1
|
A Study to Decipher the Potential Effects of Butylphthalide against Central Nervous System Diseases Based on Network Pharmacology and Molecular Docking Integration Strategy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6694698. [PMID: 34035826 PMCID: PMC8116153 DOI: 10.1155/2021/6694698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/05/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022]
Abstract
Background Butylphthalide (NBP), approved by the China National Medical Products Administration (NMPA) for the treatment of ischemic stroke (IS), showed pleiotropic potentials against central nervous system (CNS) diseases, including neuroprotection and cognitive deficits improvement. However, the effects and corresponding modes of action were not fully explored. This study was designed to investigate the potential of NBP against IS-associated CNS diseases based on network pharmacology (NP) and molecular docking (MD). Methods IS was inputted as the index disease to retrieve the “associated diseases” in DisGeNET. Three-database-based IS genes were obtained and integrated (DisGeNET, Malacards, and OMIM). Then, IS-associated genes were identified by combining these genes. Meanwhile, PubMed references and online databases were applied to identify NBP target genes. The IS-related disease-disease association (DDA) network and NBP-disease regulation network were constructed and analyzed in Cytoscape. In silico MD and references were used to validate the binding affinity of NBP with critical targets and the potential of NBP against certain IS-related CNS disease regulation. Results 175 NBP target genes were obtained, while 312 IS-related disease genes were identified. 36 NBP target genes were predicted to be associated with IS-related CNS diseases, including Alzheimer's disease (AD), epilepsy, major depressive disorder (MDD), amyotrophic lateral sclerosis (ALS), and dementia. Six target genes (i.e., GRIN1, PTGIS, PTGES, ADRA1A, CDK5, and SULT1E1) indicating disease specificity index (DSI) >0.5 showed certain to good degree binding affinity with NBP, ranging from −9.2 to −6.7 kcal/mol. And the binding modes may be mainly related to hydrogen bonds and hydrophobic “bonds.” Further literature validations inferred that these critical NBP targets had a tight association with AD, epilepsy, ALS, and depression. Conclusions Our study proposed a drug-target-disease integrated method to predict the drug repurposing potentials to associated diseases by application of NP and MD, which could be an attractive alternative to facilitate the development of CNS disease therapies. NBP may be promising and showed potentials to be repurposed for treatments for AD, epilepsy, ALS, and depression, and further investigations are warranted to be carefully designed and conducted.
Collapse
|
2
|
Łukasik P, Załuski M, Gutowska I. Cyclin-Dependent Kinases (CDK) and Their Role in Diseases Development-Review. Int J Mol Sci 2021; 22:ijms22062935. [PMID: 33805800 PMCID: PMC7998717 DOI: 10.3390/ijms22062935] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer’s or Parkinson’s disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.
Collapse
Affiliation(s)
- Paweł Łukasik
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Michał Załuski
- Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
3
|
Shukla R, Singh TR. Identification of small molecules against cyclin dependent kinase-5 using chemoinformatics approach for Alzheimer's disease and other tauopathies. J Biomol Struct Dyn 2020; 40:2815-2827. [PMID: 33155527 DOI: 10.1080/07391102.2020.1844050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial complex and wide spreading global disease. It is a chronic neurodegenerative disorder characterized by amyloid beta (Aβ) and neurofibrillary tangles (NFTs). Several enzymes are involved in which CDK5 is a major tau phosphorylation enzyme. We have screened (n = 5,36,801) compounds against CDK5 and 392 compounds were selected for pharmacokinetics analysis. In the pharmacokinetics analysis, various descriptors were used for filtering the compounds. After that 16 compounds with the control compound Z3R were employed for the redocking using Autodock Vina and Autodock. Lastly, four compounds were selected and employed for 100 ns MDS studies. On the basis of various MD analysis like RMSD, RMSF, Rg, SASA, Number of hydrogen bonds, Principal component analysis and binding free energy (CDK5-ZINC6261568: -129.50 kJ.mol-1 and CDK5-ZINC14168360: -191.16 kJ.mol-1), we have found that ZINC6261568 and ZINC14168360 can act as a lead compound against the CDK5.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (JUIT), Waknaghat, India
| |
Collapse
|
4
|
Proteomics analysis of FUS mutant human motoneurons reveals altered regulation of cytoskeleton and other ALS-linked proteins via 3'UTR binding. Sci Rep 2020; 10:11827. [PMID: 32678235 PMCID: PMC7366621 DOI: 10.1038/s41598-020-68794-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that in Amyotrophic Lateral Sclerosis (ALS) mutated RNA binding proteins acquire aberrant functions, leading to altered RNA metabolism with significant impact on encoded protein levels. Here, by taking advantage of a human induced pluripotent stem cell-based model, we aimed to gain insights on the impact of ALS mutant FUS on the motoneuron proteome. Label-free proteomics analysis by mass-spectrometry revealed upregulation of proteins involved in catabolic processes and oxidation–reduction, and downregulation of cytoskeletal proteins and factors directing neuron projection. Mechanistically, proteome alteration does not correlate with transcriptome changes. Rather, we observed a strong correlation with selective binding of mutant FUS to target mRNAs in their 3′UTR. Novel validated targets, selectively bound by mutant FUS, include genes previously involved in familial or sporadic ALS, such as VCP, and regulators of membrane trafficking and cytoskeleton remodeling, such as ASAP1. These findings unveil a novel mechanism by which mutant FUS might intersect other pathogenic pathways in ALS patients’ motoneurons.
Collapse
|
5
|
Zeb A, Kim D, Alam SI, Son M, Kumar R, Rampogu S, Parameswaran S, Shelake RM, Rana RM, Parate S, Kim JY, Lee KW. Computational Simulations Identify Pyrrolidine-2,3-Dione Derivatives as Novel Inhibitors of Cdk5/p25 Complex to Attenuate Alzheimer's Pathology. J Clin Med 2019; 8:E746. [PMID: 31137734 PMCID: PMC6572193 DOI: 10.3390/jcm8050746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
: Mechanistically, neurotoxic insults provoke Ca2+-mediated calpain activation, which cleaves the cytoplasmic region of membrane-embedded p35 and produces its truncated form p25. Upon physical interaction, cyclin-dependent kinase 5 (Cdk5) and p25 forms hyperactivated Cdk5/p25 complex and causes severe neuropathological aberrations including hyperphosphorylated tau-mediated neurofibrillary tangles formation, Alzheimer's symptoms, and neuronal death. Therefore, the inhibition of Cdk5/p25 complex may relieve p-tau-mediated Alzheimer's pathology. Herein, computational simulations have identified pyrrolidine-2,3-dione derivatives as novel inhibitors of Cdk5/p25 complex. A ligand-based pharmacophore was designed and employed as 3D query to retrieve drug-like molecules from chemical databases. By molecular docking, drug-like molecules obtaining dock score > 67.67 (Goldcore of the reference compound) were identified. Molecular dynamics simulation and binding free energy calculation retrieved four pyrrolidine-2,3-dione derivatives as novel candidate inhibitors of Cdk5/p25. The root means square deviation of Cdk5/p25 in complex with candidate inhibitors obtained an average value of ~2.15 Å during the 30 ns simulation period. Molecular interactions analysis suggested that each inhibitor occupied the ATP-binding site of Cdk5/p25 and formed stable interactions. Finally, the binding free energy estimation suggested that each inhibitor had lowest binding energy than the reference compound (-113.10 kJ/mol) to recapitulate their strong binding with Cdk5/p25. Overall, these inhibitors could mitigate tau-mediated Alzheimer's phenotype.
Collapse
Affiliation(s)
- Amir Zeb
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Donghwan Kim
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Sayed Ibrar Alam
- Division of Life Sciences and Applied Life Science (BK 21plus), College of Natural Sciences, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Minky Son
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Raj Kumar
- Institute of Chemical Processes (ICP), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Shailima Rampogu
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Saravanan Parameswaran
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Rahul Mahadev Shelake
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | - Rabia Mukhtar Rana
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Shraddha Parate
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| | - Jae-Yean Kim
- Division of Applied Life Sciences, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea.
| | - Keun Woo Lee
- Division of Life Science, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
6
|
Ahmad K, Baig MH, Mushtaq G, Kamal MA, Greig NH, Choi I. Commonalities in Biological Pathways, Genetics, and Cellular Mechanism between Alzheimer Disease and Other Neurodegenerative Diseases: An In Silico-Updated Overview. Curr Alzheimer Res 2018; 14:1190-1197. [PMID: 28164765 DOI: 10.2174/1567205014666170203141151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/07/2016] [Accepted: 01/30/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common and well-studied neurodegenerative disease (ND). Biological pathways, pathophysiology and genetics of AD show commonalities with other NDs viz. Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), Prion disease and Dentatorubral-pallidoluysian atrophy (DRPLA). Many of the NDs, sharing the common features and molecular mechanisms suggest that pathology may be directly comparable and be implicated in disease prevention and development of highly effective therapies. METHOD In this review, a brief description of pathophysiology, clinical symptoms and available treatment of various NDs have been explored with special emphasis on AD. Commonalities in these fatal NDs provide support for therapeutic advancements and enhance the understanding of disease manifestation. CONCLUSION The studies concentrating on the commonalities in biological pathways, cellular mechanisms and genetics may provide the scope to researchers to identify few novel common target(s) for disease prevention and development of effective common drugs for multi-neurodegenerative diseases.
Collapse
Affiliation(s)
- Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan. Korea
| | - Mohammad Hassan Baig
- Department of Medical Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 712-749. Korea
| | - Gohar Mushtaq
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah 21589. Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Centre, King Abdulaziz University, P.O. Box 80216, Jeddah 21589. Saudi Arabia
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224. United States
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 712-749. Korea
| |
Collapse
|
7
|
Shukla V, Seo J, Binukumar B, Amin ND, Reddy P, Grant P, Kuntz S, Kesavapany S, Steiner J, Mishra SK, Tsai LH, Pant HC. TFP5, a Peptide Inhibitor of Aberrant and Hyperactive Cdk5/p25, Attenuates Pathological Phenotypes and Restores Synaptic Function in CK-p25Tg Mice. J Alzheimers Dis 2017; 56:335-349. [PMID: 28085018 PMCID: PMC10020940 DOI: 10.3233/jad-160916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been reported that cyclin-dependent kinase 5 (cdk5), a critical neuronal kinase, is hyperactivated in Alzheimer's disease (AD) and may be, in part, responsible for the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs). It has been proposed by several laboratories that hyperactive cdk5 results from the overexpression of p25 (a truncated fragment of p35, the normal cdk5 regulator), which, when complexed to cdk5, induces hyperactivity, hyperphosphorylated tau/NFTs, amyloid-β plaques, and neuronal death. It has previously been shown that intraperitoneal (i.p.) injections of a modified truncated 24-aa peptide (TFP5), derived from the cdk5 activator p35, penetrated the blood-brain barrier and significantly rescued AD-like pathology in 5XFAD model mice. The principal pathology in the 5XFAD mutant, however, is extensive amyloid plaques; hence, as a proof of concept, we believe it is essential to demonstrate the peptide's efficacy in a mouse model expressing high levels of p25, such as the inducible CK-p25Tg model mouse that overexpresses p25 in CamKII positive neurons. Using a modified TFP5 treatment, here we show that peptide i.p. injections in these mice decrease cdk5 hyperactivity, tau, neurofilament-M/H hyperphosphorylation, and restore synaptic function and behavior (i.e., spatial working memory, motor deficit using Rota-rod). It is noteworthy that TFP5 does not inhibit endogenous cdk5/p35 activity, nor other cdks in vivo suggesting it might have no toxic side effects, and may serve as an excellent therapeutic candidate for neurodegenerative disorders expressing abnormally high brain levels of p25 and hyperactive cdk5.
Collapse
Affiliation(s)
- Varsha Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - B.K. Binukumar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D. Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Preethi Reddy
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Susan Kuntz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Santosh K. Mishra
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MA, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harish C. Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Correspondence to: Dr. Harish C. Pant, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Mushtaq G, Greig NH, Anwar F, Al-Abbasi FA, Zamzami MA, Al-Talhi HA, Kamal MA. Neuroprotective Mechanisms Mediated by CDK5 Inhibition. Curr Pharm Des 2016; 22:527-34. [PMID: 26601962 DOI: 10.2174/1381612822666151124235028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 11/24/2015] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine/threonine kinase belonging to the family of cyclin-dependent kinases. In addition to maintaining the neuronal architecture, CDK5 plays an important role in the regulation of synaptic plasticity, neurotransmitter release, neuron migration and neurite outgrowth. Although various reports have shown links between neurodegeneration and deregulation of cyclin-dependent kinases, the specific role of CDK5 inhibition in causing neuroprotection in cases of neuronal insult or in neurodegenerative diseases is not wellunderstood. This article discusses current evidence for the involvement of CDK5 deregulation in neurodegenerative disorders and neurodegeneration associated with stroke through various mechanisms. These include upregulation of cyclin D1 and overactivation of CDK5 mediated neuronal cell death pathways, aberrant hyperphosphorylation of human tau proteins and/or neurofilament proteins, formation of neurofibrillary lesions, excitotoxicity, cytoskeletal disruption, motor neuron death (due to abnormally high levels of CDK5/p25) and colchicine- induced apoptosis in cerebellar granule neurons. A better understanding of the role of CDK5 inhibition in neuroprotective mechanisms will help scientists and researchers to develop selective, safe and efficacious pharmacological inhibitors of CDK5 for therapeutic use against human neurodegenerative disorders, such as Alzheimer's disease, amyotrophic lateral sclerosis and neuronal loss associated with stroke.
Collapse
Affiliation(s)
- Gohar Mushtaq
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National, Institute on Aging, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Clark JA, Yeaman EJ, Blizzard CA, Chuckowree JA, Dickson TC. A Case for Microtubule Vulnerability in Amyotrophic Lateral Sclerosis: Altered Dynamics During Disease. Front Cell Neurosci 2016; 10:204. [PMID: 27679561 PMCID: PMC5020100 DOI: 10.3389/fncel.2016.00204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an aggressive multifactorial disease converging on a common pathology: the degeneration of motor neurons (MNs), their axons and neuromuscular synapses. This vulnerability and dysfunction of MNs highlights the dependency of these large cells on their intracellular machinery. Neuronal microtubules (MTs) are intracellular structures that facilitate a myriad of vital neuronal functions, including activity dependent axonal transport. In ALS, it is becoming increasingly apparent that MTs are likely to be a critical component of this disease. Not only are disruptions in this intracellular machinery present in the vast majority of seemingly sporadic cases, recent research has revealed that mutation to a microtubule protein, the tubulin isoform TUBA4A, is sufficient to cause a familial, albeit rare, form of disease. In both sporadic and familial disease, studies have provided evidence that microtubule mediated deficits in axonal transport are the tipping point for MN survivability. Axonal transport deficits would lead to abnormal mitochondrial recycling, decreased vesicle and mRNA transport and limited signaling of key survival factors from the neurons peripheral synapses, causing the characteristic peripheral "die back". This disruption to microtubule dependant transport in ALS has been shown to result from alterations in the phenomenon of microtubule dynamic instability: the rapid growth and shrinkage of microtubule polymers. This is accomplished primarily due to aberrant alterations to microtubule associated proteins (MAPs) that regulate microtubule stability. Indeed, the current literature would argue that microtubule stability, particularly alterations in their dynamics, may be the initial driving force behind many familial and sporadic insults in ALS. Pharmacological stabilization of the microtubule network offers an attractive therapeutic strategy in ALS; indeed it has shown promise in many neurological disorders, ALS included. However, the pathophysiological involvement of MTs and their functions is still poorly understood in ALS. Future investigations will hopefully uncover further therapeutic targets that may aid in combating this awful disease.
Collapse
Affiliation(s)
- Jayden A Clark
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Elise J Yeaman
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Jyoti A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| |
Collapse
|
10
|
Binukumar B, Pelech SL, Sutter C, Shukla V, Amin ND, Grant P, Bhaskar M, Skuntz S, Steiner J, Pant HC. Profiling of p5, a 24 Amino Acid Inhibitory Peptide Derived from the CDK5 Activator, p35 CDKR1 Against 70 Protein Kinases. J Alzheimers Dis 2016; 54:525-33. [DOI: 10.3233/jad-160458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B.K. Binukumar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Steven L. Pelech
- Kinexus Bioinformatics Corporation; Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Catherine Sutter
- Kinexus Bioinformatics Corporation; Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Varsha Shukla
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D. Amin
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Suzanne Skuntz
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Steiner
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Harish C. Pant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Zhang P, Shao XY, Qi GJ, Chen Q, Bu LL, Chen LJ, Shi J, Ming J, Tian B. Cdk5-Dependent Activation of Neuronal Inflammasomes in Parkinson's Disease. Mov Disord 2016; 31:366-76. [PMID: 26853432 DOI: 10.1002/mds.26488] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/16/2015] [Accepted: 10/25/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Inflammasomes, which mediate the activation of caspase-1 and maturation of IL-1β and IL-18, have been unambiguously verified to participate in many diseases, such as lung diseases, infectious diseases and Alzheimer's disease, but the relation between Parkinson's disease and inflammasomes is poorly understood. METHODS The expression, maturation, and secretion of inflammasomes in neurons were measured. The activation of inflammasomes in the substantia nigra of the brain was tested in acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and an α-synuclein transgenic mouse model. The levels of IL-1β and IL-18 in cerebrospinal fluid and serum samples of Parkinson's disease (PD) patients and control subjects were measured. The role of cyclin-dependent kinase 5 (Cdk5) in neuronal inflammasome activation was evaluated using the pharmacological Cdk5 inhibitor roscovitine or Cdk5-targeted deletion. RESULTS Here, we observed the expression of core molecules of inflammasomes, including NALP3, ASC, caspase-1, and IL-1β, in neuronal cells. The PD inducer rotenone could activate neuronal inflammasomes and promote the maturation and secretion of the cleaved IL-1β and IL-18 in a dose- and time-dependent manner. We also detected the activation of inflammasomes in the substantia nigra of a PD mouse model and in cerebrospinal fluid of PD patients. Furthermore, Cdk5 is required for the activation of inflammasomes, and both inhibition and deletion of Cdk5 could efficiently block inflammasome activation in PD models. CONCLUSIONS Together, our results indicated that Cdk5-dependent activation of neuronal inflammasomes was involved in the progression of PD.
Collapse
Affiliation(s)
- Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Xiao-Yun Shao
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Guang-Jian Qi
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Qiang Chen
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Lu-Lu Bu
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Li-Jun Chen
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jing Shi
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Jie Ming
- Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, P. R. China.,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China
| |
Collapse
|
12
|
Chatterjee A, Cutler SJ, Doerksen RJ, Khan IA, Williamson JS. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Bioorg Med Chem 2014; 22:6409-21. [PMID: 25438765 PMCID: PMC4254530 DOI: 10.1016/j.bmc.2014.09.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 01/17/2023]
Abstract
Calpain mediated cleavage of CDK5 natural precursor p35 causes a stable complex formation of CDK5/p25, which leads to hyperphosphorylation of tau. Thus inhibition of this complex is a viable target for numerous acute and chronic neurodegenerative diseases involving tau protein, including Alzheimer's disease. Since CDK5 has the highest sequence homology with its mitotic counterpart CDK2, our primary goal was to design selective CDK5/p25 inhibitors targeting neurodegeneration. A novel structure-based virtual screening protocol comprised of e-pharmacophore models and virtual screening workflow was used to identify nine compounds from a commercial database containing 2.84 million compounds. An ATP non-competitive and selective thieno[3,2-c]quinolin-4(5H)-one inhibitor (10) with ligand efficiency (LE) of 0.3 was identified as the lead molecule. Further SAR optimization led to the discovery of several low micromolar inhibitors with good selectivity. The research represents a new class of potent ATP non-competitive CDK5/p25 inhibitors with good CDK2/E selectivity.
Collapse
Affiliation(s)
- Arindam Chatterjee
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, MS 38677, United States
| | - Stephen J Cutler
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, MS 38677, United States.
| | - Robert J Doerksen
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, MS 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, University of Mississippi, MS 38677, United States
| | - John S Williamson
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, MS 38677, United States.
| |
Collapse
|
13
|
Kawauchi T. Cdk5 regulates multiple cellular events in neural development, function and disease. Dev Growth Differ 2014; 56:335-48. [PMID: 24844647 DOI: 10.1111/dgd.12138] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/19/2014] [Accepted: 03/30/2014] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinases (CDKs) generally regulate cell proliferation in dividing cells, including neural progenitors. In contrast, an unconventional CDK, Cdk5, is predominantly activated in post-mitotic cells, and involved in various cellular events, such as microtubule and actin cytoskeletal organization, cell-cell and cell-extracellular matrix adhesions, and membrane trafficking. Interestingly, recent studies have indicated that Cdk5 is associated with several cell cycle-related proteins, Cyclin-E and p27(kip1) . Taking advantage of multiple functionality, Cdk5 plays important roles in neuronal migration, layer formation, axon elongation and dendrite arborization in many regions of the developing brain, including cerebral cortex and cerebellum. Cdk5 is also required for neurogenesis at least in the cerebral cortex. Furthermore, Cdk5 is reported to control neurotransmitter release at presynaptic sites, endocytosis of the NMDA receptor at postsynaptic sites and dendritic spine remodeling, and thereby regulate synaptic plasticity and memory formation and extinction. In addition to these physiological roles in brain development and function, Cdk5 is associated with many neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. In this review, I will introduce the physiological and pathological roles of Cdk5 in mammalian brains from the viewpoint of not only in vivo phenotypes but also its molecular and cellular functions.
Collapse
Affiliation(s)
- Takeshi Kawauchi
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
14
|
Wang W, Cao X, Zhu X, Gu Y. Molecular dynamic simulations give insight into the mechanism of binding between 2-aminothiazole inhibitors and CDK5. J Mol Model 2013; 19:2635-45. [PMID: 23525963 DOI: 10.1007/s00894-013-1815-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 03/04/2013] [Indexed: 12/20/2022]
Abstract
Molecular docking, molecular dynamics (MD) simulations, and binding free energy analysis were performed to reveal differences in the binding affinities between five 2-aminothiazole inhibitors and CDK5. The hydrogen bonding and hydrophobic interactions between inhibitors and adjacent residues are analyzed and discussed. The rank of calculated binding free energies using the MM-PBSA method is consistent with experimental result. The results illustrate that hydrogen bonds with Cys83 favor inhibitor binding. The van der Waals interactions, especially the important contact with Ile10, dominate in the binding free energy and play a crucial role in distinguishing the different bioactivity of the five inhibitors.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | | | | | | |
Collapse
|
15
|
Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011; 2011:572634. [PMID: 21941533 PMCID: PMC3177364 DOI: 10.1155/2011/572634] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022] Open
Abstract
It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS) is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5) hyperactivity associated with neurodegeneration.
Collapse
Affiliation(s)
- Varsha Shukla
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Santosh K. Mishra
- Molecular Genetics Unit, Laboratory of Sensory Biology, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Harish C. Pant
- Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
Lopes JP, Agostinho P. Cdk5: multitasking between physiological and pathological conditions. Prog Neurobiol 2011; 94:49-63. [PMID: 21473899 DOI: 10.1016/j.pneurobio.2011.03.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 01/11/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a peculiar proline-directed serine/threonine kinase. Unlike the other members of the Cdk family, Cdk5 is not directly involved in cell cycle regulation, being normally associated with neuronal processes such as migration, cortical layering and synaptic plasticity. This kinase is present mainly in post-mitotic neurons and its activity is tightly regulated by the interaction with the specific activators, p35 and p39. Despite its pivotal role in CNS development, Cdk5 dysregulation has been implicated in different pathologies, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and, most recently, prion-related encephalopathies (PRE). In these neurodegenerative conditions, Cdk5 overactivation and relocalization occurs upon association with p25, a truncated form of the normal activator p35. This activator switching will cause a shift in the phosphorylative pattern of Cdk5, with an alteration both in targets and activity, ultimately leading to neuronal demise. In AD and PRE, two disorders that share clinical and neuropathological features, Cdk5 dysregulation is a linking event between the major neuropathological markers: amyloid plaques, tau hyperphosphorylation and synaptic and neuronal loss. Moreover, this kinase was shown to be involved in abortive cell cycle re-entry, a feature recently proposed as a possible step in the neuronal apoptosis mechanism of several neurological diseases. This review focuses on the role of Cdk5 in neurons, namely in the regulation of cytoskeletal dynamics, synaptic function and cell survival, both in physiological and in pathological conditions, highlighting the relevance of Cdk5 in the main mechanisms of neurodegeneration in Alzheimer's disease and other brain pathologies.
Collapse
Affiliation(s)
- Joao P Lopes
- Center for Neuroscience and Cell Biology, Faculty of Medicine, Biochemistry Institute, University of Coimbra, 3004 Coimbra, Portugal.
| | | |
Collapse
|
17
|
Demir O, Singh S, Klimaschewski L, Kurnaz IA. From birth till death: neurogenesis, cell cycle, and neurodegeneration. Anat Rec (Hoboken) 2010; 292:1953-61. [PMID: 19943348 DOI: 10.1002/ar.20980] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurogenesis in the embryo involves many signaling pathways and transcriptional programs and an elaborate orchestration of cell cycle exit in differentiating precursors. However, while the neurons differentiate into a plethora of different subtypes and different identities, they also presume a highly polar structure with a particular morphology of the cytoskeleton, thereby making it almost impossible for any differentiated cell to re-enter the cell cycle. It has been observed that dysregulated or forced cell cycle reentry is closely linked to neurodegeneration and apoptosis in neurons, most likely through changes in the neurocytoskeleton. However, proliferative cells still exist within the nervous system, and adult neural stem cells (NSCs) have been identified in the Central Nervous System (CNS) in the past decade, raising a great stir in the neuroscience community. NSCs present a new therapeutic potential, and much effort has since gone into understanding the molecular mechanisms driving differentiation of specific neuronal lineages, such as dopaminergic neurons, for use in regenerative medicine, either through transplanted NSCs or manipulation of existing ones. Nevertheless, differentiation and proliferation are two sides of the same coin, just like tumorigenesis and degeneration. Tumor formation may be regarded as a de-differentiation of tissues, where cell cycle mechanisms are reactivated in differentiated cell types. It is thus important to understand the molecular mechanisms underlying various brain tumors in this perspective. The recent Cancer Stem Cell (CSC) hypothesis also suggests the presence of Brain Tumor Initiating Cells (BTICs) within a tumor population, although the exact origin of these rare and mostly elusive BTICs are yet to be identified. This review attempts to investigate the correlation of neural stem cells/precursors, mature neurons, BTICs and brain tumors with respect to cell cycle regulation and the impact of cell cycle in neurodegeneration.
Collapse
Affiliation(s)
- Ozlem Demir
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | | | | | | |
Collapse
|
18
|
Design and synthesis of 6-oxo-1,6-dihydropyridines as CDK5 inhibitors. Bioorg Med Chem Lett 2009; 19:6591-4. [DOI: 10.1016/j.bmcl.2009.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 11/18/2022]
|
19
|
Enhanced tau phosphorylation in the hippocampus of mice treated with 3,4-methylenedioxymethamphetamine ("Ecstasy"). J Neurosci 2008; 28:3234-45. [PMID: 18354027 DOI: 10.1523/jneurosci.0159-08.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) ("Ecstasy") produces neurotoxic effects, which result into an impairment of learning and memory and other neurological dysfunctions. We examined whether MDMA induces increases in tau protein phosphorylation, which are typically associated with Alzheimer's disease and other chronic neurodegenerative disorders. We injected mice with MDMA at cumulative doses of 10-50 mg/kg intraperitoneally, which are approximately equivalent to doses generally consumed by humans. MDMA enhanced the formation of reactive oxygen species and induced reactive gliosis in the hippocampus, without histological evidence of neuronal loss. An acute or 6 d treatment with MDMA increased tau protein phosphorylation in the hippocampus, revealed by both anti-phospho(Ser(404))-tau and paired helical filament-1 antibodies. This increase was restricted to the CA2/CA3 subfields and lasted 1 and 7 d after acute and repeated MDMA treatment, respectively. Tau protein was phosphorylated as a result of two nonredundant mechanisms: (1) inhibition of the canonical Wnt (wingless-type MMTV integration site family) pathway, with ensuing activation of glycogen synthase kinase-3beta; and (2) activation of type-5 cyclin-dependent kinase (Cdk5). MDMA induced the expression of the Wnt antagonist, Dickkopf-1, and the expression of the Cdk5-activating protein, p25. In addition, the increase in tau phosphorylation was attenuated by strategies that rescued the Wnt pathway or inhibited Cdk5. Finally, an impairment in hippocampus-dependent spatial learning was induced by doses of MDMA that increased tau phosphorylation, although the impairment outlasted this biochemical event. We conclude that tau hyperphosphorylation in the hippocampus may contribute to the impairment of learning and memory associated with MDMA abuse.
Collapse
|
20
|
Yang W, Leystra-Lantz C, Strong MJ. Upregulation of GSK3beta expression in frontal and temporal cortex in ALS with cognitive impairment (ALSci). Brain Res 2008; 1196:131-9. [PMID: 18221734 DOI: 10.1016/j.brainres.2007.12.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/28/2022]
Abstract
The deposition of highly phosphorylated microtubule-associated tau protein has been observed in ALS with cognitive impairment (ALSci). In these studies, we have examined whether the expression of two candidate protein kinases for mediating tau hyperphosphorylation (GSK3beta or CDK5) are also altered. The expression of GSK, CDK and p25/p35 was assayed in human frontal, hippocampal, cerebellar, cervical (dorsal and ventral) and lumbar (dorsal and ventral) tissue from neurologically intact control (5), ALS (5) or ALSci (5) patients using RT-PCR, Western blot or immunohistochemistry. To assess GSK-3beta activity, we examined GSK3beta, phospho-GSK3beta and phospho-beta-catenin expression. Expression levels relative to that of beta-actin were compared by ANOVA. The expression of GSK, GSK3beta and phospho-GSK3beta was increased in both ALS and ALSci compared to that of the control. This was accompanied by an increased expression of phospho-beta-catenin. No significant difference between control, ALS or ALSci was observed with respect to the expression of CDK5 or p25/p35. Both GSK3beta and phospho-GSK3beta immunoreactive neurons were mainly located in layer II and layer III in the frontal cortex and in layer II in the hippocampus. This was consistent with the previously described distribution of hyperphosphorylated tau bearing neurons in ALS and ALSci. These data suggest that GSK3beta expression is upregulated in ALS and ALSci and that GSK3beta activation is associated with the intraneuronal deposition of hyperphosphorylated tau protein. This supports the potential role for GSK3beta as a therapeutic target in ALS.
Collapse
Affiliation(s)
- Wencheng Yang
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
21
|
Lesnick TG, Sorenson EJ, Ahlskog JE, Henley JR, Shehadeh L, Papapetropoulos S, Maraganore DM. Beyond Parkinson disease: amyotrophic lateral sclerosis and the axon guidance pathway. PLoS One 2008; 3:e1449. [PMID: 18197259 PMCID: PMC2175528 DOI: 10.1371/journal.pone.0001449] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 12/17/2007] [Indexed: 12/11/2022] Open
Abstract
Background We recently described a genomic pathway approach to study complex diseases. We demonstrated that models constructed using single nucleotide polymorphisms (SNPs) within axon guidance pathway genes were highly predictive of Parkinson disease (PD) susceptibility, survival free of PD, and age at onset of PD within two independent whole-genome association datasets. We also demonstrated that several axon guidance pathway genes represented by SNPs within our final models were differentially expressed in PD. Methodology/Principal Findings Here we employed our genomic pathway approach to analyze data from a whole-genome association dataset of amyotrophic lateral sclerosis (ALS); and demonstrated that models constructed using SNPs within axon guidance pathway genes were highly predictive of ALS susceptibility (odds ratio = 1739.73, p = 2.92×10−60), survival free of ALS (hazards ratio = 149.80, p = 1.25×10−74), and age at onset of ALS (R2 = 0.86, p = 5.96×10−66). We also extended our analyses of a whole-genome association dataset of PD, which shared 320,202 genomic SNPs in common with the whole-genome association dataset of ALS. We compared for ALS and PD the genes represented by SNPs in the final models for susceptibility, survival free of disease, and age at onset of disease and noted that 52.2%, 37.8%, and 34.9% of the genes were shared respectively. Conclusions/Significance Our findings for the axon guidance pathway and ALS have prior biological plausibility, overlap partially with PD, and may provide important insight into the causes of these and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Timothy G. Lesnick
- Division of Biostatistics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Eric J. Sorenson
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - J. Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - John R. Henley
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Lina Shehadeh
- Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Spiridon Papapetropoulos
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Demetrius M. Maraganore
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Zhong W, Liu H, Kaller MR, Henley C, Magal E, Nguyen T, Osslund TD, Powers D, Rzasa RM, Wang HL, Wang W, Xiong X, Zhang J, Norman MH. Design and synthesis of quinolin-2(1H)-one derivatives as potent CDK5 inhibitors. Bioorg Med Chem Lett 2007; 17:5384-9. [PMID: 17709247 DOI: 10.1016/j.bmcl.2007.07.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 11/25/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine protein kinase and its deregulation is implicated in a number of neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Using active site homology modeling between CDK5 and CDK2, we explored several different chemical series of potent CDK5 inhibitors. In this report, we describe the design, synthesis, and CDK5 inhibitory activities of quinolin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Wenge Zhong
- Chemistry Research and Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rzasa RM, Kaller MR, Liu G, Magal E, Nguyen TT, Osslund TD, Powers D, Santora VJ, Viswanadhan VN, Wang HL, Xiong X, Zhong W, Norman MH. Structure-activity relationships of 3,4-dihydro-1H-quinazolin-2-one derivatives as potential CDK5 inhibitors. Bioorg Med Chem 2007; 15:6574-95. [PMID: 17697781 DOI: 10.1016/j.bmc.2007.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/30/2007] [Accepted: 07/09/2007] [Indexed: 11/17/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase that plays a critical role in the early development of the nervous system. Deregulation of CDK5 is believed to contribute to the abnormal phosphorylation of various cellular substrates associated with neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Acyclic urea 3 was identified as a potent CDK5 inhibitor and co-crystallographic data of urea 3/CDK2 enzyme were used to design a novel series of 3,4-dihydroquinazolin-2(1H)-ones as CDK5 inhibitors. In this investigation we present our synthetic studies toward this series of compounds and discuss their biological relevance as CDK5 inhibitors.
Collapse
Affiliation(s)
- Robert M Rzasa
- Department of Chemistry Research and Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1789, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, White MG, Akay C, Chodroff RA, Robinson J, Lindl KA, Dichter MA, Qian Y, Mao Z, Kolson DL, Jordan-Sciutto KL. Activation of cyclin-dependent kinase 5 by calpains contributes to human immunodeficiency virus-induced neurotoxicity. J Neurochem 2007; 103:439-55. [PMID: 17897354 DOI: 10.1111/j.1471-4159.2007.04746.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the specific mechanism of neuronal damage in human immunodeficiency virus (HIV) -associated dementia is not known, a prominent role for NMDA receptor (NMDAR)-induced excitotoxicity has been demonstrated in neurons exposed to HIV-infected/activated macrophages. We hypothesized NMDAR-mediated activation of the calcium-dependent protease, calpain, would contribute to cell death by induction of cyclin-dependent kinase 5 (CDK5) activity. Using an in vitro model of HIV neurotoxicity, in which primary rat cortical cultures are exposed to supernatants from primary human HIV-infected macrophages, we have observed increased calpain-dependent cleavage of the CDK5 regulatory subunit, p35, to the constitutively active isoform, p25. Formation of p25 is dependent upon NMDAR activation and calpain activity and is coincident with increased CDK5 activity in this model. Further, inhibition of CDK5 by roscovitine provided neuroprotection in our in vitro model. Consistent with our observations in vitro, we have observed a significant increase in calpain activity and p25 levels in midfrontal cortex of patients infected with HIV, particularly those with HIV-associated cognitive impairment. Taken together, our data suggest calpain activation of CDK5, a pathway activated in HIV-infected individuals, can mediate neuronal damage and death in a model of HIV-induced neurotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Moran CM, Donnelly M, Ortiz D, Pant HC, Mandelkow EM, Shea TB. Cdk5 inhibits anterograde axonal transport of neurofilaments but not that of tau by inhibition of mitogen-activated protein kinase activity. ACTA ACUST UNITED AC 2005; 134:338-44. [PMID: 15836929 DOI: 10.1016/j.molbrainres.2004.10.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 10/29/2004] [Accepted: 10/29/2004] [Indexed: 11/19/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) inhibits neurofilament (NF) anterograde axonal transport while p42/44 mitogen-activated protein kinase (MAPk) promotes it. Since cdk5 is known to inhibit MAP kinase activity, we examined whether or not cdk5 inhibits anterograde NF transport via inhibition of MAPk activity. To accomplish this, we manipulated the activity of these kinases in differentiated NB2a/d1 cells, and monitored anterograde axonal transport of green fluorescent protein-conjugated-NF-M (GFP-M) and cyan fluorescent protein-conjugated (CFP)-tau. The cdk5 inhibitor roscovitine increased anterograde axonal transport of GFP-M and CFP-tau; transfection with cdk5/p25 inhibited transport of both. Inhibition of MAPk activity by PD98059 or expression of dominant-negative MAPk inhibited anterograde GFP-M transport, while expression of constitutively active MAPk enhanced it; these treatments did not affect CFP-tau transport. PD98059 prevented roscovitine-mediated enhancement of GFP-M transport, but did not prevent enhancement of CFP-tau transport. Co-transfection with constitutively activated MAPk prevented the inhibition of GFP-M transport that normally accompanied transfection with cdk5/p25, but did not prevent inhibition of tau transport by cdk5/p25. Finally, the extent of inhibition of GFP-M axonal transport by PD98059 was not additive to that derived from transfection with cdk5/p35, and the increase in NF transport that accompanies roscovitine treatment was not additive to that derived from transfection with constitutively activated MAPk, suggesting that the influence of these kinases on NF transport was within the same, rather than distinct, pathways. These findings suggest that axonal transport of tau and NFs is under the control of distinct kinase cascades, and that cdk5 inhibits NF transport at least in part by inhibiting MAPk.
Collapse
Affiliation(s)
- Catherine M Moran
- Center for Cell Neurobiology and Neurodegeneration Research, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | | | | | | | | | | |
Collapse
|
26
|
Hamdane M, Bretteville A, Sambo AV, Schindowski K, Bégard S, Delacourte A, Bertrand P, Buée L. p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death. J Cell Sci 2005; 118:1291-8. [PMID: 15741232 DOI: 10.1242/jcs.01724] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In large models of neuronal cell death, there is a tight correlation between Cdk5 deregulation and cell-cycle dysfunction. However, pathways that link Cdk5 to the cell cycle during neuronal death are still unclear. We have investigated the molecular events that precede p25/Cdk5-triggered neuronal death using a neuronal cell line that allows inducible p25 expression. In this system, no sign of apoptosis was seen before 24 hours of p25 induction. Thus, at that time, cell-cycle-regulatory proteins were analysed by immunoblotting and some of them showed a significant deregulation. Interestingly, after time-course experiments, the earliest feature correlated with p25 expression was the phosphorylation of the retinoblastoma protein (Rb). Indeed, this phosphorylation was observed 6 hours after p25 induction and was abolished in the presence of a Cdk5 inhibitor, roscovitine, which does not inhibit the usual Rb cyclin-D kinases Cdk4 and Cdk6. Furthermore, analyses of levels and subcellular localization of Cdk-related cyclins did not reveal any change following Cdk5 activation, arguing for a direct effect of Cdk5 activity on Rb protein. This latter result was clearly demonstrated by in vitro kinase assays showing that the p25-Cdk5 complex in our cell system phosphorylates Rb directly without the need for any intermediary kinase activity. Hence, Rb might be an appropriate candidate that connects Cdk5 to cell-cycle deregulation during neuronal cell death.
Collapse
Affiliation(s)
- Malika Hamdane
- INSERM U422, Institut de Médecine Prédictive et Recherche Thérapeutique, Université de Lille 2, Place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Shea TB, Zheng YL, Ortiz D, Pant HC. Cyclin-dependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress. J Neurosci Res 2004; 76:795-800. [PMID: 15160391 DOI: 10.1002/jnr.20099] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) phosphorylates the high molecular weight neurofilament (NF) protein. Overexpression of cdk5 inhibits NF axonal transport and induces perikaryal accumulation of disordered phospho-NF cables. Experimental and clinical motor neuron disease is characterized by oxidative stress, increased cdk5 activity, and accumulation of phospho-NFs within perikarya or proximal axons. Because oxidative stress increases cdk5 activity in experimental motor neuron disease, we examined whether oxidative stress induced cdk5-mediated NF phosphorylation. Treatment of cultured neuronal cells with hydrogen peroxide inhibited axonal transport of green fluorescent protein-tagged NF subunits and induced perikaryal accumulation of NF phosphoepitopes normally confined to axons. These effects were prevented by treatment with the cdk5 inhibitor roscovitine or transfection with a construct expressing the endogenous cdk5 inhibitor peptide. These findings indicate that oxidative stress can compromise NF dynamics via hyperactivation of cdk5 and suggest that antioxidants may alleviate multiple aspects of neuropathology in motor neuron disease.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, One University Avenue, 01854, USA.
| | | | | | | |
Collapse
|
28
|
Lin H, Juang JL, Wang PS. Involvement of Cdk5/p25 in Digoxin-triggered Prostate Cancer Cell Apoptosis. J Biol Chem 2004; 279:29302-7. [PMID: 15123618 DOI: 10.1074/jbc.m403664200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cardiac digitalis has been considered to be a treatment for breast cancer. Our previous study indicates that digoxin, one member in digitalis, decreases the proliferation of prostate cancer cells, but the mechanisms remain unclear. In the present study, Ca(2+) proved to be an important factor in digoxin-triggered prostate cancer cell death. Because cyclin-dependent kinase (Cdk)5 and p35 cleavage (p25 formation) have been reported to be targets of intracellular Ca(2+), and subsequently correlated to apoptosis, we not only demonstrated first that Cdk5, p35, and p25 proteins were all expressed in prostate cancer cells (including lymph node carcinoma of the prostate (LNCaP) and DU-145 cells), but also showed where p25 formation and Cdk5 kinase activity were affected by treatment with digoxin. The inhibitor of p35 cleavage (calpeptin) was used to reduce p25 formation, and the result suggested that p25 accumulation might be the major cause of digoxin-triggered LNCaP cell death. Butyrolactone-I and roscovitine, two Cdk5 kinase inhibitors, were also found to prevent digoxin-triggered LNCaP cell death. In addition, treatment of siRNA-Cdk5 diminished digoxin-triggered cell death, as compared with the treatments of siRNA-Cdk1 or siRNA-Cdk2, which implies the specific involvement of Cdk5 in digoxin-triggered cell death. Caspase inhibitor set and terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay were used to demonstrate that digoxin-triggered LNCaP cell apoptosis through Cdk5 activation. These results suggest that Cdk5/p35 and p25 are novel players in digoxin-triggered prostate cancer cell apoptosis and, therefore, become potential therapeutic targets.
Collapse
Affiliation(s)
- Ho Lin
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Taipei 115, Taiwan, Republic of China
| | | | | |
Collapse
|
29
|
Shea TB, Yabe JT, Ortiz D, Pimenta A, Loomis P, Goldman RD, Amin N, Pant HC. Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons. J Cell Sci 2004; 117:933-41. [PMID: 14762105 DOI: 10.1242/jcs.00785] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation has long been considered to regulate neurofilament (NF) interaction and axonal transport, and, in turn, to influence axonal stability and their maturation to large-caliber axons. Cdk5, a serine/threonine kinase homologous to the mitotic cyclin-dependent kinases, phosphorylates NF subunits in intact cells. In this study, we used two different haptenized NF subunits and manipulated cdk5 activity by microinjection, transfection and pharmacological inhibition to monitor the effect of Cdk5-p35 on NF dynamics and transport. We demonstrate that overexpression of cdk5 increases NF phosphorylation and inhibits NF axonal transport, whereas inhibition both reduces NF phosphorylation and enhances NF axonal transport in cultured chicken dorsal-root-ganglion neurons. Large phosphorylated-NF `bundles' were prominent in perikarya following cdk5 overexpression. These findings suggest that Cdk5-p35 activity regulates normal NF distribution and that overexpression of Cdk5-p35 induces perikaryal accumulation of phosphorylated-NFs similar to those observed under pathological conditions.
Collapse
Affiliation(s)
- Thomas B Shea
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts, Lowell, One University Avenue, Lowell, MA 01854, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ekinci FJ, Ortiz D, Shea TB. Okadaic acid mediates tau phosphorylation via sustained activation of the L-voltage-sensitive calcium channel. ACTA ACUST UNITED AC 2003; 117:145-51. [PMID: 14559148 DOI: 10.1016/s0169-328x(03)00294-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulation of phosphorylated isoforms of the microtubule-associated protein tau is one hallmark of affected neurons in Alzheimer's disease (AD). This increase has been attributed to increased kinase or decreased phosphatase activity. Prior studies indicate that one of the kinases that phosphorylates tau (mitogen-activated protein kinase, or MAP kinase) does so at least in part indirectly within intact neuronal cells by phosphorylating and activating the L-voltage-sensitive calcium channel. Resultant calcium influx then fosters tau phosphorylation via one or more calcium-activated kinases. We demonstrate herein that treatment of differentiated SH-SY-5Y human neuroblastoma with the phosphatase inhibitor okadaic acid (OA) similarly may increase tau phosphorylation via sustained activation of the L-voltage-sensitive calcium channel. OA increased phospho-tau as indicated by increased immunoreactivity towards an antibody (PHF-1) directed against paired helical filaments from AD brain. This increase was blocked by co-treatment with the channel antagonist nimodipine. OA treatment increased channel phosphorylation. The increases in calcium influx, PHF-1 immunoreactivity and channel phosphorylation were all attenuated by co-treatment with PD98059, which inhibits MAP kinase activity, suggesting that OA mediates these effects at least in part via sustained activation of MAP kinase. These findings underscore that divergent and convergent kinase and phosphatase activities regulate tau phosphorylation.
Collapse
Affiliation(s)
- Fatma J Ekinci
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | | | | |
Collapse
|
31
|
Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J. Regulation of contextual fear conditioning by baseline and inducible septo-hippocampal cyclin-dependent kinase 5. Neuropharmacology 2003; 44:1089-99. [PMID: 12763101 DOI: 10.1016/s0028-3908(03)00102-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, we confirm the novel role of cyclin-dependent kinase (Cdk) 5 in associative learning by demonstrating that injection of the Cdk5 inhibitor butyrolactone I into the lateral septum or hippocampus profoundly impaired context-dependent fear conditioning of C57BL/6J mice. However, unlike the inducible up-regulation of Cdk5 and its regulator p35 observed in Balb/c mice, high baseline levels, which were not affected by fear conditioning, were found in C57BL/6J mice. Surprisingly, microinjections of butyrolactone I into the lateral septum or hippocampus significantly decreased baseline Cdk5 activity within the entire septo-hippocampal circuitry, suggesting a functional link between septal and hippocampal Cdk5 activity. Significantly higher levels of the transcription factor Sp4 in the septo-hippocampal system of C57BL/6J mice may account for the high baseline Cdk5/p35 production. On the other hand, the stronger cFos production observed in the lateral septum of fear conditioned Balb/c mice may be responsible, at least in part, for the inducible up-regulation of Cdk5 in this strain. These results suggest that the role of Cdk5 in memory consolidation is strain independent and functionally related to the septo-hippocampal circuitry. However, the molecular regulation of baseline and inducible Cdk5 protein might be different among individual mouse strains and possibly other species.
Collapse
Affiliation(s)
- André Fischer
- Department of Molecular Neuroendocrinology, Max Planck Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075, Goettingen, Germany.
| | | | | | | | | |
Collapse
|
32
|
Knowles CH, Nickols CD, Feakins R, Martin JE. A systematic analysis of polyglucosan bodies in the human gastrointestinal tract in health and disease. Acta Neuropathol 2003; 105:410-3. [PMID: 12624795 DOI: 10.1007/s00401-002-0662-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Revised: 11/11/2002] [Accepted: 11/11/2002] [Indexed: 11/24/2022]
Abstract
Polyglucosan inclusion bodies have been described in smooth muscle of the gastrointestinal tract of aged dogs, and rarely in association with enteric dysmotility in humans. We have systematically examined the human small and large bowel for the presence of such inclusions in health and motility disorders. Systematic, blinded, dual observer analysis of colonic and ileal tissue from patients (n=80, age 20-92 years) undergoing large bowel resections for non-dysmotile conditions, principally neoplasia was performed, as well as retrospective review of all intestinal tissues referred for specialist histochemistry from patients undergoing surgery for motility disorders. All sections were stained with haematoxylin and eosin and periodic acid-Schiff stains. No polyglucosan bodies were identified in any specimen without dysmotility, regardless of age, but were a feature of 4/104 patients with diverse severe gastrointestinal motility disorders. In contrast to dogs, polyglucosan bodies are not a feature of normal ageing in human gastrointestinal smooth muscle but, in accord with previous suggestions, are seen in rare cases of human gut dysmotility. The significance of this difference is unclear.
Collapse
Affiliation(s)
- Charles H Knowles
- Academic Department of Surgery, Barts and the London, Queen Mary's School of Medicine, London
| | | | | | | |
Collapse
|
33
|
Weishaupt JH, Neusch C, Bähr M. Cyclin-dependent kinase 5 (CDK5) and neuronal cell death. Cell Tissue Res 2003; 312:1-8. [PMID: 12684868 DOI: 10.1007/s00441-003-0703-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2002] [Accepted: 01/10/2003] [Indexed: 12/21/2022]
Abstract
Many neurological disorders like Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis (ALS) or stroke have in common a definite loss of CNS neurons due to apoptotic or necrotic neuronal cell death. Previous studies suggested that proapoptotic stimuli may trigger an abortive and, therefore, eventually fatal cell cycle reentry in postmitotic neurons. Neuroprotective effects of small molecule inhibitors of cyclin-dependent kinases (CDKs), which are key regulators of cell cycle progression, support the cell cycle theory of neuronal apoptosis. However, growing evidence suggests that deregulated CDK5, which is not involved in cell cycle control, rather than cell cycle relevant members of the CDK family, promotes neuronal cell death. Here we summarize the current knowledge about the involvement of CDK5 in neuronal cell death and discuss possible up- or downstream partners of CDK5. Moreover, we discuss potential therapeutic options that might arise from the identification of CDK5 as an important upstream element of neuronal cell death cascades.
Collapse
Affiliation(s)
- J H Weishaupt
- Department of Neurology, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | | | |
Collapse
|
34
|
Strocchi P, Pession A, Dozza B. Up-regulation of cDK5/p35 by oxidative stress in human neuroblastoma IMR-32 cells. J Cell Biochem 2003; 88:758-65. [PMID: 12577309 DOI: 10.1002/jcb.10391] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cdk5, a member of the cyclin-dependent kinase (cdk) family, is predominantly active in neurons, where its activity is tightly regulated by the binding of its neuronal activators p35 and p39. Cdk5 is implicated in regulating the proper neuronal function; a deregulation of cdk5 has been found associated with Alzheimer's disease and amyotrophic lateral sclerosis. As oxidative stress products have been seen co-localized with pathological hallmarks of neurodegenerative diseases, we studied the effect of oxidative stress on the cdk5 enzyme in human neuroblastoma IMR-32 cells. We evaluated the effects of 4-hydroxynonenal and Ascorbate plus FeSO(4) on cdk5 activity and on the expression of cdk5 and p35 proteins. We report here that oxidative stress stimulates cdk5 activity and induces an upregulation of its regulatory and catalytic subunit expression in IMR-32 vital cells, showing that the cdk5 enzyme is involved in the signaling pathway activated by oxidative stress.
Collapse
Affiliation(s)
- Paola Strocchi
- Department of Pharmacology, University of Bologna, Bologna, Italy.
| | | | | |
Collapse
|
35
|
Li G, Faibushevich A, Turunen BJ, Yoon SO, Georg G, Michaelis ML, Dobrowsky RT. Stabilization of the cyclin-dependent kinase 5 activator, p35, by paclitaxel decreases beta-amyloid toxicity in cortical neurons. J Neurochem 2003; 84:347-62. [PMID: 12558997 DOI: 10.1046/j.1471-4159.2003.01526.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
One hallmark of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, aggregated paired helical filaments composed of hyperphosphorylated tau. Amyloid-beta (Abeta) induces tau hyperphosphorylation, decreases microtubule (MT) stability and induces neuronal death. MT stabilizing agents have been proposed as potential therapeutics that may minimize Abeta toxicity and here we report that paclitaxel (taxol) prevents cell death induced by Abeta peptides, inhibits Abeta-induced activation of cyclin-dependent kinase 5 (cdk5) and decreases tau hyperphosphorylation. Taxol did not inhibit cdk5 directly but significantly blocked Abeta-induced calpain activation and decreased formation of the cdk5 activator, p25, from p35. Taxol specifically inhibited the Abeta-induced activation of the cytosolic cdk5-p25 complex, but not the membrane-associated cdk5-p35 complex. MT-stabilization was necessary for neuroprotection and inhibition of cdk5 but was not sufficient to prevent cell death induced by overexpression of p25. As taxol is not permeable to the blood-brain barrier, we assessed the potential of taxanes to attenuate Abeta toxicity in adult animals using a succinylated taxol analog (TX67) permeable to the blood-brain barrier. TX67, but not taxol, attenuated the magnitude of both basal and Abeta-induced cdk5 activation in acutely dissociated cortical cultures prepared from drug treated adult mice. These results suggest that MT-stabilizing agents may provide a therapeutic approach to decrease Abeta toxicity and neurofibrillary pathology in AD and other tauopathies.
Collapse
Affiliation(s)
- Guibin Li
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence 66045, USA
| | | | | | | | | | | | | |
Collapse
|