC(+) tumors. Our study provided strong rationale for translating sMIC-neutralizing therapeutic mAb into clinics, either alone or in combination with current ongoing standard immunotherapies.
Collapse
Affiliation(s)
- Shengjun Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Jinyu Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Dai Liu
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Guangfu Li
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Cancer Immunology Program, Hollings Cancer Center, Charleston, South Carolina
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina. Cancer Immunology Program, Hollings Cancer Center, Charleston, South Carolina
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina. Cancer Immunology Program, Hollings Cancer Center, Charleston, South Carolina
| | - Jennifer D Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina. Cancer Immunology Program, Hollings Cancer Center, Charleston, South Carolina. Department of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
15
|
Hook L, Hancock M, Landais I, Grabski R, Britt W, Nelson JA. Cytomegalovirus microRNAs. Curr Opin Virol 2014; 7:40-6. [PMID: 24769092 DOI: 10.1016/j.coviro.2014.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 12/26/2022]
Abstract
The discovery that animals, plants and DNA viruses encode microRNAs (miRNAs) has transformed our understanding of the regulation of gene expression. miRNAs are ubiquitous small non-coding RNAs that regulate gene expression post-transcriptionally, generally by binding to sites within the 3' untranslated regions (UTR) of messenger RNA (mRNA) transcripts. To date, over 250 viral miRNAs have been identified primarily in members of the herpesvirus family. These viral miRNAs target both viral and cellular genes in order to regulate viral replication, the establishment and maintenance of viral latency, cell survival, and innate and adaptive immunity. This review will focus on our current knowledge of the targets and functions of human cytomegalovirus (HCMV) miRNAs and their functional equivalents in other herpesviruses.
Collapse
Affiliation(s)
- Lauren Hook
- VGTI, OHSU West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Meaghan Hancock
- VGTI, OHSU West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Igor Landais
- VGTI, OHSU West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Robert Grabski
- Department of Pediatrics, University of Alabama, Birmingham, AL 35294, USA
| | - William Britt
- Department of Pediatrics, University of Alabama, Birmingham, AL 35294, USA
| | - Jay A Nelson
- VGTI, OHSU West Campus, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
16
|
Abstract
The NKG2D receptor is expressed on the surface of NK, T, and macrophage lineage cells and plays an important role in antiviral and antitumor immunity. To evade NKG2D recognition, herpesviruses block the expression of NKG2D ligands on the surface of infected cells using a diverse repertoire of sabotage methods. Cowpox and monkeypox viruses have taken an alternate approach by encoding a soluble NKG2D ligand, the orthopoxvirus major histocompatibility complex (MHC) class I-like protein (OMCP), which can block NKG2D-mediated cytotoxicity. This approach has the advantage of targeting a single conserved receptor instead of numerous host ligands that exhibit significant sequence diversity. Here, we show that OMCP binds the NKG2D homodimer as a monomer and competitively blocks host ligand engagement. We have also determined the 2.25-Å-resolution crystal structure of OMCP from the cowpox virus Brighton Red strain, revealing a truncated MHC class I-like platform domain consisting of a beta sheet flanked with two antiparallel alpha helices. OMCP is generally similar in structure to known host NKG2D ligands but has notable variations in regions typically used to engage NKG2D. Additionally, the determinants responsible for the 14-fold-higher affinity of OMCP for human than for murine NKG2D were mapped to a single loop in the NKG2D ligand-binding pocket.
Collapse
|
17
|
Sigalov AB. "Monovalent" ligands that trigger TLR-4 and TCR are not necessarily truly monovalent. Mol Immunol 2012; 51:356-62. [PMID: 22520974 DOI: 10.1016/j.molimm.2012.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/25/2012] [Indexed: 01/23/2023]
Abstract
Cell surface receptors mediate many cellular responses in health and disease. Recent progress in our understanding of how ligand binding to the extracellular domains of receptors triggers intracellular signaling has underlined the role of ligand-promoted receptor clustering following by oligomerization of the cytoplasmic signaling domains. The clustering suggests the requirement of ligand multivalency and is especially important for triggering receptors involved in innate and adaptive immune responses. However, although numerous studies have established that multivalent, but not monovalent, ligands induce receptor-mediated signal transduction, considerable uncertainty still remains. Here, I hypothesize that "monovalent" ligands that have been reported to trigger immune receptors in vitro are not necessarily truly monovalent. This is illustrated by focusing on studies of signal transduction by toll-like receptor-4 and T cell receptor. By generalizing this concept to a variety of lipid and protein ligands, one would propose an alternative interpretation of apparent ligand monovalency in other receptor activation studies as well.
Collapse
|
18
|
Cédile O, Popa N, Pollet-Villard F, Garmy N, Ibrahim EC, Boucraut J. The NKG2D ligands RAE-1δ and RAE-1ε differ with respect to their receptor affinity, expression profiles and transcriptional regulation. PLoS One 2010; 5:e13466. [PMID: 20976056 PMCID: PMC2957426 DOI: 10.1371/journal.pone.0013466] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 09/21/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND RAE-1 is a ligand of the activating receptor NKG2D expressed by NK cells, NKT, γδT and some CD8(+)T lymphocytes. RAE-1 is overexpressed in tumor cell lines and its expression is induced after viral infection and genotoxic stress. We have recently demonstrated that RAE-1 is expressed in the adult subventricular zone (SVZ) from C57BL/6 mice. RAE-1 is also expressed in vitro by neural stem/progenitor cells (NSPCs) and plays a non-immune role in cell proliferation. The C57BL/6 mouse genome contains two rae-1 genes, rae-1δ and rae-1ε encoding two different proteins. The goals of this study are first to characterize the in vivo and in vitro expression of each gene and secondly to elucidate the mechanisms underlying their respective expression, which are far from known. PRINCIPAL FINDINGS We observed that Rae-1δ and Rae-1ε transcripts are differentially expressed according to tissues, pathological conditions and cell lines. Embryonic tissue and the adult SVZ mainly expressed Rae-1δ transcripts. The NSPCs derived from the SVZ also mainly expressed RAE-1δ. The interest of this result is especially related to the observation that RAE-1δ is a weak NKG2D ligand compared to RAE-1ε. On the contrary, cell lines expressed either similar levels of RAE-1δ and RAE-1ε proteins or only RAE-1ε. Since the protein expression correlated with the level of transcripts for each rae-1 gene, we postulated that transcriptional regulation is one of the main processes explaining the difference between RAE-1δ and RAE-1ε expression. We indeed identified two different promoter regions for each gene: one mainly involved in the control of rae-1δ gene expression and the other in the control of rae-1ε expression. CONCLUSIONS/SIGNIFICANCE RAE-1δ and RAE-1ε differ with respect to their function and the control of their expression. Immune function would be mainly exerted by RAE-1ε and non-immune function by RAE-1δ.
Collapse
Affiliation(s)
- Oriane Cédile
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
| | - Natalia Popa
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
| | - Frédéric Pollet-Villard
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
| | - Nicolas Garmy
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
| | - El Chérif Ibrahim
- NICN, CNRS, UMR 6184, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | - José Boucraut
- CRN2M, CNRS UMR 6231, Université de la Méditerranée, Université Paul Cézanne, Faculté de Médecine, Marseille, France
- * E-mail:
| |
Collapse
|
19
|
Guseva NV, Fullenkamp CA, Naumann PW, Shey MR, Ballas ZK, Houtman JC, Forbes CA, Scalzo AA, Heusel JW. Glycosylation contributes to variability in expression of murine cytomegalovirus m157 and enhances stability of interaction with the NK-cell receptor Ly49H. Eur J Immunol 2010; 40:2618-31. [PMID: 20662096 PMCID: PMC3070389 DOI: 10.1002/eji.200940134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NK cell-mediated resistance to murine cytomegalovirus (MCMV) is controlled by allelic Ly49 receptors, including activating Ly49H (C57BL/6 strain) and inhibitory Ly49I (129 strain), which specifically recognize MCMV m157, a glycosylphosphatidylinositol-linked protein with homology to MHC class I. Although the Ly49 receptors retain significant homology to classic carbohydrate-binding lectins, the role of glycosylation in ligand binding is unclear. Herein, we show that m157 is expressed in multiple, differentially N-glycosylated isoforms in m157-transduced or MCMV-infected cells. We used site-directed mutagenesis to express single and combinatorial asparagine (N)-to-glutamine (Q) mutations at N178, N187, N213, and N267 in myeloid and fibroblast cell lines. Progressive loss of N-linked glycans led to a significant reduction of total cellular m157 abundance, although all variably glycosylated m157 isoforms were expressed at the cell surface and retained the capacity to activate Ly49H(B6) and Ly49I(129) reporter cells and Ly49H(+) NK cells. However, the complete lack of N-linked glycans on m157 destabilized the m157-Ly49H interaction and prevented physical transfer of m157 to Ly49H-expressing cells. Thus, glycosylation on m157 enhances expression and binding to Ly49H, factors that may impact the interaction between NK cells and MCMV in vivo where receptor-ligand interactions are more limiting.
Collapse
Affiliation(s)
- Natalya V. Guseva
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Colleen A. Fullenkamp
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Paul W. Naumann
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Michael R. Shey
- Iowa City VA Medical Center, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Zuhair K. Ballas
- Iowa City VA Medical Center, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Jon C.D. Houtman
- Department of Microbiology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| | - Catherine A. Forbes
- Centre for Ophthalmology and Vision Science, M517, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun St, Nedlands, WA 6009, Australia
| | - Anthony A. Scalzo
- Centre for Ophthalmology and Vision Science, M517, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- Centre for Experimental Immunology, Lions Eye Institute, 2 Verdun St, Nedlands, WA 6009, Australia
| | - Jonathan W. Heusel
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
20
|
Sigalov AB. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. SELF/NONSELF 2010; 1:192-224. [PMID: 21487477 PMCID: PMC3047783 DOI: 10.4161/self.1.3.12794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Protein-protein interactions play a central role in biological processes and thus represent an appealing target for innovative drug design and development. They can be targeted by small molecule inhibitors, modulatory peptides and peptidomimetics, which represent a superior alternative to protein therapeutics that carry many disadvantages. Considering that transmembrane signal transduction is an attractive process to therapeutically control multiple diseases, it is fundamentally and clinically important to mechanistically understand how signal transduction occurs. Uncovering specific protein-protein interactions critical for signal transduction, a general platform for receptor-mediated signaling, the signaling chain homooligomerization (SCHOOL) platform, suggests these interactions as universal therapeutic targets. Within the platform, the general principles of signaling are similar for a variety of functionally unrelated receptors. This suggests that global therapeutic strategies targeting key protein-protein interactions involved in receptor triggering and transmembrane signal transduction may be used to treat a diverse set of diseases. This also assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T cell-mediated skin diseases and platelet disorders or combined to develop novel pharmacological approaches. Intriguingly, human viruses use the SCHOOL-like strategies to modulate and/or escape the host immune response. These viral mechanisms are highly optimized over the millennia, and the lessons learned from viral pathogenesis can be used practically for rational drug design. Proof of the SCHOOL concept in the development of novel therapies for atopic dermatitis, rheumatoid arthritis, cancer, platelet disorders and other multiple indications with unmet needs opens new horizons in therapeutics.
Collapse
|
21
|
Antoun A, Jobson S, Cook M, O'Callaghan CA, Moss P, Briggs DC. Single nucleotide polymorphism analysis of the NKG2D ligand cluster on the long arm of chromosome 6: Extensive polymorphisms and evidence of diversity between human populations. Hum Immunol 2010; 71:610-20. [PMID: 20219610 DOI: 10.1016/j.humimm.2010.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/03/2010] [Accepted: 02/18/2010] [Indexed: 11/17/2022]
Abstract
NKG2D is an important activating receptor on NK cells and T-cells and has a diverse panel of ligands (NKG2DL) which include the ULBP and RAET1 proteins. Several NKG2DL exhibit a considerable degree of genetic polymorphism, and although the functional significance of such allelic variation remains unclear, genetic variants have been implicated in susceptibility to infection and auto-immune disease. We used sequence-specific primer polymerase chain reaction to determine the frequency of 25 single nucleotide polymorphisms (SNPs) in the promoter and coding regions of genes of the RAET1/ULBP cluster in 223 Euro-Caucasoid, 60 Afro-Caribbean, and 52 Indo-Asian individuals to determine NKG2DL allele and haplotype frequencies within these populations. We show marked differences in the frequency of NKG2DL SNPs and haplotypes among the three ethnic groups, and certain haplotypes were observed almost exclusively in Afro-Caribbean compared with the Euro-Caucasoid and Indo-Asian populations. Interestingly, variation was focused within the RAET1E (ULBP4), RAET1L, and ULBP3 genes, whereas the ULBP1, ULBP2 and RAET1G (ULBP5) genes were highly conserved. These findings suggest that individual NKG2DL alleles have been subject to divergent selective pressures during the migration of Homo sapiens. This information will be of importance in understanding the biology and clinical significance of NKG2DL polymorphism.
Collapse
Affiliation(s)
- Ayman Antoun
- School of Cancer Sciences, Birmingham University, Birmingham, United Kingdom.
| | | | | | | | | | | |
Collapse
|
22
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
23
|
Wu JD, Atteridge CL, Wang X, Seya T, Plymate SR. Obstructing shedding of the immunostimulatory MHC class I chain-related gene B prevents tumor formation. Clin Cancer Res 2009; 15:632-40. [PMID: 19147769 PMCID: PMC2775521 DOI: 10.1158/1078-0432.ccr-08-1305] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Clinical observations have suggested that shedding of the MHC class I chain-related molecule (MIC) may be one of the mechanisms by which tumors evade host immunosurveillance and progress. However, this hypothesis has never been proven. In this study, we tested this hypothesis using a prostate tumor model and investigated the effect of shedding of MIC on tumor development. EXPERIMENTAL DESIGN We generated a shedding-resistant noncleavable form of MICB (MICB.A2). We overexpressed MICB.A2, the wild-type MICB, and the recombinant soluble MICB (rsMICB) in mouse prostate tumor TRAMP-C2 (TC2) cells and implanted these cells into severe combined immunodeficient mice. RESULTS No tumors were developed in animals that were implanted with TC2-MICB.A2 cells, whereas all the animals that were implanted with TC2, TC2-MICB, or TC2-rsMICB cells developed tumors. When a NKG2D-specific antibody CX5 or purified rsMICB was administered to animals before tumor implantation, all animals that were implanted with TC2-MICB.A2 cells developed tumors. In vitro cytotoxicity assay revealed the loss of NKG2D-mediated natural killer cell function in these prechallenged animals, suggesting that persistent levels of soluble MICB in the serum can impair natural killer cell function and thus allow tumor growth. CONCLUSIONS These data suggest that MIC shedding may contribute significantly to tumor formation by transformed cells and that inhibition of MIC shedding to sustain the NKG2D receptor-MIC ligand recognition may have potential clinical implication in targeted cancer treatment.
Collapse
Affiliation(s)
- Jennifer D Wu
- Department of Medicine, University of Washington, 325 9th Avenue, Box 359625, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Recent structural information for complexes of cytokine receptor ectodomains bound to their ligands has significantly expanded our understanding of the macromolecular topology and ligand recognition mechanisms used by our three principal shared cytokine signaling receptors-gp130, gamma(c), and beta(c). The gp130 family receptors intricately coordinate three structurally unique cytokine-binding sites on their four-helix bundle cytokine ligands to assemble multimeric signaling complexes. These organizing principles serve as topological blueprints for the entire gp130 family of cytokines. Novel structures of gamma(c) and beta(c) complexes show us new twists, such as the use of a nonstandard sushi-type alpha receptors for IL-2 and IL-15 in assembling quaternary gamma(c) signaling complexes and an antiparallel interlocked dimer in the GM-CSF signaling complex with beta(c). Unlike gp130, which appears to recognize vastly different cytokine surfaces in chemically unique fashions for each ligand, the gamma(c)-dependent cytokines appear to seek out some semblance of a knobs-in-holes shape recognition code in order to engage gamma(c) in related fashions. We discuss the structural similarities and differences between these three shared cytokine receptors, as well as the implications for transmembrane signaling.
Collapse
Affiliation(s)
- Xinquan Wang
- Howard Hughes Medical Institute, Stanford University School of Medicine, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford, California 94305
| | - Patrick Lupardus
- Howard Hughes Medical Institute, Stanford University School of Medicine, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford, California 94305
| | - Sherry L. LaPorte
- Howard Hughes Medical Institute, Stanford University School of Medicine, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford, California 94305
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford, California 94305
| |
Collapse
|
25
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Abstract
The activating receptor NKG2D (natural-killer group 2, member D) and its ligands play an important role in the NK, gammadelta(+) and CD8(+) T-cell-mediated immune response to tumors. Ligands for NKG2D are rarely detectable on the surface of healthy cells and tissues, but are frequently expressed by tumor cell lines and in tumor tissues. It is evident that the expression levels of these ligands on target cells have to be tightly regulated to allow immune cell activation against tumors, but at the same time avoid destruction of healthy tissues. Importantly, it was recently discovered that another safeguard mechanism controlling activation via the receptor NKG2D exists. It was shown that NKG2D signaling is coupled to the IL-15 receptor pathway in a cell-specific manner suggesting that priming of NKG2D-mediated activation depends on the cellular microenvironment and the distinct cellular context. This review will provide a broad overview of our up-to-date knowledge of the NKG2D receptor and its ligands in the context of tumor immunology. Strategies to amplify NKG2D-mediated antitumor responses and counteract tumor immune escape mechanisms will be discussed.
Collapse
|
27
|
Tran PD, Christiansen D, Winterhalter A, Brooks A, Gorrell M, Lilienfeld BG, Seebach JD, Sandrin M, Sharland A. Porcine cells express more than one functional ligand for the human lymphocyte activating receptor NKG2D. Xenotransplantation 2008; 15:321-332. [PMID: 19134162 DOI: 10.1111/j.1399-3089.2008.00489.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Xenotransplantation could ameliorate the severe shortage of donor organs. The initial results of transplantation from genetically-modified pig donors to primate recipients suggest that hyperacute rejection can be overcome, but thrombotic microangiopathy and the human anti-pig cellular immune response remain as significant impediments to successful clinical xenotransplantation. NKG2D is an activating immunoreceptor found on human natural killer (HuNK) cells, CD8(+) and gammadelta T cells. Signaling through NKG2D mediates cytotoxicity and cytokine secretion by NK cells and co-stimulation of T cells. METHODS Chinese hamster ovary P (CHOP) cells were transfected with human NKG2D and used in cell-cell binding studies with porcine epithelial, and endothelial cell lines. Soluble recombinant NKG2D-Fc was used to stain various porcine cells and tissues to indicate ligand expression. Porcine cells were used as targets in cytotoxicity assays with the HuNK cell lines NKL and YT, with and without enzymatic removal of pULBP1 and antibody blockade of NKG2D signaling. RESULTS AND CONCLUSIONS In this study, we demonstrate the expression of ligands for human NKG2D on porcine cell lines of endothelial and epithelial origin, islet cell clusters and rejecting kidney. HuNK cells were activated to kill pig cells expressing NKG2D ligands, and cytotoxicity was inhibited by antibody blockade of NKG2D. A previous study identified pULBP1 as the principal ligand for human NKG2D on pig aortic endothelial cells. In the current study, renal epithelial and intestinal endothelial cells each expressed high surface levels of pULBP1, but binding of soluble recombinant NKG2D and NKG2D-dependent cytotoxicity against these cells persisted after the enzymatic removal of pULBP1, strongly suggesting the presence of at least one additional functional ligand for human NKG2D in these cell types.
Collapse
Affiliation(s)
- Peter D Tran
- Collaborative Transplantation Research Group, Bosch Institute, Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schrambach S, Ardizzone M, Leymarie V, Sibilia J, Bahram S. In vivo expression pattern of MICA and MICB and its relevance to auto-immunity and cancer. PLoS One 2007; 2:e518. [PMID: 17565371 PMCID: PMC1885219 DOI: 10.1371/journal.pone.0000518] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/07/2007] [Indexed: 12/23/2022] Open
Abstract
Non-conventional MHC class I MIC molecules interact not with the TCR, but with NKG2D, a C-type lectin activatory receptor present on most NK, gammadelta and CD8(+) alphabeta T cells. While this interaction is critical in triggering/calibrating the cytotoxic activity of these cells, the actual extent of its in vivo involvement, in man, in infection, cancer or autoimmunity, needs further assessment. The latter has gained momentum along with the reported expansion of peripheral CD4(+)CD28(-)NKG2D(+) T cells in rheumatoid arthritis (RA). We first initiated to extend this report to a larger cohort of not only RA patients, but also those affected by systemic lupus erythematosus (SLE) and Sjögren's syndrome (SS). In RA and SS, this initial observation was further tested in target tissues: the joint and the salivary glands, respectively. In conclusion and despite occasional and indiscriminate expansion of the previously incriminated T cell subpopulation, no correlation could be observed between the CD4(+)CD28(-)NKG2D(+) and auto-immunity. Moreover, in situ, the presence of NKG2D matched that of CD8(+), but not that of CD4(+) T cells. In parallel, a total body tissue scan of both MICA and MICB transcription clearly shows that despite original presumptions, and with the exception of the central nervous system, both genes are widely transcribed and therefore possibly translated and membrane-bound. Extending this analysis to a number of human tumors did not reveal a coherent pattern of expression vs. normal tissues. Collectively these data question previous assumptions, correlating a tissue-specific expression/induction of MIC in relevance to auto-immune or tumor processes.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Blotting, Northern
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Case-Control Studies
- Female
- Flow Cytometry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunoenzyme Techniques
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Male
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Salivary Glands
- Sjogren's Syndrome/genetics
- Sjogren's Syndrome/metabolism
- Sjogren's Syndrome/pathology
- Transcription, Genetic
- Young Adult
Collapse
Affiliation(s)
- Stéphanie Schrambach
- Laboratoire Central d'Immunologie, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Strasbourg, France
| | - Marc Ardizzone
- Laboratoire Central d'Immunologie, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Strasbourg, France
| | - Vincent Leymarie
- Laboratoire d'Hématologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Jean Sibilia
- Service de Rhumatologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire Central d'Immunologie, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Immunogénétique Moléculaire Humaine, Centre de Recherche d'Immunologie et d'Hématologie, Faculté de Médecine, Strasbourg, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
|
30
|
Song H, Hur DY, Kim KE, Park H, Kim T, Kim CW, Bang S, Cho DH. IL-2/IL-18 prevent the down-modulation of NKG2D by TGF-β in NK cells via the c-Jun N-terminal kinase (JNK) pathway. Cell Immunol 2006; 242:39-45. [PMID: 17070508 DOI: 10.1016/j.cellimm.2006.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 09/11/2006] [Accepted: 09/13/2006] [Indexed: 11/20/2022]
Abstract
TGF-beta is known to play a major role for the reduced NKG2D expression seen in cancer patients. However, the mechanisms for reduced TGF-beta-induced down-regulation of NKG2D are unclear. In this study, we observed that IL-2/IL-18 increased the NKG2D expression in the TGF-beta treated NK cell line in a dose-dependent manner. Incubation with the JNK inhibitor SP600125 inhibited the NKG2D expression induced by IL-2/IL-18 in the TGF-beta treated human NK cell line. Moreover, the NK cytotoxicity assay showed that the reduced NK cytotoxicity by TGF-beta was recovered by IL-2/IL-18 treatment. The results indicate that IL-2/IL-18 strongly prevented the TGF-beta-induced NKG2D down-regulation in NK cells via the JNK pathway. Taken together, the protected expression of NKG2D by IL-2/IL-18 provides insight into the mechanism of NKG2D regulation and it also supplied useful information for creating a novel therapeutic approach to treat TGF-beta-secreting cancer cells.
Collapse
Affiliation(s)
- Hyunkeun Song
- Department of Anatomy, Inje University, College of Medicine, Pusan 614-735, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Song H, Kim J, Cosman D, Choi I. Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cell Immunol 2006; 239:22-30. [PMID: 16630603 DOI: 10.1016/j.cellimm.2006.03.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 03/03/2006] [Accepted: 03/07/2006] [Indexed: 01/08/2023]
Abstract
NKG2D is an activating receptor that is expressed on most natural killer (NK) cells and CD8(+) T cells. MHC class I-related chain A(MICA) and UL16-binding protein (ULBP) 1, 2, and 3 are well-known ligands for NKG2D. Human gastric cancer cell lines, SNU216 and SNU638 cells which expressed UL16-binding protein (ULBP) were susceptible to NK cells in a NKG2D-dependent manner. However, SNU484 and SNU620 cells which had no ULBP on their surface were resistant to NK cells. ULBP 1, 2, and 3 are glycosylphosphatidylinositol (GPI)-anchored proteins which are sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC). When SNU620 cells were treated with U73122, an inhibitor of PI-PLC, the surface expression of ULBP was elevated with increased NK susceptibility. Pre-incubating NK cells with culture supernatants of SNU620 or SNU638 cells, which contained soluble ULBP protein, reduced NK cell activity by decreasing surface expression of NKG2D in NK cells. Furthermore, recombinant ULBP-Fc induced the down-regulation of NKG2D expression in NK cells. Taken together, down-regulation of NKG2D by soluble ULBP provides a potential mechanism by which gastric cancer cells escape NKG2D-mediated attack by the immune cells.
Collapse
Affiliation(s)
- Hyunkeun Song
- Department of Anatomy, Inje University College of Medicine, Pusan 614-735, Republic of Korea
| | | | | | | |
Collapse
|
32
|
Germain C, Larbouret C, Cesson V, Donda A, Held W, Mach JP, Pèlegrin A, Robert B. MHC class I-related chain A conjugated to antitumor antibodies can sensitize tumor cells to specific lysis by natural killer cells. Clin Cancer Res 2006; 11:7516-22. [PMID: 16243826 DOI: 10.1158/1078-0432.ccr-05-0872] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE As a first step for the development of a new cancer immunotherapy strategy, we evaluated whether antibody-mediated coating by MHC class I-related chain A (MICA) could sensitize tumor cells to lysis by natural killer (NK) cells. EXPERIMENTAL DESIGN Recombinant MICA (rMICA) was chemically conjugated to Fab' fragments from monoclonal antibodies specific for tumor-associated antigens, such as carcinoembryonic antigen, HER2, or CD20. RESULTS Flow cytometry analysis showed an efficient coating of MICA-negative human cancer cell lines with the Fab-rMICA conjugates. This was strictly dependent on the expression of the appropriate tumor-associated antigens in the target cells. Importantly, preincubation of the tumor cells with the appropriate Fab-rMICA conjugate resulted in NK cell-mediated tumor cell lysis. Antibody blocking of the NKG2D receptor in NK cells prevented conjugate-mediated tumor cell lysis. CONCLUSIONS These results open the way to the development of immunotherapy strategies based on antibody-mediated targeting of MICA.
Collapse
Affiliation(s)
- Claire Germain
- INSERM, EMI0227, Centre de Recherche en Cancérologie de Montpellier, Centre Régional de Lutte contre le Cancer Val d'Aurelle-Paul Lamarque, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Volz A, Radeloff B. Detecting the unusual: natural killer cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:473-541. [PMID: 16891179 DOI: 10.1016/s0079-6603(06)81012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Armin Volz
- Institut für Immungenetik Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Spanndauer Damm 130, 14050 Berlin, Germany
| | | |
Collapse
|
34
|
Zhang B, Wei H, Zheng X, Zhang J, Sun R, Tian Z. The inhibitory effects of synthetic short peptides, mimicking MICA and targeting at NKG2D receptors, on function of NK cells. Peptides 2005; 26:405-12. [PMID: 15652646 DOI: 10.1016/j.peptides.2004.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 10/06/2004] [Accepted: 10/08/2004] [Indexed: 11/25/2022]
Abstract
NKG2D is an activating receptor expressed on most of human NK cells, one of whose ligands is MICA. Based on the crystal structure of NKG2D-MICA complex, we synthesized three short peptides (P1, P2 and P3), mimicking functional alpha1 and alpha2 domain of MICA. The inhibitory effects of three peptides on NK-92 cells, a human NK cell line against Hela cells were observed and the inhibitory percentage was 38% at maximum for P1+P2+P3 in concentration of 1nM. The same peptides had no effect on NK-92 cell against target cells lacking MICA (K562 cells line). The unrelated peptides as controls had no effect on the system. Two peptides (P2 and P3) were prolonged at one or both ends, and the longer forms of peptides exerted stronger inhibitory effects than their shorter forms. Each combination of two peptides exerted a stronger function than single peptide (P1, P2, P3), indicating that shedding of longer amino acid sequence of alpha1 domain or more domain sites of MICA are better than shorter sequence and fewer sites. P1+P2+P3 revealed the almost same inhibitory rate as the soluble MICA (sMICA). P1+P2+P3 were also able to alleviate the concanavalin A-induced murine autoimmune hepatitis in vivo, conforming the similarity of NKG2D between human and mice. The results demonstrate that MICA-mimicking peptides will be useful to search the specific functional sites for NKG2D-MICA interaction, but also promising in explaining NKG2D-related autoimmunity.
Collapse
MESH Headings
- Alanine Transaminase/metabolism
- Animals
- Aspartate Aminotransferases/metabolism
- Binding Sites
- Carrier Proteins/chemistry
- Cell Line
- Chromium/metabolism
- Concanavalin A/pharmacology
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Dose-Response Relationship, Drug
- HeLa Cells
- Hepatitis, Autoimmune/drug therapy
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/metabolism
- Humans
- K562 Cells
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/metabolism
- Ligands
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Models, Molecular
- NK Cell Lectin-Like Receptor Subfamily K
- Peptides/chemistry
- Peptides/pharmacology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/chemistry
- Receptors, Natural Killer Cell
- Species Specificity
Collapse
Affiliation(s)
- Bin Zhang
- School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei City, Anhui 230027, China
| | | | | | | | | | | |
Collapse
|
35
|
Boulanger MJ, Garcia KC. Shared cytokine signaling receptors: structural insights from the gp130 system. ACTA ACUST UNITED AC 2004; 68:107-46. [PMID: 15500860 DOI: 10.1016/s0065-3233(04)68004-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The vast majority of cytokine signaling is mediated by "shared" receptors that form central signaling components of higher-order complexes incorporating ligand-specific receptors. These include the common gamma chain (gamma(c)), common beta chain (beta(c)), and gp130, as well as others. These receptors have the dual tasks of cross-reactive cytokine recognition, and formation of precisely oriented multimeric signaling assemblies. Currently, detailed structural information on a shared receptor complex exists only for gp130, which is a highly pleiotropic shared cytokine signaling receptor essential for mammalian cell growth and homeostasis. To date, more than 10 different four-helix bundle ligands have been identified that incorporate gp130, or one of its close relatives such as LIF receptor, into functional oligomeric signaling complexes. In this review we summarize our current knowledge of shared receptor recognition and activation, with a focus on gp130. We discuss recent structural and functional information to analyze overall architectural assemblies of gp130 cytokine complexes and probe the basis for the extreme cross-reactivity of gp130 for its multiple cytokine ligands.
Collapse
Affiliation(s)
- Martin J Boulanger
- Department of Microbiology, Stanford University School of Medicine, Stanford, California 94305-5124, USA
| | | |
Collapse
|
36
|
Pavlícek J, Kavan D, Pompach P, Novák P, Luksan O, Bezouska K. Lymphocyte activation receptors: new structural paradigms in group V of C-type animal lectins. Biochem Soc Trans 2004; 32:1124-6. [PMID: 15506986 DOI: 10.1042/bst0321124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structure–function relationship in group V of C-type animal lectins remains incompletely understood despite the new structures of NK (natural killer) cell receptors that have been solved recently. Recombinant, soluble forms of rat and human NKR-P1 and CD69 that we obtained after in vitro refolding were analysed by Fourier transform–ion cyclotron resonance MS and heteronuclear NMR (1H-15N correlation). In NKR-P1, calcium may not be removed by chelating agents because of the very high affinity of binding. In CD69, incorporation of calcium causes a structural shift in several amino acids important for the interaction with carbohydrates. Structural studies have also allowed us to understand an interesting preference of these receptors for either linear (NKR-P1) or branched (CD69) carbohydrate sequences.
Collapse
Affiliation(s)
- J Pavlícek
- Department of Biochemistry, Faculty of Science, Charles University, Praha, Czech Republic.
| | | | | | | | | | | |
Collapse
|
37
|
McFarland BJ, Strong RK. Thermodynamic analysis of degenerate recognition by the NKG2D immunoreceptor: not induced fit but rigid adaptation. Immunity 2004; 19:803-12. [PMID: 14670298 DOI: 10.1016/s1074-7613(03)00320-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The homodimeric immunoreceptor NKG2D drives the activation of effector cells following engagement of diverse, conditionally expressed MHC class I-like protein ligands. NKG2D recognition is highly degenerate in that a single surface on receptor monomers binds pairs of distinct surfaces on each structurally divergent ligand, simultaneously accommodating multiple nonconservative ligand allelic or isoform substitutions. In contrast to TCR-pMHC and other NK receptor-ligand interactions, thermodynamic and kinetic analyses of four NKG2D-ligand pairs (MIC-A*001, MIC-B*005, ULBP1, and RAE-1beta) reported here show that the relative enthalpic and entropic terms, heat capacity, association rates, and activation energy barriers are comparable to typical, rigid protein-protein interactions. Rather than "induced-fit" binding, NKG2D degeneracy is achieved using distinct interaction mechanisms at each rigid interface.
Collapse
Affiliation(s)
- Benjamin J McFarland
- The Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | | |
Collapse
|
38
|
Cooper EL. Commentary on CAM and NK Cells by Kazuyoshi Takeda and Ko Okumura. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2004; 1:29-34. [PMID: 15257323 PMCID: PMC442113 DOI: 10.1093/ecam/neh011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Edwin L. Cooper
- Professor and Editor-in-Chief, Tel: (310) 825–9567; Fax: (310) 825–2224. E-mail:
| |
Collapse
|
39
|
Bezouška K. Carbohydrate and Non-Carbohydrate Ligands for the C-Type Lectin-Like Receptors of Natural Killer Cells. A Review. ACTA ACUST UNITED AC 2004. [DOI: 10.1135/cccc20040535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The superfamily of C-type animal lectins is defined by a sequence motif of the carbohydrate- recognition domains (CRDs) and comprises seven groups of molecules. The soluble proteins are group I proteoglycans, group III collectins, and group VII containing the isolated CRDs. Type I membrane proteins include group IV selectins and group VI macrophage receptors and related molecules. Type II membrane proteins are group II hepatic lectins and group V natural killer cell receptors. The latter group has recently attracted considerable attention of the biomedical community. These receptors are arranged at the surface of lymphocytes as homo- or heterodimers composed of two polypeptides consisting of N-terminal peptide tails responsible for signaling, transmembrane domain, neck regions of varying length, and C-terminal lectin-like domains (CTLDs). Since this group is evolutionarily most distant from the rest of C-type animal lectins, the sequence of the C-terminal ligand-binding domain has diversified to accommodate other ligands than calcium or carbohydrates. These domains are referred to as natural killer domains (NKDs) forming a large percentage of CTLDs in vertebrates. Here are summarized the data indicating that calcium, carbohydrates, peptides, and large proteins such as major histocompatibility complex (MHC) class I can all be ligands for NKDs. The wide range of ligands that can be recognized by NKDs includes some new, unexpected compounds such as signal peptide-derived fragments, heat shock proteins, or oxidized lipids. The biological importance of this extended range of recognition abilities is also discussed. A review with 134 references.
Collapse
|
40
|
Hüe S, Monteiro RC, Berrih-Aknin S, Caillat-Zucman S. Potential role of NKG2D/MHC class I-related chain A interaction in intrathymic maturation of single-positive CD8 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1909-17. [PMID: 12902493 DOI: 10.4049/jimmunol.171.4.1909] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The nonclassical MHC class I molecule MHC class I-related chain A (MICA) interacts with the NKG2D receptor expressed at the surface of most peripheral CD8 T cells, gammadelta T cells, and NK cells. We investigated the role of MICA-NKG2D interactions in the selection or maturation of the T cell repertoire within the thymus using MICA tetramers and anti-MICA mAbs. MICA tetramers identified a small population of late stage CD8 single-positive, CD45RA(+) CD62L(+) CCR7(+) CD69(-) thymocytes, a phenotype compatible with that of fully mature CD8(+) cells ready to emigrate to the periphery as naive cells. MICA molecules were expressed in the outer layer of Hassal's corpuscles within the medulla of normal thymus. In thymomas, an overexpression of MICA in cortical and medullar epithelial cells was observed. This was associated with a decreased percentage of NKG2D-positive thymocytes, which expressed a less mature phenotype than in normal thymus. These results indicate that CD8(+) thymocytes up-regulate NKG2D as they complete their developmental program before leaving the thymic medulla to seed the periphery, and identify NKG2D as a potential regulator of the developmental processes in T cells that are essential for immune homeostasis.
Collapse
MESH Headings
- Adult
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Cells, Cultured
- Child
- Child, Preschool
- HT29 Cells
- HeLa Cells
- Histocompatibility Antigens Class I/biosynthesis
- Histocompatibility Antigens Class I/blood
- Histocompatibility Antigens Class I/metabolism
- Histocompatibility Antigens Class I/physiology
- Humans
- Immunophenotyping
- Infant
- Infant, Newborn
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/metabolism
- NK Cell Lectin-Like Receptor Subfamily K
- Neoplasms, Glandular and Epithelial/immunology
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Protein Binding/immunology
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/physiology
- Receptors, Natural Killer Cell
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Thymoma/immunology
- Thymoma/pathology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/pathology
- Thymus Neoplasms/immunology
- Thymus Neoplasms/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sophie Hüe
- Laboratory of Immunology, Hôpital Necker, Paris, France
| | | | | | | |
Collapse
|
41
|
Cerwenka A, Lanier LL. NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. TISSUE ANTIGENS 2003; 61:335-43. [PMID: 12753652 DOI: 10.1034/j.1399-0039.2003.00070.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our best teachers in revealing the importance of immune pathways are viruses and cancers that have subverted the most prominent pathways to escape from immune recognition. Viruses and cancer impair antigen presentation by classical MHC class I to escape adaptive immunity. The activating receptor NKG2D and its MHC class I-like ligands are other recently defined innate and adaptive immune pathways exploited by viruses and cancer. This review discusses recent advances in the understanding of how NKG2D, expressed on innate immune cells including natural killer cells, gammadelta+ T cells and macrophages, and adaptive immune cells such as CD8+ T cells, recognize stress-induced, MHC class I-like, self-ligands. Moreover, we describe how viruses and cancer have developed strategies to evade this recognition pathway.
Collapse
Affiliation(s)
- A Cerwenka
- German Cancer Center DKFZ/0080 IM Neuenheimerfeld D-69120 Heidelberg 280 Germany.
| | | |
Collapse
|
42
|
McFarland BJ, Kortemme T, Yu SF, Baker D, Strong RK. Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands. Structure 2003; 11:411-22. [PMID: 12679019 DOI: 10.1016/s0969-2126(03)00047-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Engagement of diverse protein ligands (MIC-A/B, ULBP, Rae-1, or H60) by NKG2D immunoreceptors mediates elimination of tumorigenic or virally infected cells by natural killer and T cells. Three previous NKG2D-ligand complex structures show the homodimeric receptor interacting with the monomeric ligands in similar 2:1 complexes, with an equivalent surface on each NKG2D monomer binding intimately to a total of six distinct ligand surfaces. Here, the crystal structure of free human NKG2D and in silico and in vitro alanine-scanning mutagenesis analyses of the complex interfaces indicate that NKG2D recognition degeneracy is not explained by a classical induced-fit mechanism. Rather, the divergent ligands appear to utilize different strategies to interact with structurally conserved elements of the consensus NKG2D binding site.
Collapse
Affiliation(s)
- Benjamin J McFarland
- The Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
43
|
|