1
|
Li JL, Fu GQ, Wang YY, Bian MM, Xu YM, Zhang L, Chen YQ, Zhang N, Ding SQ, Wang R, Fang R, Tang J, Hu JG, Lü HZ. The polarization of microglia and infiltrated macrophages in the injured mice spinal cords: a dynamic analysis. PeerJ 2023; 11:e14929. [PMID: 36846458 PMCID: PMC9951800 DOI: 10.7717/peerj.14929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Background Following spinal cord injury (SCI), a large number of peripheral monocytes infiltrate into the lesion area and differentiate into macrophages (Mø). These monocyte-derived Mø are very difficult to distinguish from the local activated microglia (MG). Therefore, the term Mø/MG are often used to define the infiltrated Mø and/or activated MG. It has been recognized that pro-inflammatory M1-type Mø/MG play "bad" roles in the SCI pathology. Our recent research showed that local M1 cells are mainly CD45-/lowCD68+CD11b+ in the subacute stage of SCI. Thus, we speculated that the M1 cells in injured spinal cords mainly derived from MG rather than infiltrating Mø. So far, their dynamics following SCI are not yet entirely clear. Methods Female C57BL/6 mice were used to establish SCI model, using an Infinite Horizon impactor with a 1.3 mm diameter rod and a 50 Kdynes force. Sham-operated (sham) mice only underwent laminectomy without contusion. Flow cytometry and immunohistofluorescence were combined to analyze the dynamic changes of polarized Mø and MG in the acute (1 day), subacute (3, 7 and 14 days) and chronic (21 and 28 days) phases of SCI. Results The total Mø/MG gradually increased and peaked at 7 days post-injury (dpi), and maintained at high levels 14, 21 and 28 dpi. Most of the Mø/MG were activated, and the Mø increased significantly at 1 and 3 dpi. However, with the pathological process, activated MG increased nearly to 90% at 7, 14, 21 and 28 dpi. Both M1 and M2 Mø were increased significantly at 1 and 3 dpi. However, they decreased to very low levels from 7 to 28 dpi. On the contrary, the M2-type MG decreased significantly following SCI and maintained at a low level during the pathological process.
Collapse
Affiliation(s)
- Jing-Lu Li
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Gui-Qiang Fu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang-Yang Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ming-Ming Bian
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yao-Mei Xu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu-Qing Chen
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Nan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Fang
- Department of Clinical Medical, Bengbu Medical College, Bengbu, China
| | - Jie Tang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China,Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
2
|
Lee TK, Lu CY, Tsai ST, Tseng PH, Lin YC, Lin SZ, Wang JC, Huang CY, Chiu TL. Complete Restoration of Motor Function in Acute Cerebral Stroke Treated with Allogeneic Human Umbilical Cord Blood Monocytes: Preliminary Results of a phase I Clinical Trial. Cell Transplant 2021; 30:9636897211067447. [PMID: 34939863 PMCID: PMC8728774 DOI: 10.1177/09636897211067447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stem cell therapy has been explored for the treatment of cerebral stroke. Several types of stem cells have been investigated to ensure the safety and efficacy in clinical trials.Cryopreserved umbilical cord blood (UCB) mononuclear cells (MNCs) obtained from healthy donors have a more stabilized quality, thereby ensuring a successful therapy. A phase I study was conducted on patients aged 45-80 years who sustained acute ischemic stroke. An UCB unit was obtained from a public cord blood bank based on ABO/Rh blood type, HLA matching score (6/6), and cell dose (total MNC count of 0.5-5 × 107 cells/kg). In addition, to facilitate blood brain barrier penetration of UCB, 4 doses of 100 mL mannitol was administered intravenously after 30 min after UCB transplantation and every 4 h thereafter. The primary outcomes were the number of disease (GVHD) within 100 days after transfusion. The secondary outcomes were changes in the National Institutes of Health Stroke Scale (NIHSS), Barthel index, and Berg Balance Scale scores. A 46-year-old male patient with identical ABO/Rh blood type, HLA matching score of 6/6, and MNC count of 2.63 × 108 cells/kg was enrolled. The patient did not present with serious AEs or GVHD during the 12-month study period. The patient's NIHSS score decreased from 9 to 1. Moreover, the Berg Balance Scale score increased from 0 to 48 and the Barthel index score from 0 to 90. This preliminary study showed that an adult patient with hemiplegia due to ischemic stroke completely recovered within 12 months after receiving allogeneic UCB therapy.
Collapse
Affiliation(s)
- Tian-Kuo Lee
- Department of Neurosurgical Unit, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Cheng-You Lu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,College of Medicine, Tzu Chi University, Hualien
| | - Pao-Hui Tseng
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,College of Medicine, Tzu Chi University, Hualien
| | - Yu-Chen Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,College of Medicine, Tzu Chi University, Hualien.,Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien
| | | | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung.,Graduate Institute of Biomedical Science, China Medical University, Taichung.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien.,Department of Medical Research, China Medical University, Hospital, China Medical University, Taichung
| | - Tsung-Lang Chiu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien.,College of Medicine, Tzu Chi University, Hualien
| |
Collapse
|
3
|
Hersh J, Yang SH. Glia-immune interactions post-ischemic stroke and potential therapies. Exp Biol Med (Maywood) 2018; 243:1302-1312. [PMID: 30537868 DOI: 10.1177/1535370218818172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
IMPACT STATEMENT This article reviews glial cell interactions with the immune system post-ischemic stroke. Research has shown that glial cells in the brain play a role in altering phenotypes of other glial cells and have downstream immune cell targets ultimately regulating a neuroinflammatory response. These interactions may play a deleterious as well as beneficial role in stroke recovery. Furthermore, they may provide a novel way to approach potential therapies, since current stroke drug therapy is limited to only one Food and Drug Administration-approved drug complicated by a narrow therapeutic window. Until this point, most research has emphasized neuroimmune interactions, but little focus has been on bidirectional communication of glial-immune interactions in the ischemic brain. By expanding our understanding of these interactions through a compilation of glial cell effects, we may be able to pinpoint major modulating factors in brain homeostasis to maintain or discover ways to suppress irreversible ischemic damage and improve brain repair.
Collapse
Affiliation(s)
- Jessica Hersh
- Department of Neuroscience and Pharmacology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shao-Hua Yang
- Department of Neuroscience and Pharmacology, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Abstract
Spinal cord injury (SCI) is a common medical condition with a poor prognosis for recovery and catastrophic effects on a patient's quality of life. Available treatments for SCI are limited, and the evidence suggesting their harmful side effects is more consistent than any suggestion of clinical benefit. Developing novel safe and effective therapeutic options for SCI is crucial. Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine with known multifaceted effects on the central nervous system. Herein, we review the accumulating preclinical evidence for the beneficial effects of G-CSF on functional and structural outcomes after SCI. Meanwhile we present and discuss multiple mechanisms for G-CSF's neuroprotective and neuroregenerative actions through the results of these studies. In addition, we present the available clinical evidence indicating the efficacy and safety of G-CSF administration for the treatment of acute and chronic traumatic SCI, compression myelopathy, and SCI-associated neuropathic pain. Our review indicates that although the quality of clinical evidence regarding the use of G-CSF in SCI is inadequate, the encouraging available preclinical and clinical data warrant its further clinical development, and bring new hope to the longstanding challenge that is treatment of SCI.
Collapse
|
5
|
Localized Sympathectomy Reduces Mechanical Hypersensitivity by Restoring Normal Immune Homeostasis in Rat Models of Inflammatory Pain. J Neurosci 2017; 36:8712-25. [PMID: 27535916 DOI: 10.1523/jneurosci.4118-15.2016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/09/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Some forms of chronic pain are maintained or enhanced by activity in the sympathetic nervous system (SNS), but attempts to model this have yielded conflicting findings. The SNS has both pro- and anti-inflammatory effects on immunity, confounding the interpretation of experiments using global sympathectomy methods. We performed a "microsympathectomy" by cutting the ipsilateral gray rami where they entered the spinal nerves near the L4 and L5 DRG. This led to profound sustained reductions in pain behaviors induced by local DRG inflammation (a rat model of low back pain) and by a peripheral paw inflammation model. Effects of microsympathectomy were evident within one day, making it unlikely that blocking sympathetic sprouting in the local DRGs or hindpaw was the sole mechanism. Prior microsympathectomy greatly reduced hyperexcitability of sensory neurons induced by local DRG inflammation observed 4 d later. Microsympathectomy reduced local inflammation and macrophage density in the affected tissues (as indicated by paw swelling and histochemical staining). Cytokine profiling in locally inflamed DRG showed increases in pro-inflammatory Type 1 cytokines and decreases in the Type 2 cytokines present at baseline, changes that were mitigated by microsympathectomy. Microsympathectomy was also effective in reducing established pain behaviors in the local DRG inflammation model. We conclude that the effect of sympathetic fibers in the L4/L5 gray rami in these models is pro-inflammatory. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some chronic inflammatory pain conditions. SIGNIFICANCE STATEMENT Sympathetic blockade is used for many pain conditions, but preclinical studies show both pro- and anti-nociceptive effects. The sympathetic nervous system also has both pro- and anti-inflammatory effects on immune tissues and cells. We examined effects of a very localized sympathectomy. By cutting the gray rami to the spinal nerves near the lumbar sensory ganglia, we avoided widespread sympathetic denervation. This procedure profoundly reduced mechanical pain behaviors induced by a back pain model and a model of peripheral inflammatory pain. One possible mechanism was reduction of inflammation in the sympathetically denervated regions. This raises the possibility that therapeutic interventions targeting gray rami might be useful in some inflammatory conditions.
Collapse
|
6
|
Lumniczky K, Szatmári T, Sáfrány G. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain. Front Immunol 2017; 8:517. [PMID: 28529513 PMCID: PMC5418235 DOI: 10.3389/fimmu.2017.00517] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 01/17/2023] Open
Abstract
Radiation-induced late brain injury consisting of vascular abnormalities, demyelination, white matter necrosis, and cognitive impairment has been described in patients subjected to cranial radiotherapy for brain tumors. Accumulating evidence suggests that various degrees of cognitive deficit can develop after much lower doses of ionizing radiation, as well. The pathophysiological mechanisms underlying these alterations are not elucidated so far. A permanent deficit in neurogenesis, chronic microvascular alterations, and blood–brain barrier dysfunctionality are considered among the main causative factors. Chronic neuroinflammation and altered immune reactions in the brain, which are inherent complications of brain irradiation, have also been directly implicated in the development of cognitive decline after radiation. This review aims to give a comprehensive overview on radiation-induced immune alterations and inflammatory reactions in the brain and summarizes how these processes can influence cognitive performance. The available data on the risk of low-dose radiation exposure in the development of cognitive impairment and the underlying mechanisms are also discussed.
Collapse
Affiliation(s)
- Katalin Lumniczky
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Tünde Szatmári
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Géza Sáfrány
- Division of Radiation Medicine, National Public Health Centre, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| |
Collapse
|
7
|
Braun M, Vaibhav K, Saad N, Fatima S, Brann DW, Vender JR, Wang LP, Hoda MN, Baban B, Dhandapani KM. Activation of Myeloid TLR4 Mediates T Lymphocyte Polarization after Traumatic Brain Injury. THE JOURNAL OF IMMUNOLOGY 2017; 198:3615-3626. [PMID: 28341672 DOI: 10.4049/jimmunol.1601948] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI) is a major public health issue, producing significant patient mortality and poor long-term outcomes. Increasing evidence suggests an important, yet poorly defined, role for the immune system in the development of secondary neurologic injury over the days and weeks following a TBI. In this study, we tested the hypothesis that peripheral macrophage infiltration initiates long-lasting adaptive immune responses after TBI. Using a murine controlled cortical impact model, we used adoptive transfer, transgenic, and bone marrow chimera approaches to show increased infiltration and proinflammatory (classically activated [M1]) polarization of macrophages for up to 3 wk post-TBI. Monocytes purified from the injured brain stimulated the proliferation of naive T lymphocytes, enhanced the polarization of T effector cells (TH1/TH17), and decreased the production of regulatory T cells in an MLR. Similarly, elevated T effector cell polarization within blood and brain tissue was attenuated by myeloid cell depletion after TBI. Functionally, C3H/HeJ (TLR4 mutant) mice reversed M1 macrophage and TH1/TH17 polarization after TBI compared with C3H/OuJ (wild-type) mice. Moreover, brain monocytes isolated from C3H/HeJ mice were less potent stimulators of T lymphocyte proliferation and TH1/TH17 polarization compared with C3H/OuJ monocytes. Taken together, our data implicate TLR4-dependent, M1 macrophage trafficking/polarization into the CNS as a key mechanistic link between acute TBI and long-term, adaptive immune responses.
Collapse
Affiliation(s)
- Molly Braun
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Department of Medical Laboratory, Imaging, and Radiological Sciences, College of Allied Health Sciences, Augusta University, Augusta, GA 30912
| | - Nancy Saad
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA 30912
| | - Sumbul Fatima
- Department of Medical Laboratory, Imaging, and Radiological Sciences, College of Allied Health Sciences, Augusta University, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - John R Vender
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Lei P Wang
- Department of Psychiatry, Medical College of Georgia, Augusta University, Augusta, GA 30912; and
| | - Md Nasrul Hoda
- Department of Medical Laboratory, Imaging, and Radiological Sciences, College of Allied Health Sciences, Augusta University, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912; .,Charlie Norwood VA Medical Center, Augusta, GA 30912
| |
Collapse
|
8
|
Wu Y, Lin YH, Shi LL, Yao ZF, Xie XM, Jiang ZS, Tang J, Hu JG, Lü HZ. Temporal kinetics of CD8 + CD28 + and CD8 + CD28 - T lymphocytes in the injured rat spinal cord. J Neurosci Res 2016; 95:1666-1676. [PMID: 27898179 DOI: 10.1002/jnr.23993] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/09/2016] [Accepted: 10/31/2016] [Indexed: 01/13/2023]
Abstract
This study aims to explore the temporal changes of cytotoxic CD8+ CD28+ and regulatory CD8+ CD28- T-cell subsets in the lesion microenvironment after spinal cord injury (SCI) in rats, by combination of immunohistochemistry (IHC) and flow cytometry (FCM). In the sham-opened spinal cord, few CD8+ T cells were found. After SCI, the CD8+ T cells were detected at one day post-injury (dpi), then markedly increased and were significantly higher at 3, 7, and 14 dpi compared with one dpi (p < 0.01), the highest being seven dpi. In CD8+ T cells, more than 90% were CD28+ , and there were only small part of CD28- ( < 10%). After 14 days, the infiltrated CD8+ T cells were significantly decreased, and few could be found in good condition at 21 and 28 dpi. Annexin V and propidium iodide (PI) staining showed that the percentages of apoptotic/necrotic CD8+ cells at 14 dpi and 21 dpi were significantly higher than those of the other early time-points (p < 0.01). These results indicate that CD8+ T cells could rapidly infiltrate into the injured spinal cords and survive two weeks, however, cytotoxic CD8+ T cells were dominant. Therefore, two weeks after injury might be the "time window" for treating SCI by prolonging survival times and increasing the fraction of CD8+ regulatory T-cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yan Wu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Yu-Hong Lin
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Ling-Ling Shi
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Zong-Feng Yao
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China
| | - Xiu-Mei Xie
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China
| | - Zheng-Song Jiang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Jie Tang
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| | - Jian-Guo Hu
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China
| | - He-Zuo Lü
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, P.R. China.,Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Anhui, 233030, P.R. China
| |
Collapse
|
9
|
T Cells-Protective or Pathogenic in Alzheimer's Disease? J Neuroimmune Pharmacol 2015; 10:547-60. [PMID: 25957956 DOI: 10.1007/s11481-015-9612-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and is characterised by deposits of amyloid β (Aβ), neurofibrillary tangles and neuronal loss. Neuroinflammatory changes have been identified as a feature of the disease, and recent studies have suggested a potential role for the peripheral immune system in driving these changes and, ultimately, the associated neuronal degeneration. A number of reports have detailed changes in the activation state and subtype of T cells in the circulation and CSF of AD patients and there is evidence of T cell infiltration into the brain. In this review, we examine the possible impact of T cell infiltration in the progression of pathology in AD and consider the data obtained from animal models of the disease. We consider how these cells infiltrate the brain, particularly in AD, and discuss whether the presence of T cells in the AD brain is protective or pathogenic. Finally we evaluate the current therapies, particularly those that involve immunization.
Collapse
|
10
|
Ouyang YB, Stary CM, White RE, Giffard RG. The use of microRNAs to modulate redox and immune response to stroke. Antioxid Redox Signal 2015; 22:187-202. [PMID: 24359188 PMCID: PMC4281877 DOI: 10.1089/ars.2013.5757] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cerebral ischemia is a major cause of death and disability throughout the world, yet therapeutic options remain limited. The interplay between the cellular redox state and the immune response plays a critical role in determining the extent of neural cell injury after ischemia and reperfusion. Excessive amounts of reactive oxygen species (ROS) generated by mitochondria and other sources act both as triggers and effectors of inflammation. This review will focus on the interplay between these two mechanisms. RECENT ADVANCES MicroRNAs (miRNAs) are important post-transcriptional regulators that interact with multiple target messenger RNAs coordinately regulating target genes, including those involved in controlling mitochondrial function, redox state, and inflammatory pathways. This review will focus on the regulation of mitochondria, ROS, and inflammation by miRNAs in the chain of deleterious intra- and intercellular events that lead to brain cell death after cerebral ischemia. CRITICAL ISSUES Although pretreatment using miRNAs was effective in cerebral ischemia in rodents, testing treatment after the onset of ischemia is an essential next step in the development of acute stroke treatment. In addition, miRNA formulation and delivery into the CNS remain a challenge in the clinical translation of miRNA therapy. FUTURE DIRECTIONS Future research should focus on post-treatment and potential clinical use of miRNAs.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine , Stanford, California
| | | | | | | |
Collapse
|
11
|
Breaking peripheral immune tolerance to CNS antigens in neurodegenerative diseases: Boosting autoimmunity to fight-off chronic neuroinflammation. J Autoimmun 2014; 54:8-14. [DOI: 10.1016/j.jaut.2014.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 12/14/2022]
|
12
|
Shrestha R, Millington O, Brewer J, Dev KK, Bushell TJ. Lymphocyte-mediated neuroprotection in in vitro models of excitotoxicity involves astrocytic activation and the inhibition of MAP kinase signalling pathways. Neuropharmacology 2014; 76 Pt A:184-93. [DOI: 10.1016/j.neuropharm.2013.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/18/2013] [Accepted: 06/25/2013] [Indexed: 12/14/2022]
|
13
|
Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 2013; 33:7-22. [PMID: 24357543 DOI: 10.1002/embj.201386609] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammation is an integral part of the body's physiological repair mechanism, unless it remains unresolved and becomes pathological, as evident in the progressive nature of neurodegeneration. Based on studies from outside the central nervous system (CNS), it is now understood that the resolution of inflammation is an active process, which is dependent on well-orchestrated innate and adaptive immune responses. Due to the immunologically privileged status of the CNS, such resolution mechanism has been mostly ignored. Here, we discuss resolution of neuroinflammation as a process that depends on a network of immune cells operating in a tightly regulated sequence, involving the brain's choroid plexus (CP), a unique neuro-immunological interface, positioned to integrate signals it receives from the CNS parenchyma with signals coming from circulating immune cells, and to function as an on-alert gate for selective recruitment of inflammation-resolving leukocytes to the inflamed CNS parenchyma. Finally, we propose that functional dysregulation of the CP reflects a common underlying mechanism in the pathophysiology of neurodegenerative diseases, and can thus serve as a potential novel target for therapy.
Collapse
Affiliation(s)
- Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
14
|
Vidal PM, Lemmens E, Dooley D, Hendrix S. The role of “anti-inflammatory” cytokines in axon regeneration. Cytokine Growth Factor Rev 2013; 24:1-12. [DOI: 10.1016/j.cytogfr.2012.08.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
|
15
|
Boato F, Rosenberger K, Nelissen S, Geboes L, Peters EM, Nitsch R, Hendrix S. Absence of IL-1β positively affects neurological outcome, lesion development and axonal plasticity after spinal cord injury. J Neuroinflammation 2013; 10:6. [PMID: 23317037 PMCID: PMC3585738 DOI: 10.1186/1742-2094-10-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 12/07/2012] [Indexed: 11/10/2022] Open
Abstract
Precise crosstalk between the nervous and immune systems is important for neuroprotection and axon plasticity after injury. Recently, we demonstrated that IL-1β acts as a potent inducer of neurite outgrowth from organotypic brain slices in vitro, suggesting a potential function of IL-1β in axonal plasticity. Here, we have investigated the effects of IL-1β on axon plasticity during glial scar formation and on functional recovery in a mouse model of spinal cord compression injury (SCI). We used an IL-1β deficiency model (IL-1βKO mice) and administered recombinant IL-1β. In contrast to our hypothesis, the histological analysis revealed a significantly increased lesion width and a reduced number of corticospinal tract fibers caudal to the lesion center after local application of recombinant IL-1β. Consistently, the treatment significantly worsened the neurological outcome after SCI in mice compared with PBS controls. In contrast, the absence of IL-1β in IL-1βKO mice significantly improved recovery from SCI compared with wildtype mice. Histological analysis revealed a smaller lesion size, reduced lesion width and greatly decreased astrogliosis in the white matter, while the number of corticospinal tract fibers increased significantly 5 mm caudal to the lesion in IL-1βKO mice relative to controls. Our study for the first time characterizes the detrimental effects of IL-1β not only on lesion development (in terms of size and glia activation), but also on the plasticity of central nervous system axons after injury.
Collapse
Affiliation(s)
- Francesco Boato
- Department of Morphology & BIOMED Institute, Campus Diepenbeek, Hasselt University, Agoralaan Gebouw C, Diepenbeek, BE 3590, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang K, Chao R, Guo QN, Liu MY, Liang HP, Liu P, Zhao JH. Expressions of some neurotrophins and neurotrophic cytokines at site of spinal cord injury in mice after vaccination with dendritic cells pulsed with homogenate proteins. Neuroimmunomodulation 2013; 20:87-98. [PMID: 23257628 DOI: 10.1159/000345522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/22/2012] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Immune cells are key mediators of secondary damage following spinal cord injury (SCI), and dendritic cell (DC)-based vaccines have received considerable interest for treatment of SCI. We previously showed that vaccination with DCs pulsed with homogenate proteins of the spinal cord (hpDCs) promotes functional recovery from SCI in mice. However, the underlying molecular mechanisms remain unclear. Here, changes of neurotrophins, cytokines and T cells at the site of SCI in mice after vaccination with hpDCs were investigated and correlated with recovery from SCI. METHODS hpDCs, DCs (control) or PBS (control) were injected intraperitoneally into injured mouse spinal cords. Functional recovery of the spinal cord was measured weekly using the Basso Mouse Scale (BMS) and confirmed by histological and immunohistochemical analysis. Brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), interleukin-4 (IL-4) and interferon-γ (IFN-γ) levels in T cell culture supernatants and spinal cord tissues were determined by ELISA. RESULTS Eighty-four days after immunization, the BMS score of the hpDCs group (6.92 ± 0.20) was significantly higher than those of the DCs and PBS groups (p < 0.01). Meanwhile, the injury area and number of cysts in the hpDCs group decreased significantly compared with control groups. BDNF, NT-3, IL-4 and IFN-γ levels at the injured site as well as BDNF and NT-3 levels in the supernatant of cultured T cells from the hpDCs group were significantly higher than in control groups (p < 0.05). CONCLUSION These results reveal that vaccination with hpDCs can promote SCI repair potentially by upregulating BDNF, NT-3, IL-4 and IFN-γ at the injury site.
Collapse
Affiliation(s)
- Ke Wang
- Department of Spine Surgery, Daping Hospital, Research Institute of Surgery, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Ayer RE, Ostrowski RP, Sugawara T, Ma Q, Jafarian N, Tang J, Zhang JH. Statin-induced T-lymphocyte modulation and neuroprotection following experimental subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 115:259-66. [PMID: 22890678 DOI: 10.1007/978-3-7091-1192-5_46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Statins influence immune system activities through mechanisms independent of their lipid-lowering properties. T cells can be subdivided based on cytokine secretion patterns into two subsets: T-helper cells type 1 (Th1) and type 2 (Th2). Independent laboratory studies have shown statins to be potent inducers of a Th2 switch in immune cell response and be neuroprotective in several models of central nervous system (CNS) disease. This study was the first to evaluate the immune modulating effects of statins in subarachnoid hemorrhage (SAH). METHODS Simvastatin was administered to rats intraperitoneally in two dosages (1 and 20 mg/kg) 30 min after the induction of SAH using endovascular perforation. Neurological scores were assessed 24 h later. Animals were then sacrificed, and samples of cortex and brain stem were tested for expression of the T-regulatory cell cytokine transforming growth factor (TGF) β1, as well as interleukin (IL) 1β, a proinflammatory cytokine associated with Th1 immune responses. The presence of TGF-β1 secreting T cells was evaluated with the use of brain slices. RESULTS SAH significantly impaired neurological function in all SAH groups (treated and untreated) versus sham. Animals treated with high-dose simvastatin had less neurological impairment than both untreated and low-dose groups. Cortical and brain-stem levels of TGF-β1 were significantly elevated following SAH in the high-dose group. IL-1β was significantly elevated following the induction of SAH but was inhibited by high-dose simvastatin. Double-labeled fluorescent immunohistochemical data demonstrated the presence of lymphocytes in the subarachnoid and perivascular spaces following SAH. Expression of TGF-β1 by lymphocytes was markedly increased following treatment with high-dose simvastatin. CONCLUSION The present study elucidated the potential role of a Th2 immune switch in statin provided neuroprotection following SAH.
Collapse
Affiliation(s)
- Robert E Ayer
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ziebell JM, Taylor SE, Cao T, Harrison JL, Lifshitz J. Rod microglia: elongation, alignment, and coupling to form trains across the somatosensory cortex after experimental diffuse brain injury. J Neuroinflammation 2012; 9:247. [PMID: 23111107 PMCID: PMC3526458 DOI: 10.1186/1742-2094-9-247] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/08/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Since their discovery, the morphology of microglia has been interpreted to mirror their function, with ramified microglia constantly surveying the micro-environment and rapidly activating when changes occur. In 1899, Franz Nissl discovered what we now recognize as a distinct microglial activation state, microglial rod cells (Stäbchenzellen), which he observed adjacent to neurons. These rod-shaped microglia are typically found in human autopsy cases of paralysis of the insane, a disease of the pre-penicillin era, and best known today from HIV-1-infected brains. Microglial rod cells have been implicated in cortical 'synaptic stripping' but their exact role has remained unclear. This is due at least in part to a scarcity of experimental models. Now we have noted these rod microglia after experimental diffuse brain injury in brain regions that have an associated sensory sensitivity. Here, we describe the time course, location, and surrounding architecture associated with rod microglia following experimental diffuse traumatic brain injury (TBI). METHODS Rats were subjected to a moderate midline fluid percussion injury (mFPI), which resulted in transient suppression of their righting reflex (6 to 10 min). Multiple immunohistochemistry protocols targeting microglia with Iba1 and other known microglia markers were undertaken to identify the morphological activation of microglia. Additionally, labeling with Iba1 and cell markers for neurons and astrocytes identified the architecture that surrounds these rod cells. RESULTS We identified an abundance of Iba1-positive microglia with rod morphology in the primary sensory barrel fields (S1BF). Although present for at least 4 weeks post mFPI, they developed over the first week, peaking at 7 days post-injury. In the absence of contusion, Iba1-positive microglia appear to elongate with their processes extending from the apical and basal ends. These cells then abut one another and lay adjacent to cytoarchitecture of dendrites and axons, with no alignment with astrocytes and oligodendrocytes. Iba1-positive rod microglial cells differentially express other known markers for reactive microglia including OX-6 and CD68. CONCLUSION Diffuse traumatic brain injury induces a distinct rod microglia morphology, unique phenotype, and novel association between cells; these observations entice further investigation for impact on neurological outcome.
Collapse
Affiliation(s)
- Jenna M Ziebell
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
| | | | | | | | | |
Collapse
|
19
|
Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy. Mediators Inflamm 2012; 2012:872978. [PMID: 23028204 PMCID: PMC3457631 DOI: 10.1155/2012/872978] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/21/2012] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR) is the major cause of acquired blindness in working-age adults. Current treatments for DR (laser photocoagulation, intravitreal corticosteroids, intravitreal antivascular endothelial growth factor (VEGF) agents, and vitreo-retinal surgery) are applicable only at advanced stages of the disease and are associated with significant adverse effects. Therefore, new pharmacological treatments for the early stages of the disease are needed. Vitreous fluid obtained from diabetic patients undergoing vitreoretinal surgery is currently used to explore the events that are taking place in the retina for clinical research. However, several confounding factors such as vitreous haemorrhage and concentration of vitreous proteins should be considered in the analysis of the results. In this paper we will focus on the vitreous fluid as a tool for exploring the mediators of DR and in particular the molecules related to inflammatory pathways. In addition, their role in the pathogenesis of DR will be discussed. The usefulness of new technologies such as flow cytometry and proteomics in identifying new candidates involved in the inflammatory process that occurs in DR will be overviewed. Finally, a more personalized treatment based on vitreous fluid analysis aiming to reduce the burden associated with DR is suggested.
Collapse
|
20
|
Ydens E, Cauwels A, Asselbergh B, Goethals S, Peeraer L, Lornet G, Almeida-Souza L, Van Ginderachter JA, Timmerman V, Janssens S. Acute injury in the peripheral nervous system triggers an alternative macrophage response. J Neuroinflammation 2012; 9:176. [PMID: 22818207 PMCID: PMC3419084 DOI: 10.1186/1742-2094-9-176] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/20/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. METHODS To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative) using real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemistry. RESULTS Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFN γ, and IL12p40), and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2). The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. CONCLUSIONS We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the neurodegeneration-induced immune responses towards an M2/Th2 response could be an important therapeutic strategy.
Collapse
Affiliation(s)
- Elke Ydens
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
| | - Anje Cauwels
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | - Bob Asselbergh
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
| | - Sofie Goethals
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
| | - Lieve Peeraer
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
| | - Guillaume Lornet
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- GROUP-ID Consortium, Laboratory for Immunoregulation and Mucosal Immunology, GhentUniversity, Ghent, Belgium
| | - Leonardo Almeida-Souza
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB, Brussels, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB and University of Antwerp, Antwerpen, Belgium
| | - Sophie Janssens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- GROUP-ID Consortium, Laboratory for Immunoregulation and Mucosal Immunology, GhentUniversity, Ghent, Belgium
| |
Collapse
|
21
|
Boato F, Hechler D, Rosenberger K, Lüdecke D, Peters EM, Nitsch R, Hendrix S. Interleukin-1 beta and neurotrophin-3 synergistically promote neurite growth in vitro. J Neuroinflammation 2011; 8:183. [PMID: 22200088 PMCID: PMC3275552 DOI: 10.1186/1742-2094-8-183] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/26/2011] [Indexed: 01/19/2023] Open
Abstract
Pro-inflammatory cytokines such as interleukin-1 beta (IL-1β) are considered to exert detrimental effects during brain trauma and in neurodegenerative disorders. Consistently, it has been demonstrated that IL-1β suppresses neurotrophin-mediated neuronal cell survival rendering neurons vulnerable to degeneration. Since neurotrophins are also well known to strongly influence axonal plasticity, we investigated here whether IL-1β has a similar negative impact on neurite growth. We analyzed neurite density and length of organotypic brain and spinal cord slice cultures under the influence of the neurotrophins NGF, BDNF, NT-3 and NT-4. In brain slices, only NT-3 significantly promoted neurite density and length. Surprisingly, a similar increase of neurite growth was induced by IL-1β. Additionally, both factors increased the number of brain slices displaying maximal neurite growth. Furthermore, the co-administration of IL-1β and NT-3 significantly increased the number of brain slices displaying maximal neurite growth compared to single treatments. These data indicate that these two factors synergistically stimulate two distinct aspects of neurite outgrowth, namely neurite density and neurite length from acute organotypic brain slices.
Collapse
Affiliation(s)
- Francesco Boato
- Dept. of Functional Morphology & BIOMED Institute, Hasselt University, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Walsh JT, Kipnis J. Regulatory T cells in CNS injury: the simple, the complex and the confused. Trends Mol Med 2011; 17:541-7. [PMID: 21741881 PMCID: PMC3189297 DOI: 10.1016/j.molmed.2011.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 05/21/2011] [Accepted: 05/27/2011] [Indexed: 11/19/2022]
Abstract
Regulatory CD4(+)CD25(+)Foxp3(+) T cells (Tregs) have been the focus of significant attention for their role in controlling immune responses. Although knowledge of Treg biology has burgeoned, wide gaps remain in our understanding of Treg function under both normal and pathological conditions. Pioneering studies demonstrated roles for Tregs in cancer and autoimmune diseases, including experimental autoimmune encephalitis, and this knowledge is often applied to other pathologies including neurodegenerative conditions. However, differences between immunity in neurodegeneration and in malignancy or autoimmunity are often neglected. Thus, Treg manipulations in central nervous system (CNS) neurodegenerative conditions often yield unexpected outcomes. In this piece, we explore how the immunology of neurodegeneration differs from that of cancer and autoimmunity and how these differences create confusion about the role of Tregs in neurodegenerative conditions.
Collapse
Affiliation(s)
- James T. Walsh
- Neuroscience Graduate Program and Medical Scientist Training Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Neuroscience Graduate Program and Medical Scientist Training Program, Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
23
|
Cytokines regulate neuronal gene expression: Differential effects of Th1, Th2 and monocyte/macrophage cytokines. J Neuroimmunol 2011; 238:19-33. [DOI: 10.1016/j.jneuroim.2011.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 12/19/2022]
|
24
|
Al Nimer F, Beyeen AD, Lindblom R, Ström M, Aeinehband S, Lidman O, Piehl F. Both MHC and non-MHC genes regulate inflammation and T-cell response after traumatic brain injury. Brain Behav Immun 2011; 25:981-90. [PMID: 20974248 DOI: 10.1016/j.bbi.2010.10.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/06/2010] [Accepted: 10/18/2010] [Indexed: 02/06/2023] Open
Abstract
Genetic regulation of autoimmune neuroinflammation is a well known phenomenon, but genetic influences on inflammation following traumatic nerve injuries have received little attention. In this study we examined the inflammatory response in a rat traumatic brain injury (TBI) model, with a particular focus on major histocompatibility class II (MHC II) presentation, in two inbred rat strains that have been extensively characterized in experimental autoimmune encephalomyelitis (EAE); DA and PVG. In addition, MHC and Vra4 congenic strains on these backgrounds were studied to give information on MHC and non-MHC gene contribution. Thus, allelic differences in Vra4, harboring the Ciita gene, was found to regulate expression of the invariant chain at the mRNA level, with a much smaller effect exerted by the MHC locus itself. Notably, however, at the protein level the MHC congenic PVG-RT1(av1) strain displayed much stronger MHCII(+) presentation, as shown both by immunolabeling and flow cytometry, than the PVG strain, dwarfing the effect of Ciita. The PVG-RT1(av1) strain had significantly more T-cell influx than both DA and PVG, suggesting regulation both by MHC and non-MHC genes. Finally, in terms of outcome, the EAE susceptible DA strain displayed a significantly smaller resulting lesion volume than the resistant PVG-RT1(av1) strain. These results provide additional support for a role of adaptive immune response after neurotrauma and demonstrate that outcome is significantly affected by host genetic factors.
Collapse
Affiliation(s)
- Faiez Al Nimer
- Department of Clinical Neuroscience, Karolinska University Hospital, S171 76 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Inflammation of the central nervous system (CNS) (neuroinflammation) is now recognized to be a feature of all neurological disorders. In multiple sclerosis, there is prominent infiltration of various leukocyte subsets into the CNS. Even when there is no significant inflammatory infiltrates, such as in Parkinson or Alzheimer disease, there is intense activation of microglia with resultant elevation of many inflammatory mediators within the CNS. An extensive dataset describes neuroinflammation to have detrimental consequences, but results emerging largely over the past decade have indicated that aspects of the inflammatory response are beneficial for CNS outcomes. Benefits of neuroinflammation now include neuroprotection, the mobilization of neural precursors for repair, remyelination, and even axonal regeneration. The findings that neuroinflammation can be beneficial should not be surprising as a properly directed inflammatory response in other tissues is a natural healing process after an insult. In this article, we review the data that highlight the dual aspects of neuroinflammation in being a hindrance on the one hand but also a significant help for recovery of the CNS on the other. We consider how the inflammatory response may be beneficial or injurious, and we describe strategies to harness the beneficial aspects of neuroinflammation.
Collapse
Affiliation(s)
- V Wee Yong
- University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
26
|
Schmitt KRL, Boato F, Diestel A, Hechler D, Kruglov A, Berger F, Hendrix S. Hypothermia-induced neurite outgrowth is mediated by tumor necrosis factor-alpha. Brain Pathol 2010; 20:771-9. [PMID: 20070303 DOI: 10.1111/j.1750-3639.2009.00358.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Systemic or brain-selective hypothermia is a well-established method for neuroprotection after brain trauma. There is increasing evidence that hypothermia exerts beneficial effects on the brain and may also support regenerative responses after brain damage. Here, we have investigated whether hypothermia influences neurite outgrowth in vitro via modulation of the post-injury cytokine milieu. Organotypic brain slices were incubated: deep hypothermia (2 h at 17 degrees C), rewarming (2 h up to 37 degrees C), normothermia (20 h at 37 degrees C). Neurite density and cytokine release (IL 1beta, IL-6, IL-10, and TNF-alpha) were investigated after 24 h. For functional analysis mice deficient in NT-3/NT-4 and TNF-alpha as well as the TNF-alpha inhibitor etanercept were used. Hypothermia led to a significant increase of neurite outgrowth, which was independent of neurotrophin signaling. In contrast to other cytokines investigated, TNF-alpha secretion by organotypic brain slices was significantly increased after deep hypothermia. Moreover, hypothermia-induced neurite extension was abolished after administration of the TNF-alpha inhibitor and in TNF-alpha knockout mice. We demonstrate that TNF-alpha is responsible for inducing neurite outgrowth in the context of deep hypothermia and rewarming. These data suggest that hypothermia not only exerts protective effects in the CNS but may also support neurite outgrowth as a potential mechanism of regeneration.
Collapse
Affiliation(s)
- Katharina R L Schmitt
- Clinic for Congenital Heart Disease and Pediatric Cardiology, Deutsches Herzzentrum, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
27
|
Hernandez Pando R, Aguilar D, Cohen I, Guerrero M, Ribon W, Acosta P, Orozco H, Marquina B, Salinas C, Rembao D, Espitia C. Specific bacterial genotypes of Mycobacterium tuberculosis cause extensive dissemination and brain infection in an experimental model. Tuberculosis (Edinb) 2010; 90:268-77. [PMID: 20580613 DOI: 10.1016/j.tube.2010.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/07/2010] [Accepted: 05/10/2010] [Indexed: 11/19/2022]
Abstract
Meningeal tuberculosis is a severe type of extrapulmonary disease, which is thought to begin with respiratory infection, followed by hematogenous dissemination and brain infection. Host genetic susceptibility factors and specific mycobacterial substrains could be involved in its development. From an epidemiological study in Colombia, we selected three Mycobacterium tuberculosis clinical strains isolated from the cerebrospinal fluid (CSF) of patients with meningeal tuberculosis, and used them to infect BALB/c mice through the intratracheal route. These strains showed a distinctive spoligotype pattern. The course of infection in terms of strain virulence (mice survival, bacillary loads in lungs), bacilli dissemination and extrapulmonary infection (bacilli loads in blood, brain, liver, kidney and spleen), and immune responses (cytokine expression determined by real time PCR in brain and lung) was studied and compared with that induced by the laboratory strain H37Rv and other five clinical strains isolated from patients with pulmonary TB. All the clinical isolates from meningeal TB patients disseminated extensively through the hematogenous route infecting the brain, producing inflammation in the cerebral parenchyma and meninges, whereas H37Rv and clinical isolates from pulmonary TB patients showed very limited efficiency to infect the brain. Thus, it seems that mycobacterial strains with a distinctive genotype are able to disseminate extensively after the respiratory infection and infect the brain.
Collapse
|
28
|
Immune senescence and brain aging: can rejuvenation of immunity reverse memory loss? Trends Neurosci 2009; 32:367-75. [PMID: 19520437 DOI: 10.1016/j.tins.2009.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 02/19/2009] [Accepted: 03/02/2009] [Indexed: 12/11/2022]
Abstract
The factors that determine brain aging remain a mystery. Do brain aging and memory loss reflect processes occurring only within the brain? Here, we present a novel view, linking aging of adaptive immunity to brain senescence and specifically to spatial memory deterioration. Inborn immune deficiency, in addition to sudden imposition of immune malfunction in young animals, results in cognitive impairment. As a corollary, immune restoration at adulthood or in the elderly results in a reversal of memory loss. These results, together with the known deterioration of adaptive immunity in the elderly, suggest that memory loss does not solely reflect chronological age; rather, it is an outcome of the gap between an increasing demand for maintenance (age-related risk-factor accumulation) and the reduced ability of the immune system to meet these needs.
Collapse
|
29
|
Cui Q, Yin Y, Benowitz LI. The role of macrophages in optic nerve regeneration. Neuroscience 2009; 158:1039-48. [PMID: 18708126 PMCID: PMC2670061 DOI: 10.1016/j.neuroscience.2008.07.036] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/18/2008] [Accepted: 07/20/2008] [Indexed: 11/25/2022]
Abstract
Following injury to the nervous system, the activation of macrophages, microglia, and T-cells profoundly affects the ability of neurons to survive and to regenerate damaged axons. The primary visual pathway provides a well-defined model system for investigating the interactions between the immune system and the nervous system after neural injury. Following damage to the optic nerve in mice and rats, retinal ganglion cells, the projection neurons of the eye, normally fail to regenerate their axons and soon begin to die. Induction of an inflammatory response in the vitreous strongly enhances the survival of retinal ganglion cells and enables these cells to regenerate lengthy axons beyond the injury site. T cells modulate this response, whereas microglia are thought to contribute to the loss of retinal ganglion cells in this model and in certain ocular diseases. This review discusses the complex and sometimes paradoxical actions of blood-borne macrophages, resident microglia, and T-cells in determining the outcome of injury in the primary visual pathway.
Collapse
Affiliation(s)
- Q Cui
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, 147K Argyle Street, Kowloon, Hong Kong, PR China.
| | | | | |
Collapse
|
30
|
Garg SK, Kipnis J, Banerjee R. IFN-gamma and IL-4 differentially shape metabolic responses and neuroprotective phenotype of astrocytes. J Neurochem 2009; 108:1155-66. [PMID: 19141080 DOI: 10.1111/j.1471-4159.2009.05872.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Astrocytes can either exacerbate or ameliorate secondary degeneration at sites of injury in the CNS but the contextual basis for eliciting these opposing phenotypes is poorly understood. In this study, we demonstrate that the two major cytokines produced by Th1 and Th2 cells, interferon-gamma (IFN-gamma), and interleukin-4 (IL-4), respectively, contribute differentially to shaping a neuroprotective response in astrocytes. While IFN-gamma protects the ability of oxidatively stressed murine astrocytes to clear extracellular glutamate in culture, IL-4 has no effect at any concentration that was tested (10-100 ng/mL). The enhanced release of neuroprotective thiols and lactate by astrocytes in response to T cell stimulation is mimicked by both IL-4 and IFN-gamma. When co-administered, IL-4 abrogated the protective effect of low IFN-gamma on the glutamate clearance function of oxidatively stressed astrocytes in a dose-dependent manner. Astrocyte-conditioned media obtained from cells cultured in the presence of IL-4 (10 or 100 ng/mL) or IFN-gamma (10 ng/mL) decreased by approximately 2-fold, neuronal apoptosis induced by oxidative stress in vitro. However, unlike IL-4, IFN-gamma at high concentrations (100 ng/mL) was not neuroprotective. Our studies with IFN-gamma and IL-4 suggest that a balanced Th1 and Th2 cytokine response might be needed for protecting two key astrocytic functions, glutamate clearance and thiol secretion and might be pertinent to neuroprotective approaches that are aimed at inhibition of an initial pro-inflammatory response to injury or its sustained boosting.
Collapse
Affiliation(s)
- Sanjay K Garg
- Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor, 48109-0606, USA
| | | | | |
Collapse
|
31
|
Popovich PG, Longbrake EE. Can the immune system be harnessed to repair the CNS? Nat Rev Neurosci 2008; 9:481-93. [PMID: 18490917 DOI: 10.1038/nrn2398] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental and clinical data have demonstrated that activating the immune system in the CNS can be destructive. However, other studies have shown that enhancing an immune response can be therapeutic, and several clinical trials have been initiated with the aim of boosting immune responses in the CNS of individuals with spinal cord injury, multiple sclerosis and Alzheimer's disease. Here, we evaluate the controversies in the field and discuss the remaining scientific challenges that are associated with enhancing immune function in the CNS to treat neurological diseases.
Collapse
Affiliation(s)
- Phillip G Popovich
- Ohio State University, 786 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
32
|
Ling C, Verbny YI, Banks MI, Sandor M, Fabry Z. In situ activation of antigen-specific CD8+ T cells in the presence of antigen in organotypic brain slices. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:8393-9. [PMID: 18523307 PMCID: PMC3338102 DOI: 10.4049/jimmunol.180.12.8393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of Ag-specific T cells locally in the CNS could potentially contribute to the development of immune-mediated brain diseases. We addressed whether Ag-specific T cells could be stimulated in the CNS in the absence of peripheral lymphoid tissues by analyzing Ag-specific T cell responses in organotypic brain slice cultures. Organotypic brain slice cultures were established 1 h after intracerebral OVA Ag microinjection. We showed that when OVA-specific CD8(+) T cells were added to Ag-containing brain slices, these cells became activated and migrated into the brain to the sites of their specific Ags. This activation of OVA-specific T cells was abrogated by the deletion of CD11c(+) cells from the brain slices of the donor mice. These data suggest that brain-resident CD11c(+) cells stimulate Ag-specific naive CD8(+) T cells locally in the CNS and may contribute to immune responses in the brain.
Collapse
Affiliation(s)
- Changying Ling
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, University of Wisconsin, Madison, WI 53706
| | - Yakov I. Verbny
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706
| | - Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI 53706
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, University of Wisconsin, Madison, WI 53706
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
33
|
Clausen F, Lorant T, Lewén A, Hillered L. T lymphocyte trafficking: a novel target for neuroprotection in traumatic brain injury. J Neurotrauma 2007; 24:1295-307. [PMID: 17711391 DOI: 10.1089/neu.2006.0258] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Infiltration of T lymphocytes is a key feature in transplant rejection and in several autoimmune disorders, but the role of T lymphocytes in traumatic brain injury (TBI) is largely unknown. Here we studied trafficking of immune cells in the brain after experimental TBI. We found that scavenging of reactive oxygen species (ROS) at the endothelial level dramatically reduced the infiltration of activated T lymphocytes. Immune cell infiltration was studied 12 h to 7 days after controlled cortical contusion in rats by ex vivo propagation of T lymphocytes (TcR+, CD8+), neutrophils (MPO+), and macrophages/microglia (ED-1+) from biopsies taken from injured cortex and analyzed by flow cytometry, as well as by quantitative immunohistochemistry. T lymphocyte and neutrophil infiltration peaked at 24 h and macrophages/microglia at 7 days post-injury. Pretreatment with 2-sulfophenyl-N-tert-butyl nitrone (S-PBN) produced a dramatic reduction of TcR+ T lymphocytes and a significantly smaller attenuation of neutrophil infiltration at 24 h post-injury, but did not affect CD8+ T lymphocytes or macrophages/microglia. S-PBN significantly reduced the expression of the endothelial adhesion molecules ICAM-1 and VCAM at 24 h for following TBI. We conclude that ROS inhibition at the endothelial level influenced T lymphocyte and neutrophil infiltration following TBI. We submit that the reduction of T lymphocyte infiltration is a key feature in improving TBI outcome after S-PBN treatment. Our data suggest that targeting T lymphocyte trafficking to the injured brain at the microvascular level is a novel concept of neuroprotection in TBI and warrants further exploration.
Collapse
Affiliation(s)
- Fredrik Clausen
- Department of Neuroscience, Section of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | | | | | | |
Collapse
|
34
|
Luo JM, Zhi Y, Chen Q, Cen LP, Zhang CW, Lam DSC, Harvey AR, Cui Q. Influence of macrophages and lymphocytes on the survival and axon regeneration of injured retinal ganglion cells in rats from different autoimmune backgrounds. Eur J Neurosci 2007; 26:3475-85. [PMID: 18052979 DOI: 10.1111/j.1460-9568.2007.05957.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immune response after neural injury influences the survival and regenerative capacity of neurons. In the primary visual pathway, previous studies have described beneficial effects of macrophages and T-cells in promoting neural survival and axonal regeneration in some rat strains. However, the contributions of specific cell populations to these responses have been unclear. In adult Fischer (F344) rats, we confirm prior reports that intravitreal macrophage activation promotes the survival of retinal ganglion cells (RGCs) and greatly enhances axonal regeneration through a peripheral nerve graft. Neonatal thymectomy that results in elimination of T-cell production enhanced RGC survival after axotomy, but diminished the effect of intravitreal macrophage activation on axon regeneration. Thus, in F344 rats, lymphocytes appear to suppress RGC survival but augment the pro-regenerative effects of macrophages. The cytotoxic effect of lymphocytes on RGCs was confirmed in in vitro studies; coculture of retinal explants with lymphocytes led to a 60% reduction in viable RGCs. Similar in vivo results were obtained in Sprague Dawley rats. By comparison, in adult Lewis rats, neither RGC survival nor axonal regeneration was increased after intravitreal macrophage activation. Neonatal thymectomy had only a small beneficial effect on RGC survival, and although Lewis lymphocytes reduced RGC viability in culture, they did so to a lesser extent. Thus, in addition to a complex role of lymphocytes, particularly T-cells, after central nervous system injury, the present results demonstrate that the impact of macrophages is also influenced by genetic background.
Collapse
Affiliation(s)
- Jian-Min Luo
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schmitt KRL, Kern C, Lange PE, Berger F, Abdul-Khaliq H, Hendrix S. S100B modulates IL-6 release and cytotoxicity from hypothermic brain cells and inhibits hypothermia-induced axonal outgrowth. Neurosci Res 2007; 59:68-73. [PMID: 17604861 DOI: 10.1016/j.neures.2007.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/14/2007] [Accepted: 05/29/2007] [Indexed: 02/01/2023]
Abstract
Brain protection is essential during neonatal and pediatric cardiac surgery. Deep hypothermia is still the most important method for achieving neuroprotection during cardiopulmonary bypass. Previously, we could demonstrate that deep hypothermia induces substantial cytotoxicity in brain cells as well as increased release of the pro-inflammatory cytokine interleukin-6 (IL-6), which plays an important role in neuroprotection and neuroregeneration. Deep hypothermia is also associated with increased levels of the astrocytic protein S100B in the serum and cerebrospinal fluid of patients. Since S100B may modulate pro-inflammatory cytokines and may stimulate neurite outgrowth, we have tested the hypothesis that nanomolar concentrations of S100B may increase IL-6 release from brain cells and support axonal outgrowth from organotypic brain slices under hypothermic conditions. S100B administration substantially reduced neuronal and glial cytotoxicity under hypothermic conditions. In the presence of S100B hypothermia-induced IL-6 release in primary astrocytes was significantly increased but reduced in BV-2 microglial cells and primary neurons. Surprisingly, deep hypothermia increased axonal outgrowth from brain slices and--in contrast to our hypothesis--this hypothermia-induced neurite outgrowth was inhibited by S100B. These data suggest that S100B differentially influences cytokine release and cytotoxicity from distinct brain cells and may inhibit neuroregeneration by suppressing hypothermia-induced axonal outgrowth.
Collapse
Affiliation(s)
- Katharina R L Schmitt
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Institute Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson's disease. J Leukoc Biol 2007; 82:1083-94. [PMID: 17675560 DOI: 10.1189/jlb.0507296] [Citation(s) in RCA: 284] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Progressive loss of dopaminergic neurons in the substantia nigra pars compacta and their terminal connections in the striatum are central features in Parkinson's disease (PD). Emerging evidence supports the notion that microglia neuroinflammatory responses speed neurodegenerative events. We demonstrated previously that this can be slowed by adoptive transfer of T cells from Copolymer-1-immunized mice administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recipients. The cellular basis for this neuroprotective response was the CD4+ T cell population, suggesting involvement of CD4+CD25+ regulatory T cells (Tregs), cells known to suppress immune activation and maintain immune homeostasis and tolerance. We show for the first time that adoptive transfer of CD3-activated Tregs to MPTP-intoxicated mice provides greater than 90% protection of the nigrostriatal system. The response was dose-dependent and paralleled modulation of microglial responses and up-regulation of glial cell-derived neurotrophic factor (CDNF) and TGF-beta. Interestingly, that adoptive transfer of effector T cells showed no significant neuroprotective activities. Tregs were found to mediate neuroprotection through suppression of microglial responses to stimuli, including aggregated, nitrated alpha-synuclein. Moreover, Treg-mediated suppression was also operative following removal of Tregs from culture prior to stimulation. This neuroprotection was achieved through modulation of microglial oxidative stress and inflammation. As Tregs can be modulated in vivo, these data strongly support the use of such immunomodulatory strategies to treat PD.
Collapse
Affiliation(s)
- Ashley D Reynolds
- Center for Neurovirology and Neurodegenerative Disorders, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | |
Collapse
|
37
|
Martiñon S, García E, Flores N, Gonzalez I, Ortega T, Buenrostro M, Reyes R, Fernandez-Presas AM, Guizar-Sahagún G, Correa D, Ibarra A. Vaccination with a neural-derived peptide plus administration of glutathione improves the performance of paraplegic rats. Eur J Neurosci 2007; 26:403-12. [PMID: 17623024 DOI: 10.1111/j.1460-9568.2007.05650.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
After damage to the central nervous system (CNS) the body is protected by an adaptive immune response which is directed against myelin-associated proteins. Active immunization with nonpathogenic derivatives of CNS-associated peptides (DCAP) reduces the degeneration of neurons and promotes motor recovery after spinal cord injury (SCI) in rats. In order to improve even more the neurological outcome obtained with this therapy, either a combination of DCAP immunization plus glutathione monoethyl ester (GSHE) or a double DCAP immunization were performed. GSHE is a cell-permeant derivative of glutathione, a potent antioxidant agent that significantly inhibits lipid peroxidation after SCI. After a contusive or compressive SCI, the combination of GSHE + DCAP immunization, induced better motor recovery, a higher number of myelinated axons and better rubrospinal neuron survival than immunization alone. On the other hand, double-DCAP immunization counteracted the protective effect of DCAP therapy. Motor recovery and neuronal survival of double-immunized rats were similar to those observed in control animals (PBS-treated). Further studies revealed that double immunization was not encephalitogenic but inhibited the proliferative response of T-cells specific to the DCAP-immunized peptide. This clonal dysfunction was probably secondary to anergy. GSHE improves the protective effect induced by DCAP immunization while double immunization, reverts it.
Collapse
Affiliation(s)
- S Martiñon
- Unidad de Investigación Médica en Enfermedades Neurológicas, HE, CMN Siglo XXI, IMSS, Avenida Cuauhtemoc no. 330, Col. Doctores, C.P. 06720, México D.F., México
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ankeny DP, Popovich PG. Central nervous system and non-central nervous system antigen vaccines exacerbate neuropathology caused by nerve injury. Eur J Neurosci 2007; 25:2053-64. [PMID: 17439492 DOI: 10.1111/j.1460-9568.2007.05458.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, we showed that autoimmune (central nervous system myelin-reactive) T cells exacerbate tissue damage and impair neurological recovery after spinal cord injury. Conversely, independent studies have shown T cell-mediated neuroprotection after spinal cord injury or facial nerve axotomy (FNAx). The antigen specificity of the neuroprotective T cells has not been investigated after FNAx. Here, we compared the neuroprotective capacity of autoimmune and non-autoimmune lymphocytes after FNAx. Prior to axotomy, C57BL/6 mice were immunized with myelin basic protein, myelin oligodendrocyte glycoprotein (MOG) or ovalbumin (a non-self antigen) emulsified in complete Freund's adjuvant (CFA). FNAx mice receiving injections of phosphate-buffered saline (PBS) only (unimmunized) or PBS/CFA emulsions served as controls. At 4 weeks after axotomy, bilateral facial motor neuron counts were obtained throughout the facial motor nucleus using unbiased stereology (optical fractionator). The data show that neuroantigen immunizations and 'generic' lymphocyte activation (e.g. PBS/CFA or ovalbumin/CFA immunizations) exacerbated neuron loss above that caused by FNAx alone. We also found that nerve injury potentiated the effector potential of autoimmune lymphocytes. Indeed, prominent forelimb and hindlimb motor deficits were accompanied by disseminated neuroinflammation and demyelination in FNAx mice receiving subencephalitogenic immunization with MOG. FNAx or neuroantigen (MOG or myelin basic protein) immunization alone did not cause these pathological changes. Thus, irrespective of the antigens used to trigger an immune response, neuropathology was enhanced when the immune system was primed in parallel with nerve injury. These data have important implications for therapeutic vaccination in clinical neurotrauma and neurodegeneration.
Collapse
Affiliation(s)
- Daniel P Ankeny
- Department of Molecular Virology, Immunology & Medical Genetics, The Center for Brain and Spinal Cord Repair and The Institute for Behavioral Medicine Research, The Ohio State University College of Medicine, Columbus, OH, USA
| | | |
Collapse
|
39
|
Yu P, Huang L, Zou J, Zhu H, Wang X, Yu Z, Xu XM, Lu PH. DNA vaccine against NgR promotes functional recovery after spinal cord injury in adult rats. Brain Res 2007; 1147:66-76. [PMID: 17362886 DOI: 10.1016/j.brainres.2007.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/30/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
NgR is a common receptor for three myelin-associated inhibitors and mediates their inhibitory activities on neurite outgrowth. In the present study, we investigated whether a DNA vaccine targeting NgR could play a beneficial role in improving recovery from spinal cord injury (SCI). We demonstrated that a DNA vaccine against NgR was successfully constructed and expressed efficiently in vitro and in vivo. After immunization with anti-NgR DNA vaccine, a low level of antibody response and a T cell-mediated immune response were induced in the vaccinated rats. And the antisera taken from the anti-NgR DNA vaccinated rats could partly reverse the inhibition of MAG on neurite outgrowth. When the rats were subjected to a contusive SCI, the vaccinated rats showed much better functional recovery than the controls. In those vaccinated rats that induced a T cell response and generated antibodies against NgR, functional improvements were even better. Histological assessments by three-dimensional reconstruction further demonstrated that the total lesion volume in the vaccinated rats was reduced by 30.8% compared to the controls. These results collectively suggest that DNA vaccine against NgR can significantly improve functional recovery in rats that received contusive SCI and that the vaccination approach may provide a promising strategy for promoting SCI repair.
Collapse
Affiliation(s)
- Panpan Yu
- Department of Neurobiology, School of Medicine, Shanghai Jiaotong University, 280 South Chong Qing Road, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
T lymphocytes play a central role in the pathogenesis of multiple sclerosis (MS) (Zhang et al., 1992). Both CD4+ and CD8+ T cells have been demonstrated in MS lesions, with CD4+ T cells predominating in acute lesions and CD8+ T cells being observed more frequently in chronic lesions (Raine, 1994). Additionally, T cells are found in all four of the described histopathologic subtypes of MS (Lucchinetti et al., 2000). Activated myelin-reactive CD4+ T cells are present in the blood and cerebrospinal fluid (CSF) of MS patients; in contrast, only nonactivated myelin-reactive T cells are present in the blood of controls (Zhang et al., 1994). The success of several T-cell-targeted therapies in MS reinforces the importance of the role of the T cell in MS pathogenesis. Here, we outline basic concepts in CD4+ T-cell immunology and summarize the current understanding of the role of CD4+ T cells in the pathogenesis of MS.
Collapse
Affiliation(s)
- Tanuja Chitnis
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
41
|
Abstract
Central nervous system (CNS) immune privilege is an experimentally defined phenomenon. Tissues that are rapidly rejected by the immune system when grafted in sites, such as the skin, show prolonged survival when grafted into the CNS. Initially, CNS immune privilege was construed as CNS isolation from the immune system by the blood-brain barrier (BBB), the lack of draining lymphatics, and the apparent immunoincompetence of microglia, the resident CNS macrophage. CNS autoimmunity and neurodegeneration were presumed automatic consequences of immune cell encounter with CNS antigens. Recent data have dramatically altered this viewpoint by revealing that the CNS is neither isolated nor passive in its interactions with the immune system. Peripheral immune cells can cross the intact BBB, CNS neurons and glia actively regulate macrophage and lymphocyte responses, and microglia are immunocompetent but differ from other macrophage/dendritic cells in their ability to direct neuroprotective lymphocyte responses. This newer view of CNS immune privilege is opening the door for therapies designed to harness autoreactive lymphocyte responses and also implies (i) that CNS autoimmune diseases (i.e. multiple sclerosis) may result as much from neuronal and/or glial dysfunction as from immune system dysfunctions and (ii) that the severe neuronal and glial dysfunction associated with neurodegenerative disorders (i.e. Alzheimer's disease) likely alters CNS-specific regulation of lymphocyte responses affecting the utility of immune-based therapies (i.e. vaccines).
Collapse
Affiliation(s)
- Monica J Carson
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| | | | | | | | | |
Collapse
|
42
|
Kreutz S, Koch M, Ghadban C, Korf HW, Dehghani F. Cannabinoids and neuronal damage: differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures. Exp Neurol 2006; 203:246-57. [PMID: 17010339 DOI: 10.1016/j.expneurol.2006.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/07/2006] [Accepted: 08/10/2006] [Indexed: 11/25/2022]
Abstract
Cannabinoids (CBs) are attributed neuroprotective effects in vivo. Here, we determined the neuroprotective potential of CBs during neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures (OHSCs). OHSCs are the best characterized in vitro model to investigate the function of microglial cells in neuronal damage since blood-borne monocytes and T-lymphocytes are absent and microglial cells represent the only immunocompetent cell type. Excitotoxic neuronal damage was induced by NMDA (50 microM) application for 4 h. Neuroprotective properties of 9-carboxy-11-nor-delta-9-tetrahydrocannabinol (THC), N-arachidonoylethanolamide (AEA) or 2-arachidonoylglycerol (2-AG) in different concentrations were determined after co-application with NMDA by counting degenerating neurons identified by propidium iodide labeling (PI(+)) and microglial cells labeled by isolectin B(4) (IB(4)(+)). All three CBs used significantly decreased the number of IB(4)(+) microglial cells in the dentate gyrus but the number of PI(+) neurons was reduced only after 2-AG treatment. Application of AM630, antagonizing CB2 receptors highly expressed by activated microglial cells, did not counteract neuroprotective effects of 2-AG, but affected THC-mediated reduction of IB(4)(+) microglial cells. Our results indicate that (1) only 2-AG exerts neuroprotective effects in OHSCs; (2) reduction of IB(4)(+) microglial cells is not a neuroprotective event per se and involves other CB receptors than the CB2 receptor; (3) the discrepancy in the neuroprotective effects of CBs observed in vivo and in our in vitro model system may underline the functional relevance of invading monocytes and T-lymphocytes that are absent in OHSCs.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arachidonic Acids/pharmacology
- Arachidonic Acids/therapeutic use
- Brain/drug effects
- Brain/pathology
- Brain/physiopathology
- Brain Damage, Chronic/drug therapy
- Brain Damage, Chronic/metabolism
- Brain Damage, Chronic/physiopathology
- Cannabinoids/pharmacology
- Cannabinoids/therapeutic use
- Cell Count
- Disease Models, Animal
- Dronabinol/pharmacology
- Dronabinol/therapeutic use
- Endocannabinoids
- Gliosis/drug therapy
- Gliosis/metabolism
- Gliosis/physiopathology
- Glycerides/pharmacology
- Glycerides/therapeutic use
- Microglia/drug effects
- Microglia/metabolism
- N-Methylaspartate/antagonists & inhibitors
- N-Methylaspartate/toxicity
- Nerve Degeneration/drug therapy
- Nerve Degeneration/metabolism
- Nerve Degeneration/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neurotoxins/antagonists & inhibitors
- Neurotoxins/toxicity
- Organ Culture Techniques
- Plant Lectins
- Polyunsaturated Alkamides/pharmacology
- Polyunsaturated Alkamides/therapeutic use
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Susanne Kreutz
- Dr. Senckenbergische Anatomie, Institut für Anatomie 2, Johann Wolfgang Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
43
|
Deboy CA, Xin J, Byram SC, Serpe CJ, Sanders VM, Jones KJ. Immune-mediated neuroprotection of axotomized mouse facial motoneurons is dependent on the IL-4/STAT6 signaling pathway in CD4+ T cells. Exp Neurol 2006; 201:212-24. [PMID: 16806176 DOI: 10.1016/j.expneurol.2006.04.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2005] [Revised: 03/13/2006] [Accepted: 04/05/2006] [Indexed: 12/12/2022]
Abstract
The CD4(+) T lymphocyte has recently been found to promote facial motoneuron (FMN) survival after nerve injury. Signal Transducer and Activator of Transcription (STAT)4 and STAT6 are key proteins involved in the CD4(+) T cell differentiation pathways leading to T helper type (Th)1 and Th2 cell development, respectively. To determine which CD4(+) T cell subset mediates FMN survival, the facial nerve axotomy paradigm was applied to STAT4-deficient (-/-) and STAT6-/- mice. A significant decrease in FMN survival 4 weeks after axotomy was observed in STAT6-/- mice compared to wild-type (WT) or STAT4-/- mice. Reconstituting STAT6-/- mice with CD4(+) T cells obtained from WT mice promoted WT levels of FMN survival after injury. Furthermore, rescue of FMN from axotomy-induced cell death in recombination activating gene (RAG)-2-/- mice (lacking T and B cells) could be achieved only by reconstitution with CD4(+) T cells expressing functional STAT6 protein. To determine if either the Th1 cytokine, interferon-gamma (IFN-gamma) or the Th2 cytokine IL-4 is involved in mediating FMN survival, facial nerve axotomy was applied to IFN-gamma-/- and IL-4-/- mice. A significant decrease in FMN survival after axotomy occurred in IL-4-/- but not in IFN-gamma-/- mice compared to WT mice, indicating that IL-4 but not IFN-gamma is important for FMN survival after nerve injury. In WT mice, intracellular IFN-gamma vs. IL-4 expression was examined in CD4(+) T cells from draining cervical lymph nodes 14 days after axotomy, and substantial increase in the production of both CD4(+) effector T cell subsets was found. Collectively, these data suggest that STAT6-mediated CD4(+) T cell differentiation into the Th2 subset is necessary for FMN survival. A hypothesis relevant to motoneuron disease progression is presented.
Collapse
Affiliation(s)
- Cynthia A Deboy
- Department of Cell Biology, Neurobiology, and Anatomy, Loyola University Chicago, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE. Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 2006; 199:191-200. [PMID: 16713598 DOI: 10.1016/j.expneurol.2006.03.017] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
The neuroprotective mechanism of human umbilical cord blood cells (HUCBC) in the rat middle cerebral artery occlusion (MCAO) stroke model remains uncertain. Given the inflammatory sequelae that occur following stroke, we investigated whether HUCBC protection could be derived from the modulation of this immuno-inflammatory event, suggested by the attraction of the HUCBC to the spleen. We found that, following MCAO, rat spleen size was reduced concomitantly with their CD8+ T-cell counts. Interestingly, MCAO-induced spleen size reduction correlated with the extent of ischemic damage, however, HUCBC treatment rescued the spleen weight, splenic CD8+ T-cell counts, as well as the amount of brain injury. Additionally, splenocyte proliferation assays demonstrated that HUCBC treatment opposed MCAO-associated T-cell proliferation by increasing the production of IL-10 while decreasing IFN-gamma. Taken together, these results suggest a novel immunomodulatory mechanism by which HUCBC mediate protection in the rat MCAO model of stroke.
Collapse
Affiliation(s)
- Martina Vendrame
- Center for Excellence in Aging and Brain Repair, MDC 78, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Vendrame M, Gemma C, de Mesquita D, Collier L, Bickford PC, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE. Anti-inflammatory effects of human cord blood cells in a rat model of stroke. Stem Cells Dev 2006; 14:595-604. [PMID: 16305344 DOI: 10.1089/scd.2005.14.595] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
When human umbilical cord blood cells (HUCBCs) are administered intravenously after a middle cerebral artery occlusion, they reliably produce behavioral and anatomical recovery, and protect neural tissue from progressive change. However, our results indicate that the cells do not exert their effects by engraftment in the peri-infarct region, even though they migrate to the site of injury. The objective of the present study was to determine if the cells induce recovery by decreasing inflammation. We used a combination of in vivo and in vitro studies to show that HUCBCs decrease inflammation in the brain after stroke and thereby enhance neuroprotection. After stroke and transplantation, there was a decrease in CD45/CD11b- and CD45/B220-positive (+) cells. This decrease was accompanied by a decrease in mRNA and protein expression of pro-inflammatory cytokines and a decrease in nuclear factor kappaB (NF-kappaB) DNA binding activity in the brain of stroke animals treated with HUCBCs. In addition to modulating the inflammatory response, we demonstrate that the cord blood cells increase neuronal survival through non-immune mechanisms. Once thought of as "cell replacement therapy," we now propose that cord blood treatment in stroke reduces inflammation and provides neuroprotection. Both of these components are necessary for effective therapy.
Collapse
Affiliation(s)
- Martina Vendrame
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tepavcević V, Blakemore WF. Glial grafting for demyelinating disease. Philos Trans R Soc Lond B Biol Sci 2006; 360:1775-95. [PMID: 16147541 PMCID: PMC1569542 DOI: 10.1098/rstb.2005.1700] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Remyelination of demyelinated central nervous system (CNS) axons is considered as a potential treatment for multiple sclerosis, and it has been achieved in experimental models of demyelination by transplantation of pro-myelinating cells. However, the experiments undertaken have not addressed the need for tissue-type matching in order to achieve graft-mediated remyelination since they were performed in conditions in which the chance for graft rejection was minimized. This article focuses on the factors determining survival of allogeneic oligodendrocyte lineage cells and their contribution to the remyelination of demyelinating CNS lesions. The immune status of the CNS as well as the suitability of different models of demyelination for graft rejection studies are discussed, and ways of enhancing allogeneic oligodendrocyte-mediated remyelination are presented. Finally, the effects of glial graft rejection on host remyelination are described, highlighting the potential benefits of the acute CNS inflammatory response for myelin repair.
Collapse
Affiliation(s)
- V Tepavcević
- Department of Veterinary Medicine, MS Society Cambridge Centre for Myelin Repair, Cambridge Centre for Brain Repair, UK.
| | | |
Collapse
|
47
|
Beamer CA, Brooks DM, Lurie DI. Motheaten (me/me) mice deficient in SHP-1 are less susceptible to focal cerebral ischemia. J Neurosci Res 2006; 83:1220-30. [PMID: 16528752 DOI: 10.1002/jnr.20825] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have demonstrated previously that the protein tyrosine phosphatase SHP-1 seems to play a role in glial development and is upregulated in non-dividing astrocytes after injury. The present study examines the effect of loss of SHP-1 on the CNS response to permanent focal ischemia. SHP-1 deficient (me/me) mice and wild-type littermates received a permanent middle cerebral artery occlusion (MCAO). At 1, 3, and 7 days after MCAO, infarct volume, neuronal survival and cell death, gliosis, and inflammatory cytokine levels were quantified. SHP-1 deficient me/me mice display smaller infarct volumes at 7 days post-MCAO, increased neuronal survival within the ischemic penumbra, and decreased numbers of cleaved caspase 3+ cells within the ischemic core compared with wild-type mice. In addition, me/me mice exhibit increases in GFAP+ reactive astrocytes, F4-80+ microglia, and a concomitant increase in the level of interleukin 12 (IL-12) over baseline compared with wild-type. Taken together, these results demonstrate that loss of SHP-1 results in greater healing of the infarct due to less apoptosis and more neuronal survival in the ischemic core and suggests that pharmacologic inactivation of SHP-1 may have potential therapeutic value in limiting CNS degeneration after ischemic stroke.
Collapse
Affiliation(s)
- Celine A Beamer
- Center for Environmental Health Sciences, School of Pharmacy and Allied Health Sciences, University of Montana, Missoula 59812-1552, USA
| | | | | |
Collapse
|
48
|
Lima JE, Walz R, Tort A, Souza D, Portela L, Bianchin MM, Takayanagui OM, Leite JP. Serum and cerebrospinal fluid S100B concentrations in patients with neurocysticercosis. Braz J Med Biol Res 2006; 39:129-35. [PMID: 16400473 DOI: 10.1590/s0100-879x2006000100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The clinical manifestations of neurocysticercosis (NC) are varied and depend on the number and location of cysts, as well as on the host immune response. Symptoms usually occur in NC when cysticerci enter a degenerative course associated with an inflammatory response. The expression of brain damage markers may be expected to increase during this phase. S100B is a calcium-binding protein produced and released predominantly by astrocytes that has been used as a marker of reactive gliosis and astrocytic death in many pathological conditions. The aim of the present study was to investigate the levels of S100B in patients in different phases of NC evolution. Cerebrospinal fluid and serum S100B concentrations were measured in 25 patients with NC: 14 patients with degenerative cysts (D), 8 patients with viable cysts (V) and 3 patients with inactive cysts. All NC patients, except 1, had five or less cysts. In most of them, symptoms had been present for at least 1 month before sample collection. Samples from 8 normal controls (C) were also assayed. The albumin quotient was used to estimate the blood-brain barrier permeability. There were no significant differences in serum (P = 0.5) or cerebrospinal fluid (P = 0.91) S100B levels among the V, D, and C groups. These findings suggest that parenchymal changes associated with a relatively small number of degenerating cysts probably have a negligible impact on glial tissue.
Collapse
Affiliation(s)
- J E Lima
- Departamento de Neurologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 2005; 31:149-60. [PMID: 16297637 DOI: 10.1016/j.mcn.2005.10.006] [Citation(s) in RCA: 693] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2005] [Revised: 09/25/2005] [Accepted: 10/05/2005] [Indexed: 01/09/2023] Open
Abstract
Cell renewal in the adult central nervous system (CNS) is limited, and is blocked in inflammatory brain conditions. We show that both neurogenesis and oligodendrogenesis of adult neural progenitor cells in mice are blocked by inflammation-associated (endotoxin-activated) microglia, but induced by microglia activated by cytokines (IL-4 or low level of IFN-gamma) associated with T-helper cells. Blockage was correlated with up-regulation of microglial production of tumor necrosis factor-alpha. The effect induced by IL-4-activated microglia was mediated, at least in part, by insulin-like growth factor-I. The IL-4-activated microglia showed a bias towards oligodendrogenesis whereas the IFN-gamma-activated microglia showed a bias towards neurogenesis. It thus appears that microglial phenotype critically affects their ability to support or impair cell renewal from adult stem cell.
Collapse
Affiliation(s)
- Oleg Butovsky
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 2005; 29:381-93. [PMID: 15890528 DOI: 10.1016/j.mcn.2005.03.005] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2004] [Revised: 03/13/2005] [Accepted: 03/15/2005] [Indexed: 11/23/2022] Open
Abstract
'Protective autoimmunity' refers to a well-controlled anti-self response that helps the body resist neurodegeneration. The response is mediated by autoimmune T cells, which produce cytokines and growth factors. Using an in vitro assay of hippocampal slices, we show that the cytokines interferon-gamma and (especially) interleukin-4, characteristic of pro-inflammatory and anti-inflammatory T cells, respectively, can make microglia neuroprotective. Aggregated beta-amyloid, like bacterial cell wall-derived lipopolysaccharide, rendered the microglia cytotoxic. Cytotoxicity was correlated with a signal transduction pathway that down-regulates expression of class-II major histocompatibility proteins (MHC-II) through the MHC-II-transactivator and the invariant chain. Protection by interleukin-4 was attributed to down-regulation of tumor necrosis factor-alpha and up-regulation of insulin-like growth factor I. These findings suggest that beneficial or harmful expression of the local immune response in the damaged CNS depends on how microglia interpret the threat, and that a well-regulated T-cell-mediated response enables microglia to alleviate rather than exacerbate stressful situations in the CNS.
Collapse
Affiliation(s)
- Oleg Butovsky
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|