1
|
Mourya D, Dubey K, Jha S, Maurya R, Pandey AK. In Vitro Effects of Zirconia Nanoparticles: Uptake, Genotoxicity, and Mutagenicity in V-79 cells. Biol Trace Elem Res 2024; 202:927-940. [PMID: 37440118 DOI: 10.1007/s12011-023-03739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023]
Abstract
Zirconia nanoparticles are used in various industrial and biomedical applications such as dental implants, thermal barrier sprays, and fuel cells. The interaction of nanoparticles with the environment and humans is inevitable. Despite the enormous application potential of these nanoparticles, there are still some gaps in the literature regarding potential toxicological mechanisms and the genotoxicity of zirconia nanoparticles. The lung is one of the main exposure routes to nanomaterials; therefore, the present study was designed to determine the genotoxic and mutagenic effect of zirconia NPs in V-79 lung cells. Zirconia nanoparticles showed significant internalization in cells at 100 μg/mL and 150 μg/mL concentrations. Zirconia nanoparticles showed low cytotoxicity and were found to generate ROS in V-79 cells. In alkaline comet assay, zirconia nanoparticles (10 μg/mL, 50 μg/mL, and 100 μg/mL) exposed cells exhibited significant DNA strand breaks, while the neutral comet assay, which was used for double-strand break assessment, only revealed significant damage at 100 μg/mL. Chromosomal aberration induced by zirconia nanoparticles mainly resulted in the generation of gaps, few fragments, and breaks which signifies the low clastogenic activity of these nanoparticles in the V-79 cell line. In MN assay, zirconia nanoparticles resulted in no significant micronuclei induction at any given concentration. In the HPRT mutation assay, the particle shows a dose-dependent increase in the mutant frequency. It is evident from the result that zirconia nanoparticles cause dose-dependent cytotoxicity and genotoxicity, but still, more studies are needed to evaluate the clastogenic potential and the possible mechanism involved.
Collapse
Affiliation(s)
- Durgesh Mourya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group (FEST), CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box 80, Lucknow-226001, India
| | - Kavita Dubey
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group (FEST), CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box 80, Lucknow-226001, India
| | - Shambhavi Jha
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group (FEST), CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box 80, Lucknow-226001, India
| | - Renuka Maurya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group (FEST), CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box 80, Lucknow-226001, India
| | - Alok Kumar Pandey
- CSIR-Indian Institute of Toxicology Research, VishvigyanBhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- Nanomaterial Toxicology Laboratory, Drug and Chemical Toxicology Group (FEST), CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, P.O. Box 80, Lucknow-226001, India.
| |
Collapse
|
2
|
Sun X, Spellman RA, Engel M, Rubitski E, Schuler M. Comparative analysis of micronucleus induction and DNA damage biomarkers in TK6 and A375 cells using flow cytometry. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:25-46. [PMID: 38333939 DOI: 10.1002/em.22585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Previously, we introduced an alternative adherent A375 cell line for clastogenicity and aneugenicity testing using a high content imaging platform. To further characterize the performance of A375 cells, we investigated the sensitivity and specificity of A375 and TK6 cells by directly comparing micronucleus (MN) induction, cytotoxicity (relative cell counts, viability, and apoptosis), clastogenicity (γH2AX), and aneuploidy markers (pH 3, MPM-2, and polyploidy) using flow cytometric methods. We evaluated 14 compounds across different mechanisms (non-genotoxic apoptosis inducers, clastogens, and aneugens with either tubulin binding or aurora kinase inhibiting phenotypes) at 4-h and 24-h post treatment. Both aneugens and clastogens tested positive for micronucleus induction in both cell lines. Apoptosis continued to be a confounding factor for flow cytometry-based micronuclei assessment in TK6 cells as evidenced by positive responses by the three cytotoxicants. Conversely, A375 cells were not affected by apoptosis-related false positive signals and did not produce a positive response in the in vitro micronucleus assay. Benchmark dose response (BMD) analysis showed that the induction of micronuclei and biomarkers occurred at similar concentrations in both cell lines for clastogens and aneugens. By showing that A375 cells have similar sensitivity to TK6 cells but a greater specificity, these results provide additional support for A375 cells to be used as an alternative adherent cell line for in vitro genetic toxicology assessment.
Collapse
Affiliation(s)
- Xiaowen Sun
- Pfizer Research and Development, Groton, Connecticut, USA
| | | | - Maria Engel
- Pfizer Research and Development, Groton, Connecticut, USA
| | | | - Maik Schuler
- Pfizer Research and Development, Groton, Connecticut, USA
| |
Collapse
|
3
|
Wilkins RC, Beaton-Green LA. Development of high-throughput systems for biodosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1477-1484. [PMID: 37721060 PMCID: PMC10720693 DOI: 10.1093/rpd/ncad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 09/19/2023]
Abstract
Biomarkers for ionising radiation exposure have great utility in scenarios where there has been a potential exposure and physical dosimetry is missing or in dispute, such as for occupational and accidental exposures. Biomarkers that respond as a function of dose are particularly useful as biodosemeters to determine the dose of radiation to which an individual has been exposed. These dose measurements can also be used in medical scenarios to track doses from medical exposures and even have the potential to identify an individual's response to radiation exposure that could help tailor treatments. The measurement of biomarkers of exposure in medicine and for accidents, where a larger number of samples would be required, is limited by the throughput of analysis (i.e. the number of samples that could be processed and analysed), particularly for microscope-based methods, which tend to be labour-intensive. Rapid analysis in an emergency scenario, such as a large-scale accident, would provide dose estimates to medical practitioners, allowing timely administration of the appropriate medical countermeasures to help mitigate the effects of radiation exposure. In order to improve sample throughput for biomarker analysis, much effort has been devoted to automating the process from sample preparation through automated image analysis. This paper will focus mainly on biological endpoints traditionally analysed by microscopy, specifically dicentric chromosomes, micronuclei and gamma-H2AX. These endpoints provide examples where sample throughput has been improved through automated image acquisition, analysis of images acquired by microscopy, as well as methods that have been developed for analysis using imaging flow cytometry.
Collapse
Affiliation(s)
- Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| | - Lindsay A Beaton-Green
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa K1A 1C1, Canada
| |
Collapse
|
4
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
5
|
Wilkins RC, Rodrigues M, Beaton-Green LA. The Imaging Flow Cytometry-Based Cytokinesis-Block MicroNucleus (CBMN) Assay. Methods Mol Biol 2023; 2635:103-122. [PMID: 37074659 DOI: 10.1007/978-1-0716-3020-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The dose of ionizing radiation received by an individual can be determined using biodosimetry methods which measure biomarkers of exposure in tissue samples from that individual. These markers can be expressed in many ways, including DNA damage and repair processes. Following a mass casualty event involving radiological or nuclear material, it is important to rapidly provide this information to medical responders to assist in the medical management of potentially exposed casualties. Traditional methods of biodosimetry rely on microscope analysis, making them time-consuming and labor-intensive. To increase sample throughput following a large-scale radiological mass casualty event, several biodosimetry assays have been adapted for analysis by imaging flow cytometry. This chapter briefly reviews these methods with a focus on the most current methodology to identify and quantify micronuclei in binucleated cells within the cytokinesis-block micronucleus assay using an imaging flow cytometer.
Collapse
Affiliation(s)
- Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada.
| | | | | |
Collapse
|
6
|
Dubey K, Maurya R, Mourya D, Pandey AK. Physicochemical characterization and oxidative potential of size fractionated Particulate Matter: Uptake, genotoxicity and mutagenicity in V-79 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114205. [PMID: 36306616 DOI: 10.1016/j.ecoenv.2022.114205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
For many years, the impact of Particulate Matter (PM) in the ambient air has been one of the major concerns for the environment and human health. The consideration of the heterogeneity and complexity of different size fractions is notably important for the assessment of PM toxicological effects. The aim of the study was to present a comprehensive size-composition-morphology characterization and to assess the oxidative potential, genotoxicity, and mutagenicity of the atmospheric PM fractions, collected by using MOUDI near a busy roadside in Lucknow, India. Physicochemical characterization of ambient coarse particles (1.8-10 µm), fine particles (0.32-1.8 µm), quasi-ultrafine (0.1-0.32 µm) and ultrafine particles (≤0.1 µm) along with SRM 1649b was done using TEM, SEM, DLS, NTA, ICP-MS, and IC in parallel with the estimation of exogenous Reactive Oxygen Species (ROS) by acellular assays. In this study, two different acellular assays, dithiothreitol (DTT) and the CM-H2DCFDA assay, indicated stronger mass-normalized bioactivity for different size ranges. Enrichment factor analysis indicated that the different size fractions were highly enriched with elements of anthropogenic origin as compared to elements of crustal origin. The endotoxin concentration in different size fractions was also estimated. Cellular studies demonstrated significant uptake, cytotoxicity, ultrastructural changes, cellular ROS generation, and changes in the different phases of the cell cycle (Sub G1, G1, S, G2/M) exposed to different size fractions. The Comet assay and the Micronucleus assay were used to estimate genotoxicity. Mutagenic potential was revealed by the HGPRT gene forward mutation assay in V-97 cells. Conclusively, our results clearly indicate that the genotoxic and mutagenic potential of the coarse PM was greater than the other fractions, and interestingly, the ultrafine PM has higher bioactivity as compared to quasi-ultrafine PM.
Collapse
Affiliation(s)
- Kavita Dubey
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Renuka Maurya
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Durgesh Mourya
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Alok Kumar Pandey
- CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
7
|
Plant Cytogenetics in the Micronuclei Investigation-The Past, Current Status, and Perspectives. Int J Mol Sci 2022; 23:ijms23031306. [PMID: 35163228 PMCID: PMC8836153 DOI: 10.3390/ijms23031306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Cytogenetic approaches play an essential role as a quick evaluation of the first genetic effects after mutagenic treatment. Although labor-intensive and time-consuming, they are essential for the analyses of cytotoxic and genotoxic effects in mutagenesis and environmental monitoring. Over the years, conventional cytogenetic analyses were a part of routine laboratory testing in plant genotoxicity. Among the methods that are used to study genotoxicity in plants, the micronucleus test particularly represents a significant force. Currently, cytogenetic techniques go beyond the simple detection of chromosome aberrations. The intensive development of molecular biology and the significantly improved microscopic visualization and evaluation methods constituted significant support to traditional cytogenetics. Over the past years, distinct approaches have allowed an understanding the mechanisms of formation, structure, and genetic activity of the micronuclei. Although there are many studies on this topic in humans and animals, knowledge in plants is significantly limited. This article provides a comprehensive overview of the current knowledge on micronuclei characteristics in plants. We pay particular attention to how the recent contemporary achievements have influenced the understanding of micronuclei in plant cells. Together with the current progress, we present the latest applications of the micronucleus test in mutagenesis and assess the state of the environment.
Collapse
|
8
|
Soysal KB, Parlatan S, Mastanzade M, Ozbalak M, Yenerel MN, Unlu MB, Basar G, Parlatan U. Raman tweezers as an alternative diagnostic tool for paroxysmal nocturnal hemoglobinuria. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:3963-3969. [PMID: 34528949 DOI: 10.1039/d1ay01116b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disease characterized by hemolysis of red blood cells (RBC) and venous thrombosis. The gold standard method for the diagnosis of this disease is flow cytometry. Here, we propose a combined optical tweezers and Raman spectral (Raman tweezers) approach to analyze blood samples from volunteers with or without PNH conditions. Raman spectroscopy is a well-known method for investigating a material's chemical structure and is also used in molecular analysis of biological compounds. In this study, we trap individual RBCs found in whole blood samples drawn from PNH patients and the control group. Evaluation of the Raman spectra of these cells by band component analysis and machine learning shows a significant difference between the two groups. The specificity and the sensitivity of the training performed by support vector machine (SVM) analysis were found to be 81.8% and 78.3%, respectively. This study shows that an immediate and high accuracy test result is possible for PNH disease by employing Raman tweezers and machine learning.
Collapse
Affiliation(s)
| | - Seyma Parlatan
- Istinye University, Vocational School of Health Services, Istanbul, Turkey
| | - Metban Mastanzade
- Istanbul University Istanbul Faculty of Medicine, Hematology, Istanbul, Turkey
| | - Murat Ozbalak
- Istanbul University Istanbul Faculty of Medicine, Hematology, Istanbul, Turkey
| | | | | | - Gunay Basar
- Istanbul Technical University, Physics Engineering, Istanbul, Turkey
| | - Ugur Parlatan
- Bogazici University, Department of Physics, Istanbul, Turkey
| |
Collapse
|
9
|
Franz P, Bürkle A, Wick P, Hirsch C. Exploring Flow Cytometry-Based Micronucleus Scoring for Reliable Nanomaterial Genotoxicity Assessment. Chem Res Toxicol 2020; 33:2538-2549. [PMID: 32945164 DOI: 10.1021/acs.chemrestox.0c00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The increased use of engineered nanomaterials (ENM) such as SiO2 and TiO2 in industrial products, especially in food, raises concerns with regard to their effect on human health. In particular, ENM-induced genotoxicity is crucial to investigate, since DNA damage can cause induction or promotion of carcinogenesis. However, current in vitro and in vivo nanogenotoxicological data are highly contradictory, which impedes interpretation and extrapolation. Hence, robust, reliable, and ideally scalable in vitro methods for nanogenotoxicity assessment are of great interest. This work aimed at evaluating the suitability of flow cytometry-based micronuclei scoring for reliable nanogenotoxicological assessment in human intestinal cells. Therefore, we have evaluated the genotoxicity of differently sized SiO2 and TiO2 from different sources (food-relevant, commercially available, and laboratory-synthesized) using the well-established alkaline single cell gel electrophoresis (Comet assay) and the micronucleus (MN) assay employing a flow cytometric readout. Our study demonstrates that physiologically relevant doses of several types of SiO2 and TiO2 did not cause genotoxicity, as assessed by the Comet assay, and the MN flow cytometry assay under the particular experimental conditions described. To improve data reliability, we identified ENM-induced interferences with flow cytometric scoring employing a set of interference controls, which is generally applicable for any nanomaterial and any cell line. In conclusion, flow cytometry-based MN scoring appears to be a promising methodology in nanogenotoxicity testing since data acquisition and analysis are significantly faster, highly scalable in terms of throughput, and less operator-dependent compared to the traditional microscopic evaluation. In particular, ENM-induced false-positive or false-negative results, which have not been addressed sufficiently in the literature, can be detected easily, thus enhancing data reliability.
Collapse
Affiliation(s)
- Pauline Franz
- Laboratory for Particles-Biology Interactions, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Alexander Bürkle
- Chair of Molecular Toxicology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Cordula Hirsch
- Laboratory for Particles-Biology Interactions, Empa - Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
10
|
Micronucleus Assay: The State of Art, and Future Directions. Int J Mol Sci 2020; 21:ijms21041534. [PMID: 32102335 PMCID: PMC7073234 DOI: 10.3390/ijms21041534] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
During almost 40 years of use, the micronucleus assay (MN) has become one of the most popular methods to assess genotoxicity of different chemical and physical factors, including ionizing radiation-induced DNA damage. In this minireview, we focus on the position of MN among the other genotoxicity tests, its usefulness in different applications and visibility by international organizations, such as International Atomic Energy Agency, Organization for Economic Co-operation and Development and International Organization for Standardization. In addition, the mechanism of micronuclei formation is discussed. Finally, foreseen directions of the MN development are pointed, such as automation, buccal cells MN and chromothripsis phenomenon.
Collapse
|
11
|
Micronucleus Analysis by Flow Cytometry. Methods Mol Biol 2019. [PMID: 31473960 DOI: 10.1007/978-1-4939-9646-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During the last two decades the micronucleus (MN) test has been extensively used as a genotoxicity screening tool of chemicals and in a variety of exploratory and mechanistic investigations. The MN is a biomarker for chromosomal damage or mitotic abnormalities since it can originate from chromosome fragments or whole chromosomes that fail to be incorporated into daughter nuclei during mitosis (Fenech et al., Mutagenesis 26: 125-132, 2011; Kirsch-Volders et al., Arch Toxicol 85: 873-899, 2011). The simplicity of scoring, accuracy, amenability to automation by image analysis or flow cytometry and the readiness to be applied to a variety of cell types either in vitro or in vivo made it a versatile tool that contributed to a large extent in our understanding of key toxicological issues related to genotoxins and their effects at the cellular and organism levels. Recently, the final acceptance of the in vitro MN test Organization for Economic Cooperation and Development (OECD) guideline 487 (OECD, Guideline for testing of chemicals: in vitro mammalian cell micronucleus test 487: in vitro mammalian cell micronucleus test (MNVIT). Organization for Economic Cooperation and Development, Paris, 2010) together with the standard in vivo MN test OECD guideline 474 (OECD, Guideline for the testing of chemicals no. 474 mammalian erythrocyte micronucleus test. Organization for Economic Cooperation and Development, Paris, 1997) further positioned the assay as a key driver in the determination of the genotoxicity potential in exploratory research as well as in the regulatory environment. This book chapter covers to some extent the protocol designs and experimental steps necessary for a successful performance of the MN test and an accurate analysis of the MN by the flow cytometry technique.
Collapse
|
12
|
Wilkins RC, Rodrigues MA, Beaton-Green LA. Automated Identification and Scoring of Micronuclei. THE MICRONUCLEUS ASSAY IN TOXICOLOGY 2019. [DOI: 10.1039/9781788013604-00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Micronucleus (MN) assays are used as a measure of cellular damage, and are often preferred over other chromosomal aberration assays since they possess similar statistical robustness for detection of genotoxins and require less technical expertise, making them easier to perform. However, the traditional visual scoring methods are tedious and prone to scorer subjectivity. A number of techniques to automate the MN assays have been developed using a variety of technologies. This chapter will provide an overview of several current methods used to automate MN assays, including automated slide-scoring and laser scanning cytometry, as well as conventional and imaging flow cytometry techniques.
Collapse
Affiliation(s)
- R. C. Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada Ottawa Ontario K1A 1C1 Canada
| | - M. A. Rodrigues
- Luminex Corporation 645 Elliott Ave W, Suite 100 Seattle WA 98119 USA
| | - L. A. Beaton-Green
- Consumer and Clinical Radiation Protection Bureau, Health Canada Ottawa Ontario K1A 1C1 Canada
| |
Collapse
|
13
|
Wilde S, Queisser N, Holz C, Raschke M, Sutter A. Differentiation of Aneugens and Clastogens in the In Vitro Micronucleus Test by Kinetochore Scoring Using Automated Image Analysis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:227-242. [PMID: 30561837 DOI: 10.1002/em.22259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/30/2018] [Accepted: 10/06/2018] [Indexed: 06/09/2023]
Abstract
The in vitro micronucleus test according to OECD Test Guideline 487 (TG 487) is widely used to investigate the genotoxic potential of drugs. Besides the identification of in vitro genotoxicants, the assay can be complemented with kinetochore staining for the differentiation between clastogens and aneugens. This differentiation constitutes a major contribution to risk assessment as especially aneugens show a threshold response. Thus, a novel method for automated MN plus kinetochore (k+) scoring by image analysis was developed based on the OECD TG 487. Compound-induced increases in MN frequency can be detected using the cytokinesis-block (cytochalasin B) method in V79 cells after 24 h in a 96-well format. Nuclei, MN, and kinetochores were labeled with nuclear counterstain and anti-kinetochore antibodies, respectively, to score MN in binuclear or multinuclear cells and to differentiate compound-induced MN by the presence of kinetochores. First, a reference data set was created by manual scoring using two clastogens and aneugens. After developing the automated scoring process, a set of 14 reference genotoxicants were studied. The automated image analysis yielded the expected results: 5/5 clastogens and 6/6 aneugens (sensitivity: 100%) as well as 3/3 non-genotoxicants (specificity: 100%) were correctly identified. Further, a threshold was determined for identifying aneugens. Based on the data for our internally characterized reference compounds, unknown compounds that induce ≥53.8% k+ MN are classified as aneugens. The current data demonstrate excellent specificity and sensitivity and the methodology is superior to manual microscopic analysis in terms of speed and throughput as well as the absence of human bias. Environ. Mol. Mutagen. 60:227-242, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sabrina Wilde
- Bayer AG, Investigational Toxicology, Berlin, Germany
- Fraunhofer ITEM, Preclinical Pharmacology and In Vitro Toxicology, Hannover, Germany
| | - Nina Queisser
- Bayer AG, Investigational Toxicology, Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Rodrigues MA. Automation of the in vitro micronucleus assay using the Imagestream ® imaging flow cytometer. Cytometry A 2018; 93:706-726. [PMID: 30118149 PMCID: PMC6174940 DOI: 10.1002/cyto.a.23493] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 12/02/2022]
Abstract
The in vitro micronucleus (MN) assay is a well‐established test for evaluating genotoxicity and cytotoxicity. The use of manual microscopy to perform the assay can be laborious and often suffers from user subjectivity and interscorer variability. Automated methods including slide‐scanning microscopy and conventional flow cytometry have been developed to eliminate scorer bias and improve throughput. However, these methods possess several limitations such as lack of cytoplasmic visualization using slide‐scanning microscopy and the inability to visually confirm the legitimacy of MN or storage of image data for re‐evaluation using flow cytometry. The ImageStreamX® MK II (ISX) imaging flow cytometer has been demonstrated to overcome all of these limitations. The ISX combines the speed, statistical robustness, and rare event capture capability of conventional flow cytometry with high resolution fluorescent imagery of microscopy and possesses the ability to store all collected image data. This paper details the methodology developed to perform the in vitro MN assay in human lymphoblastoid TK6 cells on the ISX. High resolution images of micronucleated mono‐ and bi‐nucleated cells as well as polynucleated cells can be acquired at a high rate of capture. All images can then be automatically identified, categorized and enumerated in the data analysis software that accompanies the ImageStream, allowing for the scoring of both genotoxicity and cytotoxicity. The results demonstrate that statistically significant increases in MN frequency when compared with solvent controls can be detected at varying levels of cytotoxicity following exposure to well‐known aneugens and clastogens. This work demonstrates a fully automated method for performing the in vitro micronucleus assay on the ISX imaging flow cytometry platform. © 2018 The Author. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
|
15
|
Rodrigues MA, Beaton-Green LA, Wilkins RC, Fenech MF. The potential for complete automated scoring of the cytokinesis block micronucleus cytome assay using imaging flow cytometry. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:53-64. [PMID: 30389163 DOI: 10.1016/j.mrgentox.2018.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/27/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
The lymphocyte Cytokinesis-Block Micronucleus (CBMN) assay was originally developed for the measurement of micronuclei (MN) exclusively in binucleated (BN) cells, which represent the population of cells that can express MN because they completed nuclear division. Recently the assay has evolved into a comprehensive cytome method to include biomarkers that measure chromosomal instability and cytotoxicity by quantification of nuclear buds (NBUDs), nucleoplasmic bridges (NPBs) and apoptotic/necrotic cells. Furthermore, enumeration of mono- and polynucleated cells allows for computation of the nuclear division index (NDI) to assess mitotic activity. Typically performed by manual microscopy, the CBMN cytome assay is laborious and subject to scorer bias and fatigue, leading to inter- and intra-scorer variability. Automated microscopy and conventional flow cytometry methods have been developed to automate scoring of the traditional and cytome versions of the assay. However, these methods have several limitations including the requirement to create high-quality microscope slides, lack of staining consistency and sub-optimal nuclear/cytoplasmic visualization. In the case of flow cytometry, stripping of the cytoplasmic membrane makes it impossible to measure MN in BN cells, calculate the NDI or to quantify apoptotic or necrotic cells. Moreover, the absence of cellular visualization using conventional flow cytometry, makes it impossible to quantify NBUDs and NPBs. In this review, we propose that imaging flow cytometry (IFC), which combines high resolution microscopy with flow cytometry, may overcome these limitations. We demonstrate that by using IFC, images from cells in suspension can be captured, removing the need for microscope slides and allowing visualization of intact cytoplasmic membranes and DNA content. Thus, mono-, bi- and polynucleated cells with and without MN can be rapidly and automatically identified and quantified. Finally, we present high-resolution cell images containing NBUDs and NPBs, illustrating that IFC possesses the potential for completely automated scoring of all components of the CBMN cytome assay.
Collapse
Affiliation(s)
| | - Lindsay A Beaton-Green
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, K1A 1C1, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, K1A 1C1, Canada
| | | |
Collapse
|
16
|
Angay O, Friedrich M, Pinnecker J, Hintzsche H, Stopper H, Hempel K, Heinze KG. Image-based modeling and scoring of Howell-Jolly Bodies in human erythrocytes. Cytometry A 2017; 93:305-313. [PMID: 28544333 PMCID: PMC5900577 DOI: 10.1002/cyto.a.23123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/01/2017] [Accepted: 05/10/2017] [Indexed: 01/06/2023]
Abstract
The spleen selectively removes cells with intracellular inclusions, for example, detached nuclear fragments in circulating erythrocytes, called Howell–Jolly Bodies (HJBs). With absent or deficient splenic function HJBs appear in the peripheral blood and can be used as a simple and non‐invasive risk‐indicator for fulminant potentially life‐threatening infection after spleenectomy. However, it is still under debate whether counting of the rare HJBs is a reliable measure of splenic function. Investigating HJBs in premature erythrocytes from patients during radioiodine therapy gives about 10 thousand times higher HJB counts than in blood smears. However, we show that there is still the risk of false‐positive results by unspecific nuclear remnants in the prepared samples that do not originate from HJBs, but from cell debris residing above or below the cell. Therefore, we present a method to improve accuracy of image‐based tests that can be performed even in non‐specialized medical institutions. We show how to selectively label HJB‐like clusters in human blood samples and how to only count those that are undoubtedly inside the cell. We found a “critical distance” dcrit referring to a relative HJB‐Cell distance that true HJBs do not exceed. To rule out false‐positive counts we present a simple inside‐outside‐rule based on dcrit—a robust threshold that can be easily assessed by combining conventional 2D imaging and straight‐forward image analysis. Besides data based on fluorescence imaging, simulations of randomly distributed HJB‐like objects on realistically modelled cell objects demonstrate the risk and impact of biased counting in conventional analysis. © 2017 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- Oguzhan Angay
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, Würzburg, 97080, Germany
| | - Mike Friedrich
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, Würzburg, 97080, Germany
| | - Jürgen Pinnecker
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, Würzburg, 97080, Germany
| | - Henning Hintzsche
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg, 97078, Germany.,Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, Erlangen, 91058, Germany
| | - Helga Stopper
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg, 97078, Germany
| | - Klaus Hempel
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, Würzburg, 97078, Germany.,Clinic and Policlinic of Nuclear Medicine, University of Wuerzburg, Oberduerrbacher Strasse 6, Würzburg, D-97080, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, Würzburg, 97080, Germany
| |
Collapse
|
17
|
Mittal S, Sharma PK, Tiwari R, Rayavarapu RG, Shankar J, Chauhan LKS, Pandey AK. Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment. Part Fibre Toxicol 2017; 14:15. [PMID: 28454554 PMCID: PMC5408471 DOI: 10.1186/s12989-017-0194-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/18/2017] [Indexed: 12/25/2022] Open
Abstract
Background Graphite carbon nanofibers (GCNF) have emerged as a potential alternative of carbon nanotubes (CNT) for various biomedical applications due to their superior physico-chemical properties. Therefore in-depth understanding of the GCNF induced toxic effects and underlying mechanisms in biological systems is of great interest. Currently, autophagy activation by nanomaterials is recognized as an emerging toxicity mechanism. However, the association of GCNF induced toxicity with this form of cell death is largely unknown. In this study, we have assessed the possible mechanism; especially the role of autophagy, underlying the GCNF induced toxicity. Methods Human lung adenocarcinoma (A549) cells were exposed to a range of GCNF concentrations and various cellular parameters were analyzed (up to 48 h). Transmission electron microscopy, immunofluorescent staining, western blot and quantitative real time PCR were performed to detect apoptosis, autophagy induction, lysosomal destabilization and cytoskeleton disruption in GCNF exposed cells. DCFDA assay was used to evaluate the reactive oxygen species (ROS) production. Experiments with N-acetyl-L-cysteine (NAC), 3-methyladenine (3-MA) and LC3 siRNA was carried out to confirm the involvement of oxidative stress and autophagy in GCNF induced cell death. Comet assay and micronucleus (MN) assay was performed to assess the genotoxicity potential. Results In the present study, GCNF was found to induce nanotoxicity in human lung cells through autophagosomes accumulation followed by apoptosis via intracellular ROS generation. Mechanistically, impaired lysosomal function and cytoskeleton disruption mediated autophagic flux blockade was found to be the major cause of accumulation rather than autophagy induction which further activates apoptosis. The whole process was in line with the increased ROS level and their pharmacological inhibition leads to mitigation of GCNF induced cell death. Moreover the inhibition of autophagy attenuates apoptosis indicating the role of autophagy as cell death process. GCNF was also found to induce genomic instability. Conclusion Our present study demonstrates that GCNF perturbs various interrelated signaling pathway and unveils the potential nanotoxicity mechanism of GCNF through targeting ROS-autophagy-apoptosis axis. The current study is significant to evaluate the safety and risk assessment of fibrous carbon nanomaterials prior to their potential use and suggests caution on their utilization for biomedical research. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0194-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandeep Mittal
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Ratnakar Tiwari
- Developmental Toxicology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Raja Gopal Rayavarapu
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Jai Shankar
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Lalit Kumar Singh Chauhan
- Electron Microscopy Laboratory, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Alok Kumar Pandey
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India. .,Nanomaterials Toxicology Laboratory, Nanotherapeutics and Nanomaterial Toxicology Group, CSIR - Indian Institute of Toxicology Research (CSIR - IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
18
|
Al-Saleh I, Elkhatib R, Al-Rajoudi T, Al-Qudaihi G. Assessing the concentration of phthalate esters (PAEs) and bisphenol A (BPA) and the genotoxic potential of treated wastewater (final effluent) in Saudi Arabia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:440-451. [PMID: 27836348 DOI: 10.1016/j.scitotenv.2016.10.207] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/10/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
Plasticizers such as phthalate esters (PAEs) and bisphenol A (BPA) are highly persistent organic pollutants that tend to bio-accumulate in humans through the soil-plant-animal food chain. Some studies have reported the potential carcinogenic and teratogenic effects in addition to their estrogenic activities. Water resources are scarce in Saudi Arabia, and several wastewater treatment plants (WTPs) have been constructed for agricultural and industrial use. This study was designed to: (1) measure the concentrations of BPA and six PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP), in secondary- and tertiary-treated wastewater collected from five WTPs in three Saudi cities for four to five weeks and (2) test their potential genotoxicity. Three genotoxicological parameters were used: % tail DNA (%T), tail moment (TM) and percentage micronuclei (%MN). Both DBP and DEHP were detected in all treated wastewater samples. DMP, DEP, BBP, DOP, and BPA were found in 83.3, 84.2, 79, 73.7 and 97.4% of the samples, respectively. The levels of DMP (p<0.001), DOP (p<0.001) and BPA (p=0.001) were higher in tertiary- treated wastewater than secondary-treated wastewater, perhaps due to the influence of the molecular weight and polarity of the chemicals. Both weekly sampling frequency and WTP locations significantly affected the variability in our data. Treated wastewater from Wadi Al-Araj was able to induce DNA damage (%T and TM) in human lymphoblastoid TK6 cells that was statistically higher than wastewater from all other WTPs and in untreated TK6 cells (negative control). %MN in samples from both Wadi Al-Araj and Manfouah did not differ statistically but was significantly higher than in the untreated TK6 cells. This study also showed that the samples of tertiary-treated wastewater had a higher genotoxicological potential to induce DNA damage than the samples of secondary-treated wastewater. BPA and some PAEs in the treated wastewater might have the potential to induce genetic damage, despite their low levels. Genotoxicity, however, may also have been due to the presence of other contaminants. Our preliminary findings should be of concern to Saudi agriculture because long-term irrigation with treated wastewater could lead to the accumulation of PAEs and BPA in the soil and ultimately reach the human and animal food chain. WTPs need to remove pollutants more efficiently. Until then, a cautious use of treated wastewater for irrigation is recommended to avoid serious health impacts on local populations.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Tahreer Al-Rajoudi
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Ghofran Al-Qudaihi
- Environmental Health Program, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
19
|
Wilkins RC, Rodrigues MA, Beaton-Green LA. The Application of Imaging Flow Cytometry to High-Throughput Biodosimetry. Genome Integr 2017; 8:7. [PMID: 28250914 PMCID: PMC5320785 DOI: 10.4103/2041-9414.198912] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biodosimetry methods, including the dicentric chromosome assay, the cytokinesis-block micronucleus assay and the γH2AX marker of DNA damage are used to determine the dose of ionizing radiation. These techniques are particularly useful when physical dosimetry is absent or questioned. While these assays can be very sensitive and specific, the standard methods need to be adapted to increase sample throughput in the case of a large-scale radiological/nuclear event. Recent modifications to the microscope-based assays have resulted in some increased throughput, and a number of biodosimetry networks have been, and continue to be, established and strengthened. As the imaging flow cytometer (IFC) is a technology that can automatically image and analyze processed blood samples for markers of radiation damage, the microscope-based biodosimetry techniques can be modified for the IFC for high-throughput biological dosimetry. Furthermore, the analysis templates can be easily shared between networked biodosimetry laboratories for increased capacity and improved standardization. This review describes recent advances in IFC methodology and their application to biodosimetry.
Collapse
Affiliation(s)
- Ruth C. Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Lindsay A. Beaton-Green
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Single cell HaloChip assay on paper for point-of-care diagnosis. Anal Bioanal Chem 2016; 408:7753-7759. [DOI: 10.1007/s00216-016-9872-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/05/2016] [Accepted: 08/10/2016] [Indexed: 01/27/2023]
|
21
|
What the Erythrocytic Nuclear Alteration Frequencies Could Tell Us about Genotoxicity and Macrophage Iron Storage? PLoS One 2015; 10:e0143029. [PMID: 26619141 PMCID: PMC4664483 DOI: 10.1371/journal.pone.0143029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022] Open
Abstract
Erythrocytic nuclear alterations have been considered as an indicative of organism’s exposure to genotoxic agents. Due to their close relationship among their frequencies and DNA damages, they are considered excellent markers of exposure in eukaryotes. However, poor data has been found in literature concerning their genesis, differential occurrence and their life span. In this study, we use markers of cell viability; genotoxicity and cellular turn over in order to shed light to these events. Tilapia and their blood were exposed to cadmium in acute exposure and in vitro assays. They were analyzed using flow cytometry for oxidative stress and membrane disruption, optical microscopy for erythrocytic nuclear alteration, graphite furnace atomic absorption spectrometry for cadmium content in aquaria water, blood and cytochemical and analytical electron microscopy techniques for the hemocateretic aspects. The results showed a close relationship among the total nuclear alterations and cadmium content in the total blood and melanomacrophage centres area, mismatching reactive oxygen species and membrane damages. Moreover, nuclear alterations frequencies (vacuolated, condensed and blebbed) showed to be associated to cadmium exposure whereas others (lobed and bud) were associated to depuration period. Decrease on nuclear alterations frequencies was also associated with hemosiderin increase inside spleen and head kidney macrophages mainly during depurative processes. These data disclosure in temporal fashion the main processes that drive the nuclear alterations frequencies and their relationship with some cellular and systemic biomarkers.
Collapse
|
22
|
Rodrigues MA, Beaton-Green LA, Kutzner BC, Wilkins RC. Multi-parameter dose estimations in radiation biodosimetry using the automated cytokinesis-block micronucleus assay with imaging flow cytometry. Cytometry A 2014; 85:883-93. [PMID: 25154929 DOI: 10.1002/cyto.a.22511] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/08/2014] [Accepted: 07/03/2014] [Indexed: 11/08/2022]
Abstract
The cytokinesis-block micronucleus (CBMN) assay is an established technique in radiation biological dosimetry for estimating the dose to an individual by measuring the frequency of micronuclei (MN) in binucleated lymphocyte cells (BNCs). The assay has been partially automated using slide-scoring algorithms, but an automated multiparameter method without the need of the slide-making procedure would be advantageous to further increase throughput for application in mass casualty events. The development of the ImageStreamX (ISX) imaging flow cytometer has made it possible to adapt the CBMN assay to an automated imaging flow cytometry (FCM) method. The protocol and analysis presented in this work tailor and expand the assay to a multiparameter biodosimetry tool. Ex vivo irradiated whole blood samples were cultured, processed, and analyzed on the ISX and BNCs, MN, and mononuclear cells were imaged, identified, and enumerated automatically and simultaneously. Details on development of the method, gating strategy, and dose response curves generated for the rate of MN per BNC, percentage of mononuclear cells as well as the replication index are presented. Results indicate that adapting the CBMN assay for use in imaging FCM has produced a rapid, robust, multiparameter analysis method with higher throughput than is currently available with standard microscopy. We conclude that the ISX-CBMN method may be an advantageous tool following a radiological event where triage biodosimetry must be performed on a large number of casualties.
Collapse
Affiliation(s)
- M A Rodrigues
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Ontario, Canada; Department of Physics, Carleton University, K1S 5B6, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Bryce SM, Bemis JC, Mereness JA, Spellman RA, Moss J, Dickinson D, Schuler MJ, Dertinger SD. Interpreting in vitro micronucleus positive results: simple biomarker matrix discriminates clastogens, aneugens, and misleading positive agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:542-555. [PMID: 24756928 DOI: 10.1002/em.21868] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
The specificity of in vitro mammalian cell genotoxicity assays is low, as they yield a high incidence of positive results that are not observed in animal genotoxicity and carcinogenicity tests, that is, "misleading" or "irrelevant" positives. We set out to develop a rapid and effective follow-up testing strategy that would predict whether apparent in vitro micronucleus-inducing effects are due to a clastogenic, aneugenic, or secondary irrelevant mode(s) of action. Priority was given to biomarkers that could be multiplexed onto flow cytometric acquisition of micronucleus frequencies, or that could be accomplished in parallel using a homogeneous-type assay. A training set of 30 chemicals comprised of clastogens, aneugens, and misleading positive chemicals was studied. These experiments were conducted with human TK6 cells over a range of closely spaced concentrations in a continuous exposure design. In addition to micronucleus frequency, the following endpoints were investigated, most often at time of harvest: cleaved Parp-positive chromatin, cleaved caspase 3-positive chromatin, ethidium monoazide bromide-positive chromatin, polyploid nuclei, phospho-histone H3-positive (metaphase) cells, tetramethylrhodamine ethyl ester-negative cells, cellular ATP levels, cell cycle perturbation, and shift in γ-H2AX fluorescence relative to solvent control. Logistic regression was used to identify endpoints that effectively predict chemicals' a priori classification. Cross validation using a leave-one-out approach indicated that a promising base model includes γ-H2AX shift and change in phospho-histone H3-positive events (25/30 correct calls). Improvements were realized when one or two additional endpoints were included (26-30/30 correct calls). These models were further evaluated with a test set of 10 chemicals, and also by evaluating 3 chemicals at a collaborating laboratory. The resulting data support the hypothesis that a matrix of high throughput-compatible biomarkers can effectively delineate two important modes of genotoxic action as well as identify cytotoxicity that can lead to irrelevant positive results.
Collapse
|
24
|
Rodrigues MA, Beaton-Green LA, Kutzner BC, Wilkins RC. Automated analysis of the cytokinesis-block micronucleus assay for radiation biodosimetry using imaging flow cytometry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:273-282. [PMID: 24604721 DOI: 10.1007/s00411-014-0525-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
The cytokinesis-block micronucleus (CBMN) assay is employed in biological dosimetry to determine the dose of radiation to an exposed individual from the frequency of micronuclei (MN) in binucleated lymphocyte cells. The method has been partially automated for the use in mass casualty events, but it would be advantageous to further automate the method for increased throughput. Recently, automated image analysis has been successfully applied to the traditional, slide-scoring-based method of the CBMN assay. However, with the development of new technologies such as the imaging flow cytometer, it is now possible to adapt this microscope-based assay to an automated imaging flow cytometry method. The ImageStream(X) is an imaging flow cytometer that has adequate sensitivity to quantify radiation doses larger than 1 Gy while adding the increased throughput of traditional flow cytometry. The protocol and analysis presented in this work adapts the CBMN assay for the use on the ImageStream(X). Ex vivo-irradiated whole blood samples cultured for CBMN were analyzed on the ImageStream(X), and preliminary results indicate that binucleated cells and MN can be identified, imaged and enumerated automatically by imaging flow cytometry. Details of the method development, gating strategy and the dose response curve generated are presented and indicate that adaptation of the CBMN assay for the use with imaging flow cytometry has potential for high-throughput analysis following a mass casualty radiological event.
Collapse
Affiliation(s)
- M A Rodrigues
- Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Rd., Ottawa, ON, K1A 1C1, Canada
| | | | | | | |
Collapse
|
25
|
Seager AL, Shah UK, Brusehafer K, Wills J, Manshian B, Chapman KE, Thomas AD, Scott AD, Doherty AT, Doak SH, Johnson GE, Jenkins GJS. Recommendations, evaluation and validation of a semi-automated, fluorescent-based scoring protocol for micronucleus testing in human cells. Mutagenesis 2014; 29:155-64. [DOI: 10.1093/mutage/geu008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Laffon B, Aguilera F, Ríos-Vázquez J, Valdiglesias V, Pásaro E. Follow-up study of genotoxic effects in individuals exposed to oil from the tanker Prestige, seven years after the accident. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 760:10-6. [PMID: 24370900 DOI: 10.1016/j.mrgentox.2013.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 07/17/2013] [Accepted: 09/28/2013] [Indexed: 01/15/2023]
Abstract
The accident with the oil tanker Prestige in November 2002 resulted in a major spill of about 63,000 tons of heavy fuel oil. More than 300,000 people participated in the clean-up activities, which lasted for up to 10 months. Previous studies reported increases in genotoxicity endpoints in individuals exposed to Prestige oil, both at the moment of exposure [DNA breakage, micronuclei (MN), sister chromatid exchange] and two years later (chromosomal aberrations). In this work we carried out for the first time the follow-up of genotoxic effects in subjects exposed to an oil spill seven years after the exposure. The main objective was to determine the possible persistence of genotoxic damage in individuals exposed to Prestige oil seven years after the accident. The exposed group was composed of 54 residents of Galician villages in Spain that were heavily affected by the spill. This group was involved in clean-up labor for at least two months in the period November 2002-September 2003. They were compared with 50 matched controls. Primary DNA damage was evaluated by the comet assay, mutagenicity by the T-cell receptor (TCR) mutation assay, and MN frequency was determined both by the cytokinesis-block test and by flow cytometry. The results obtained showed no significant differences between the exposed and the controls in the comet assay, the TCR mutation assay and the cytokinesis-block MN test. An unexpected and significant decrease was observed in the exposed group for the results of the MN test evaluated by flow cytometry, probably influenced by modifying factors - other than age, sex and smoking - not considered in this study. Our results show no evidence of the persistence of genotoxic damage in individuals exposed to Prestige oil seven years later. Nevertheless, the need to plan biomonitoring studies on people participating in clean-up activities in case a new oil spill occurs should be established.
Collapse
Affiliation(s)
- Blanca Laffon
- Toxicology Unit, Department of Psychobiology, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain.
| | - Francisco Aguilera
- Toxicology Unit, Department of Psychobiology, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain; Medical Technology, Faculty of Medicine, University of Valparaíso, Blanco 1911, Valparaíso, Chile
| | - Julia Ríos-Vázquez
- Toxicology Unit, Department of Psychobiology, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain
| | - Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain
| | - Eduardo Pásaro
- Toxicology Unit, Department of Psychobiology, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, 15071-A Coruña, Spain
| |
Collapse
|
27
|
Varshney M, Chandra A, Chauhan LKS, Goel SK. Micronucleus induction by oxidative metabolites of trichloroethylene in cultured human peripheral blood lymphocytes: a comparative genotoxicity study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8709-8716. [PMID: 23719688 DOI: 10.1007/s11356-013-1806-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
The genotoxic effects of oxidative metabolites of trichloroethylene (TCE), namely chloral hydrate, trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol (TCEOH) were examined in human peripheral blood lymphocytes. In this context, lymphocytes were exposed in vitro to 25, 50, and 100 μg/ml concentrations of these metabolites separately for a period of 48 h and examined for micronucleus (MN) induction through flow cytometer. At 50 μg/ml TCE metabolites, TCA (6.33 ± 0.56 %), DCA (5.06 ± 0.55), and TCEOH (4.70 ± 1.73) induced highly significant (p<0.001) frequency of MN in comparison to control (1.03 ± 0.40) suggestive of their genotoxic potential. However, exposure of 100 μg/ml of all the metabolites consistently declined the frequencies of MN which in some cases was equable to that of observed at 25 μg/ml. Further, cytotoxicity and cell cycle disturbances were also measured to find out the association of these endpoints with the MN induction. DNA content analysis revealed 3-4-fold elevation of S-phase at all the concentrations tested. Particularly, at 100 μg/ml, treatment elevation of S-phase was significantly (p<0.0001) higher as compared to the control. Present findings together with earlier reports indicate that TCE induces genotoxicity through its metabolites. Interaction of these metabolites with DNA, as evident by elevated S-phase, seems to be the major cause of MN induction. However, involvement of spindle disruption cannot be ruled out. This comparative study also suggests that after TCE exposure, the metabolic efficiency of human to generate oxidative metabolites determines the extent of genotoxicity.
Collapse
Affiliation(s)
- Meenu Varshney
- Petroleum Toxicology Division, Indian Institute of Toxicology Research (IITR), Council of Scientific and Industrial Research, P.O. Box No. 80, Mahatma Gandhi Marg, Lucknow, 226001, India
| | | | | | | |
Collapse
|
28
|
Gurbani D, Bharti SK, Kumar A, Pandey AK, Ana GR, Verma A, Khan AH, Patel DK, Mudiam M, Jain SK, Roy R, Dhawan A. Polycyclic aromatic hydrocarbons and their quinones modulate the metabolic profile and induce DNA damage in human alveolar and bronchiolar cells. Int J Hyg Environ Health 2013; 216:553-65. [DOI: 10.1016/j.ijheh.2013.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
|
29
|
Montero-Conde C, Ruiz-Llorente S, Dominguez JM, Knauf JA, Viale A, Sherman EJ, Ryder M, Ghossein RA, Rosen N, Fagin JA. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov 2013; 3:520-33. [PMID: 23365119 DOI: 10.1158/2159-8290.cd-12-0531] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The RAF inhibitor vemurafenib (PLX4032) increases survival in patients with BRAF-mutant metastatic melanoma, but has limited efficacy in patients with colorectal cancers. Thyroid cancer cells are also comparatively refractory to RAF inhibitors. In contrast to melanomas, inhibition of mitogen-activated protein kinase (MAPK) signaling by PLX4032 is transient in thyroid and colorectal cancer cells. The rebound in extracellular signal-regulated kinase (ERK) in thyroid cells is accompanied by increased HER3 signaling caused by induction of ERBB3 (HER3) transcription through decreased promoter occupancy by the transcriptional repressors C-terminal binding protein 1 and 2 and by autocrine secretion of neuregulin-1 (NRG1). The HER kinase inhibitor lapatinib prevents MAPK rebound and sensitizes BRAF-mutant thyroid cancer cells to RAF or MAP-ERK kinase inhibitors. This provides a rationale for combining ERK pathway antagonists with inhibitors of feedback-reactivated HER signaling in this disease. The determinants of primary resistance to MAPK inhibitors vary between cancer types, due to preferential upregulation of specific receptor tyrosine kinases, and the abundance of their respective ligands.
Collapse
Affiliation(s)
- Cristina Montero-Conde
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Elhajouji A, Lukamowicz-Rajska M. Flow cytometric determination of micronucleus frequency. Methods Mol Biol 2013; 1044:209-35. [PMID: 23896879 DOI: 10.1007/978-1-62703-529-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
During the last two decades the micronucleus (MN) test has been extensively used as a genotoxicity screening tool of chemicals and in a variety of exploratory and mechanistic investigations. The MN is a biomarker for chromosomal damage or mitotic abnormalities, since it can originate from chromosome fragments or whole chromosomes that fail to be incorporated into daughter nuclei during mitosis (Fenech et al., Mutagenesis 26:125-132, 2011; Kirsch-Volders et al., Arch Toxicol 85:873-899, 2011). The simplicity of scoring, accuracy, amenability to automation by image analysis or flow cytometry, and readiness to be applied to a variety of cell types either in vitro or in vivo have made it a versatile tool that has contributed to a large extent in our understanding of key toxicological issues related to genotoxins and their effects at the cellular and organism levels. Recently, the final acceptance of the in vitro MN test guideline 487 (OECD Guideline for Testing of Chemicals, In vitro mammalian cell micronucleus test 487. In vitro mammalian cell micronucleus test (MNVIT). Organization for Economic Cooperation and Development, Paris, 2010) together with the standard in vivo MN test OECD guideline 474 (OECD Guideline for The Testing of Chemicals, Mammalian erythrocyte micronucleus test no. 474. Organization for Economic Cooperation and Development, Paris, 1997) will further position the assay as a key driver in the determination of the genotoxicity potential in exploratory research as well as in the regulatory environment. This chapter covers to some extent the protocol designs and experimental steps necessary for a successful performance of the MN test and an accurate analysis of the MN by the flow cytometry technique.
Collapse
Affiliation(s)
- Azeddine Elhajouji
- Genetic Toxicology and Safety Pharmacology, Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
31
|
Lukamowicz-Rajska M, Kirsch-Volders M, Suter W, Martus H, Elhajouji A. Miniaturized flow cytometry-based in vitro primary human lymphocyte micronucleus assay-validation study. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:260-270. [PMID: 22431129 DOI: 10.1002/em.21690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 02/13/2012] [Accepted: 02/13/2012] [Indexed: 05/31/2023]
Abstract
Most in vitro mammalian genotoxicity assays show a low specificity (high rate of irrelevant positive results), and therefore, lead to an increase in follow-up in vivo genotoxicity testing. One of the sources of the high rate of in vitro irrelevant positive results that find no confirmation in in vivo studies may be the characteristics of the test system used. It has been shown that cells that are p53 deficient or carry an alteration in DNA repair genes may be more prone to produce high rate of false/irrelevant positive results. Primary human lymphocytes (HuLy) are considered to show a higher specificity in predicting the in vivo genotoxic potential of a tested compound. We recently developed a flow cytometry-based primary human T-lymphocyte micronucleus test (MNT) and showed that the technology is promising and reliable in detecting genotoxic compounds. The purpose of the present work was to develop and validate a miniaturized format of the assay. For validation purposes of the flow cytometry HuLy MNT a wide selection of compounds with different mechanisms of genotoxicity was used. The evaluation covered 30 compounds: 19 commercially available genotoxicants and nongenotoxicants and 11 early pharmaceutical development compounds. Being faster and less tedious than the microscopic analysis, the miniaturized flow cytometry-based methodology showed very promising results. Conveniently, cell division is verified within the same sample as the MN frequency. Moreover analysis of hypodiploid events may provide an indication for a mode of action, i.e. clastogenic versus aneugenic mechanism, for further follow-up testing.
Collapse
Affiliation(s)
- Magdalena Lukamowicz-Rajska
- Genetic toxicology and Safety Pharmacology, Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Morais Leme D, Grummt T, Palma de Oliveira D, Sehr A, Renz S, Reinel S, Ferraz ERA, Rodrigues de Marchi MR, Machado MC, Zocolo GJ, Marin-Morales MA. Genotoxicity assessment of water soluble fractions of biodiesel and its diesel blends using the Salmonella assay and the in vitro MicroFlow® kit (Litron) assay. CHEMOSPHERE 2012; 86:512-520. [PMID: 22071371 DOI: 10.1016/j.chemosphere.2011.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/03/2011] [Accepted: 10/09/2011] [Indexed: 05/31/2023]
Abstract
The designation of biodiesel as an environmental-friendly alternative to diesel oil has improved its commercialization and use. However, most biodiesel environmental safety studies refer to air pollution and so far there have been very few literature data about its impacts upon other biotic systems, e.g. water, and exposed organisms. Spill simulations in water were carried out with neat diesel and biodiesel and their blends aiming at assessing their genotoxic potentials should there be contaminations of water systems. The water soluble fractions (WSF) from the spill simulations were submitted to solid phase extraction with C-18 cartridge and the extracts obtained were evaluated carrying out genotoxic and mutagenic bioassays [the Salmonella assay and the in vitro MicroFlow® kit (Litron) assay]. Mutagenic and genotoxic effects were observed, respectively, in the Salmonella/microsome preincubation assay and the in vitro MN test carried out with the biodiesel WSF. This interesting result may be related to the presence of pollutants in biodiesel derived from the raw material source used in its production chain. The data showed that care while using biodiesel should be taken to avoid harmful effects on living organisms in cases of water pollution.
Collapse
Affiliation(s)
- Daniela Morais Leme
- Biology Department, Univ. Estadual Paulista (UNESP), Rio Claro, SP 13506-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Valdiglesias V, Kiliç G, Costa C, Amor-Carro Ó, Mariñas-Pardo L, Ramos-Barbón D, Méndez J, Pásaro E, Laffon B. In vivo genotoxicity assessment in rats exposed to Prestige-like oil by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:756-764. [PMID: 22788363 DOI: 10.1080/15287394.2012.689801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
One of the largest oil spill disasters in recent times was the accident of the oil tanker Prestige in front of the Galician coast in 2002. Thousands of people participated in the cleanup of the contaminated areas, being exposed to a complex mixture of toxic substances. Acute and prolonged respiratory symptoms and genotoxic effects were reported, although environmental exposure measurements were restricted to current determinations, such that attribution of effects observed to oil exposure is difficult to establish. The aim of this study was to analyze peripheral blood leukocytes (PBL) harvested from a rat model of subchronic exposure to a fuel oil with similar characteristics to that spilled by the Prestige tanker, in order to determine potential genotoxic effects under strictly controlled, in vivo exposure. Wistar Han and Brown Norway rats were exposed to the oil for 3 wk, and micronucleus test (MN) and comet assay, standard and modified with 8-oxoguanine DNA glycosylase (OGG1) enzyme, were employed to assess genotoxicity 72 h and 15 d after the last exposure. In addition, the potential effects of oil exposure on DNA repair capacity were determined by means of mutagen sensitivity assay. Results obtained from this study showed that inhalation oil exposure induced DNA damage in both Brown Norway and Wistar Han rats, especially in those animals evaluated 15 d after exposure. Although alterations in the DNA repair responses were noted, the sensitivity to oil substances varied depending on rat strain. Data support previous positive genotoxicity results reported in humans exposed to Prestige oil during cleanup tasks.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lukamowicz M, Kirsch-Volders M, Suter W, Elhajouji A. In vitro primary human lymphocyte flow cytometry based micronucleus assay: simultaneous assessment of cell proliferation, apoptosis and MN frequency. Mutagenesis 2011; 26:763-70. [PMID: 21791709 DOI: 10.1093/mutage/ger044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In order to minimise the number of positive in vitro cytogenetic results which are not confirmed in rodent carcinogenicity tests, biological systems that are p53 and DNA repair proficient should be recommended. Moreover, an appropriate cytotoxicity parameter for top dose selection should be considered. Recent International Conference on Harmonisation draft S2 and Organisation for Economic Co-operation and Development (OECD) 487 guideline accepted the in vitro micronucleus test (MNT) as a valid alternative method for in vitro chromosome aberration test within the in vitro cytogenetic test battery. Since mitosis is a prerequisite for expression of the micronuclei, it is compulsory to demonstrate that cell division occurred, and if possible, to identify the cells that completed mitosis. The OECD guideline recommends the use of a cytokinesis block for the assessment of proliferation in primary T-lymphocytes. The work presented in this manuscript was initiated to develop a novel flow cytometry-based primary human lymphocyte MNT method. This new assay is based on a three-step staining procedure: carboxyfluorescein succinimidyl ester as a proliferation marker, ethidium monoazide for chromatin of necrotic and late apoptotic cells discrimination and 4,6-diaminodino-2-phenylindole as a DNA marker. The proof of principle of the method was performed using genotoxic and non-genotoxic compounds: methyl methanesulfonate, mitomycin C, vinblastine sulphate, cyclophosphamide, sodium chloride and dexamethasone. It has been shown that the new flow cytometry-based primary human lymphocyte MNT method is at least equally reliable method as the standard Cytochalasin B MNT. However, further validation of the assay using a wide selection of compounds with a variety of mechanisms of action is required, before it can be used for regulatory purposes. Moreover, a miniaturisation of the technology may provide an additional advantage for early drug development.
Collapse
Affiliation(s)
- Magdalena Lukamowicz
- Genetic Toxicology and Safety Pharmacology, Preclinical Safety, Novartis Institutes for Biomedical Research, Werk Klybeck, Klybeckstrasse 141, CH-4057 Basel, Switzerland.
| | | | | | | |
Collapse
|
35
|
Lukamowicz M, Woodward K, Kirsch-Volders M, Suter W, Elhajouji A. A flow cytometry based in vitro micronucleus assay in TK6 cells--validation using early stage pharmaceutical development compounds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:363-372. [PMID: 20963789 DOI: 10.1002/em.20632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 05/30/2023]
Abstract
The micronucleus test (MNT) is a well established test for detecting clastogenic and aneugenic compounds. Despite the assay's advantages, the MNT may produce false positive and false negative results in some conditions. This fact may be related to the underestimation of apoptosis or necrosis, the p53 status of the cell system or the cytotoxicity assay, and the top dose selection. The purpose of our studies was to contribute to the validation efforts of the flow cytometry based MNT. To identify the most reliable cytotoxicity assay for the top dose selection five parameters for relative survival were tested: relative cell count, relative population doubling, trypan blue supravital staining, relative ratio of scored nuclei to latex beads, and ethidium monoazide staining. For all compounds the least sensitive method was the relative cell count and the most reliable was the nuclei/beads ratio. The comparative evaluation of micronuclei induction in TK6 cells, analyzed with microscopy and flow cytometry, was performed with reference compounds and internal Novartis early development compounds with positive, weak positive, equivocal, and negative genotoxic effects. Our data document a good correlation between the MNT results obtained by flow cytometry and by microscopy. The results confirm that the method may be applied for routine testing in the pharmaceutical industry for the tested group of compounds, including compounds which require metabolic activation. However, further validation and miniaturization may be required.
Collapse
Affiliation(s)
- Magdalena Lukamowicz
- Novartis Institutes for Biomedical Research, Preclinical Safety, Genetic Toxicology and Safety Pharmacology, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
36
|
Kirsch-Volders M, Plas G, Elhajouji A, Lukamowicz M, Gonzalez L, Vande Loock K, Decordier I. The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 2011; 85:873-99. [PMID: 21537955 DOI: 10.1007/s00204-011-0691-4] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/01/2011] [Indexed: 12/13/2022]
Abstract
Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids lagging behind in anaphase and are not included in the daughter nuclei at telophase. The mechanisms of MN formation are well understood; their possible postmitotic fate is less evident. The MN assay allows detection of both aneugens and clastogens, shows simplicity of scoring, is widely applicable in different cell types, is internationally validated, has potential for automation and is predictive for cancer. The cytokinesis-block micronucleus assay (CBMN) allows assessment of nucleoplasmic bridges, nuclear buds, cell division inhibition, necrosis and apoptosis and in combination with FISH using centromeric probes, the mechanistic origin of the MN. Therefore, the CBMN test can be considered as a "cytome" assay covering chromosome instability, mitotic dysfunction, cell proliferation and cell death. The toxicological relevance of the MN test is strong: it covers several endpoints, its sensitivity is high, its predictivity for in vivo genotoxicity requires adequate selection of cell lines, its statistical power is increased by the recently available high throughput methodologies, it might become a possible candidate for replacing in vivo testing, it allows good extrapolation for potential limits of exposure or thresholds and it is traceable in experimental in vitro and in vivo systems. Implementation of in vitro MN assays in the test battery for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Darzynkiewicz Z, Smolewski P, Holden E, Luther E, Henriksen M, François M, Leifert W, Fenech M. Laser scanning cytometry for automation of the micronucleus assay. Mutagenesis 2011; 26:153-61. [PMID: 21164197 DOI: 10.1093/mutage/geq069] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Laser scanning cytometry (LSC) provides a novel approach for automated scoring of micronuclei (MN) in different types of mammalian cells, serving as a biomarker of genotoxicity and mutagenicity. In this review, we discuss the advances to date in measuring MN in cell lines, buccal cells and erythrocytes, describe the advantages and outline potential challenges of this distinctive approach of analysis of nuclear anomalies. The use of multiple laser wavelengths in LSC and the high dynamic range of fluorescence and absorption detection allow simultaneous measurement of multiple cellular and nuclear features such as cytoplasmic area, nuclear area, DNA content and density of nuclei and MN, protein content and density of cytoplasm as well as other features using molecular probes. This high-content analysis approach allows the cells of interest to be identified (e.g. binucleated cells in cytokinesis-blocked cultures) and MN scored specifically in them. MN assays in cell lines (e.g. the CHO cell MN assay) using LSC are increasingly used in routine toxicology screening. More high-content MN assays and the expansion of MN analysis by LSC to other models (i.e. exfoliated cells, dermal cell models, etc.) hold great promise for robust and exciting developments in MN assay automation as a high-content high-throughput analysis procedure.
Collapse
|
38
|
Valdiglesias V, Laffon B, Pásaro E, Méndez J. Evaluation of okadaic acid-induced genotoxicity in human cells using the micronucleus test and γH2AX analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:980-992. [PMID: 21707423 DOI: 10.1080/15287394.2011.582026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Marine algal blooms have become a public health concern due to increasing frequency in the environment and severity of exposure consequences. Human intoxications produced by phycotoxins occur globally through consumption of marine fish products containing bioaccumulated toxins. Okadaic acid (OA) is the main representative of diarrheic shellfish poisoning (DSP) toxin. OA was found to inhibit protein phosphatases and to produce oxidative damage, as well as to disturb different cellular functions including cell cycle, gene expression, and DNA repair mechanisms. The aim of this study was to determine whether OA induced genotoxicity by using a micronucleus (MN) test and γH2AX analysis, and to elucidate the underlying mechanisms. Human peripheral blood leukocytes, neuroblastoma cells (SHSY5Y), and hepatoma cells (HepG2) were treated with a range of OA concentrations in the presence and absence of S9 fraction. MN induction was observed in leukocytes at all concentrations tested, and in SHSY5Y and HepG2 cells only at the highest concentration (1000 nM). In contrast, γH2AX analysis was only positive for HepG2 cells. Taking together these data, in addition to the comet assay results obtained in a previous study in this issue, OA was found to exert a either a clastogenic or aneugenic effect dependent upon the cell types examined.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña, Spain.
| | | | | | | |
Collapse
|
39
|
Decordier I, Papine A, Vande Loock K, Plas G, Soussaline F, Kirsch-Volders M. Automated image analysis of micronuclei by IMSTAR for biomonitoring. Mutagenesis 2010; 26:163-8. [DOI: 10.1093/mutage/geq063] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
40
|
Olivares A, Quirós L, Pelayo S, Navarro A, Bosch C, Grimalt JO, Fabregat MDC, Faria M, Benejam L, Benito J, Solé M, Barata C, Piña B. Integrated biological and chemical analysis of organochlorine compound pollution and of its biological effects in a riverine system downstream the discharge point. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:5592-5599. [PMID: 20800876 DOI: 10.1016/j.scitotenv.2010.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 05/29/2023]
Abstract
Pollution in riverine systems, along with its biological effects, may propagate downstream even at considerable distances. We analyzed the organochlorine compound (OC) pollution in a section of the low Ebro River (Northeast Spain) downstream a long-operating chlor-alkali plant. Maximal levels of OCs and of their associated dioxin-like biological activity occurred in residue samples from the plant, and persisted in river sediments some 40km downstream (Xerta site). Biological analysis at multiple organization levels in local carp (Cyprinus carpio, EROD, Cyp1A mRNA expression in the liver, hepatosomatic index, condition factor, and micronuclei index in peripheral blood) showed a similar pattern, with a maximal impact in Ascó, few kilometers downstream the plant, and a clear reduction at Xerta. This combination of chemical, molecular, cellular and physiological data allowed the precise assessment of the negative impact of the chlor-alkali plant on the quality of river sediments and on fish, and suggests that sediments may be a reservoir for toxic substances even in dynamic environments like rivers.
Collapse
Affiliation(s)
- Alba Olivares
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shi J, Bezabhie R, Szkudlinska A. Further evaluation of a flow cytometric in vitro micronucleus assay in CHO-K1 cells: a reliable platform that detects micronuclei and discriminates apoptotic bodies. Mutagenesis 2009; 25:33-40. [DOI: 10.1093/mutage/gep040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Quirós L, Ruiz X, Sanpera C, Jover L, Piña B. Analysis of micronucleated erythrocytes in heron nestlings from reference and impacted sites in the Ebro basin (N.E. Spain). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 155:81-87. [PMID: 18063255 DOI: 10.1016/j.envpol.2007.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 10/23/2007] [Accepted: 10/26/2007] [Indexed: 05/25/2023]
Abstract
The frequency of micronuclei (MN) in peripheral erythrocytes was tested for 59 heron nestlings (Ardea purpurea, Egretta garzetta and Bubulcus ibis) sampled at two areas (polluted and reference) on the River Ebro (NE Spain) and at its Delta during Spring 2006. Flow-cytometry analysis revealed higher (three- to six-fold) MN counts in samples from the most polluted site relative to samples from the reference area. Samples from the Delta showed intermediate values. Age, morphometric parameters (weight, tarsus size and bill-head length) and maturation status showed no significant differences among the different populations for each species; nor were they correlated with MN levels. The data suggest that elevated levels of MN in chicks in impacted areas reflected the chemical pollution of their nesting sites. The use of nestlings for this assay appears to be a convenient, non-destructive method to assess the impact of pollution in natural bird populations.
Collapse
Affiliation(s)
- Laia Quirós
- Institute of Molecular Biology (IBMB-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | | | | | | | | |
Collapse
|
43
|
Laingam S, Froscio SM, Humpage AR. Flow-cytometric analysis of in vitro micronucleus formation: comparative studies with WIL2-NS human lymphoblastoid and L5178Y mouse lymphoma cell lines. Mutat Res 2008; 656:19-26. [PMID: 18718554 DOI: 10.1016/j.mrgentox.2008.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 06/19/2008] [Accepted: 06/30/2008] [Indexed: 11/19/2022]
Abstract
The development of a flow cytometry-based micronucleus (FCMMN) assay for measuring the micronucleus (MN) frequency in cells following exposure to test chemicals has potential for improving reproducibility and reducing turn-around time when compared with the traditional microscopy-based micronucleus method. A major drawback of the FCMMN assay is that a false-positive interpretation could result from the presence of large numbers of apoptotic or necrotic bodies in the measured sample. Although several studies have reported ways in which the FCMMN assay could be improved using different staining techniques or electronic gating strategies, to date none of these protocols are suitable for use as a screening assay. To reduce the interference from apoptosis, performing the FCMMN assay with an apoptosis-resistant cell line may be an alternative approach. This study reports the use of p53-mutated cell lines to minimise the interference found in the FCMMN assay. Two commonly used cell lines (WIL2-NS and L5178Y) were investigated by comparison of (1) cytotoxicity and micronucleus induction in the FCMMN assay following treatment with model genotoxicants and (2) apoptotic responses after exposure to inducers of apoptosis. Both cell lines were responsive to all genotoxicants, producing concentration-dependent results with respect to genotoxicity. WIL2-NS cells were found to be more tolerant to apoptosis induction than L5178Y cells. This characteristic could be beneficial to minimise the interference from apoptotic nuclei in the FCMMN genotoxicity-screening assay.
Collapse
Affiliation(s)
- S Laingam
- Australian Water Quality Centre, Salisbury, Australia.
| | | | | |
Collapse
|
44
|
Bryce SM, Avlasevich SL, Bemis JC, Lukamowicz M, Elhajouji A, Van Goethem F, De Boeck M, Beerens D, Aerts H, Van Gompel J, Collins JE, Ellis PC, White AT, Lynch AM, Dertinger SD. Interlaboratory evaluation of a flow cytometric, high content in vitro micronucleus assay. Mutat Res 2007; 650:181-95. [PMID: 18182318 DOI: 10.1016/j.mrgentox.2007.11.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/12/2007] [Accepted: 11/25/2007] [Indexed: 11/19/2022]
Abstract
An international, multi-lab trial was conducted to evaluate a flow cytometry-based method for scoring micronuclei in mouse lymphoma L5178Y cells [S.L. Avlasevich, S.M. Bryce, S.E. Cairns, S.D. Dertinger, In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability, Environ. Mol. Mutagen. 47 (2006) 56-66]. A reference laboratory investigated the potential of six chemicals to induce micronuclei -- the genotoxicants mitomycin C (MMC), etoposide (ETOPO), and vinblastine (VB), and the non-genotoxicants sucrose (SUC), staurosporine (STS), and dexamethasone (DEX). The latter two non-genotoxicants were selected as extreme challenges to the assay because of their potent apoptogenic activity. Three collaborating laboratories were supplied with prototype In Vitro MicroFlow kits, and each was assigned one genotoxicant and one non-genotoxicant. Cells were treated continuously for 24h over a range of concentrations up to 5 mg/ml, or overtly cytotoxic concentrations. Micronuclei were scored via standard microscopy and flow cytometry. In addition to enumerating micronucleus frequencies, a cytotoxicity measurement that is simultaneously acquired with the flow cytometric micronucleus scoring procedure was evaluated (Flow-NBR). With this method, latex particles served as counting beads, and facilitated relative survival measurements that exclude the presence of dead/dying cells. For comparison purposes, additional cytotoxicity endpoints were measured, including several that are based on cell number, and others that reflect compromised membrane integrity, including dye permeability and/or phospholipid distribution. Key findings for this set of compounds include the following: (1) significant discrepancies in top concentration selection were found when cytotoxicity measurements were based on different methods, with the Flow-NBR approach tending to be the most sensitive, (2) both microscopy- and flow cytometry-based scoring methods detected concentration-dependent micronucleus formation for the three genotoxic agents studied, with good agreement between the reference laboratory and the collaborating laboratories, and (3) whereas flow cytometric analyses showed no significant increases for the non-genotoxicants when top concentration selection was based on Flow-NBR, significantly elevated micronucleus frequencies were observed for concentrations that were chosen based on less-sensitive cytotoxicity assays. Collectively, these results indicate that rapid assessment of genotoxicity can be accomplished with a relatively simple flow cytometric technique, and that the scoring system is transferable across laboratories. Furthermore, a concurrent assessment of cytotoxicity, Flow-NBR, may help reduce the occurrence of irrelevant positive results, as it may represent a more appropriate means for choosing top concentration levels. Finally, the data presented herein reinforce concerns about the manner in which cytotoxicity limits are described in guidance documents, since these recommendations tend to cite fixed cut-off values without reference to methodology.
Collapse
|
45
|
Diaz D, Scott A, Carmichael P, Shi W, Costales C. Evaluation of an automated in vitro micronucleus assay in CHO-K1 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 630:1-13. [PMID: 17446119 DOI: 10.1016/j.mrgentox.2007.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/07/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
In this paper, we describe the evaluation of an automated in vitro micronucleus assay using CHO-K1 cells in 96-well plates. CHO-K1 cells were pre-loaded with a cell dye that stains the cytoplasm, after which the cells were treated with the test compounds for either 3h (for the +S9 condition) or 24h (for the -S9 condition). A total of 10 concentrations were tested, of which the top five concentrations were scored (limited by either cytotoxicity or solubility). At the end of the incubation period the cells were fixed and their DNA was stained with Hoechst. The visualization and scoring of the cells was done using an automated fluorescent microscope coupled with proprietary automated image analysis software provided by Cellomics (Pittsburg, PA). A total of 46 compounds were used in this evaluation, including 8 aneugens and 25 clastogens with varied mechanisms of action. Thirteen non-genotoxic compounds were also included. The automated scoring had a sensitivity of 88% and a specificity of 100%, with a predictive value positive of 100% and a predictive value negative of 76%, compared to data from the literature that was obtained with manual scoring. We also describe the incorporation of a metabolic activation system using rat liver S9 homogenates, and the use of cell number counts as a cytotoxicity index which is complementary to the CBPI- (cytokinesis-block proliferation index) based index. Finally, we also discuss the potential for artefactual findings due to fluorescent precipitate, which should be carefully monitored to prevent false positive results. In conclusion, the automated in vitro micronucleus scoring is a valid alternative to the manual scoring of slides, and it has the advantage of generating data in a rapid and consistent manner, and with low compound requirements, which makes it well suited as a screening assay in the early stages of compound development.
Collapse
Affiliation(s)
- Dolores Diaz
- Cerep, Inc., 15318 NE 95th Street, Redmond, WA 98052, USA.
| | | | | | | | | |
Collapse
|
46
|
Bryce SM, Bemis JC, Avlasevich SL, Dertinger SD. In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutat Res 2007; 630:78-91. [PMID: 17434794 PMCID: PMC1950716 DOI: 10.1016/j.mrgentox.2007.03.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/29/2022]
Abstract
This laboratory has previously reported on the development of a flow cytometry-based method for scoring in vitro micronuclei in mouse lymphoma (L5178Y) cells [S.L. Avlasevich, S.M. Bryce, S.E. Cairns, S.D. Dertinger, In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability, Environ. Molec. Mutagen. 47 (2006) 56-66]. With this method, necrotic and mid/late stage apoptotic cells are labeled with the fluorescent dye ethidium monoazide. Cells are then washed, stripped of their cytoplasmic membranes, and incubated with RNase plus a pan-nucleic acid dye (SYTOX Green). This process provides a suspension of free nuclei and micronuclei that are differentially stained relative to chromatin associated with dead/dying cells. The current report extends this line of investigation to include the human cell line TK6. Additionally, methods are described that facilitate simultaneous quantitative analysis of cytotoxicity, perturbations to the cell cycle, and what we hypothesize is aneuploidization. This comprehensive cytogenetic damage assay was evaluated with the following diverse agents: etoposide, ionizing radiation, methyl methanesulfonate, vinblastine, ethanol, and staurosporine. Cells were harvested after 30h of continuous treatment (in the case of chemicals), or following graded doses of radiation up to 1Gy. Key findings include the following: (1) Significant discrepancies in top dose selection were found for five of the six agents studied when relative survival measurements were based on Coulter counting versus flow cytometry. (2) Both microscopy- and flow cytometry-based scoring methods detected dose-dependent micronucleus formation for the four genotoxic agents studied, whereas no significant increases were observed for the presumed non-genotoxicants ethanol and staurosporine when top dose selection was based on flow cytometric indices of cytotoxicity. (3) SYTOX and ethidium monoazide fluorescence signals conveyed cell cycle and cell death information, respectively, and appear to represent valuable aids for interpreting micronucleus data. (4) The frequency of hypodiploid nuclei increased in response to each of the genotoxic agents studied, but not following exposure to ethanol or staurosporine. Collectively, these results indicate that a comprehensive assessment of genotoxicity and other test article-induced toxicities can be acquired simultaneously using a simple two-color flow cytometry-based technique.
Collapse
|
47
|
Proia NK, Paszkiewicz GM, Nasca MAS, Franke GE, Pauly JL. Smoking and smokeless tobacco-associated human buccal cell mutations and their association with oral cancer--a review. Cancer Epidemiol Biomarkers Prev 2006; 15:1061-77. [PMID: 16775162 DOI: 10.1158/1055-9965.epi-05-0983] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reported herein are the results of a structured literature review that was undertaken to (a) determine if human buccal (mouth) cell changes are associated with smoking and smokeless ("chewing") tobacco, (b) tabulate different buccal cell alterations that have been reported, (c) delineate buccal cell assays that have been used successfully, (d) determine whether buccal cell changes correlate with oral cancer as defined in clinicopathologic investigations, and (e) assess the feasibility of developing a high-throughput buccal cell assay for screening smokers for the early detection of oral cancer. The results of the studies reported herein have established that diverse buccal cell changes are associated with smoking and smokeless tobacco. This review documents also that buccal cells have been collected in a noninvasive manner, and repetitively for serial studies, from different sites of the mouth (e.g., cheek, gum, and tongue) and from normal tissue, preneoplastic lesions (leukoplakia), and malignant tumors. Tobacco-associated genetic mutations and nongenetic changes have been reported; a partial listing includes (a) micronuclei, (b) bacterial adherence, (c) genetic mutations, (d) DNA polymorphisms, (d) carcinogen-DNA adducts, and (e) chromosomal abnormalities. Clinical studies have correlated buccal cell changes with malignant tumors, and some oral oncologists have reported that the buccal cell changes are practical biomarkers. Summarily, the literature has established that buccal cells are useful not only for characterizing the molecular mechanisms underlying tobacco-associated oral cancers but also as exfoliative cells that express diverse changes that offer promise as candidate biomarkers for the early detection of oral cancer.
Collapse
Affiliation(s)
- Nicole K Proia
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
48
|
Avlasevich SL, Bryce SM, Cairns SE, Dertinger SD. In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:56-66. [PMID: 16180205 DOI: 10.1002/em.20170] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The in vitro micronucleus test has received considerable attention in recent years for its use in drug safety assessment and toxicological research. The less tedious nature of the assay relative to chromosome aberration analyses is a driving force, and explains why many chemical and drug safety programs have adopted the endpoint. Development of a high-throughput micronucleus scoring system would further enhance the utility of the assay for lead optimization and other early drug development work. Although several variations of a flow cytometric (FCM) method for scoring cell-culture-derived micronuclei (MN) have been described in the literature, they have been unable to distinguish true MN from apoptotic and necrotic chromatin (Nüsse M and Marx K 1997: Mutat Res 392: 109-115). Here, we report advances to this methodology whereby a sequential staining procedure is used to differentially label these types of sub-2n particles. With the use of ethidium monoazide (EMA), the chromatin of dead and dying cells is labeled. After a photoactivation step that covalently binds EMA to chromatin, cytoplasmic membranes are digested and resulting lysates are incubated with RNase plus a pan-nucleic acid dye (SYTOX Green). This process provides a suspension of free nuclei and sub-2n particles that are labeled with either SYTOX or SYTOX and EMA. Preliminary studies with heat-shocked L5178Y mouse cells demonstrated that EMA stains necrotic and mid- through late-stage apoptotic cells. Importantly, the sequential labeling procedure provided reliable micronucleus enumeration, even when cultures contained high percentages of dead cells. Subsequently, experiments with the following diverse genotoxicants were performed: hydroxyurea, methyl methanesulfonate, benzo[a]pyrene, etoposide, cyclophosphamide, and vinblastine. Additionally, the nongenotoxicants sucrose, tributyltin methoxide, and dexamethasone were tested up to 5 mg/ml, or to cytotoxic concentrations. FCM data were found to correspond closely with microscopy-based measurements. Collectively, these data suggest that this sequential EMA/SYTOX staining procedure provides reliable, high-throughput enumeration of in vitro MN.
Collapse
|
49
|
Bonassi S, Ugolini D, Kirsch-Volders M, Strömberg U, Vermeulen R, Tucker JD. Human population studies with cytogenetic biomarkers: review of the literature and future prospectives. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:258-270. [PMID: 15688363 DOI: 10.1002/em.20115] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cytogenetic biomarkers are by far the most frequently used endpoints in human population studies. Their sensitivity for measuring exposure to genotoxic agents and their role as early predictors of cancer risk have contributed to this success. In this article, we present an overview of the last 25 years of population studies with cytogenetic biomarkers, describing the evolution of this research and addressing the most promising innovations for the future. The evaluation has been restricted to the most popular assays, i.e., chromosomal aberrations (CAs) and micronucleus (MN), which are considered to be causally related to early stages of chronic diseases, especially cancer, and may therefore play a major role in prevention. An extensive literature search covering the period 1 January 1980 to 31 December 2003 was performed using the Medline/PubMed database. A total of 833 population studies using CAs and 434 using matched MN inclusion criteria were included in the analysis. We report the distribution of selected papers by year of publication, country, language, agents investigated, and methods employed. The state of the art and future prospects regarding cytogenetic techniques and epidemiologic and statistical methods are discussed. The role of susceptibility and its potential impact on genotoxic damage are discussed with special attention to the effect of major genetic polymorphisms on the baseline frequency of CAs and micronuclei.
Collapse
Affiliation(s)
- Stefano Bonassi
- Unit of Environmental Epidemiology and Biostatistics, National Cancer Research Institute, Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
50
|
Meintières S, Biola A, Pallardy M, Marzin D. Using CTLL-2 and CTLL-2 bcl2 cells to avoid interference by apoptosis in the in vitro micronucleus test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 41:14-27. [PMID: 12552588 DOI: 10.1002/em.10126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In vitro assays for chromosome aberrations (i.e., in vitro micronucleus and in vitro metaphase analysis tests) frequently produce false-positive or exaggerated-positive results. Our previous work suggested that apoptosis interferes with these tests, producing misleading results. These previous studies were conducted by performing the in vitro micronucleus test in CTLL-2 cells and a CTLL-2 cell derivative stably transfected with the apoptosis inhibitor gene bcl2. In the present study, these previous observations were extended by examining micronucleus induction with a larger number of compounds in both CTLL-2 and CTLL-2 bcl2 cells and measuring apoptosis with annexin V-FITC. Both cell lines were treated with different classes of compounds that were anticipated to be exclusively apoptosis inducers, or compounds known to be clastogens or aneugens, some of which were anticipated to be both genotoxic and apoptotic. We were able to confirm that compounds that are only apoptogenic induced micronuclei in CTLL-2 but not CTLL-2 bcl2 cells, indicating that the positive responses are due to apoptosis in CTLL-2 cells. Some genotoxins (clastogens and aneugens) did not produce apoptosis by the annexin V assay and gave similar responses in CTLL-2 and CTLL-2 bcl2 cells. Finally, higher responses were induced in CTLL-2 cells compared to CTLL-2 bcl2 cells that were treated with aneugens or clastogens that were also apoptosis inducers, suggesting that the greater response in CTLL-2 cells is a consequence of both genotoxicity and apoptosis. Finally, it was demonstrated that just eliminating CTLL-2 cells having three or more micronuclei from scoring was not adequate for correctly evaluating agents that only produce apoptosis. The results indicate that coupling the in vitro micronucleus test in both CTLL-2 and CTLL-2 bcl2 cells with the measurement of apoptosis is able to distinguish the genotoxic effects of a test compound from its apoptotic potential and is able to avoid interference from apoptosis in the in vitro micronucleus test. These observations may provide the basis for a useful genotoxicity assay.
Collapse
Affiliation(s)
- Sophie Meintières
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, 1 Rue du Pr Calmette, 59019 Lille Cedex, France
| | | | | | | |
Collapse
|