1
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Abstract
Animal models with high translational validity are essential tools in understanding disease pathogenesis and in the development of therapeutic strategies. Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system characterized by progressive neurological deficits and socioeconomic burden. Experimental autoimmune encephalomyelitis (EAE) is the most extensively utilized animal model of MS, with well-characterized rodent and non-human primate variants. The EAE model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. To date, the EAE model has been an essential tool in the development of at least seven U.S. Food and Drug Administration (FDA)-approved immunomodulatory drugs for the treatment of MS, including glatiramer acetate, fingolimod, and natalizumab. However, the translational validity of the EAE model is frequently compromised due to poor study design, inconsistent clinical scoring endpoints, and inappropriate statistical calculations. No single animal model accurately reflects the complexity of human MS pathogenesis. Beyond EAE, multiple additional animal models are described, including Theiler's murine encephalomyelitis virus and cuprizone-induced demyelination, which facilitate the study of pathogen-induced CNS autoimmunity and remyelination, respectively. This overview summarizes several of the most frequently used animal models of MS and highlights key factors that significantly influence the experimental outcome and affect translational validity. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Paul Smith
- Incyte Research Institute, Wilmington, Delaware
| |
Collapse
|
3
|
't Hart BA, Laman JD, Kap YS. Merits and complexities of modeling multiple sclerosis in non-human primates: implications for drug discovery. Expert Opin Drug Discov 2018; 13:387-397. [PMID: 29465302 DOI: 10.1080/17460441.2018.1443075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The translation of scientific discoveries made in animal models into effective treatments for patients often fails, indicating that currently used disease models in preclinical research are insufficiently predictive for clinical success. An often-used model in the preclinical research of autoimmune neurological diseases, multiple sclerosis in particular, is experimental autoimmune encephalomyelitis (EAE). Most EAE models are based on genetically susceptible inbred/SPF mouse strains used at adolescent age (10-12 weeks), which lack exposure to genetic and microbial factors which shape the human immune system. Areas covered: Herein, the authors ask whether an EAE model in adult non-human primates from an outbred conventionally-housed colony could help bridge the translational gap between rodent EAE models and MS patients. Particularly, the authors discuss a novel and translationally relevant EAE model in common marmosets (Callithrix jacchus) that shares remarkable pathological similarity with MS. Expert opinion: The MS-like pathology in this model is caused by the interaction of effector memory T cells with B cells infected with the γ1-herpesvirus (CalHV3), both present in the pathogen-educated marmoset immune repertoire. The authors postulate that depletion of only the small subset (<0.05%) of CalHV3-infected B cells may be sufficient to limit chronic inflammatory demyelination.
Collapse
Affiliation(s)
- Bert A 't Hart
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands.,b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Jon D Laman
- b Department of Neuroscience , University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Yolanda S Kap
- a Department of Immunobiology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| |
Collapse
|
4
|
Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I. Animal models of multiple sclerosis: Focus on experimental autoimmune encephalomyelitis. J Neurosci Res 2018; 96:1021-1042. [PMID: 29446144 DOI: 10.1002/jnr.24224] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a chronic, progressive disorder of the central nervous system (CNS) that affects more than two million people worldwide. Several animal models resemble MS pathology; the most employed are experimental autoimmune encephalomyelitis (EAE) and toxin- and/or virus-induced demyelination. In this review we will summarize our knowledge on the utility of different animal models in MS research. Although animal models cannot replicate the complexity and heterogeneity of the MS pathology, they have proved to be useful for the development of several drugs approved for treatment of MS patients. This review focuses on EAE because it represents both clinical and pathological features of MS. During the past decades, EAE has been effective in illuminating various pathological processes that occur during MS, including inflammation, CNS penetration, demyelination, axonopathy, and neuron loss mediated by immune cells.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | | | - Sanja Pekovic
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic," Department of Neurobiology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Zou Y, Li J, Cui Y, Tang P, Du L, Chen T, Meng K, Liu Q, Feng H, Zhao J, Chen M, Zhu LG. Terahertz Spectroscopic Diagnosis of Myelin Deficit Brain in Mice and Rhesus Monkey with Chemometric Techniques. Sci Rep 2017; 7:5176. [PMID: 28701795 PMCID: PMC5507969 DOI: 10.1038/s41598-017-05554-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023] Open
Abstract
While myelin deficit of the central nervous system leads to several severe diseases, the definitive diagnostic means are lacking. We proposed and performed terahertz time-domain spectroscopy (THz-TDS) combined with chemometric techniques to discriminate and evaluate the severity of myelin deficit in mouse and rhesus monkey brains. The THz refractive index and absorption coefficient of paraffin-embedded brain tissues from both normal and mutant dysmyelinating mice are shown. Principal component analysis of time-domain THz signal (PCA-tdTHz) and absorption-refractive index relation of THz spectrum identified myelin deficit without exogenous labeling or any pretreatment. Further, with the established PCA-tdTHz, we evaluated the severity of myelin deficit lesions in rhesus monkey brain induced by experimental autoimmune encephalomyelitis, which is the most-studied animal model of multiple sclerosis. The results well matched the pathological analysis, indicating that PCA-tdTHz is a quick, powerful, evolving tool for identification and evaluation myelin deficit in preclinical animals and potentially in para-clinical human biopsy.
Collapse
Affiliation(s)
- Yi Zou
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Jiang Li
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.,Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Yiyuan Cui
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peiren Tang
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Lianghui Du
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.,Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Tunan Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Kun Meng
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.,School of Electronic and Electrical Engineering University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
| | - Qiao Liu
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.,Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Jianheng Zhao
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.
| | - Mina Chen
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Li-Guo Zhu
- Interdisciplinary Laboratory of Physics and Biomedicine, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China. .,Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China.
| |
Collapse
|
6
|
Stimmer L, Fovet CM, Serguera C. Experimental Models of Autoimmune Demyelinating Diseases in Nonhuman Primates. Vet Pathol 2017; 55:27-41. [DOI: 10.1177/0300985817712794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human idiopathic inflammatory demyelinating diseases (IIDD) are a heterogeneous group of autoimmune inflammatory and demyelinating disorders of the central nervous system (CNS). These include multiple sclerosis (MS), the most common chronic IIDD, but also rarer disorders such as acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO). Great efforts have been made to understand the pathophysiology of MS, leading to the development of a few effective treatments. Nonetheless, IIDD still require a better understanding of the causes and underlying mechanisms to implement more effective therapies and diagnostic methods. Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model to study the pathophysiology of IIDD. EAE is principally induced through immunization with myelin antigens combined with immune-activating adjuvants. Nonhuman primates (NHP), the phylogenetically closest relatives of humans, challenged by similar microorganisms as other primates may recapitulate comparable immune responses to that of humans. In this review, the authors describe EAE models in 3 NHP species: rhesus macaques ( Macaca mulatta), cynomolgus macaques ( Macaca fascicularis), and common marmosets ( Callithrix jacchus), evaluating their respective contribution to the understanding of human IIDD. EAE in NHP is a heterogeneous disease, including acute monophasic and chronic polyphasic forms. This diversity makes it a versatile model to use in translational research. This clinical variability also creates an opportunity to explore multiple facets of immune-mediated mechanisms of neuro-inflammation and demyelination as well as intrinsic protective mechanisms. Here, the authors review current insights into the pathogenesis and immunopathological mechanisms implicated in the development of EAE in NHP.
Collapse
Affiliation(s)
- Lev Stimmer
- U1169/US27 Platform for experimental pathology, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Claire-Maëlle Fovet
- U1169/US27 Platform for general surgery, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Ché Serguera
- US27, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| |
Collapse
|
7
|
Peschl P, Bradl M, Höftberger R, Berger T, Reindl M. Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases. Front Immunol 2017; 8:529. [PMID: 28533781 PMCID: PMC5420591 DOI: 10.3389/fimmu.2017.00529] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/19/2017] [Indexed: 12/23/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG), a member of the immunoglobulin (Ig) superfamily, is a myelin protein solely expressed at the outermost surface of myelin sheaths and oligodendrocyte membranes. This makes MOG a potential target of cellular and humoral immune responses in inflammatory demyelinating diseases. Due to its late postnatal developmental expression, MOG is an important marker for oligodendrocyte maturation. Discovered about 30 years ago, it is one of the best-studied autoantigens for experimental autoimmune models for multiple sclerosis (MS). Human studies, however, have yielded controversial results on the role of MOG, especially MOG antibodies (Abs), as a biomarker in MS. But with improved detection methods using different expression systems to detect Abs in patients' samples, this is meanwhile no longer the case. Using cell-based assays with recombinant full-length, conformationally intact MOG, several recent studies have revealed that MOG Abs can be found in a subset of predominantly pediatric patients with acute disseminated encephalomyelitis (ADEM), aquaporin-4 (AQP4) seronegative neuromyelitis optica spectrum disorders (NMOSD), monophasic or recurrent isolated optic neuritis (ON), or transverse myelitis, in atypical MS and in N-methyl-d-aspartate receptor-encephalitis with overlapping demyelinating syndromes. Whereas MOG Abs are only transiently observed in monophasic diseases such as ADEM and their decline is associated with a favorable outcome, they are persistent in multiphasic ADEM, NMOSD, recurrent ON, or myelitis. Due to distinct clinical features within these diseases it is controversially disputed to classify MOG Ab-positive cases as a new disease entity. Neuropathologically, the presence of MOG Abs is characterized by MS-typical demyelination and oligodendrocyte pathology associated with Abs and complement. However, it remains unclear whether MOG Abs are a mere inflammatory bystander effect or truly pathogenetic. This article provides deeper insight into recent developments, the clinical relevance of MOG Abs and their role in the immunpathogenesis of inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Patrick Peschl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Haanstra KG, Jonker M, 't Hart BA. An Evaluation of 20 Years of EU Framework Programme-Funded Immune-Mediated Inflammatory Translational Research in Non-Human Primates. Front Immunol 2016; 7:462. [PMID: 27872622 PMCID: PMC5098224 DOI: 10.3389/fimmu.2016.00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Aging western societies are facing an increasing prevalence of chronic inflammatory and degenerative diseases for which often no effective treatments exist, resulting in increasing health-care expenditure. Despite high investments in drug development, the number of promising new drug candidates decreases. We propose that preclinical research in non-human primates can help to bridge the gap between drug discovery and drug prescription. Translational research covers various stages of drug development of which preclinical efficacy tests in valid animal models is usually the last stage. Preclinical research in non-human primates may be essential in the evaluation of new drugs or therapies when a relevant rodent model is not available. Non-human primate models for life-threatening or severely debilitating diseases in humans are available at the Biomedical Primate Research Centre (BPRC). These have been instrumental in translational research for several decades. In order to stimulate European health research and innovation from bench to bedside, the European Commission has invested heavily in access to non-human primate research for more than 20 years. BPRC has hosted European users in a series of transnational access programs covering a wide range of research areas with the common theme being immune-mediated inflammatory disorders. We present an overview of the results and give an account of the studies performed as part of European Union Framework Programme (EU FP)-funded translational non-human primate research performed at the BPRC. These data illustrate the value of translational non-human primate research for the development of new therapies and emphasize the importance of EU FP funding in drug development.
Collapse
Affiliation(s)
- Krista G Haanstra
- Department of Immunobiology, Biomedical Primate Research Centre , Rijswijk , Netherlands
| | - Margreet Jonker
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, Netherlands; Department of Immunohematology, Leiden University Medical Center, Leiden, Netherlands
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, Netherlands; Department of Neuroscience, University Medical Center, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Correale J, Tenembaum SN. Myelin basic protein and myelin oligodendrocyte glycoprotein T-cell repertoire in childhood and juvenile multiple sclerosis. Mult Scler 2016; 12:412-20. [PMID: 16900754 DOI: 10.1191/135248506ms1282oa] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multiple sclerosis (MS) is usually a disease of young adulthood, its clinical onset occurring between 20 and 40 years of age; however, today there is general consensus that MS can also occur in children, adolescents and even in infants. In order to gain further insight into the T-cell repertoire present in this particular group of patients myelin basic protein (MBP)-, MBP exon-2- and myelin oligodendrocyte glycoprotein (MOG)Igd-specific T-cell lines (TCLs) were isolated from 18 patients whose symptoms had started before the age of 16. Epitope specificity was established by measuring proliferative responses, and interferon-g (IFN-g) secretion by using a panel of overlapping synthetic peptides. For MOGIgd, the T-cell response was focused on three main immunodominant epitopes comprising residues 1-26, 36-60 and 63-87. For MBP the predominant immune responses were directed against peptides 83-102, 139-153 and 146-162. When compared to those observed in adult-onset MS patients, anti-MOGIgd specificity and anti-MBP responses showed similar results. Moreover, the number of MBP exon-2 TCLs isolated, and the magnitude of the specific IFN-g secretion induced were similar, both in childhood/juvenile-onset and adult-onset MS patients. Thus, despite differences in the clinical and neuroimaging manifestations of MS, these results would seem to indicate that both the spectrum of MBP found, as well as the MOGIgd epitopes recognized by peripheral blood T cells in MS, appear to be similar for childhood/juvenile-onset and adult-onset patients.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Raúl Carrea Institute for Neurological Research, (FLENI), Montañeses 2325 (1428), Buenos Aires, Argentina.
| | | |
Collapse
|
10
|
Haanstra KG, Dijkman K, Bashir N, Bauer J, Mary C, Poirier N, Baker P, Crossan CL, Scobie L, 't Hart BA, Vanhove B. Selective blockade of CD28-mediated T cell costimulation protects rhesus monkeys against acute fatal experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2015; 194:1454-66. [PMID: 25589073 DOI: 10.4049/jimmunol.1402563] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Costimulatory and coinhibitory receptor-ligand pairs on T cells and APC control the immune response. We have investigated whether selective blockade of CD28-CD80/86 costimulatory interactions, which preserves the coinhibitory CTLA4-CD80/86 interactions and the function of regulatory T (Treg) cells, abrogates the induction of experimental autoimmune encephalomyelitis (EAE) in rhesus monkeys. EAE was induced by intracutaneous immunization with recombinant human myelin oligodendrocyte glycoprotein (rhMOG) in CFA on day 0. FR104 is a monovalent, PEGylated-humanized Fab' Ab fragment against human CD28, cross-reactive with rhesus monkey CD28. FR104 or placebo was administered on days 0, 7, 14, and 21. FR104 levels remained high until the end of the study (day 42). Placebo-treated animals all developed clinical EAE between days 12 and 27. FR104-treated animals did not develop clinical EAE and were sacrificed at the end of the study resulting in a significantly prolonged survival. FR104 treatment diminished T and B cell responses against rhMOG, significantly reduced CNS inflammation and prevented demyelination. The inflammatory profile in the cerebrospinal fluid and brain material was also strongly reduced. Recrudescence of latent virus was investigated in blood, spleen, and brain. No differences between groups were observed for the β-herpesvirus CMV and the polyomaviruses SV40 and SA12. Cross-sectional measurement of lymphocryptovirus, the rhesus monkey EBV, demonstrated elevated levels in the blood of FR104-treated animals. Blocking rhesus monkey CD28 with FR104 mitigated autoreactive T and B cell activation and prevented CNS pathology in the rhMOG/CFA EAE model in rhesus monkeys.
Collapse
Affiliation(s)
- Krista G Haanstra
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands;
| | - Karin Dijkman
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Noun Bashir
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | - Paul Baker
- Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | | | - Linda Scobie
- Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Bert A 't Hart
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands; University of Groningen, University Medical Center, Department of Neuroscience, 9713 GZ Groningen, the Netherlands; and
| | - Bernard Vanhove
- Effimune SAS, 44035 Nantes, France; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064, 44093 Nantes, France
| |
Collapse
|
11
|
Dang PT, Bui Q, D'Souza CS, Orian JM. Modelling MS: Chronic-Relapsing EAE in the NOD/Lt Mouse Strain. Curr Top Behav Neurosci 2015; 26:143-177. [PMID: 26126592 DOI: 10.1007/7854_2015_378] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Modelling complex disorders presents considerable challenges, and multiple sclerosis (MS) is no exception to this rule. The aetiology of MS is unknown, and its pathophysiology is poorly understood. Moreover, the last two decades have witnessed a dramatic revision of the long-held view of MS as an inflammatory demyelinating white matter disease. Instead, it is now regarded as a global central nervous system (CNS) disorder with a neurodegenerative component. Currently, there is no animal model recapitulating MS immunopathogenesis. Available models are based on autoimmune-mediated demyelination, denoted experimental autoimmune encephalomyelitis (EAE) or virally or chemically induced demyelination. Of these, the EAE model has been the most commonly used. It has been extensively improved since its first description and now exists as a number of variants, including genetically modified and humanized versions. Nonetheless, EAE is a distinct disease, and each variant models only certain facets of MS. Whilst the search for more refined MS models must continue, it is important to further explore where mechanisms underlying EAE provide proof-of-principle for those driving MS pathogenesis. EAE variants generated with the myelin component myelin oligodendrocyte glycoprotein (MOG) have emerged as the preferred ones, because in this particular variant disease is associated with both T- and B-cell effector mechanisms, together with demyelination. MOG-induced EAE in the non-obese diabetic (NOD) mouse strain exhibits a chronic-relapsing EAE clinical profile and high disease incidence. We describe the generation of this variant, its contribution to the understanding of MS immune and pathogenetic mechanisms and potential for evaluation of candidate therapies.
Collapse
Affiliation(s)
- Phuc T Dang
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Quyen Bui
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Claretta S D'Souza
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jacqueline M Orian
- Department of Biochemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
12
|
Kaushansky N, Ben-Nun A. DQB1*06:02-Associated Pathogenic Anti-Myelin Autoimmunity in Multiple Sclerosis-Like Disease: Potential Function of DQB1*06:02 as a Disease-Predisposing Allele. Front Oncol 2014; 4:280. [PMID: 25360418 PMCID: PMC4199271 DOI: 10.3389/fonc.2014.00280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/29/2014] [Indexed: 12/20/2022] Open
Abstract
Susceptibility to multiple sclerosis (MS) has been linked mainly to the HLA-DRB1 locus, with the HLA-DR15 haplotype (DRB1*1501-DQA1*0102-DQB1*0602-DRB5*0101) dominating MS risk in Caucasians. Although genes in the HLA-II region, particularly DRB1*1501, DQA1*0102-DQB1*0602, are in tight linkage disequilibrium, genome-wide-association, and gene candidate studies identified the DRB1*15:01 allele as the primary risk factor in MS. Many genetic and immune-functional studies have indicated DRB1*15:01 as a primary risk factor in MS, while only some functional studies suggested a disease-modifying role for the DRB5*01 or DQB1*06 alleles. In this respect, the susceptibility of DRB1*15:01-transgenic (Tg) mice to myelin basic protein- or myelin oligodendrocyte glycoprotein-induced MS-like disease is consistent with primary contribution of DRB1*15:01 to HLA-DR15+ MS. The studies summarized here show that susceptibility to MS-like disease, induced in HLA-“humanized” mice by myelin oligodendrocytic basic protein or by the proteolipid protein, one of the most prominent encephalitogenic target antigens implicated in human MS, is determined by DQB1*06:02, rather than by the DRB1*15:01 allele. These findings not only offer a rationale for a potential role for DQB1*06:02 in predisposing susceptibility to MS, but also suggest a more complex and differential functional role for HLA-DR15 alleles, depending on the primary target myelin antigen. However, the conflict between these findings in HLA-Tg mice and the extensive genome-wide-association studies, which could not detect any significant effect from the DQB1*06:02 allele on MS risk, is rather puzzling. Functional analysis of MS PBLs for DQB1*06:02-associated anti-myelin autoimmunity may indicate whether or not DQB1*06:02 is associated with MS pathogenesis.
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science , Rehovot , Israel
| | - Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science , Rehovot , Israel
| |
Collapse
|
13
|
The extracellular domain of myelin oligodendrocyte glycoprotein elicits atypical experimental autoimmune encephalomyelitis in rat and Macaque species. PLoS One 2014; 9:e110048. [PMID: 25303101 PMCID: PMC4193844 DOI: 10.1371/journal.pone.0110048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/16/2014] [Indexed: 01/09/2023] Open
Abstract
Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and brainstem, and atypical disease induction.
Collapse
|
14
|
Jagessar SA, Vierboom M, Blezer ELA, Bauer J, Hart BA', Kap YS. Overview of models, methods, and reagents developed for translational autoimmunity research in the common marmoset (Callithrix jacchus). Exp Anim 2014; 62:159-71. [PMID: 23903050 PMCID: PMC4160941 DOI: 10.1538/expanim.62.159] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied Neotropical
primate and a useful preclinical animal model for translational research into
autoimmune-mediated inflammatory diseases (AIMID), such as rheumatoid arthritis (RA) and
multiple sclerosis (MS). The animal model for MS established in marmosets has proven their
value for exploratory research into (etio) pathogenic mechanisms and for the evaluation of
new therapies that cannot be tested in lower species because of their specificity for
humans. Effective usage of the marmoset in preclinical immunological research has been
hampered by the limited availability of blood for immunological studies and of reagents
for profiling of cellular and humoral immune reactions. In this paper, we give a concise
overview of the procedures and reagents that were developed over the years in our
laboratory in marmoset models of the above-mentioned diseases.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | |
Collapse
|
15
|
Induction of experimental autoimmune encephalomyelitis with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund's adjuvant in three non-human primate species. J Neuroimmune Pharmacol 2013; 8:1251-64. [PMID: 23821341 PMCID: PMC3889224 DOI: 10.1007/s11481-013-9487-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/26/2022]
Abstract
The experimental autoimmune encephalitis (EAE) model is used for preclinical research into the pathogenesis of multiple sclerosis (MS), mostly in inbred, specific pathogen free (SPF)-raised laboratory mice. However, the naive state of the laboratory mouse immune system is considered a major hurdle in the translation of principles from the EAE model to the MS patient. Non-human primates (NHP) have an immune system harboring T- and B-cell memory against environmental antigens, similar as in humans. We sought to further refine existing NHP EAE models, which may help to bridge the gab between mouse EAE models and MS. We report here on new EAE models in three NHP species: rhesus monkeys (Macaca mulatta), cynomolgus monkeys (Macaca fascicularis) and common marmosets (Callithrix jacchus). EAE was induced with recombinant human myelin oligodendrocyte glycoprotein extracellular domain (1–125) (rhMOG) formulated in incomplete Freund’s adjuvant (IFA). IFA lacks the bacterial antigens that are present in complete Freund’s adjuvant (CFA), which are notorious for the induction of discomforting side effects. Clinically evident EAE could be induced in two out of five rhesus monkeys, six out of six cynomolgus monkeys and six out of six common marmosets. In each of these species, the presence of an early, high anti-rhMOG IgM response is correlated with EAE with an earlier onset and more severe disease course. Animals without an early high IgM response either did not develop disease (rhesus monkeys) or developed only mild signs of neurological deficit (marmoset and cynomolgus monkeys).
Collapse
|
16
|
Haanstra KG, Hofman SO, Lopes Estêvão DM, Blezer ELA, Bauer J, Yang LL, Wyant T, Csizmadia V, 't Hart BA, Fedyk ER. Antagonizing the α4β1 integrin, but not α4β7, inhibits leukocytic infiltration of the central nervous system in rhesus monkey experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 190:1961-73. [PMID: 23365083 DOI: 10.4049/jimmunol.1202490] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immune system is characterized by the preferential migration of lymphocytes through specific tissues (i.e., tissue tropism). Tissue tropism is mediated, in part, by the α(4) integrins expressed by T lymphocytes. The α(4)β(1) integrin mediates migration of memory T lymphocytes into the CNS, whereas the α(4)β(7) integrin mediates migration preferentially into gastrointestinal tissue. This paradigm was established primarily from investigations in rodents; thus, the objective of this investigation was to determine if blocking the α(4)β(7) integrin exclusively would affect migration of T lymphocytes into the CNS of primates. The effects of the dual α(4)β(1) and α(4)β(7) antagonist natalizumab were compared with those of the α(4)β(7) antagonist vedolizumab on experimental autoimmune encephalomyelitis in the rhesus monkey. Animals received an initial i.v. bolus of placebo, natalizumab (30 mg/kg), or vedolizumab (30 mg/kg) before intracutaneous immunization with recombinant human myelin oligodendrocyte glycoprotein and then Ab once weekly thereafter. Natalizumab prevented CNS inflammation and demyelination significantly (p < 0.05), compared with time-matched placebo control animals, whereas vedolizumab did not inhibit these effects, despite saturating the α(4)β(7) integrin in each animal for the duration of the investigation. These results demonstrate that blocking α(4)β(7) exclusively does not inhibit immune surveillance of the CNS in primates.
Collapse
Affiliation(s)
- Krista G Haanstra
- Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee DH, Linker RA. The role of myelin oligodendrocyte glycoprotein in autoimmune demyelination: a target for multiple sclerosis therapy? Expert Opin Ther Targets 2012; 16:451-62. [DOI: 10.1517/14728222.2012.677438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
van Zwam M, Huizinga R, Melief MJ, Wierenga-Wolf AF, van Meurs M, Voerman JS, Biber KPH, Boddeke HWGM, Höpken UE, Meisel C, Meisel A, Bechmann I, Hintzen RQ, 't Hart BA, Amor S, Laman JD, Boven LA. Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med (Berl) 2008; 87:273-86. [PMID: 19050840 DOI: 10.1007/s00109-008-0421-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 11/08/2008] [Accepted: 11/10/2008] [Indexed: 12/25/2022]
Abstract
Drainage of central nervous system (CNS) antigens to the brain-draining cervical lymph nodes (CLN) is likely crucial in the initiation and control of autoimmune responses during multiple sclerosis (MS). We demonstrate neuronal antigens within CLN of MS patients. In monkeys and mice with experimental autoimmune encephalomyelitis (EAE) and in mouse models with non-inflammatory CNS damage, the type and extent of CNS damage was associated with the frequencies of CNS antigens within the cervical lymph nodes. In addition, CNS antigens drained to the spinal-cord-draining lumbar lymph nodes. In human MS CLN, neuronal antigens were present in pro-inflammatory antigen-presenting cells (APC), whereas the majority of myelin-containing cells were anti-inflammatory. This may reflect a different origin of the cells or different drainage mechanisms. Indeed, neuronal antigen-containing cells in human CLN did not express the lymph node homing receptor CCR7, whereas myelin antigen-containing cells in situ and in vitro did. Nevertheless, CLN from EAE-affected CCR7-deficient mice contained equal amounts of myelin and neuronal antigens as wild-type mice. We conclude that the type and frequencies of CNS antigens within the CLN are determined by the type and extent of CNS damage. Furthermore, the presence of myelin and neuronal antigens in functionally distinct APC populations within MS CLN suggests that differential immune responses can be evoked.
Collapse
Affiliation(s)
- Marloes van Zwam
- Department of Immunology, Erasmus MC, CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Autoimmunity Against Myelin Oligodendrocyte Glycoprotein Is Dispensable for the Initiation Although Essential for the Progression of Chronic Encephalomyelitis in Common Marmosets. J Neuropathol Exp Neurol 2008; 67:326-40. [DOI: 10.1097/nen.0b013e31816a6851] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Kap YS, Smith P, Jagessar SA, Remarque E, Blezer E, Strijkers GJ, Laman JD, Hintzen RQ, Bauer J, Brok HPM, 't Hart BA. Fast progression of recombinant human myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis in marmosets is associated with the activation of MOG34-56-specific cytotoxic T cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:1326-37. [PMID: 18209026 DOI: 10.4049/jimmunol.180.3.1326] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recombinant human (rh) myelin/oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) model in the common marmoset is characterized by 100% disease incidence, a chronic disease course, and a variable time interval between immunization and neurological impairment. We investigated whether monkeys with fast and slow disease progression display different anti-MOG T or B cell responses and analyzed the underlying pathogenic mechanism(s). The results show that fast progressor monkeys display a significantly wider specificity diversification of anti-MOG T cells at necropsy than slow progressors, especially against MOG(34-56) and MOG(74-96). MOG(34-56) emerged as a critical encephalitogenic peptide, inducing severe neurological disease and multiple lesions with inflammation, demyelination, and axonal injury in the CNS. Although EAE was not observed in MOG(74-96)-immunized monkeys, weak T cell responses against MOG(34-56) and low grade CNS pathology were detected. When these cases received a booster immunization with MOG(34-56) in IFA, full-blown EAE developed. MOG(34-56)-reactive T cells expressed CD3, CD4, or CD8 and CD56, but not CD16. Moreover, MOG(34-56)-specific T cell lines displayed specific cytotoxic activity against peptide-pulsed B cell lines. The phenotype and cytotoxic activity suggest that these cells are NK-CTL. These results support the concept that cytotoxic cells may play a role in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Yolanda S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
To determine whether an immunological or pharmaceutical product has potential for therapy in treating multiple sclerosis (MS), detailed animal models are required. To date many animal models for human MS have been described in mice, rats, rabbits, guinea pigs, marmosets, and rhesus monkeys. The most comprehensive studies have involved murine experimental allergic (or autoimmune) encephalomyelitis (EAE), Semliki Forest virus (SFV), mouse hepatitis virus (MHV), and Theiler’s murine encephalomyelitis virus (TMEV). Here, we describe in detail multispecies animal models of human MS, namely EAE, SFV, MHV, and TMEV, in addition to chemically induced demyelination. The validity and applicability of each of these models are critically evaluated.
Collapse
|
22
|
Kaushansky N, Hemo R, Eisenstein M, Ben-Nun A. OSP/claudin-11-induced EAE in mice is mediated by pathogenic T cells primarily governed by OSP192Y residue of major encephalitogenic region OSP179-207. Eur J Immunol 2007; 37:2018-31. [PMID: 17549734 DOI: 10.1002/eji.200636965] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Pathogenic autoimmunity against oligodendrocyte-specific protein (OSP/claudin-11), recently implicated in multiple sclerosis (MS) pathophysiology, has been poorly investigated as compared to that against other myelin encephalitogens. Using recombinant soluble mouse OSP (smOSP) and overlapping peptides thereof, we show that smOSP-induced chronic EAE in C57BL/6J mice is primarily associated with CD4(+) T cells reactive against OSP179-207 and OSP22-46, the major and minor encephalitogenic regions, respectively, and with a predominant B cell response against OSP22-46. The encephalitogenic OSP179-207-specific T cells recognized OSP190-202 as minimal stimulatory epitope, while minimal encephalitogenic sequence was OSP191-199. Further delineation and structural bioinformatic analysis of the major encephalitogenic region suggested four overlapping potential I-A(b) core epitopes, predicting OSP192Y as major TCR-contact residue shared by OSP 188-196, OSP190-198, and OSP191-199 cores, albeit at different MHC-II pockets. Accordingly, substitution at OSP192Y yielded OSP188-192A-202, a non-stimulatory/non-encephalitogenic altered peptide ligand (APL) that was antagonistic for OSP188-202-specific encephalitogenic T cells. Systemic administration of OSP188-192A-202 suppressed OSP188-202-induced EAE and fully reversed smOSP-induced EAE. These data suggest that a single epitopic residue (OSP192Y) governs the selection and control of most pathogenic T cells associated with smOSP-induced EAE in H-2(b) mice. This may impact profoundly on peripheral self-tolerance to OSP and on potential APL-mediated therapy of OSP-related autoimmune pathogenesis.
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
23
|
Kaushansky N, Zhong MC, Kerlero de Rosbo N, Hoeftberger R, Lassmann H, Ben-Nun A. Epitope specificity of autoreactive T and B cells associated with experimental autoimmune encephalomyelitis and optic neuritis induced by oligodendrocyte-specific protein in SJL/J mice. THE JOURNAL OF IMMUNOLOGY 2007; 177:7364-76. [PMID: 17082656 DOI: 10.4049/jimmunol.177.10.7364] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The encephalitogenic potential of oligodendrocyte-specific protein (OSP) in mice, its specific localization in the intralamellar tight junctions in CNS myelin, and the detection of autoreactivity against OSP in multiple sclerosis (MS) strongly suggest the relevance of autoreactivity against OSP in the pathogenesis of MS. In this study, we have characterized the autoimmune T and B cells that are associated with clinicopathological manifestations of OSP-induced MS-like disease in mice by using recombinant soluble mouse OSP (smOSP) and synthetic overlapping peptides spanning smOSP. SJL/J mice immunized with smOSP developed chronic relapsing clinical experimental autoimmune encephalomyelitis accompanied with intense perivascular and parenchymal inflammatory infiltrates, widespread demyelination, axonal loss, and remarkable optic neuritis. The smOSP-primed lymph node cells reacted predominantly against OSP55-80 and to a lesser extent also to OSP22-46 and OSP179-207. Unexpectedly, in vitro selection with smOSP resulted in pathogenic smOSP-specific CD4+ T cells that reacted equally well against OSP55-80, OSP22-46, OSP45-66, and OSP179-207. Fine analysis of the anti-OSP autoimmunity revealed that the disease is primarily associated with CD4+ T cells directed against the major (OSP55-80) and the minor (OSP179-207) encephalitogenic regions that were further delineated, both in vitro and in vivo, to OSP55-66 and OSP194-207, respectively. In contrast, the OSP-induced Abs were predominantly directed against OSP22-46; these Abs were mostly of IgG1 isotype, but high levels of IgG2a and IgG2b and significant levels of IgE were also observed. The reactivity of pathogenic T cells to two encephalitogenic regions, OSP55-80 and OSP179-207, and their diverse TCRVbeta gene repertoire may impose difficulties for epitope-directed or TCR-targeting approaches to immune-specific modulation of OSP-related pathogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantibodies/biosynthesis
- Autoantibodies/blood
- Autoantigens/administration & dosage
- Autoantigens/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Line
- Chronic Disease
- Claudins
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Epitope Mapping
- Epitopes, B-Lymphocyte/administration & dosage
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/immunology
- Female
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Mice
- Mice, Inbred C3H
- Molecular Sequence Data
- Nerve Tissue Proteins/administration & dosage
- Nerve Tissue Proteins/immunology
- Oligodendroglia/immunology
- Optic Neuritis/immunology
- Optic Neuritis/pathology
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
24
|
Brok HPM, Boven L, van Meurs M, Kerlero de Rosbo N, Celebi-Paul L, Kap YS, Jagessar A, Hintzen RQ, Keir G, Bajramovic J, Ben-Nun A, Bauer J, Laman JD, Amor S, 't Hart BA. The human CMV-UL86 peptide 981–1003 shares a crossreactive T-cell epitope with the encephalitogenic MOG peptide 34–56, but lacks the capacity to induce EAE in rhesus monkeys. J Neuroimmunol 2007; 182:135-52. [PMID: 17126916 DOI: 10.1016/j.jneuroim.2006.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/06/2006] [Accepted: 10/09/2006] [Indexed: 11/29/2022]
Abstract
Rhesus monkeys immunized with MOG(34-56), a dominant T-cell epitope from myelin/oligodendrocyte glycoprotein, develop an acute neurological disease resembling acute disseminated encephalomyelitis (ADEM) in humans. The typical large demyelinated lesions and mononuclear infiltrates in the monkey brains are caused by MOG(34-56) T-cells. We show that MOG(34-56)-reactive CD4+ and CD8+ T-cells are induced in monkeys immunized with a peptide from the human CMV major capsid protein (UL86; 981-1003), that shares sequence similarity with MOG(34-56). Monkeys sensitized against the viral peptide and subsequently challenged with MOG(34-56) display histological signs of encephalitis, but do not show overt neurological signs.
Collapse
Affiliation(s)
- Herbert P M Brok
- Department of Immunobiology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Visser L, Melief MJ, van Riel D, van Meurs M, Sick EA, Inamura S, Bajramovic JJ, Amor S, Hintzen RQ, Boven LA, 't Hart BA, Laman JD. Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1671-85. [PMID: 17071591 PMCID: PMC1780210 DOI: 10.2353/ajpath.2006.060143] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent studies claim a central role for Toll-like receptor (TLR) ligands in stimulating autoimmune disease by activation of antigen-presenting cells in the target organ, but it is unclear if and how TLR ligands reach target organs. Most evidence comes from rodent models, and it is uncertain whether this principle holds in primates. Here we identify which cells contain peptidoglycan (PGN) in multiple sclerosis brain and in two nonhuman primate experimental autoimmune encephalomyelitis (EAE) models with different disease courses: acute (rhesus monkey) versus chronic disease (marmoset). Because persistence of TLR ligands in the central nervous system might be consequential for disease progression, we also determined the expression of two major PGN-degrading enzymes, ie, lysozyme and N-acetylmuramyl-l-alanine amidase. Distinct phagocyte subsets, including granulocytes, macrophages, and dendritic cells, contained PGN in the brain and coexpressed the inflammatory cytokine interleukin-12. The number of phagocytes carrying PGN increased in acute and chronic EAE compared with control animals, with the highest number of PGN-containing cells in acute EAE brain. Lytic enzymes were scarcely expressed in monkey and multiple sclerosis brain, favoring PGN persistence. PGN stimulated interleukin-12p70 release by leukocytes from all three primate species. The presence of PGN in the inflamed brain may have major implications because TLR2/Nod ligation potentially promotes inflammation and disease progression.
Collapse
Affiliation(s)
- Lizette Visser
- Department of Immunology, Erasmus Medical Center, University Medical Center Rotterdam, PO Box 2040, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Ben-Nun A, Kerlero de Rosbo N, Kaushansky N, Eisenstein M, Cohen L, Kaye JF, Mendel I. Anatomy of T cell autoimmunity to myelin oligodendrocyte glycoprotein (MOG): Prime role of MOG44F in selection and control of MOG-reactive T cells in H-2b mice. Eur J Immunol 2006; 36:478-93. [PMID: 16453383 DOI: 10.1002/eji.200535363] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is an important myelin target antigen, and MOG-induced EAE is now a widely used model for multiple sclerosis. Clonal dissection revealed that MOG-induced EAE in H-2(b) mice is associated with activation of an unexpectedly large number of T cell clones reactive against the encephalitogenic epitope MOG35-55. These clones expressed extremely diverse TCR with no obvious CDR3alpha/CDR3beta motif(s). Despite extensive TCR diversity, the cells required MOG40-48 as their common core epitope and shared MOG44F as their major TCR contact. Fine epitope-specificity analysis with progressively truncated peptides suggested that the extensive TCR heterogeneity is mostly related to differential recognition of multiple overlapping epitopes nested within MOG37-52, each comprised of a MOG40-48 core flanked at the N- and/or the C-terminus by a variable number of residues important for interaction with different TCR. Abrogation of both the encephalitogenic potential of MOG and T cell reactivity against MOG by a single mutation (MOG44F/MOG44A), together with effective down-regulation of MOG-induced EAE by MOG37-44A-52, confirmed in vivo the primary role for MOG44F in the selection/activation of MOG-reactive T cells. We suggest that such a highly focused T cell autoreactivity could be a selective force that offsets the extensive TCR diversity to facilitate a more "centralized control" of pathogenic MOG-related T cell autoimmunity.
Collapse
Affiliation(s)
- Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | | | |
Collapse
|
28
|
't Hart BA, Bauer J, Brok HPM, Amor S. Non-human primate models of experimental autoimmune encephalomyelitis: Variations on a theme. J Neuroimmunol 2005; 168:1-12. [PMID: 16023737 DOI: 10.1016/j.jneuroim.2005.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/26/2005] [Accepted: 05/27/2005] [Indexed: 12/31/2022]
Abstract
Despite years of intensive research into multiple sclerosis (MS) scientists have not yet succeeded in developing an absolute therapy for the treatment of this disabling disease of the human central nervous system. The wide immunological gap between inbred rodent strains and the heterogeneous human population is probably the single most important factor that hampers the translation of scientific principles developed in rodents into effective therapies for MS. Because of the closer immunological proximity to humans, non-human primates provide useful experimental models that may help to bridge this gap. Here we review the models of experimental autoimmune encephalomyelitis in rhesus macaques and common marmosets. We will discuss the salient points of the models and suggest how these may represent the spectrum of inflammatory demyelinating diseases of the central nervous system in humans.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
29
|
Smith PA, Heijmans N, Ouwerling B, Breij EC, Evans N, van Noort JM, Plomp AC, Delarasse C, 't Hart B, Pham-Dinh D, Amor S. Native myelin oligodendrocyte glycoprotein promotes severe chronic neurological disease and demyelination in Biozzi ABH mice. Eur J Immunol 2005; 35:1311-9. [PMID: 15761848 DOI: 10.1002/eji.200425842] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is a powerful encephalitogen for experimental autoimmune demyelination. However, the use of MOG peptides or recombinant proteins representing part of the protein fails to fully address the possible pathogenic role of the full-length myelin-derived protein expressing post-translational modifications. Immunization of mice with central nervous system tissues from wild-type (WT) and MOG-deficient (MOG(-/-)) mice demonstrates that MOG in myelin is necessary for the development of chronic demyelinating experimental autoimmune encephalomyelitis (EAE) in mice. While immunization with WT spinal cord homogenate (SCH) resulted in a progressive EAE phenotype, MOG(-/-) SCH induced a mild self-limiting acute disease. Following acute EAE with MOG(-/-) SCH, mice developed T cell responses to recombinant mouse MOG (rmMOG), indicating that MOG released from myelin is antigenic; however, the lack of chronic disease indicates that such responses were not pathogenic. Chronic demyelinating EAE was observed when MOG(-/-) SCH was reconstituted with a dose of rmMOG comparable to MOG in myelin (2.5% of total white matter-derived protein). These data reveal that while immunization with the full-length post-translational modified form of MOG in myelin promotes the development of a more chronic autoimmune demyelinating neurological disease, MOG (and/or other myelin proteins) released from myelin during ongoing disease do not induce destructive autoimmunity.
Collapse
Affiliation(s)
- Paul A Smith
- Department of Immunobiology, BPRC, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
van Beek J, van Meurs M, 't Hart BA, Brok HPM, Neal JW, Chatagner A, Harris CL, Omidvar N, Morgan BP, Laman JD, Gasque P. Decay-Accelerating Factor (CD55) Is Expressed by Neurons in Response to Chronic but Not Acute Autoimmune Central Nervous System Inflammation Associated with Complement Activation. THE JOURNAL OF IMMUNOLOGY 2005; 174:2353-65. [PMID: 15699172 DOI: 10.4049/jimmunol.174.4.2353] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is compelling evidence that a unique innate immune response in the CNS plays a critical role in host defense and clearance of toxic cell debris. Although complement has been implicated in neuronal impairment, axonal loss, and demyelination, some preliminary evidence suggests that the initial insult consequently activates surrounding cells to signal neuroprotective activities. Using two different models of experimental autoimmune encephalomyelitis, we herein demonstrate selective C1q complement activation on neuron cell bodies and axons. Interestingly, in brains with chronic but not acute experimental autoimmune encephalomyelitis, C3b opsonization of neuronal cell bodies and axons was consistently associated with robust neuronal expression of one of the most effective complement regulators, decay-accelerating factor (CD55). In contrast, levels of other complement inhibitors, complement receptor 1 (CD35), membrane cofactor protein (CD46), and CD59 were largely unaffected on neurons and reactive glial cells in both conditions. In vitro, we found that proinflammatory stimuli (cytokines and sublytic doses of complement) failed to up-regulate CD55 expression on cultured IMR32 neuronal cells. Interestingly, overexpression of GPI-anchored CD55 on IMR32 was capable of modulating raft-associated protein kinase activities without affecting MAPK activities and neuronal apoptosis. Critically, ectopic expression of decay-accelerating factor conferred strong protection of neurons against complement attack (opsonization and lysis). We conclude that increased CD55 expression by neurons may represent a key protective signaling mechanism mobilized by brain cells to withstand complement activation and to survive within an inflammatory site.
Collapse
Affiliation(s)
- Johan van Beek
- Brain Inflammation Immunity Group (BIIG), Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Finn TP, Jones RE, Rich C, Dahan R, Link J, David CS, Chou YK, Offner H, Vandenbark AA. HLA-DRB1*1501 risk association in multiple sclerosis may not be related to presentation of myelin epitopes. J Neurosci Res 2005; 78:100-14. [PMID: 15372502 DOI: 10.1002/jnr.20227] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Susceptibility to multiple sclerosis (MS) is associated genetically with human leucocyte antigen (HLA) class II alleles, including DRB1*1501, DRB5*0101, and DQB1*0602, and it is possible that these alleles contribute to MS through an enhanced ability to present encephalitogenic myelin peptides to pathogenic T cells. HLA-DRB1*1502, which contains glycine instead of valine at position 86 of the P1 peptide-binding pocket, is apparently not genetically associated with MS. To identify possible differences between these alleles in their antigen-presenting function, we determined if T-cell responses to known DRB1*1501-restricted myelin peptides might be diminished or absent in transgenic (Tg) DRB1*1502-expressing mice. We found that Tg DRB1*1502 mice had moderate to strong T-cell responses to several myelin peptides with favorable DRB1*1501 binding motifs, notably myelin oligodendrocyte glycoprotein (MOG)-35-55 (which was also encephalitogenic), proteolipid protein (PLP)-95-116, and MOG-194-208, as well as other PLP and MOG peptides. These peptides, with the exception of MOG-194-208, were also immunogenic in healthy human donors expressing either DRB1*1502 or DRB1*1501. In contrast, the DRB1*1502 mice had weak or absent responses to peptides with unfavorable DRB1*1501 binding motifs. Overall, none of the DRB1*1501-restricted myelin peptides tested selectively lacked immunogenicity in association with DRB1*1502. These results indicate that the difference in risk association with MS of DRB1*1501 versus DRB1*1502 is not due to a lack of antigen presentation by DRB1*1502, at least for this set of myelin peptides, and suggest that other mechanisms involving DRB1*1501 may account for increased susceptibility to MS.
Collapse
Affiliation(s)
- Thomas P Finn
- Neuroimmunology Research, Veterans Affairs Medical Center, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
de Groot N, Doxiadis GG, De Groot NG, Otting N, Heijmans C, Rouweler AJM, Bontrop RE. Genetic makeup of the DR region in rhesus macaques: gene content, transcripts, and pseudogenes. THE JOURNAL OF IMMUNOLOGY 2004; 172:6152-7. [PMID: 15128802 DOI: 10.4049/jimmunol.172.10.6152] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the human population, five major HLA-DRB haplotypes have been identified, whereas the situation in rhesus macaques (Macaca mulatta) is radically different. At least 30 Mamu-DRB region configurations, displaying polymorphism with regard to number and combination of DRB loci present per haplotype, have been characterized. Until now, Mamu-DRB region genes have been studied mainly by genomic sequencing of polymorphic exon 2 segments. However, relatively little is known about the expression status of these genes. To understand which exon 2 segments may represent functional genes, full-length cDNA analyses of -DRA and -DRB were initiated. In the course of the study, 11 cDRA alleles were identified, representing four distinct gene products. Amino acid replacements are confined to the leader peptide and cytoplasmatic tail, whereas residues of the alpha1 domain involved in peptide binding, are conserved between humans, chimpanzees, and rhesus macaques. Furthermore, from the 11 Mamu-DRB region configurations present in this panel, 28 cDRB alleles were isolated, constituting 12 distinct cDRA/cDRB configurations. Evidence is presented that a single configuration expresses maximally up to three -DRB genes. For some exon 2 DRB sequences, the corresponding transcripts could not be detected, rendering such alleles as probable pseudogenes. The full-length cDRA and cDRB sequences are necessary to construct Mhc class II tetramers, as well as transfectant cell lines. As the rhesus macaque is an important animal model in AIDS vaccine studies, the information provided in this communication is essential to define restriction elements and to monitor immune responses in SIV/simian human immunodeficiency virus-infected rhesus macaques.
Collapse
Affiliation(s)
- Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
33
|
Bischof F, Bins A, Dürr M, Zevering Y, Melms A, Kruisbeek AM. A Structurally Available Encephalitogenic Epitope of Myelin Oligodendrocyte Glycoprotein Specifically Induces a Diversified Pathogenic Autoimmune Response. THE JOURNAL OF IMMUNOLOGY 2004; 173:600-6. [PMID: 15210822 DOI: 10.4049/jimmunol.173.1.600] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple sclerosis is an inflammatory disease of the CNS that involves immune reactivity against myelin oligodendrocyte glycoprotein (MOG), a type I transmembrane protein located at the outer surface of CNS myelin. The epitope MOG92-106 is a DR4-restricted Th cell epitope and a target for demyelinating autoantibodies. In this study, we show that the immune response elicited by immunization with this epitope is qualitatively different from immune responses induced by the well-defined epitopes myelin basic protein (MBP) 84-96 and proteolipid protein (PLP) 139-151. Mice with MOG92-106-, but not with MBP84-96- or PLP139-151-induced experimental autoimmune encephalomyelitis developed extensive B cell reactivity against secondary myelin Ags. These secondary Abs were directed against a set of encephalitogenic peptide Ags derived from MBP and PLP as well as a broad range of epitopes spanning the complete MBP sequence. The observed diversification of the B cell reactivity represents a simultaneous spread toward a broad range of antigenic epitopes and differs markedly from T cell epitope spreading that follows a sequential cascade. The Abs were of the isotypes IgG1 and IgG2b, indicating that endogenously recruited B cells receive help from activated T cells. In sharp contrast, B cell reactivity in MBP84-96- and PLP139-151-induced experimental autoimmune encephalomyelitis was directed against the disease-inducing Ag only. These data provide direct evidence that the nature of the endogenously acquired immune reactivity during organ-specific autoimmunity critically depends on the disease-inducing Ag. They further demonstrate that the epitope MOG92-106 has the specific capacity to induce a widespread autoimmune response.
Collapse
Affiliation(s)
- Felix Bischof
- Department of Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
34
|
Markovic M, Trajkovic V, Drulovic J, Mesaros S, Stojsavljevic N, Dujmovic I, Mostarica Stojkovic M. Antibodies against myelin oligodendrocyte glycoprotein in the cerebrospinal fluid of multiple sclerosis patients. J Neurol Sci 2003; 211:67-73. [PMID: 12767500 DOI: 10.1016/s0022-510x(03)00066-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibodies against myelin oligodendrocyte glycoprotein (MOG) mediate demyelination in experimental autoimmune encephalomyelitis (EAE) in different animal species and are implicated in the immunopathogenesis of multiple sclerosis (MS). In order to evaluate the anti-MOG response, we have analyzed the cerebrospinal fluids (CSFs) from 44 MS patients and 51 controls, 11 with other inflammatory neurological disorders (OIND) and 40 with non-inflammatory neurological disorders (NIND). The frequency of anti-MOG antibodies positive patients in the MS group (30%) was significantly higher compared to the NIND (8%, p=0.02), but not compared to the OIND group (55%, p=0.228). Interestingly, all six patients with neurosarcoidosis had MOG-specific antibodies in their CSF. Frequency of anti-MOG antibodies was similar in patients with clinically active and stable MS (32% and 26%, respectively; p=0.921). However, in clinically active MS patients, antibody titers were higher in comparison with patients with stable disease, although the difference did not reach the level of statistical significance (p=0.06). These results further support the potential role of anti-MOG antibodies in the immunopathology of MS in the subset of patients with this disease. Furthermore, our findings suggest for the first time that anti-MOG antibodies could be an accessory diagnostic tool in neurosarcoidosis.
Collapse
Affiliation(s)
- Milos Markovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, Belgrade 11000, Yugoslavia.
| | | | | | | | | | | | | |
Collapse
|
35
|
Vandenbark AA, Rich C, Mooney J, Zamora A, Wang C, Huan J, Fugger L, Offner H, Jones R, Burrows GG. Recombinant TCR ligand induces tolerance to myelin oligodendrocyte glycoprotein 35-55 peptide and reverses clinical and histological signs of chronic experimental autoimmune encephalomyelitis in HLA-DR2 transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:127-33. [PMID: 12816990 DOI: 10.4049/jimmunol.171.1.127] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In a previous study, we demonstrated that myelin oligodendrocyte glycoprotein (MOG)-35-55 peptide could induce severe chronic experimental autoimmune encephalomyelitis (EAE) in HLA-DR2(+) transgenic mice lacking all mouse MHC class II genes. We used this model to evaluate clinical efficacy and mechanism of action of a novel recombinant TCR ligand (RTL) comprised of the alpha(1) and beta(1) domains of DR2 (DRB1*1501) covalently linked to the encephalitogenic MOG-35-55 peptide (VG312). We found that the MOG/DR2 VG312 RTL could induce long-term tolerance to MOG-35-55 peptide and reverse clinical and histological signs of EAE in a dose- and peptide-dependent manner. Some mice treated with lower doses of VG312 relapsed after cessation of daily treatment, but the mice could be successfully re-treated with a higher dose of VG312. Treatment with VG312 strongly reduced secretion of Th1 cytokines (TNF-alpha and IFN-gamma) produced in response to MOG-35-55 peptide, and to a lesser degree purified protein derivative and Con A, but had no inhibitory effect on serum Ab levels to MOG-35-55 peptide. Abs specific for both the peptide and MHC moieties of the RTLs were also present after treatment with EAE, but these Abs had only a minor enhancing effect on T cell activation in vitro. These data demonstrate the powerful tolerance-inducing therapeutic effects of VG312 on MOG peptide-induced EAE in transgenic DR2 mice and support the potential of this approach to inhibit myelin Ag-specific responses in multiple sclerosis patients.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chronic Disease
- Cytokines/antagonists & inhibitors
- Cytokines/metabolism
- Dose-Response Relationship, Immunologic
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Genetic Vectors
- Glycoproteins/administration & dosage
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/immunology
- Growth Inhibitors/administration & dosage
- HLA-DR2 Antigen/genetics
- Humans
- Immune Tolerance/genetics
- Inflammation Mediators/antagonists & inhibitors
- Inflammation Mediators/metabolism
- Ligands
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Peptide Fragments/antagonists & inhibitors
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Neuroimmunology Research and Tykeson Multiple Sclerosis Research Laboratory, Veterans Affairs Medical Center and Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
An autoimmune response to one or more myelin-protein components is thought to be part of the pathogenesis of multiple sclerosis (MS). The immunodominant-autoantibody epitope may be localized on a linear peptide segment, on a conformation-sensitive epitope, or on an epitope resulting from post-translational modifications. Primary, secondary, and tertiary structures of myelin proteins may determine the specific site for binding of autoantibodies. A myelin protein-specific autoantibody can bind to either a linear or conformational epitope, whereas all of the T cell epitopes are linear. At present, the conformational epitopes of myelin proteins have not been identified; most of the methods used to identify the myelin-protein epitopes corresponding to the pathogenesis of multiple sclerosis are involved in the linear epitope mapping. Polymorphism or mutations may cause inappropriate expression of the myelin proteins with alterations to their linear and/or conformational epitopes, and make them susceptible to autoantibody binding, especially if these changes occur at the surface of the protein. This review focuses on the specificity of autoantibodies to the epitopes of myelin proteins and correlates this to the structures of proteins. Factors that influence the expression of myelin-protein epitopes such as the alpha-helical or beta-sheet structure of the protein, the tri-proline site, and the post-translational modifications as well as physicochemical properties of amino acid changed are included.
Collapse
Affiliation(s)
- Permphan Dharmasaroja
- Faculty of Science, Department of Anatomy, Mahidol University, 272 Rama VI Road, Rajthevi, Bangkok 10400, Thailand.
| |
Collapse
|
37
|
de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, 't Hart BA, Laman JD. Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5415-23. [PMID: 12421916 DOI: 10.4049/jimmunol.169.10.5415] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells are thought to regulate tolerance induction vs immunization by transferring Ags and peripheral signals to draining lymph nodes (LN). However, whether myelin Ag transfer and presentation in LN occurs during demyelinating brain disease is unknown. In this study, we demonstrate redistribution of autoantigens from brain lesions to cervical LN in monkey experimental autoimmune encephalomyelitis (EAE) and in multiple sclerosis (MS). Immunohistochemical analysis revealed significantly more cells containing myelin Ags in cervical LN of monkeys with EAE compared with those of healthy control monkeys. Myelin Ags were observed in cells expressing dendritic cell/macrophage-specific markers, MHC class II, and costimulatory molecules. Moreover, these cells were directly juxtaposed to T cells, suggesting that cognate interactions between myelin-containing APC and T cells are taking place in brain-draining LN. Indeed, myelin Ag-reactive T cells were observed in cervical LN from marmosets and rhesus monkeys. Importantly, these findings were paralleled by our findings in human tissue. We observed significantly more myelin Ag-containing cells in LN of individuals with MS compared with those of control individuals. These cells expressed APC markers, as observed in marmosets and rhesus monkeys. These findings suggest that during MS and EAE, modulation of T cell reactivity against brain-derived Ags also takes place in cervical LN and not necessarily inside the brain. A major implication is that novel therapeutic strategies may be targeted to peripheral events, thereby circumventing the blood-brain barrier.
Collapse
Affiliation(s)
- Alex F de Vos
- Department of Immunology, Erasmus Medical Centre, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
MacLean AG, Orandle MS, MacKey J, Williams KC, Alvarez X, Lackner AA. Characterization of an in vitro rhesus macaque blood-brain barrier. J Neuroimmunol 2002; 131:98-103. [PMID: 12458041 PMCID: PMC3635499 DOI: 10.1016/s0165-5728(02)00256-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The blood-brain barrier (BBB) has been modeled in vitro in a number of species, including rat, cow and human. Coculture of multiple cell types is required for the correct expression of tight junction proteins by microvascular brain endothelial cells (MBEC). Markers of inflammation, especially MHC-II, and cell adhesion molecules, such as VCAM-1, are not expressed on the luminal surface of the barrier under resting conditions. The rhesus macaque model has been used to study early events of HIV-neuropathogenesis in vivo, but a suitable in vitro model has not been available for detailed mechanistic studies. Here we describe an in vitro rhesus macaque blood-brain barrier that utilizes autologous MBEC and astrocytes. We believe that this model is highly relevant for examining immunological events at the blood-brain barrier and demonstrate its potential usefulness for examining early events in AIDS neuropathogenesis.
Collapse
Affiliation(s)
- Andrew G MacLean
- New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Myelin oligodendrocyte glycoprotein (MOG) is a quantitatively minor glycoprotein of the CNS localized preferentially on the outermost myelin lamellae and the oligodendrocyte plasma membrane. In several animal models, MOG displays highly immunogenic properties by inducing a severe multiple sclerosis-like disease, characterized by inflammatory demyelinating lesions. Immunologic findings implicate MOG as a target autoantigen in multiple sclerosis. We have performed a molecular study on the MOG gene by sequencing the promotor and the entire coding region, as well as the exon-intron boundaries, in 75 children with multiple sclerosis. A total of five unknown polymorphic sites in the promotor region not affecting any of the putative cis-acting transcriptional regulation motifs as well as nine additional base changes in four different exons each with similar distribution in patients and controls (n = 100) were detected. Exon 2 coding for the Ig-like domain revealed two rare heterozygous missense mutations, possibly altering favorable conformational epitopes (P43H; R66P). P43 is part of the encephalitogenic epitope MOG(35-55). A putative C1q binding site in the C"-D loop of the Ig superfamily motif encompasses R66. In conclusion, the polymorphisms observed do not provide evidence to support a significant role for MOG in multiple sclerosis susceptibility.
Collapse
Affiliation(s)
- Andreas Ohlenbusch
- Abteilung Pädiatrie, Schwerpunkt Neuropädiatrie, Georg-August-Universität, 37075 Göttingen, Germany
| | | | | |
Collapse
|
40
|
Abel K, Alegria-Hartman MJ, Zanotto K, McChesney MB, Marthas ML, Miller CJ. Anatomic site and immune function correlate with relative cytokine mRNA expression levels in lymphoid tissues of normal rhesus macaques. Cytokine 2001; 16:191-204. [PMID: 11814315 DOI: 10.1006/cyto.2001.0961] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reverse transcriptase real-time polymerase chain reaction was used to determine pro-inflammatory, anti-viral and immunoregulatory cytokine mRNA expression levels in peripheral blood mononuclear cells (PBMC) of healthy juvenile, adolescent and adult rhesus macaques. Few age-related changes in cytokine mRNA expression levels were observed. Expression of interleukin 2 and Mx, a type I interferon-inducible gene, decreased with age, whereas interleukin 4 and macrophage inflammatory protein 1 (MIP-1) alpha and beta mRNA levels increased in older monkeys. Independent of age, the pro-inflammatory cytokines [tumour necrosis factor alpha (TNF-alpha) and chemokines] were expressed at higher mRNA levels in PBMC than the immunoregulatory cytokines (interleukins 2, 4, 12). Pro-inflammatory cytokine mRNA expression levels were highest in lymphoid tissues draining mucosal surfaces. Thus, a correlation exists between cytokine mRNA levels in lymphoid tissues and the anatomical site.
Collapse
Affiliation(s)
- K Abel
- Center for Comparative Medicine, University of California Davis, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Traggiai E, Biagioli T, Rosati E, Ballerini C, Mazzanti B, Ben Nun A, Massacesi L, Vergelli M. IL-7-enhanced T-cell response to myelin proteins in multiple sclerosis. J Neuroimmunol 2001; 121:111-9. [PMID: 11730947 DOI: 10.1016/s0165-5728(01)00433-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we investigated the in vitro proliferative response of peripheral blood T lymphocytes from MS patients and controls to MBP and MOG either in the absence or in the presence of the conditioning factor IL-7. In the absence of IL-7, T-cell reactivity to MOG and MBP was similar in MS patients and controls even if an increased MBP response was found in a subgroup of patients with active disease. In the presence of IL-7, increased T-cell reactivity to MBP was observed in MS patients suggesting that their MBP-specific T cells are in a different functional state.
Collapse
Affiliation(s)
- E Traggiai
- Department Neurological and Psychiatric Sciences, Viale Pieraccini 6, 50134, Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
't Hart BA, Brok HP, Amor S, Bontrop RE. The major histocompatibility complex influences the ethiopathogenesis of MS-like disease in primates at multiple levels. Hum Immunol 2001; 62:1371-81. [PMID: 11756006 PMCID: PMC7135550 DOI: 10.1016/s0198-8859(01)00346-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2001] [Revised: 08/14/2001] [Accepted: 08/23/2001] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease primarily affecting the central nervous system. Of the many candidate polymorphic major histocompatibility complex (MHC) and non-MHC genes contributing to disease susceptibility, including those encoding effector (cytokines and chemokines) or receptor molecules within the immune system (MHC, TCR, Ig or FcR), human leukocyte antigen (HLA) class II genes have the most significant influence. In this article we put forward the hypothesis that the influence of HLA genes on the risk to develop MS is actually the sum of multiple antigen presenting cell (APC) and T-cell interactions involving HLA class I and class II molecules. This article will also discuss that, because of the genetic and immunologic similarity to humans, autoimmune models of MS in non-human primates are the experimental models "par excellence" to test this hypothesis.
Collapse
Key Words
- experimental autoimmune encephalomyelitis
- multiple sclerosis
- primates
- immunology
- apc, antigen presenting cell
- bbb, blood-brain barrier
- cln, cervical lymph node
- cns, central nervous system
- eae, experimental autoimmune encephalomyelitis
- hla, human leukocyte antigen
- ig, immunoglobulin
- mbp, myelin basic protein
- mhc, major histocompatibility complex
- mog, myelin/oligodendrocyte glycoprotein
- ms, multiple sclerosis
- plp, proteolipid protein
- tcr, t-cell recptor
- tmev, theiler’s murine encephalomyelitis virus
- sfv, semliki forest virus
Collapse
Affiliation(s)
- B A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Iglesias A, Bauer J, Litzenburger T, Schubart A, Linington C. T- and B-cell responses to myelin oligodendrocyte glycoprotein in experimental autoimmune encephalomyelitis and multiple sclerosis. Glia 2001; 36:220-34. [PMID: 11596130 DOI: 10.1002/glia.1111] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The identification of myelin oligodendrocyte glycoprotein (MOG) as a target for autoantibody-mediated demyelination in experimental autoimmune encephalomyelitis (EAE) resulted in the re-evaluation of the role of B cell responses to myelin autoantigens in the immunopathogenesis of multiple sclerosis. MOG is a central nervous system specific myelin glycoprotein that is expressed preferentially on the outermost surface of the myelin sheath. Although MOG is only a minor component of CNS myelin it is highly immunogenic, inducing severe EAE in both rodents and primates. In rat and marmoset models of MOG-induced EAE demyelination is antibody-dependent and reproduces the immunopathology seen in many cases of MS. In contrast, in mice inflammation in the CNS can result in demyelination in the absence of a MOG-specific B cell response, although if present this will enhance disease severity and demyelination. Clinical studies indicate that autoimmune responses to MOG are enhanced in many CNS diseases and implicate MOG-specific B cell responses in the immunopathogenesis of multiple sclerosis. This review provides a summary of our current understanding of MOG as a target autoantigen in EAE and MS, and addresses the crucial question as to how immune tolerance to MOG may be maintained in the healthy individual.
Collapse
Affiliation(s)
- A Iglesias
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | | | | | | | | |
Collapse
|
44
|
McQualter JL, Darwiche R, Ewing C, Onuki M, Kay TW, Hamilton JA, Reid HH, Bernard CC. Granulocyte macrophage colony-stimulating factor: a new putative therapeutic target in multiple sclerosis. J Exp Med 2001; 194:873-82. [PMID: 11581310 PMCID: PMC2193476 DOI: 10.1084/jem.194.7.873] [Citation(s) in RCA: 333] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis, can be induced by immunization with a number of myelin antigens. In particular, myelin oligodendrocyte glycoprotein, a central nervous system (CNS)-specific antigen expressed on the myelin surface, is able to induce a paralytic MS-like disease with extensive CNS inflammation and demyelination in several strains of animals. Although not well understood, the egress of immune cells into the CNS in EAE is governed by a complex interplay between pro and antiinflammatory cytokines and chemokines. The hematopoietic growth factor, granulocyte macrophage colony-stimulating factor (GM-CSF), is considered to play a central role in maintaining chronic inflammation. The present study was designed to investigate the previously unexplored role of GM-CSF in autoimmune-mediated demyelination. GM-CSF(-/)- mice are resistant to EAE, display decreased antigen-specific proliferation of splenocytes, and fail to sustain immune cell infiltrates in the CNS, thus revealing key activities for GM-CSF in the development of inflammatory demyelinating lesions and control of migration and/or proliferation of leukocytes within the CNS. These results hold implications for the pathogenesis of inflammatory and demyelinating diseases and may provide the basis for more effective therapies for inflammatory diseases, and more specifically for multiple sclerosis.
Collapse
Affiliation(s)
- Jonathan L. McQualter
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Victoria 3086, Australia
| | - Rima Darwiche
- Autoimmunity and Transplantation Division, The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital
| | - Christine Ewing
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Victoria 3086, Australia
| | - Manabu Onuki
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Victoria 3086, Australia
| | - Thomas W. Kay
- Autoimmunity and Transplantation Division, The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital
| | - John A. Hamilton
- Arthritis and Inflammation Research Center, Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria 3050, Australia
| | - Hugh H. Reid
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Victoria 3086, Australia
| | - Claude C.A. Bernard
- Neuroimmunology Laboratory, Department of Biochemistry, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
45
|
von Büdingen HC, Tanuma N, Villoslada P, Ouallet JC, Hauser SL, Genain CP. Immune responses against the myelin/oligodendrocyte glycoprotein in experimental autoimmune demyelination. J Clin Immunol 2001; 21:155-70. [PMID: 11403222 DOI: 10.1023/a:1011031014433] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myelin/oligodendrocyte glycoprotein (MOG) is a surface-exposed antigen of myelin and an important target for autoimmune responses which mediate inflammatory demyelination in the central nervous system. Experimentally, MOG induces strong pathogenic T cell responses in many strains of laboratory animals. Immunological studies in humans also identify MOG as a surprisingly prevalent antigenic molecule among the myelin proteins. In addition, the encephalitogenic properties of MOG are linked to the induction of antibody responses which have been demonstrated to directly promote central nervous system demyelination, a hallmark neuropathological feature in disorders such as human multiple sclerosis. Factors responsible for autoimmunity to MOG likely include genetic influences as well as other mechanisms, which are the subject of intense investigation. This article reviews experimental data currently available on specificity and pathogenic roles of T cell and antibody responses against MOG, which have implications relevant to multiple sclerosis and related disorders.
Collapse
Affiliation(s)
- H C von Büdingen
- Department of Neurology, University of California, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|