1
|
Dunbar SG, Evans DR, Eggers LR, Bergman QD, Fonseca LG, Paladino FV, Salinas L, Durr CE. Inter-nesting area use, migratory routes, and foraging grounds for hawksbill turtles (Eretmochelys imbricata) in the Western Caribbean. PLoS One 2025; 20:e0317778. [PMID: 40073011 PMCID: PMC11902275 DOI: 10.1371/journal.pone.0317778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/03/2025] [Indexed: 03/14/2025] Open
Abstract
The hawksbill turtle, Eretmochelys imbricata, has been at risk of extinction for more than 40 years and remains critically endangered. While nesting beach protection is important for hatchling production, identifying inter-nesting, migratory, and foraging habitats is crucial for mitigating threats to population recovery. We report the use of satellite telemetry to monitor movements of 15 hawksbill turtles in the Western Caribbean. Transmitters were deployed on nesting turtles in Honduras (2012 n = 2; 2017 n = 3), Costa Rica (2000 n = 2; 2014 n = 1; 2015 n = 1; 2018 n = 4; 2021 n = 1), and Panama (2017 n = 1). Hawksbill inter-nesting habitats ranged from 4-2,643 km2 (core 50% utilization distribution) for the 15-70 tracking days. Large inter-nesting area use may be a result of habitats adjacent to a narrow continental shelf with strong ocean currents, causing turtles to actively search for suitable habitats. Following nesting, these turtles engaged in migrations to foraging grounds that covered 73-1,059 km lasting between 5-45 days. During migrations, turtles regularly altered their direction relative to ocean currents, using with-current movement to counteract against-current movement. Hawksbills from multiple beaches congregated in the same foraging habitat, despite nesting in different years. Turtles in this study foraged along the coastal and continental shelves of Nicaragua, Honduras, Belize, and Mexico, with turtles from disparate nesting sites utilizing the Nicaragua Rise hotspot area. Foraging area use was generally smaller (n = 8, 6-705 km2) than inter-nesting area use, possibly indicating that foraging habitats provided necessary food and resting areas. These data help us better understand inter-nesting and foraging habitat locations, core area use, and post-nesting migrations. Together, this provides vital information to mitigate potential in-water threats to critically endangered adult hawksbills along Western Caribbean migration corridors.
Collapse
Affiliation(s)
- Stephen G. Dunbar
- Marine Research Group, Loma Linda University, Loma Linda, California, United States of America
- Protective Turtle Ecology Center for Training, Outreach, and Research, Inc. (ProTECTOR, Inc.), Loma Linda, California, United States of America
- Protective Turtle Ecology Center for Training, Outreach, and Research, Inc. (ProTECTOR - Honduras), Tegucigalpa, Honduras
| | - Daniel R. Evans
- Sea Turtle Conservancy, Gainesville, Florida, United States of America
| | | | - Quintin D. Bergman
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
| | - Luis G. Fonseca
- Biocenosis Marina, Trinidad de Moravia, San José, Costa Rica
| | - Frank V. Paladino
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
- The Leatherback Trust, Fort Wayne, Indiana, United States of America
| | - Lidia Salinas
- Protective Turtle Ecology Center for Training, Outreach, and Research, Inc. (ProTECTOR, Inc.), Loma Linda, California, United States of America
- Protective Turtle Ecology Center for Training, Outreach, and Research, Inc. (ProTECTOR - Honduras), Tegucigalpa, Honduras
| | - Chelsea E. Durr
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, Indiana, United States of America
- The Leatherback Trust, Fort Wayne, Indiana, United States of America
| |
Collapse
|
2
|
Loonen AJM. The putative role of the habenula in animal migration. Physiol Behav 2024; 286:114668. [PMID: 39151652 DOI: 10.1016/j.physbeh.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND When an addicted animal seeks a specific substance, it is based on the perception of internal and external cues that strongly motivate to pursue the acquisition of that compound. In essence, a similar process acts out when an animal leaves its present area to begin its circannual migration. This review article examines the existence of scientific evidence for possible relatedness of migration and addiction by influencing Dorsal Diencephalic Conduction System (DDCS) including the habenula. METHODS For this review especially the databases of Pubmed and Embase were frequently and non-systematically searched. RESULTS The mechanisms of bird migration have been thoroughly investigated. Especially the mechanism of the circannual biorhythm and its associated endocrine regulation has been well elucidated. A typical behavior called "Zugunruhe" marks the moment of leaving in migratory birds. The role of magnetoreception in navigation has also been clarified in recent years. However, how bird migration is regulated at the neuronal level in the forebrain is not well understood. Among mammals, marine mammals are most similar to birds. They use terrestrial magnetic field when navigating and often bridge long distances between breeding and foraging areas. Population migration is further often seen among the large hoofed mammals in different parts of the world. Importantly, learning processes and social interactions with conspecifics play a major role in these ungulates. Considering the evolutionary development of the forebrain in vertebrates, it can be postulated that the DDCS plays a central role in regulating the readiness and intensity of essential (emotional) behaviors. There is manifold evidence that this DDCS plays an important role in relapse to abuse after prolonged periods of abstinence from addictive behavior. It is also possible that the DDCS plays a role in navigation. CONCLUSIONS The role of the DDCS in the neurobiological regulation of bird migration has hardly been investigated. The involvement of this system in relapse to addiction in mammals might suggest to change this. It is recommended that particularly during "Zugunruhe" the role of neuronal regulation via the DDCS will be further investigated.
Collapse
Affiliation(s)
- Anton J M Loonen
- Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
3
|
Karwinkel T, Peter A, Holland RA, Thorup K, Bairlein F, Schmaljohann H. A conceptual framework on the role of magnetic cues in songbird migration ecology. Biol Rev Camb Philos Soc 2024; 99:1576-1593. [PMID: 38629349 DOI: 10.1111/brv.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 07/06/2024]
Abstract
Migrating animals perform astonishing seasonal movements by orienting and navigating over thousands of kilometres with great precision. Many migratory species use cues from the sun, stars, landmarks, olfaction and the Earth's magnetic field for this task. Among vertebrates, songbirds are the most studied taxon in magnetic-cue-related research. Despite multiple studies, we still lack a clear understanding of when, where and how magnetic cues affect the decision-making process of birds and hence, their realised migratory behaviour in the wild. This understanding is especially important to interpret the results of laboratory experiments in an ecologically appropriate way. In this review, we summarise the current findings about the role of magnetic cues for migratory decisions in songbirds. First, we review the methodological principles for orientation and navigation research, specifically by comparing experiments on caged birds with experiments on free-flying birds. While cage experiments can show the sensory abilities of birds, studies with free-flying birds can characterise the ecological roles of magnetic cues. Second, we review the migratory stages, from stopover to endurance flight, in which songbirds use magnetic cues for their migratory decisions and incorporate this into a novel conceptual framework. While we lack studies examining whether and when magnetic cues affect orientation or navigation decisions during flight, the role of magnetic cues during stopover is relatively well studied, but mostly in the laboratory. Notably, many such studies have produced contradictory results so that understanding the biological importance of magnetic cues for decisions in free-flying songbirds is not straightforward. One potential explanation is that reproducibility of magnetic-cue experiments is low, probably because variability in the behavioural responses of birds among experiments is high. We are convinced that parts of this variability can be explained by species-specific and context-dependent reactions of birds to the study conditions and by the bird's high flexibility in whether they include magnetic cues in a decision or not. Ultimately, this review should help researchers in the challenging field of magnetoreception to design experiments meticulously and interpret results of such studies carefully by considering the migration ecology of their focal species.
Collapse
Affiliation(s)
- Thiemo Karwinkel
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Annika Peter
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Richard A Holland
- School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Kasper Thorup
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Franz Bairlein
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, 78315, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| |
Collapse
|
4
|
Hüttner T, von Fersen L, Miersch L, Dehnhardt G. Passive electroreception in bottlenose dolphins (Tursiops truncatus): implication for micro- and large-scale orientation. J Exp Biol 2023; 226:jeb245845. [PMID: 38035544 PMCID: PMC10714143 DOI: 10.1242/jeb.245845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023]
Abstract
For the two dolphin species Sotalia guianensis (Guiana dolphin) and Tursiops truncatus (bottlenose dolphin), previous research has shown that the vibrissal crypts located on the rostrum represent highly innervated, ampullary electroreceptors and that both species are correspondingly sensitive to weak electric fields. In the present study, for a comparative assessment of the sensitivity of the bottlenose dolphin's electroreceptive system, we determined detection thresholds for DC and AC electric fields with two bottlenose dolphins. In a psychophysical experiment, the animals were trained to respond to electric field stimuli using the go/no-go paradigm. We show that the two bottlenose dolphins are able to detect DC electric fields as low as 2.4 and 5.5 µV cm-1, respectively, a detection threshold in the same order of magnitude as those in the platypus and the Guiana dolphin. Detection thresholds for AC fields (1, 5 and 25 Hz) were generally higher than those for DC fields, and the sensitivity for AC fields decreased with increasing frequency. Although the electroreceptive sensitivity of dolphins is lower than that of elasmobranchs, it is suggested that it allows for both micro- and macro-scale orientation. In dolphins pursuing benthic foraging strategies, electroreception may facilitate short-range prey detection and target-oriented snapping of their prey. Furthermore, the ability to detect weak electric fields may enable dolphins to perceive the Earth's magnetic field through induction-based magnetoreception, thus allowing large-scale orientation.
Collapse
Affiliation(s)
- Tim Hüttner
- Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
- Behavioral Ecology and Conservation Lab, Nuremberg Zoo, Am Tiergarten 30, 90480 Nuremberg, Germany
| | - Lorenzo von Fersen
- Behavioral Ecology and Conservation Lab, Nuremberg Zoo, Am Tiergarten 30, 90480 Nuremberg, Germany
| | - Lars Miersch
- Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Guido Dehnhardt
- Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| |
Collapse
|
5
|
Romero G, Park J, Koehler F, Pralle A, Anikeeva P. Modulating cell signalling in vivo with magnetic nanotransducers. NATURE REVIEWS. METHODS PRIMERS 2022; 2:92. [PMID: 38111858 PMCID: PMC10727510 DOI: 10.1038/s43586-022-00170-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/15/2022] [Indexed: 12/20/2023]
Abstract
Weak magnetic fields offer nearly lossless transmission of signals within biological tissue. Magnetic nanomaterials are capable of transducing magnetic fields into a range of biologically relevant signals in vitro and in vivo. These nanotransducers have recently enabled magnetic control of cellular processes, from neuronal firing and gene expression to programmed apoptosis. Effective implementation of magnetically controlled cellular signalling relies on careful tailoring of magnetic nanotransducers and magnetic fields to the responses of the intended molecular targets. This primer discusses the versatility of magnetic modulation modalities and offers practical guidelines for selection of appropriate materials and field parameters, with a particular focus on applications in neuroscience. With recent developments in magnetic instrumentation and nanoparticle chemistries, including those that are commercially available, magnetic approaches promise to empower research aimed at connecting molecular and cellular signalling to physiology and behaviour in untethered moving subjects.
Collapse
Affiliation(s)
- Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jimin Park
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnd Pralle
- Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY, USA
| | - Polina Anikeeva
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
6
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
7
|
Abstract
The ability to detect magnetic fields is a sensory modality that is used by many animals to navigate. While first postulated in the 1800s, for decades, it was considered a biological myth. A series of elegant behavioral experiments in the 1960s and 1970s showed conclusively that the sense is real; however, the underlying mechanism(s) remained unresolved. Consequently, this has given rise to a series of beliefs that are critically analyzed in this manuscript. We address six assertions: (1) Magnetoreception does not exist; (2) It has to be magnetite; (3) Birds have a conserved six loci magnetic sense system in their upper beak; (4) It has to be cryptochrome; (5) MagR is a protein biocompass; and (6) The electromagnetic induction hypothesis is dead. In advancing counter-arguments for these beliefs, we hope to stimulate debate, new ideas, and the design of well-controlled experiments that can aid our understanding of this fascinating biological phenomenon.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany.,University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, CB2 3EG Cambridge, UK.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus- Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
8
|
Electrophysiology and the magnetic sense: a guide to best practice. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:185-195. [PMID: 34713390 PMCID: PMC8918458 DOI: 10.1007/s00359-021-01517-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022]
Abstract
Magnetoreception, sensing the Earth’s magnetic field, is used by many species in orientation and navigation. While this is established on the behavioural level, there is a severe lack in knowledge on the underlying neuronal mechanisms of this sense. A powerful technique to study the neuronal processing of magnetic cues is electrophysiology but, thus far, few studies have adopted this technique. Why is this the case? A fundamental problem is the introduction of electromagnetic noise (induction) caused by the magnetic stimuli, within electrophysiological recordings which, if too large, prevents feasible separation of neuronal signals from the induction artefacts. Here, we address the concerns surrounding the use of electromagnetic coils within electrophysiology experiments and assess whether these would prevent viable electrophysiological recordings within a generated magnetic field. We present calculations of the induced voltages in typical experimental situations and compare them against the neuronal signals measured with different electrophysiological techniques. Finally, we provide guidelines that should help limit and account for possible induction artefacts. In conclusion, if great care is taken, viable electrophysiological recordings from magnetoreceptive cells are achievable and promise to provide new insights on the neuronal basis of the magnetic sense.
Collapse
|
9
|
Bell AM, Robinson JT. The rotating magnetocaloric effect as a potential mechanism for natural magnetic senses. PLoS One 2019; 14:e0222401. [PMID: 31574085 PMCID: PMC6773214 DOI: 10.1371/journal.pone.0222401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/28/2019] [Indexed: 12/01/2022] Open
Abstract
Many animals are able to sense the earth’s magnetic field, including varieties of arthropods and members of all major vertebrate groups. While the existence of this magnetic sense is widely accepted, the mechanism of action remains unknown. Building from recent work on synthetic magnetoreceptors, we propose a new model for natural magnetosensation based on the rotating magnetocaloric effect (RME), which predicts that heat generated by magnetic nanoparticles may allow animals to detect features of the earth’s magnetic field. Using this model, we identify the conditions for the RME to produce physiological signals in response to the earth’s magnetic field and suggest experiments to distinguish between candidate mechanisms of magnetoreception.
Collapse
Affiliation(s)
- A. Martin Bell
- Applied Physics Program, Rice University, Houston, Texas, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States of America
| | - Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sjulstok E, Lüdemann G, Kubař T, Elstner M, Solov'yov IA. Molecular Insights into Variable Electron Transfer in Amphibian Cryptochrome. Biophys J 2019; 114:2563-2572. [PMID: 29874607 DOI: 10.1016/j.bpj.2018.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023] Open
Abstract
Cryptochrome proteins are activated by the absorption of blue light, leading to the formation of radical pairs through electron transfer in the active site. Recent experimental studies have shown that once some of the amino acid residues in the active site of Xenopus laevis cryptochrome DASH are mutated, radical-pair formation is still observed. In this study, we computationally investigate electron-transfer pathways in the X. laevis cryptochrome DASH by extensively equilibrating a previously established homology model using molecular dynamics simulations and then mutating key amino acids involved in the electron transfer. The electron-transfer pathways are then probed by using tight-binding density-functional theory. We report the alternative electron-transfer pathways resolved at the molecular level and, through comparison of amino acid sequences for cryptochromes from different species, we demonstrate that one of these alternative electron-transfer pathways could be general for all cryptochrome DASH proteins.
Collapse
Affiliation(s)
- Emil Sjulstok
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Gesa Lüdemann
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcus Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ilia A Solov'yov
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
11
|
Makinistian L, Belyaev I. Magnetic field inhomogeneities due to CO 2 incubator shelves: a source of experimental confounding and variability? ROYAL SOCIETY OPEN SCIENCE 2018; 5:172095. [PMID: 29515902 PMCID: PMC5830791 DOI: 10.1098/rsos.172095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/15/2018] [Indexed: 12/27/2023]
Abstract
A thorough assessment of the static magnetic field (SMF) inside a CO2 incubator allowed us to identify non-negligible inhomogeneities close to the floor, ceiling, walls and the door. Given that incubator's shelves are made of a non-magnetic stainless steel alloy, we did not expect any important effect of them on the SMF. Surprisingly, we did find relatively strong distortion of the SMF due to shelves. Indeed, our high-resolution maps of the SMF revealed that distortion is such that field intensities differing by a factor of up to 36 were measured on the surface of the shelf at locations only few millimetres apart from each other. Furthermore, the most intense of these fields was around five times greater than the ones found inside the incubator (without the metallic shelves in), while the lowest one was around 10 times lower, reaching the so-called hypomagnetic field range. Our findings, together with a survey of the literature on biological effects of hypomagnetic fields, soundly support the idea that SMF inhomogeneities inside incubators, especially due to shelves' holes, are a potential source of confounding and variability in experiments with cell cultures kept in an incubator.
Collapse
Affiliation(s)
- L. Makinistian
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Physics and Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, Ejército de los Andes 950, 5700 San Luis, Argentina
| | - I. Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Laboratory of Radiobiology, General Physics Institute, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Krichen S, Liu L, Sharma P. Biological cell as a soft magnetoelectric material: Elucidating the physical mechanisms underpinning the detection of magnetic fields by animals. Phys Rev E 2017; 96:042404. [PMID: 29347612 DOI: 10.1103/physreve.96.042404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Indexed: 11/07/2022]
Abstract
Sharks, birds, bats, turtles, and many other animals can detect magnetic fields. Aside from using this remarkable ability to exploit the terrestrial magnetic field map to sense direction, a subset is also able to implement a version of the so-called geophysical positioning system. How do these animals detect magnetic fields? The answer to this rather deceptively simple question has proven to be quite elusive. The currently prevalent theories, while providing interesting insights, fall short of explaining several aspects of magnetoreception. For example, minute magnetic particles have been detected in magnetically sensitive animals. However, how is the detected magnetic field converted into electrical signals given any lack of experimental evidence for relevant electroreceptors? In principle, a magnetoelectric material is capable of converting magnetic signals into electricity (and vice versa). This property, however, is rare and restricted to a rather small set of exotic hard crystalline materials. Indeed, such elements have never been detected in the animals studied so far. In this work we quantitatively outline the conditions under which a biological cell may detect a magnetic field and convert it into electrical signals detectable by biological cells. Specifically, we prove the existence of an overlooked strain-mediated mechanism and show that most biological cells can act as nontrivial magnetoelectric materials provided that the magnetic permeability constant is only slightly more than that of a vacuum. The enhanced magnetic permeability is easily achieved by small amounts of magnetic particles that have been experimentally detected in magnetosensitive animals. Our proposed mechanism appears to explain most of the experimental observations related to the physical basis of magnetoreception.
Collapse
Affiliation(s)
- S Krichen
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
| | - L Liu
- Department of Mathematics and Department of Mechanical Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - P Sharma
- Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA.,Department of Physics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
13
|
Landler L, Painter MS, Coe BH, Youmans PW, Hopkins WA, Phillips JB. High levels of maternally transferred mercury disrupt magnetic responses of snapping turtle hatchlings (Chelydra serpentina). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:19-25. [PMID: 28501632 DOI: 10.1016/j.envpol.2017.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The Earth's magnetic field is involved in spatial behaviours ranging from long-distance migration to non-goal directed behaviours, such as spontaneous magnetic alignment (SMA). Mercury is a harmful pollutant most often generated from anthropogenic sources that can bio-accumulate in animal tissue over a lifetime. We compared SMA of hatchling snapping turtles from mothers captured at reference (i.e., low mercury) and mercury contaminated sites. Reference turtles showed radio frequency-dependent SMA along the north-south axis, consistent with previous studies of SMA, while turtles with high levels of maternally inherited mercury failed to show consistent magnetic alignment. In contrast, there was no difference between reference and mercury exposed turtles on standard performance measures. The magnetic field plays an important role in animal orientation behaviour and may also help to integrate spatial information from a variety of sensory modalities. As a consequence, mercury may compromise the performance of turtles in a wide variety of spatial tasks. Future research is needed to determine the threshold for mercury effects on snapping turtles, whether mercury exposure compromises spatial behaviour of adult turtles, and whether mercury has a direct effect on the magnetoreception mechanism(s) that mediate SMA or a more general effect on the nervous system.
Collapse
Affiliation(s)
- Lukas Landler
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA
| | - Michael S Painter
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA
| | - Brittney Hopkins Coe
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Paul W Youmans
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA; Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
| | - William A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - John B Phillips
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA.
| |
Collapse
|
14
|
Ashur MM, Johnston NK, Dixson DL. Impacts of Ocean Acidification on Sensory Function in Marine Organisms. Integr Comp Biol 2017; 57:63-80. [DOI: 10.1093/icb/icx010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Newton KC, Kajiura SM. Magnetic field discrimination, learning, and memory in the yellow stingray (Urobatis jamaicensis). Anim Cogn 2017; 20:603-614. [DOI: 10.1007/s10071-017-1084-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
|
16
|
Kremers D, Célérier A, Schaal B, Campagna S, Trabalon M, Böye M, Hausberger M, Lemasson A. Sensory Perception in Cetaceans: Part I—Current Knowledge about Dolphin Senses As a Representative Species. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Ilieva M, Bianco G, Åkesson S. Does migratory distance affect fuelling in a medium-distance passerine migrant?: results from direct and step-wise simulated magnetic displacements. Biol Open 2016; 5:272-8. [PMID: 26883627 PMCID: PMC4810738 DOI: 10.1242/bio.014779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In birds, fat accumulation before and during migration has been shown to be endogenously controlled and tuned by, among other factors, the Earth's magnetic field. However, our knowledge about the influence of the geomagnetic field on the fuelling in migrating birds is still limited to just a few nocturnally migrating passerine species. In order to study if variations of the magnetic field can also influence the fuelling of both day- and night-migrating passerines, we caught first-year dunnocks (Prunella modularis) and subjected them to three magnetic field conditions simulated by a system of magnetic coils: (1) local geomagnetic field of southern Sweden, (2) magnetic field corresponding to the centre of the expected wintering area, and (3) magnetic field met at the northern limit of the species' breeding distribution. We did not find a difference in mass increase between the birds kept in a local magnetic field and a field resembling their wintering area, irrespectively of the mode of magnetic displacement, i.e. direct or step-wise. However, the dunnocks magnetically displaced north showed a lower rate of fuelling in comparison to the control group, probably due to elevated activity. Compared with previous studies, our results suggest that the fuelling response to magnetic displacements during the migration period is specific to the eco-physiological situation. Future studies need to address if there is an effect of magnetic field manipulation on the level of migratory activity in dunnocks and how widespread the influence of local geomagnetic field parameters is on fuelling decisions in different bird species, which have different migratory strategies, distances and migration history. Summary: Fuelling rate in migrating dunnocks, a predominantly diurnal migratory songbird is influenced by a manipulated magnetic field when the birds are magnetically displaced north, but not south, in autumn.
Collapse
Affiliation(s)
- Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, Lund SE-223 62, Sweden Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin str., Sofia 1113, Bulgaria
| | - Giuseppe Bianco
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, Lund SE-223 62, Sweden
| | - Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, Lund SE-223 62, Sweden
| |
Collapse
|
18
|
|
19
|
No evidence for intracellular magnetite in putative vertebrate magnetoreceptors identified by magnetic screening. Proc Natl Acad Sci U S A 2014; 112:262-7. [PMID: 25535350 DOI: 10.1073/pnas.1407915112] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular basis of the magnetic sense remains an unsolved scientific mystery. One theory that aims to explain how animals detect the magnetic field is the magnetite hypothesis. It argues that intracellular crystals of the iron oxide magnetite (Fe3O4) are coupled to mechanosensitive channels that elicit neuronal activity in specialized sensory cells. Attempts to find these primary sensors have largely relied on the Prussian Blue stain that labels cells rich in ferric iron. This method has proved problematic as it has led investigators to conflate iron-rich macrophages with magnetoreceptors. An alternative approach developed by Eder et al. [Eder SH, et al. (2012) Proc Natl Acad Sci USA 109(30):12022-12027] is to identify candidate magnetoreceptive cells based on their magnetic moment. Here, we explore the utility of this method by undertaking a screen for magnetic cells in the pigeon. We report the identification of a small number of cells (1 in 476,000) with large magnetic moments (8-106 fAm(2)) from various tissues. The development of single-cell correlative light and electron microscopy (CLEM) coupled with electron energy loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) permitted subcellular analysis of magnetic cells. This revealed the presence of extracellular structures composed of iron, titanium, and chromium accounting for the magnetic properties of these cells. Application of single-cell CLEM to magnetic cells from the trout failed to identify any intracellular structures consistent with biogenically derived magnetite. Our work illustrates the need for new methods to test the magnetite hypothesis of magnetosensation.
Collapse
|
20
|
Ramírez E, Marín G, Mpodozis J, Letelier JC. Extracellular recordings reveal absence of magneto sensitive units in the avian optic tectum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:983-96. [PMID: 25281335 PMCID: PMC4237910 DOI: 10.1007/s00359-014-0947-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 11/25/2022]
Abstract
There is a consensus that birds detect the earth's magnetic field and use some of its features for orientation and homing purposes. Since the late 1960s, when the first solid behavioral evidence of magnetoreception was obtained, much research has been devoted to describing the ethological aspects of this behavior. The neurophysiological basis of magnetoreception has been much less studied, although a frequently cited 1986 report described a high prevalence (70 %) of magneto-sensitive neurons in the pigeon optic tectum with high signal-to-noise ratios (Semm and Demaine, J Comp Physiol A 159:619-625, 1986). Here, we repeated these neurophysiological experiments using anesthetized as well as awake pigeons and new recording techniques. Our data indicate that magneto-sensitive units do not exist in the avian tectum.
Collapse
Affiliation(s)
- Edgardo Ramírez
- Department of Biology, Facultad de Ciencias, Universidad de Chile, Santiago, Chile,
| | | | | | | |
Collapse
|
21
|
Gonçalves CGB, Medeiros C, Abraçado LG, Acosta-Avalos D. Magnetic material in the ocellar spot and lateral line of tomtates Haemulon aurolineatum. JOURNAL OF FISH BIOLOGY 2014; 85:938-943. [PMID: 24974732 DOI: 10.1111/jfb.12449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
The presence of magnetic material in tissues of lateral line and ocellar spot of tomtates Haemulon aurolineatum is shown using the ferromagnetic resonance technique. For the first time magnetic material is reported in the ocellar spot. The magnetic material detected in these structures of H. aurolineatum suggests that this species could use magnetic orientation during its nocturnal foraging, and the relevance and role of this material with respect to schooling movements is discussed.
Collapse
Affiliation(s)
- C G B Gonçalves
- Departamento de Oceanografia, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco (UFPE), Av. Arquitetura S/N, Cidade Universitária, 50740-550, Recife, PE, Brazil
| | | | | | | |
Collapse
|
22
|
Solov'yov IA, Domratcheva T, Schulten K. Separation of photo-induced radical pair in cryptochrome to a functionally critical distance. Sci Rep 2014; 4:3845. [PMID: 24457842 PMCID: PMC4894384 DOI: 10.1038/srep03845] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/27/2013] [Indexed: 11/09/2022] Open
Abstract
Cryptochrome is a blue light receptor that acts as a sensor for the geomagnetic field and assists many animals in long-range navigation. The magnetoreceptor function arises from light-induced formation of a radical pair through electron transfer between a flavin cofactor (FAD) and a triad of tryptophan residues. Here, this electron transfer is investigated by quantum chemical and classical molecular dynamics calculations. The results reveal how sequential electron transfer, assisted by rearrangement of polar side groups in the cryptochrome interior, can yield a FAD-Trp radical pair state with the FAD and Trp partners separated beyond a critical distance. The large radical pair separation reached establishes cryptochrome's sensitivity to the geomagnetic field through weakening of distance-dependent exchange and dipole-dipole interactions. It is estimated that the key secondary electron transfer step can overcome in speed both recombination (electron back-transfer) and proton transfer involving the radical pair reached after primary electron transfer.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- 1] Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana Illinois 61801, USA [2] Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Tatiana Domratcheva
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Klaus Schulten
- 1] Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana Illinois 61801, USA [2] Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
23
|
Gopar-Canales KL, Miranda-Anaya M. Circadian clock and sun compass orientation in hatchlings of the turtleEretmochelys imbricataat Sisal, Yucatán, México. BIOL RHYTHM RES 2013. [DOI: 10.1080/09291016.2013.830511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
|
25
|
Mo WC, Zhang ZJ, Liu Y, Bartlett PF, He RQ. Magnetic shielding accelerates the proliferation of human neuroblastoma cell by promoting G1-phase progression. PLoS One 2013; 8:e54775. [PMID: 23355897 PMCID: PMC3552807 DOI: 10.1371/journal.pone.0054775] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/14/2012] [Indexed: 02/03/2023] Open
Abstract
Organisms have been exposed to the geomagnetic field (GMF) throughout evolutionary history. Exposure to the hypomagnetic field (HMF) by deep magnetic shielding has recently been suggested to have a negative effect on the structure and function of the central nervous system, particularly during early development. Although changes in cell growth and differentiation have been observed in the HMF, the effects of the HMF on cell cycle progression still remain unclear. Here we show that continuous HMF exposure significantly increases the proliferation of human neuroblastoma (SH-SY5Y) cells. The acceleration of proliferation results from a forward shift of the cell cycle in G1-phase. The G2/M-phase progression is not affected in the HMF. Our data is the first to demonstrate that the HMF can stimulate the proliferation of SH-SY5Y cells by promoting cell cycle progression in the G1-phase. This provides a novel way to study the mechanism of cells in response to changes of environmental magnetic field including the GMF.
Collapse
Affiliation(s)
- Wei-chuan Mo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Zi-jian Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (RH)
| | - Perry F. Bartlett
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rong-qiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (YL); (RH)
| |
Collapse
|
26
|
Painter MS, Dommer DH, Altizer WW, Muheim R, Phillips JB. Spontaneous magnetic orientation in larval Drosophila shares properties with learned magnetic compass responses in adult flies and mice. ACTA ACUST UNITED AC 2012; 216:1307-16. [PMID: 23239891 DOI: 10.1242/jeb.077404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We provide evidence for spontaneous quadramodal magnetic orientation in a larval insect. Second instar Berlin, Canton-S and Oregon-R × Canton-S strains of Drosophila melanogaster exhibited quadramodal orientation with clusters of bearings along the four anti-cardinal compass directions (i.e. 45, 135, 225 and 315 deg). In double-blind experiments, Canton-S Drosophila larvae also exhibited quadramodal orientation in the presence of an earth-strength magnetic field, while this response was abolished when the horizontal component of the magnetic field was cancelled, indicating that the quadramodal behavior is dependent on magnetic cues, and that the spontaneous alignment response may reflect properties of the underlying magnetoreception mechanism. In addition, a re-analysis of data from studies of learned magnetic compass orientation by adult Drosophila melanogaster and C57BL/6 mice revealed patterns of response similar to those exhibited by larval flies, suggesting that a common magnetoreception mechanism may underlie these behaviors. Therefore, characterizing the mechanism(s) of magnetoreception in flies may hold the key to understanding the magnetic sense in a wide array of terrestrial organisms.
Collapse
Affiliation(s)
- Michael S Painter
- Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), 2119 Derring Hall, Blacksburg, VA 24061-0406, USA.
| | | | | | | | | |
Collapse
|
27
|
Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation. Sci Rep 2012; 2:727. [PMID: 23061010 PMCID: PMC3468834 DOI: 10.1038/srep00727] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/13/2012] [Indexed: 11/08/2022] Open
Abstract
A variety of animals use Earth's magnetic field as a reference for their orientation behaviour. Although distinctive magnetoreception mechanisms have been postulated for many migrating or homing animals, the molecular mechanisms are still undefined. In this study, we found that zebrafish, a model organism suitable for genetic manipulation, responded to a magnetic field as weak as the geomagnetic field. Without any training, zebrafish were individually released into a circular arena that was placed in an artificial geomagnetic field, and their preferred magnetic directions were recorded. Individuals from five out of the seven zebrafish groups studied, groups mostly comprised of the offspring of predetermined pairs, showed bidirectional orientation with group-specific preferences regardless of close kinships. The preferred directions did not seem to depend on gender, age or surrounding environmental factors, implying that directional preference was genetically defined. The present findings may facilitate future study on the molecular mechanisms underlying magnetoreception.
Collapse
|
28
|
Abraçado LG, Esquivel DMS, Wajnberg E. ZFC/FC of oriented magnetic material in the Solenopsis interrupta head with antennae: characterization by FMR and SQUID. J Biol Phys 2012; 38:607-21. [PMID: 24615223 DOI: 10.1007/s10867-012-9275-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022] Open
Abstract
Ferromagnetic resonance and SQUID magnetometry have been used to study magnetic material in the head with antennae, thorax, and abdomen of Solenopsis interrupta ants. The temperature dependence of the head with antennae using both techniques was measured. Room-temperature spectra and saturation magnetization were used to compare the magnetic material amount in the ant body parts. Both techniques show that the highest magnetic material fraction is in the head with antennae. The ordering temperature is observed at 100 ± 20 K for the ferromagnetic resonance spectra HF component. The estimated magnetic anisotropy constant K and g-values at room temperature are in good agreement with magnetite, supporting this material as the main magnetic particle constituent in the Solenopsis interrupta head with antenna. Particle diameters of 26 ± 2 nm and smaller than 14 nm were estimated. This work suggests that the head with antenna of the Solenopsis interrupta ant contains organized magnetic material and points to it as a good candidate as a magnetic sensor.
Collapse
Affiliation(s)
- Leida G Abraçado
- Departamento de Física Aplicada, Centro Brasileiro de pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil,
| | | | | |
Collapse
|
29
|
Cerella C, Cordisco S, Albertini MC, Accorsi A, Diederich M, Ghibelli L. Magnetic fields promote a pro-survival non-capacitative Ca2+ entry via phospholipase C signaling. Int J Biochem Cell Biol 2010; 43:393-400. [PMID: 21095240 DOI: 10.1016/j.biocel.2010.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/04/2010] [Accepted: 11/15/2010] [Indexed: 11/28/2022]
Abstract
The ability of magnetic fields (MFs) to promote/increase Ca(2+) influx into cells is widely recognized, but the underlying mechanisms remain obscure. Here we analyze how static MFs of 6 mT modulates thapsigargin-induced Ca(2+) movements in non-excitable U937 monocytes, and how this relates to the anti-apoptotic effect of MFs. Magnetic fields do not affect thapsigargin-induced Ca(2+) mobilization from endoplasmic reticulum, but significantly increase the resulting Ca(2+) influx; this increase requires intracellular signal transduction actors including G protein, phospholipase C, diacylglycerol lipase and nitric oxide synthase, and behaves as a non-capacitative Ca(2+) entry (NCCE), a type of influx with an inherent signaling function, rather than a capacitative Ca(2+) entry (CCE). All treatments abrogating the extra Ca(2+) influx also abrogate the anti-apoptotic effect of MFs, demonstrating that MF-induced NCCE elicits an anti-apoptotic survival pathway.
Collapse
Affiliation(s)
- Claudia Cerella
- Dipartimento di Biologia, Universita' degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica snc, 00133 Roma, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Multifunctional Merkel cells: Their roles in electromagnetic reception, finger-print formation, Reiki, epigenetic inheritance and hair form. Med Hypotheses 2010; 75:162-8. [DOI: 10.1016/j.mehy.2010.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 01/20/2023]
|
31
|
Solov'yov IA, Greiner W. Micromagnetic insight into a magnetoreceptor in birds: existence of magnetic field amplifiers in the beak. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:041919. [PMID: 19905354 DOI: 10.1103/physreve.80.041919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/31/2009] [Indexed: 05/28/2023]
Abstract
The Earth's magnetic field provides an important source of directional information for many living organisms, especially birds, but the sensory receptor responsible for magnetic field detection still has to be identified. Recently, magnetic iron oxide particles were detected in dendritic endings of the ophthalmic nerves in the skin of the upper beak of homing pigeons and were shown to fulfill the special prerequisites of a biological receptor. Here we study the proposed receptor theoretically and formulate the criteria for which it becomes operational and can be used for registering the weak magnetic fields as, e.g., the geomagnetic field, by a bird.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe Universität, Ruth-Moufang-Strasse 1, 60438 Frankfurt-am-Main, Germany.
| | | |
Collapse
|
32
|
Solov'yov IA, Schulten K. Magnetoreception through cryptochrome may involve superoxide. Biophys J 2009; 96:4804-13. [PMID: 19527640 PMCID: PMC2712043 DOI: 10.1016/j.bpj.2009.03.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/17/2009] [Accepted: 03/24/2009] [Indexed: 11/27/2022] Open
Abstract
In the last decades, it has been demonstrated that many animal species orient in the Earth magnetic field. One of the best-studied examples is the use of the geomagnetic field by migratory birds for orientation and navigation. However, the biophysical mechanism underlying animal magnetoreception is still not understood. One theory for magnetoreception in birds invokes the so-called radical-pair model. This mechanism involves a pair of reactive radicals, whose chemical fate can be influenced by the orientation with respect to the magnetic field of the Earth through Zeeman and hyperfine interactions. The fact that the geomagnetic field is weak, i.e., approximately 0.5 G, puts a severe constraint on the radical pair that can establish the magnetic compass sense. For a noticeable change of the reaction yield in a redirected geomagnetic field, the hyperfine interaction has to be as weak as the Earth field Zeeman interaction, i.e., unusually weak for an organic compound. Such weak hyperfine interaction can be achieved if one of the radicals is completely devoid of this interaction as realized in a radical pair containing an oxygen molecule as one of the radicals. Accordingly, we investigate here a possible radical pair-based reaction in the photoreceptor cryptochrome that reduces the protein's flavin group from its signaling state FADH* to the inactive state FADH- (which reacts to the likewise inactive FAD) by means of the superoxide radical, O2*-. We argue that the spin dynamics in the suggested reaction can act as a geomagnetic compass and that the very low physiological concentration (nM-microM) of otherwise toxic O2*- is sufficient, even favorable, for the biological function.
Collapse
Affiliation(s)
- Ilia A Solov'yov
- Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main, Germany
| | | |
Collapse
|
33
|
|
34
|
Sheppard AR, Swicord ML, Balzano Q. Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes. HEALTH PHYSICS 2008; 95:365-396. [PMID: 18784511 DOI: 10.1097/01.hp.0000319903.20660.37] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The complexity of interactions of electromagnetic fields up to 10(12) Hz with the ions, atoms, and molecules of biological systems has given rise to a large number of established and proposed biophysical mechanisms applicable over a wide range of time and distance scales, field amplitudes, frequencies, and waveforms. This review focuses on the physical principles that guide quantitative assessment of mechanisms applicable for exposures at or below the level of endogenous electric fields associated with development, wound healing, and excitation of muscles and the nervous system (generally, 1 to 10(2) V m(-1)), with emphasis on conditions where temperature increases are insignificant (<<1 K). Experiment and theory demonstrate possible demodulation at membrane barriers for frequencies < or =10 MHz, but not at higher frequencies. Although signal levels somewhat below system noise can be detected, signal-to-noise ratios substantially less than 0.1 cannot be overcome by cooperativity, signal averaging, coherent detection, or by nonlinear dynamical systems. Sensory systems and possible effects on biological magnetite suggest paradigms for extreme sensitivity at lower frequencies, but there are no known radiofrequency (RF) analogues. At the molecular level, vibrational modes are so overdamped by water molecules that excitation of molecular modes below the far infrared cannot occur. Two RF mechanisms plausibly may affect biological matter under common exposure conditions. For frequencies below approximately 150 MHz, shifts in the rate of chemical reactions can be mediated by radical pairs and, at all frequencies, dielectric and resistive heating can raise temperature and increase the entropy of the affected biological system.
Collapse
|
35
|
Morphological changes in the retina in Pacific ocean salmon Oncorhynchus masou fry in response to neutralization of the geomagnetic field in conditions of normal illumination. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2008; 38:821-7. [PMID: 18802765 DOI: 10.1007/s11055-008-9054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/06/2007] [Indexed: 10/21/2022]
Abstract
The studies reported here provide the first demonstration that retinal responses in both the fry of the migratory salmon trout Oncorhynchus masou and the dwarf form of this species changed in conditions of experimental neutralization of the geomagnetic field (GMF); migratory salmon trout fry and dwarves showed different changes. The responses of different types of retinal photoreceptor in migratory salmon trout fry to neutralization of the GMF differed: while rods and double cones perceived neutralization of the GMF as the onset of darkness (the scotopic reaction), single (generally blue-sensitive) cones responded to neutralization of the GMF both as presentation of blue light or (very rarely) ultraviolet irradiation. The retina of dwarf male salmon trout responded to neutralization of the GMF with a double response: rods showed a light (photopic) response, while double (red/green-sensitive) cones produced dark (scotopic) responses. Single (blue-sensitive) cones responded to neutralization of the GMF as bright blue light. Thus, the morphological picture of the retina in dwarf male salmon trout in these experimental conditions corresponds to the perception of blue light. The initial conditions were different--normal diffuse daylight with a brightness of about 7.5 Lx. It is likely that neutralization of the magnetic field had no effect on rods, while double, red-green, cones responded as to darkness, i.e., the fish did not perceive red or green light in the visible spectrum, but perceived only blue and, possibly, ultraviolet light by means of central blue-sensitive and accessory cones. Thus, these experiments demonstrated that in conditions of normal daylight illumination, retinal photoreceptors in salmon fry respond to changes in the earth's magnetic field, i.e., objectively function as magnetoreceptors.
Collapse
|
36
|
Abstract
AbstractThe ability to respond to magnetic fields is ubiquitous among the five kingdoms of organisms. Apart from the mechanisms that are at work in bacterial magnetotaxis, none of the innumerable magnetobiological effects are as yet completely understood in terms of their underlying physical principles. Physical theories on magnetoreception, which draw on classical electrodynamics as well as on quantum electrodynamics, have greatly advanced during the past twenty years, and provide a basis for biological experimentation. This review places major emphasis on theories, and magnetobiological effects that occur in response to weak and moderate magnetic fields, and that are not related to magnetotaxis and magnetosomes. While knowledge relating to bacterial magnetotaxis has advanced considerably during the past 27 years, the biology of other magnetic effects has remained largely on a phenomenological level, a fact that is partly due to a lack of model organisms and model responses; and in great part also to the circumstance that the biological community at large takes little notice of the field, and in particular of the available physical theories. We review the known magnetobiological effects for bacteria, protists and fungi, and try to show how the variegated empirical material could be approached in the framework of the available physical models.
Collapse
|
37
|
Voss J, Keary N, Bischof HJ. The use of the geomagnetic field for short distance orientation in zebra finches. Neuroreport 2007; 18:1053-7. [PMID: 17558295 DOI: 10.1097/wnr.0b013e32818b2a21] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the ability to use the Earth's magnetic field for long distance orientation and navigation has been demonstrated in many animals, the search for the appropriate receptor has not yet finished. It is also not entirely clear whether the use of magnetic field information is restricted to specialists like migrating birds, or whether it is a sense that is also suited to short distance orientation by avian species. We successfully trained nonmigratory zebra finches in a four-choice food-search task to use the natural magnetic field as well as an experimentally shifted field for short distance orientation, supporting the view that magnetic field perception may be a sense existing in all bird species. By using a conditioning technique in a standard laboratory animal, our experiments will provide an ideal basis for the search for the physiological mechanisms of magnetic field perception.
Collapse
Affiliation(s)
- Joe Voss
- Behavioural Biology, Bielefeld University, Bielefeld, Germany.
| | | | | |
Collapse
|
38
|
Innate preference for magnetic compass direction in the Alpine newt, Triturus alpestris (Salamandridae, Urodela)? J ETHOL 2006. [DOI: 10.1007/s10164-006-0017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Lucano MJ, Cernicchiaro G, Wajnberg E, Esquivel DMS. Stingless bee antennae: a magnetic sensory organ? Biometals 2006; 19:295-300. [PMID: 16799867 DOI: 10.1007/s10534-005-0520-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/05/2005] [Indexed: 10/24/2022]
Abstract
Magnetic material in the body parts of the stingless bee Schwarziana quadripunctata, heads, pairs of antennae, thorax and abdomens, were investigated by SQUID magnetometry and Ferromagnetic Resonance (FMR). The saturation, J(s) and remanent, J(r), magnetizations and coercive field H(c) are determined from the hysteresis curves. From H(c) and J(r)/J(s) the magnetic particle sizes are estimated. The J(s) and the FMR spectral absorption areas yield 23+/-3%, 45+/-5%, 15+/-2% and 19+/-4% magnetic material contributions of head, pair of antennae, thorax and abdomen, respectively, similar to those observed in the migratory ant Pachycondyla marginata. This result is discussed in light of the hypothesis of antennae as a magnetosensor structure.
Collapse
Affiliation(s)
- M J Lucano
- Centro Brasileiro de Pesquisas Físicas, R Xavier Sigaud 150, Rio de Janeiro, RJ 22290-180, Brazil
| | | | | | | |
Collapse
|
40
|
Partch CL, Sancar A. Photochemistry and photobiology of cryptochrome blue-light photopigments: the search for a photocycle. Photochem Photobiol 2006; 81:1291-304. [PMID: 16164372 DOI: 10.1562/2005-07-08-ir-607] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cryptochromes are flavoproteins that exhibit high sequence and structural similarity to the light-dependent DNA-repair enzyme, photolyase. Cryptochromes have lost the ability to repair DNA; instead, they use the energy from near-UV/blue light to regulate a variety of growth and adaptive processes in organisms ranging from bacteria to humans. The photocycle of cryptochrome is not yet known, although it is hypothesized that it may share some similarity to that of photolyase, which utilizes light-driven electron transfer from the catalytic flavin chromophore. In this review, we present genetic evidence for the photoreceptive role of cryptochromes and discuss recent biochemical studies that have furthered our understanding of the cryptochrome photocycle. In particular, the role of the unique C-terminal domain in cryptochrome phototransduction is discussed.
Collapse
Affiliation(s)
- Carrie L Partch
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
41
|
|
42
|
Cain SD, Wang JH, Lohmann KJ. Immunochemical and electrophysiological analyses of magnetically responsive neurons in the mollusc Tritonia diomedea. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:235-45. [PMID: 16240147 DOI: 10.1007/s00359-005-0063-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 09/21/2005] [Accepted: 09/23/2005] [Indexed: 11/24/2022]
Abstract
Tritonia diomedea uses the Earth's magnetic field as an orientation cue, but little is known about the neural mechanisms that underlie magnetic orientation behavior in this or other animals. Six large, individually identifiable neurons in the brain of Tritonia (left and right Pd5, Pd6, Pd7) are known to respond with altered electrical activity to changes in earth-strength magnetic fields. In this study we used immunochemical, electrophysiological, and neuroanatomical techniques to investigate the function of the Pd5 neurons, the largest magnetically responsive cells. Immunocytochemical studies localized TPeps, neuropeptides isolated from Pd5, to dense-cored vesicles within the Pd5 somata and within neurites adjacent to ciliated foot epithelial cells. Anatomical analyses revealed that neurites from Pd5 are located within nerves innervating the ipsilateral foot and body wall. These results imply that Pd5 project to the foot and regulate ciliary beating through paracrine release. Electrophysiological recordings indicated that, although both LPd5 and RPd5 responded to the same magnetic stimuli, the pattern of spiking in the two cells differed. Given that TPeps increase ciliary beating and Tritonia locomotes using pedal cilia, our results are consistent with the hypothesis that Pd5 neurons control or modulate the ciliary activity involved in crawling during orientation behavior.
Collapse
Affiliation(s)
- Shaun D Cain
- Friday Harbor Laboratories, University of Washington, 620 University Rd, Friday Harbor, WA 98250, USA.
| | | | | |
Collapse
|
43
|
Abstract
Diverse animals can detect magnetic fields but little is known about how they do so. Three main hypotheses of magnetic field perception have been proposed. Electrosensitive marine fish might detect the Earth's field through electromagnetic induction, but direct evidence that induction underlies magnetoreception in such fish has not been obtained. Studies in other animals have provided evidence that is consistent with two other mechanisms: biogenic magnetite and chemical reactions that are modulated by weak magnetic fields. Despite recent advances, however, magnetoreceptors have not been identified with certainty in any animal, and the mode of transduction for the magnetic sense remains unknown.
Collapse
Affiliation(s)
- Sönke Johnsen
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
44
|
Nemec P, Burda H, Oelschläger HHA. Towards the neural basis of magnetoreception: a neuroanatomical approach. Naturwissenschaften 2005; 92:151-7. [PMID: 15776256 DOI: 10.1007/s00114-005-0612-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 01/16/2005] [Indexed: 11/30/2022]
Abstract
After more than two decades of intensive research, the physiological mechanisms of animal magnetoreception remain enigmatic. The primary magnetoreceptors are still unknown and our knowledge of the neural substrate subserving magnetic orientation is meagre. Here we argue that this dismal outcome can be largely attributed to the fact that the potential of recently available neurobiological techniques has not been utilized, review some of these techniques and propose a step by step scenario for future research, concentrating on the heuristic potential of instrumentalizing inducible transcription factors (ITFs) such as Jun, Fos, Fos-related antigens and Krox. ITFs can be used as markers of neuronal activation in experiments on freely moving animals performing magnetically based orientation tasks, in experiments on anaesthetised or restrained animals stimulated magnetically, and in experiments employing treatments that specifically disrupt magnetoreception. Therefore they can serve as tools for identifying neurons involved in the detection and processing of magnetic information. When used in combination with other neurobiological tools, ITFs can also be useful for a more comprehensive description of the involved neural networks, for the identification of magnetoreceptors and, in the case of the photoreceptor-based mechanism, also for studying the involvement of specific light-sensitive molecules in the primary transduction process of magnetoreception. Limitations and pitfalls of the proposed approach are also discussed.
Collapse
Affiliation(s)
- Pavel Nemec
- Department of Zoology, Charles University, Vinicná 7, Praha 2, 12844 Czech Republic.
| | | | | |
Collapse
|
45
|
Kristofiková Z, Cermák M, Benesová O, Klaschka J, Zach P. Exposure of Postnatal Rats to a Static Magnetic Field of 0.14 T Influences Functional Laterality of the Hippocampal High-Affinity Choline Uptake System in Adulthood; In vitro Test with Magnetic Nanoparticles. Neurochem Res 2005; 30:253-62. [PMID: 15895829 DOI: 10.1007/s11064-005-2448-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Our previous experiments indicated an age- and sex-dependent functional lateralization of a high-affinity choline uptake system in hippocampi of Wistar rats. The system is connected with acetylcholine synthesis and also plays a role in spatial navigation. The current study demonstrates that a single in vivo exposure of 7- or 14-day-old males to a static magnetic field of 0.14 T for 60-120 min evokes asymmetric alterations in the activity of carriers in adulthood. Namely, the negative field (antiparallel orientation with a vertical component of the geomagnetic field) mediated a more marked decrease in the right hippocampus. The positive field (parallel orientation) was ineffective. Moreover, differences between the carriers from the right and the left hippocampi were observed on synaptosomes pretreated with superparamagnetic nanoparticles and exposed for 30 min in vitro. The positive field enhanced more markedly the activity of carriers from the right hippocampus, the negative that from the left hippocampus, on the contrary. Our results demonstrate functionally teratogenic risks of the alterations in the orientation of the strong static magnetic field for postnatal brain development and suggest functional specialization of both hippocampi in rats. Choline carriers could be involved as secondary receptors in magnetoreception through direct effects of geomagnetic field on intracellular magnetite crystals and nanoparticles applied in vivo should be a useful tool to evaluate magnetoreception in future research.
Collapse
Affiliation(s)
- Z Kristofiková
- Prague Psychiatric Centre, Ustavní 91, 181 03, Prague 8, Bohnice, Czech Republic.
| | | | | | | | | |
Collapse
|
46
|
Bleckmann H, Schmitz H, von der Emde G. Nature as a model for technical sensors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:971-81. [PMID: 15490190 DOI: 10.1007/s00359-004-0563-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 08/05/2004] [Accepted: 08/05/2004] [Indexed: 10/26/2022]
Abstract
Nature has developed a stunning diversity of sensory systems. Humans and many animals mainly rely on visual information. In addition, they may use acoustic, olfactory, and tactile cues for object detection and spatial orientation. Beyond these sensory systems a large variety of highly specialized sensors have evolved. For instance, some buprestid beetles use infrared organs for the detection of forest fires. The infrared sensors of boid and crotalid snakes are used for prey detection at night. For object detection and spatial orientation many species of nocturnal fish employ active electrolocation. This review describes certain aspects of the detection and processing of infrared and electrosensory information. We show that the study of natural exotic sensory systems can lead to discoveries that are useful for the construction of technical sensors and artificial control systems. Comparative studies of animal sensory systems have the power to uncover at least a small fraction of the gigantic untapped reservoir of natural solutions for perceptive problems.
Collapse
Affiliation(s)
- H Bleckmann
- Institut für Zoologie, Poppelsdorfer Schloss, 53115 Bonn, Germany.
| | | | | |
Collapse
|
47
|
Wang JH, Cain SD, Lohmann KJ. Identifiable neurons inhibited by Earth-strength magnetic stimuli in the mollusc Tritonia diomedea. ACTA ACUST UNITED AC 2004; 207:1043-9. [PMID: 14766962 DOI: 10.1242/jeb.00864] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diverse animals use the Earth's magnetic field as an orientation cue, but little is known about the sensory, processing and motor elements of the neural circuitry underlying magnetic orientation behavior. The marine mollusc Tritonia diomedea has both a magnetic compass sense and a simple nervous system accessible to electrophysiological analysis. Previous studies have revealed that four identifiable neurons, known as LPd5, RPd5, LPd6 and RPd6, respond with enhanced electrical activity to changes in Earth-strength magnetic fields. Here we report that two additional neurons, LPd7 and RPd7, are inhibited by magnetic stimuli. Cobalt fills of the Pd7 neurons indicated that two prominent neurites emerge from the soma and project to the periphery through the ipsilateral cerebral nerves CeN6 and CeN3; in some cases, a third neurite was visible in CeN2. The nerves extend to the anterior region of the animal where they innervate the lateral body walls, oral veil and mouth region. Action potentials in the Pd7 neurons propagate from the central ganglia toward the periphery. Thus, the Pd7 cells have characteristics of efferent neurons. The precise function of these cells during magnetic orientation behavior, however, remains to be determined.
Collapse
Affiliation(s)
- John H Wang
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | | | | |
Collapse
|
48
|
Plank C, Schillinger U, Scherer F, Bergemann C, Rémy JS, Krötz F, Anton M, Lausier J, Rosenecker J. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 2003; 384:737-47. [PMID: 12817470 DOI: 10.1515/bc.2003.082] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In order to enhance and target gene delivery we have previously established a novel method, termed magnetofection, which uses magnetic force acting on gene vectors that are associated with magnetic particles. Here we review the benefits, the mechanism and the potential of the method with regard to overcoming physical limitations to gene delivery. Magnetic particle chemistry and physics are discussed, followed by a detailed presentation of vector formulation and optimization work. While magnetofection does not necessarily improve the overall performance of any given standard gene transfer method in vitro, its major potential lies in the extraordinarily rapid and efficient transfection at low vector doses and the possibility of remotely controlled vector targeting in vivo.
Collapse
Affiliation(s)
- Christian Plank
- Institute of Experimental Oncology, Technical University Munich, Ismaninger Str. 22, D-81675 Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
In the parallel map theory, the hippocampus encodes space with 2 mapping systems. The bearing map is constructed primarily in the dentate gyrus from directional cues such as stimulus gradients. The sketch map is constructed within the hippocampus proper from positional cues. The integrated map emerges when data from the bearing and sketch maps are combined. Because the component maps work in parallel, the impairment of one can reveal residual learning by the other. Such parallel function may explain paradoxes of spatial learning, such as learning after partial hippocampal lesions, taxonomic and sex differences in spatial learning, and the function of hippocampal neurogenesis. By integrating evidence from physiology to phylogeny, the parallel map theory offers a unified explanation for hippocampal function.
Collapse
Affiliation(s)
- Lucia F Jacobs
- Department of Psychology, University of California, Berkeley 94720-1650, USA.
| | | |
Collapse
|