1
|
Hager T, Agorastos A, Ögren SO, Stiedl O. Identifying Cardiovascular Risk by Nonlinear Heart Rate Dynamics Analysis: Translational Biomarker from Mice to Humans. Brain Sci 2025; 15:306. [PMID: 40149828 PMCID: PMC11940095 DOI: 10.3390/brainsci15030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The beat-by-beat fluctuation of heart rate (HR) in its temporal sequence (HR dynamics) provides information on HR regulation by the autonomic nervous system (ANS) and its dysregulation in pathological states. Commonly, linear analyses of HR and its variability (HRV) are used to draw conclusions about pathological states despite clear statistical and translational limitations. OBJECTIVE The main aim of this study was to compare linear and nonlinear HR measures, including detrended fluctuation analysis (DFA), based on ECG recordings by radiotelemetry in C57BL/6N mice to identify pathological HR dynamics. METHODS We investigated different behavioral and a wide range of pharmacological interventions which alter ANS regulation through various peripheral and/or central mechanisms including receptors implicated in psychiatric disorders. This spectrum of interventions served as a reference system for comparison of linear and nonlinear HR measures to identify pathological states. RESULTS Physiological HR dynamics constitute a self-similar, scale-invariant, fractal process with persistent intrinsic long-range correlations resulting in physiological DFA scaling coefficients of α~1. Strongly altered DFA scaling coefficients (α ≠ 1) indicate pathological states of HR dynamics as elicited by (1) parasympathetic blockade, (2) parasympathetic overactivation and (3) sympathetic overactivation but not inhibition. The DFA scaling coefficients are identical in mice and humans under physiological conditions with identical pathological states by defined pharmacological interventions. CONCLUSIONS Here, we show the importance of tonic vagal function for physiological HR dynamics in mice, as reported in humans. Unlike linear measures, DFA provides an important translational measure that reliably identifies pathological HR dynamics based on altered ANS control by pharmacological interventions. Central ANS dysregulation represents a likely mechanism of increased cardiac mortality in psychiatric disorders.
Collapse
Affiliation(s)
- Torben Hager
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
| | - Agorastos Agorastos
- Division of Neurosciences, II. Department of Psychiatry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Oliver Stiedl
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands;
- Department of Health, Safety and Environment, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
2
|
Carricarte Naranjo C, Marras C, Visanji NP, Cornforth DJ, Sanchez-Rodriguez L, Schüle B, Goldman SM, Estévez M, Stein PK, Jelinek HF, Lang AE, Machado A. Heartbeat signature for predicting motor and non-motor involvement among nonparkinsonian LRRK2 G2019S mutation carriers. Clin Auton Res 2025:10.1007/s10286-024-01104-6. [PMID: 39969690 DOI: 10.1007/s10286-024-01104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/23/2024] [Indexed: 02/20/2025]
Abstract
PURPOSE Increased beat-to-beat heart rate variability (HRV) is a feature of patients with Parkinson's disease (PD) who carry the G2019S mutation in the LRRK2 gene (LRRK2-PD). Since LRRK2 mutations have incomplete penetrance, HRV changes preceding PD conversion would likely be observed only in a subset of LRRK2 non-manifesting carriers (NMC). We aimed to assess HRV in a subgroup of NMC with distinctive characteristics of LRRK2-PD, identified through clustering analysis. METHODS HRV measures derived from 300 normal heartbeat intervals extracted from the electrocardiograms of 25 NMC, 32 related non-carriers (RNC), 27 unrelated healthy controls, and 14 patients with LRRK2-PD were analyzed. Clinical symptoms were evaluated using questionnaires and scales, and three NMC subgroups were identified using a k-means cluster analysis on the basis of the deceleration capacity of heart rate (DC) and Rényi entropy. Standard and advanced HRV measures were compared using multiple regression analysis, controlling for age, sex, and mean heart rate. RESULTS Beat-to-beat HRV markers were significantly increased in a subgroup of seven NMC (NMC2, 28%) compared with RNC and controls. Increased irregularity and DC were also verified in the NMC2 compared with controls, and were typical traits in both the NMC2 and RNC. Overall, the HRV profile of NMC2 was comparable to that of patients with LRRK2-PD. NMC2 further exhibited greater motor and non-motor traits than the other NMC, RNC, and controls. CONCLUSIONS Our results confirmed that HRV characteristics of LRRK2-PD are also found in a subset of NMC displaying clinical traits of LRRK2-PD. Further research is needed to clarify whether higher HRV represents a LRRK2-PD prodromal manifestation.
Collapse
Affiliation(s)
| | - Connie Marras
- Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Naomi P Visanji
- Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - David J Cornforth
- Member of the National Coalition of Independent Scholars (NCIS), Brattleboro, VT, USA
| | | | - Birgitt Schüle
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Samuel M Goldman
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Mario Estévez
- Departamento de Neurofisiología Clínica, Instituto de Neurología y Neurocirugía, La Habana, Cuba
| | - Phyllis K Stein
- School of Medicine, Washington University, St. Louis, MO, USA
| | - Herbert F Jelinek
- Department of Medical Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, UAE
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada
| | - Andrés Machado
- Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| |
Collapse
|
3
|
Kraynak TE, Karim HT, Banihashemi L, Tudorascu DL, Butters MA, Pascoal T, Lopresti B, Andreescu C. A preliminary investigation of worry, cortical amyloid burden, and stressor-evoked brain and cardiovascular reactivity in older adults. J Affect Disord 2024; 367:623-631. [PMID: 39151757 DOI: 10.1016/j.jad.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Worry is a transdiagnostic symptom common to many neurocognitive disorders of aging, including early stages of Alzheimer's disease and related dementias (ADRD). Severe worry is associated with amyloid burden in cognitively intact older adults, yet the mechanisms underlying this association are not well understood. We hypothesize that this relationship involves altered brain and cardiovascular reactivity to acute stressors, a brain-body phenotype that also increases risk for cardiovascular disease. Twenty cognitively normal older adults (age 60 to 80) with varying levels of worry severity underwent positron emission tomography using Pittsburgh Compound-B and functional magnetic resonance imaging. We examined associations of worry severity and amyloid burden with cardiovascular reactivity, brain activation, and brain connectivity using a cognitive stressor task. Worry severity was not associated with global amyloid burden, but was associated with greater resting levels of cardiovascular physiology and lower systolic blood pressure reactivity. Worry severity also was associated with altered stressor-evoked activation and effective connectivity in brain circuits implicated in stress processing, emotion perception, and physiological regulation. These associations showed small to medium effect sizes. These preliminary findings introduce key components of a model that may link severe worry to ADRD risk via stressor-evoked brain-body interactions.
Collapse
Affiliation(s)
- Thomas E Kraynak
- Department of Epidemiology, University of Pittsburgh, United States of America; Department of Psychiatry, University of Pittsburgh, United States of America
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh, United States of America; Department of Bioengineering, University of Pittsburgh, United States of America
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, United States of America; Department of Bioengineering, University of Pittsburgh, United States of America
| | - Dana L Tudorascu
- Department of Psychiatry, University of Pittsburgh, United States of America
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, United States of America
| | - Tharick Pascoal
- Department of Psychiatry, University of Pittsburgh, United States of America; Department of Neurology, University of Pittsburgh, United States of America
| | - Brian Lopresti
- Department of Psychiatry, University of Pittsburgh, United States of America
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh, United States of America.
| |
Collapse
|
4
|
Chen T, Zhu SJ, Xu S, Wang YQ, Aji A, Zhang C, Wang H, Li FL, Chu YX. Resting-state fMRI reveals changes within the anxiety and social avoidance circuitry of the brain in mice with psoriasis-like skin lesions. Exp Dermatol 2023; 32:1900-1914. [PMID: 37622736 DOI: 10.1111/exd.14914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023]
Abstract
Psoriasis is an autoimmune skin disease that often co-occurs with psychological morbidities such as anxiety and depression, and psychosocial issues also lead psoriasis patients to avoid other people. However, the precise mechanism underlying the comorbidity of psoriasis and anxiety is unknown. Also, whether the social avoidance phenomenon seen in human patients also exists in psoriasis-like animal models remains unknown. In the present study, anxiety-like behaviours and social avoidance-like behaviours were observed in an imiquimod-induced psoriasis-like C57-BL6 mouse model along with typical psoriasis-like dermatitis and itch-like behaviours. The 11.7T resting-state functional magnetic resonance imaging showed differences in brain regions between the model and control group, and voxel-based morphometry showed that the grey matter volume changed in the basal forebrain region, anterior commissure intrabulbar and striatum in the psoriasis-like mice. Seed-based resting state functional connectivity analysis revealed connectivity changes in the amygdala, periaqueductal gray, raphe nuclei and lateral septum. We conclude that the imiquimod-induced psoriasis-like C57-BL6 mouse model is well suited for mechanistic studies and for performing preclinical therapeutic trials for treating anxiety and pathological social avoidance in psoriasis patients.
Collapse
Affiliation(s)
- Teng Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Sheng-Jie Zhu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuai Xu
- Department of Neurology, Institute of Science and Technology for Brain-Inspired Intelligence, Zhongshan Hospital, Human Phenome Institute, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Yu-Quan Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Abudula Aji
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Chen Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - He Wang
- Department of Neurology, Institute of Science and Technology for Brain-Inspired Intelligence, Zhongshan Hospital, Human Phenome Institute, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Fu-Lun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Roché S, Kearns H, Brindle RC. Testing adverse childhood experiences (ACEs) as a potential moderator of the association between current chronic stress and cardiovascular reactivity. Int J Psychophysiol 2023; 193:112245. [PMID: 37730123 DOI: 10.1016/j.ijpsycho.2023.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Motivated by mixed findings regarding the relationship between chronic stress and cardiovascular reactivity, the current study aimed to investigate whether adverse childhood experiences (ACEs) serve as a potential moderator of the association between current chronic stress and cardiovascular reactivity. Incidence of ACEs, levels of current chronic stress, and heart rate (HR) reactivity to a mental arithmetic stress task were measured in 111 participants (age = 20.83, 76 % female, 66 % White). ACEs were measured using the Childhood Trauma Questionnaire and current chronic stress was measured using the Perceived Stress Scale. Moderation analyses were conducted with HR reactivity as the outcome and ACEs as the moderator. Results indicated that a greater amount of current chronic stress was significantly associated with relatively blunted HR reactivity (β = -0.25, p = 0.03) even after controlling for sociodemographic variables. Exposure to ACEs was not significantly related to HR reactivity, (all p ≥ 0.66), and there was no significant interaction between current chronic stress and ACE exposure in predicting HR reactivity, (all p ≥ 0.44). These results show that current chronic stress is associated with relatively blunted HR reactivity and that exposure to ACEs does not moderate the relationship between chronic stress and cardiac stress reactivity.
Collapse
Affiliation(s)
- Sophia Roché
- Department of Biology, Washington and Lee University, USA
| | - Hannah Kearns
- Department of Cognitive and Behavioral Science, Washington and Lee University, USA
| | - Ryan C Brindle
- Department of Cognitive and Behavioral Science, Neuroscience Program, Washington and Lee University, USA.
| |
Collapse
|
6
|
Shao H, Li S. A new perspective on HIV: effects of HIV on brain-heart axis. Front Cardiovasc Med 2023; 10:1226782. [PMID: 37600062 PMCID: PMC10436320 DOI: 10.3389/fcvm.2023.1226782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The human immunodeficiency virus (HIV) infection can cause damage to multiple systems within the body, and the interaction among these various organ systems means that pathological changes in one system can have repercussions on the functions of other systems. However, the current focus of treatment and research on HIV predominantly centers around individual systems without considering the comprehensive relationship among them. The central nervous system (CNS) and cardiovascular system play crucial roles in supporting human life, and their functions are closely intertwined. In this review, we examine the effects of HIV on the CNS, the resulting impact on the cardiovascular system, and the direct damage caused by HIV to the cardiovascular system to provide new perspectives on HIV treatment.
Collapse
Affiliation(s)
| | - Sijun Li
- Department of Internal Medicine, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
7
|
Zeicu C, Legouhy A, Scott CA, Oliveira JFA, Winston G, Duncan JS, Vos SB, Thom M, Lhatoo S, Zhang H, Harper RM, Diehl B. Altered Amygdala Volumes and Microstructure in Focal Epilepsy Patients with Tonic-Clonic Seizures, Ictal and Post-Ictal Central Apnea. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.16.23287369. [PMID: 36993530 PMCID: PMC10055587 DOI: 10.1101/2023.03.16.23287369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Objectives Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by presence or absence of FBTCS, ictal central apnea (ICA) and post-ictal central apnea (PICA). Methods 73 patients with only-focal seizures and 30 with FBTCS recorded during video EEG (VEEG) with respiratory monitoring were recruited prospectively during presurgical investigations. We acquired high-resolution T1-weighted anatomical and multi-shell diffusion images, and computed neurite orientation dispersion and density imaging (NODDI) metrics in all epilepsy patients and 69 healthy controls. Amygdala volumetric and microstructure alterations were compared between healthy subjects, and patients with only-focal seizures or FBTCS The FBTCS group was further subdivided by presence of ICA and PICA, verified by VEEG. Results Bilateral amygdala volumes were significantly increased in the FBTCS cohort compared to healthy controls and the focal cohort. Patients with recorded PICA had the highest increase in bilateral amygdala volume of the FBTCS cohort.Amygdala neurite density index (NDI) values were significantly decreased in both the focal and FBTCS groups relative to healthy controls, with values in the FBTCS group being the lowest of the two. The presence of PICA was associated with significantly lower NDI values vs the non-apnea FBTCS group (p=0.004). Significance Individuals with FBTCS and PICA show significantly increased amygdala volumes and disrupted architecture bilaterally, with greater changes on the left side. The structural alterations reflected by NODDI and volume differences may be associated with inappropriate cardiorespiratory patterns mediated by the amygdala, particularly after FBTCS. Determination of amygdala volumetric and architectural changes may assist identification of individuals at risk.
Collapse
Affiliation(s)
- Claudia Zeicu
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Antoine Legouhy
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Catherine A. Scott
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Joana F. A. Oliveira
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Gavin Winston
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
- Division of Neurology, Department of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sjoerd B. Vos
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Nedlands, Australia
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Samden Lhatoo
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Hui Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Ronald M. Harper
- Brain Research Institute, University of California at Los Angeles, California, USA
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, California, USA
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurophysiology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
8
|
Shell AL, Gonzenbach V, Sawhney M, Crawford CA, Stewart JC. Associations between affective factors and high-frequency heart rate variability in primary care patients with depression. J Psychosom Res 2022; 161:110992. [PMID: 35917659 DOI: 10.1016/j.jpsychores.2022.110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Depression is a risk factor for cardiovascular disease (CVD), and subgroups of people with depression may be at particularly elevated CVD risk. Lower high-frequency heart rate variability (HF HRV), which reflects diminished parasympathetic activation, is a candidate mechanism underlying the depression-CVD relationship and predicts cardiovascular events. Few studies have examined whether certain depression subgroups - such as those with co-occurring affective factors - exhibit lower HF HRV. The present study sought to assess associations between co-occurring affective factors and HF HRV in people with depression. METHODS Utilizing baseline data from the 216 primary care patients with depression in the eIMPACT trial, we examined cross-sectional associations of depression's co-occurring affective factors (i.e., anxiety symptoms, hostility/anger, and trait positive affect) with HF HRV. HF HRV estimates were derived by spectral analysis from electrocardiographic data obtained during a supine rest period. RESULTS Individual regression models adjusted for demographics and depressive symptoms revealed that anxiety symptoms (standardized regression coefficient β = -0.24, p = .002) were negatively associated with HF HRV; however, hostility/anger (β = 0.02, p = .78) and trait positive affect (β = -0.05, p = .49) were not. In a model further adjusted for hypercholesterolemia, hypertension, diabetes, body mass index, current smoking, CVD prevention medication use, and antidepressant medication use, anxiety symptoms remained negatively associated with HF HRV (β = -0.19, p = .02). CONCLUSION Our findings suggest that, in adults with depression, those with comorbid anxiety symptoms have lower HF HRV than those without. Co-occurring anxiety may indicate a depression subgroup at elevated CVD risk on account of diminished parasympathetic activation.
Collapse
Affiliation(s)
- Aubrey L Shell
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Virgilio Gonzenbach
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Manisha Sawhney
- Department of Psychology, Liffrig Family School of Education and Behavioral Sciences, University of Mary, Bismarck, ND, USA
| | - Christopher A Crawford
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Jesse C Stewart
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA.
| |
Collapse
|
9
|
Maness EB, Burk JA, McKenna JT, Schiffino FL, Strecker RE, McCoy JG. Role of the locus coeruleus and basal forebrain in arousal and attention. Brain Res Bull 2022; 188:47-58. [PMID: 35878679 PMCID: PMC9514025 DOI: 10.1016/j.brainresbull.2022.07.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022]
Abstract
Experimental evidence has implicated multiple neurotransmitter systems in either the direct or indirect modulation of cortical arousal and attention circuitry. In this review, we selectively focus on three such systems: 1) norepinephrine (NE)-containing neurons of the locus coeruleus (LC), 2) acetylcholine (ACh)-containing neurons of the basal forebrain (BF), and 3) parvalbumin (PV)-containing gamma-aminobutyric acid neurons of the BF. Whereas BF-PV neurons serve as a rapid and transient arousal system, LC-NE and BF-ACh neuromodulation are typically activated on slower but longer-lasting timescales. Recent findings suggest that the BF-PV system serves to rapidly respond to even subtle sensory stimuli with a microarousal. We posit that salient sensory stimuli, such as those that are threatening or predict the need for a response, will quickly activate the BF-PV system and subsequently activate both the BF-ACh and LC-NE systems if the circumstances require longer periods of arousal and vigilance. We suggest that NE and ACh have overlapping psychological functions with the main difference being the precise internal/environmental sensory situations/contexts that recruit each neurotransmitter system - a goal for future research to determine. Implications of dysfunction of each of these three attentional systems for our understanding of neuropsychiatric conditions are considered. Finally, the contemporary availability of research tools to selectively manipulate and measure the activity of these distinctive neuronal populations promises to answer longstanding questions, such as how various arousal systems influence downstream decision-making and motor responding.
Collapse
Affiliation(s)
- Eden B Maness
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - Joshua A Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| | - James T McKenna
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Felipe L Schiffino
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA; Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Robert E Strecker
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - John G McCoy
- Department of Psychology, Stonehill College, Easton, MA 02357, USA.
| |
Collapse
|
10
|
Yoon J, Kim HW, Shin M, Lim J, Lee JY, Lee SN, Choi JW. 3D Neural Network Composed of Neurospheroid and Bionanohybrid on Microelectrode Array to Realize the Spatial Input Signal Recognition in Neurospheroid. SMALL METHODS 2022; 6:e2200127. [PMID: 35595685 DOI: 10.1002/smtd.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/03/2022] [Indexed: 06/15/2023]
Abstract
There have been several studies for demonstration of 2D neural network using living cells or organic/inorganic molecules, but to date, there is no report of development of a 3D neural network in vitro. Based on developed bionanohybrid composed of protein, DNA, molybdenum disulfide nanoparticles, and peptides for controlling electrophysiological states of living cells, here, the in vitro 3D neural network composed of the bionanohybrid, 3D neurospheroid and the microelectrode array (MEA) is developed. After production of the 3D neurospheroid derived from human neural stem cells, the bionanohybrid developed on the MEA successfully semi-penetrates the neurites of the 3D neurospheroid and forms the 3D neural network. The developed 3D neural network successfully exhibited the electrophysiological output signals of the 3D neurospheroid by transmitting the input signal applied by the bionanohybrid. Moreover, by using the selectively immobilized bionanohybrid on the MEA, the spatial input signal recognition in the neurospheroid of 3D neural network is realized for the first time. This newly developed in vitro 3D neural network provides a promising strategy to be applied in brain-on-a-chip, brain disease-related drug efficacy evaluation, bioelectronics, and bioelectronic medicine.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Hyun-Woong Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., Seoul, 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| |
Collapse
|
11
|
Baroreflex sensitivity derived from the Valsalva manoeuvre: A physiological protective factor for anxiety induced by breathing CO 2-enriched air. Int J Psychophysiol 2022; 179:101-109. [PMID: 35809687 DOI: 10.1016/j.ijpsycho.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to determine the capacity of baroreflex sensitivity, derived from the Valsalva manoeuvre (BRS_v), to predict state anxiety induced by a biological stressor (CO2 inhalation). Healthy adults (n = 50) breathed 7.5 % CO2-enriched air for 8 min, preceded and followed by breathing medical air for 5 min. State anxiety was evaluated with a visual analogue scale. Anxiety sensitivity (Anxiety Sensitivity Index-3; ASI-3) and trait anxiety (Trait form of the State-Trait Anxiety Inventory; STAI_T) served as cognitive-affective predictors. BRS_v was adopted as a physiological predictor. Multiple regression analysis revealed that BRS_v predicted lower anxiety during CO2 exposure, and attenuated the effect of ASI-3 in increasing anxiety. No significant effects were found for STAI_T. This is the first study to identify baroreflex sensitivity as a strong protective physiological factor for anxiety beyond the effect of anxiety sensitivity.
Collapse
|
12
|
De Zorzi L, Ranfaing S, Roux C, Honoré J, Sequeira H. Impact of visual eccentricity on emotional reactivity: implications for anxious and depressive symptomatology. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2021.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Minic Z, O’Leary DS, Reynolds CA. Spinal Reflex Control of Arterial Blood Pressure: The Role of TRP Channels and Their Endogenous Eicosanoid Modulators. Front Physiol 2022; 13:838175. [PMID: 35283783 PMCID: PMC8904930 DOI: 10.3389/fphys.2022.838175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/26/2022] [Indexed: 01/14/2023] Open
Abstract
The spinal cord is an important integrative center for blood pressure control. Spinal sensory fibers send projections to sympathetic preganglionic neurons of the thoracic spinal cord and drive sympathetically-mediated increases in blood pressure. While these reflexes responses occur in able-bodied individuals, they are exaggerated following interruption of descending control - such as occurs following spinal cord injury. Similar reflex control of blood pressure may exist in disease states, other than spinal cord injury, where there is altered input to sympathetic preganglionic neurons. This review primarily focuses on mechanisms wherein visceral afferent information traveling via spinal nerves influences sympathetic nerve activity and blood pressure. There is an abundance of evidence for the widespread presence of this spinal reflex arch originating from virtually every visceral organ and thus having a substantial role in blood pressure control. Additionally, this review highlights specific endogenous eicosanoid species, which modulate the activity of afferent fibers involved in this reflex, through their interactions with transient receptor potential (TRP) cation channels.
Collapse
Affiliation(s)
- Zeljka Minic
- Department of Emergency Medicine Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Donal S. O’Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Christian A. Reynolds
- Department of Emergency Medicine Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
14
|
Geiss L, Beck B, Hitzl W, Hillemacher T, Hösl KM. Cardiovascular Autonomic Modulation during Metronomic Breathing and Stress Exposure in Patients with Borderline Personality Disorder. Neuropsychobiology 2022; 80:359-373. [PMID: 33582662 DOI: 10.1159/000511543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Given the growing evidence of reduced heart rate variability in psychiatric diseases associated with emotional instability, we investigated cardiovascular autonomic modulation in patients with borderline personality disorder (BPD) during resting state, parasympathetic stimulation (metronomic breathing), and sympathetic stimulation (mental arithmetic stress test). METHODS In 29 BPD outpatients and 30 controls, we recorded RR-intervals (RRI), blood pressure, skin conductance levels, and respiratory frequency during resting state, metronomic breathing, stress anticipation, stress exposure, and stress recovery. We calculated baroreflex sensitivity (BRS) and parameters of heart rate variability, including the root mean square of successive differences (RMSSD), an index of cardiovagal modulation. RESULTS During resting state, BPD patients showed higher blood pressure and shorter RRI, as well as lower RMSSD and BRS than controls. Metronomic breathing increased RMSSD and BRS in BPD patients. During the stress exposure, BRS significantly decreased in controls, but not in BPD patients. Furthermore, BPD patients showed less cardioacceleration in response to stress exposure than controls. During stress recovery, we found increases in RMSSD and BRS in controls, but not in BPD patients. CONCLUSION Our data show reduced cardiovascular autonomic modulation in BPD patients during resting state, psychophysiological relaxation, and stress exposure. The results indicate a vagal modulation deficit in this cohort. Breathing techniques, such as metronomic breathing, might be helpful to reduce stress and to increase vagal tone in BPD patients.
Collapse
Affiliation(s)
- Lennard Geiss
- Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany,
| | - Beate Beck
- Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| | - Wolfgang Hitzl
- Research Office (Biostatistics), Paracelsus Medical University, Salzburg, Austria.,Department of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria.,Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Hillemacher
- Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany.,Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Katharina M Hösl
- Department of Psychiatry and Psychotherapy, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
15
|
Yoon J, Shin M, Kim D, Lim J, Kim HW, Kang T, Choi JW. Bionanohybrid composed of metalloprotein/DNA/MoS 2/peptides to control the intracellular redox states of living cells and its applicability as a cell-based biomemory device. Biosens Bioelectron 2022; 196:113725. [PMID: 34678652 DOI: 10.1016/j.bios.2021.113725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
The development of cell-based bioelectronic devices largely depends on the direct control of intracellular redox states. However, most related studies have focused on the accurate measurement of electrical signals from living cells, whereas direct intracellular state control remains largely unexplored. Here, we developed a biocompatible transmembranal bionanohybrid structure composed of a recombinant metalloprotein, DNA, molybdenum disulfide nanoparticles (MoS2), and peptides to control intracellular redox states, which can be used as a cell-based biomemory device. Using the capacitance of MoS2 located inside the cell, the bionanohybrid controled the intracellular redox states of living cells by recording and extracting intracellular charges, which inturn was achieved by activating (writing) and deactivating (erasing) the cells. As a proof of concept, cell-based biomemory functions including writing, reading, and erasing were successfully demonstrated and confirmed via electrochemical methods and patch-clamp analyses, resulting in the development of the first in vitro cell-based biomemory device. This newly developed bionanohybrid provides a novel approach to control cellular redox states for cell-based bioelectronic applications, and can be applicable in a wide range of biological fields including bioelectronic medicine and intracellular redox status regulation.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Dongyeon Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Hyun-Woong Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Taewook Kang
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
16
|
Frumento S, Menicucci D, Hitchcott PK, Zaccaro A, Gemignani A. Systematic Review of Studies on Subliminal Exposure to Phobic Stimuli: Integrating Therapeutic Models for Specific Phobias. Front Neurosci 2021; 15:654170. [PMID: 34149346 PMCID: PMC8206785 DOI: 10.3389/fnins.2021.654170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/22/2021] [Indexed: 11/20/2022] Open
Abstract
We systematically review 26 papers investigating subjective, behavioral, and psychophysiological correlates of subliminal exposure to phobic stimuli in phobic patients. Stimulations were found to elicit: (1) cardiac defense responses, (2) specific brain activations of both subcortical (e.g., amygdala) and cortical structures, (3) skin conductance reactions, only when stimuli lasted >20 ms and were administered with intertrial interval >20 s. While not inducing the distress caused by current (supraliminal) exposure therapies, exposure to subliminal phobic stimuli still results in successful extinction of both psychophysiological and behavioral correlates: however, it hardly improves subjective fear. We integrate those results with recent bifactorial models of emotional regulation, proposing a new form of exposure therapy whose effectiveness and acceptability should be maximized by a preliminary subliminal stimulation. Systematic Review Registration: identifier [CRD42021129234].
Collapse
Affiliation(s)
- Sergio Frumento
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Paul Kenneth Hitchcott
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Andrea Zaccaro
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
- National Research Council, Institute of Clinical Physiology, Pisa, Italy
- Azienda Ospedaliero-Universitaria Pisana, Dipartimento di Specialità cliniche, Pisa, Italy
| |
Collapse
|
17
|
Yakunina N, Nam EC. Direct and Transcutaneous Vagus Nerve Stimulation for Treatment of Tinnitus: A Scoping Review. Front Neurosci 2021; 15:680590. [PMID: 34122002 PMCID: PMC8193498 DOI: 10.3389/fnins.2021.680590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022] Open
Abstract
Recent animal research has shown that vagus nerve stimulation (VNS) paired with sound stimuli can induce neural plasticity in the auditory cortex in a controlled manner. VNS paired with tones excluding the tinnitus frequency eliminated physiological and behavioral characteristics of tinnitus in noise-exposed rats. Several clinical trials followed and explored the effectiveness of VNS paired with sound stimuli for alleviating tinnitus in human subjects. Transcutaneous VNS (tVNS) has received increasing attention as a non-invasive alternative approach to tinnitus treatment. Several studies have also explored tVNS alone (not paired with sound stimuli) as a potential therapy for tinnitus. In this review, we discuss existing knowledge about direct and tVNS in terms of applicability, safety, and effectiveness in diminishing tinnitus symptoms in human subjects. This review includes all existing clinical and neuroimaging studies of tVNS alone or paired with acoustic stimulation in tinnitus patients and outlines the present limitations that must be overcome to maximize the potential of (t)VNS as a therapy for tinnitus.
Collapse
Affiliation(s)
- Natalia Yakunina
- Institute of Medical Science, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Eui-Cheol Nam
- Department of Otolaryngology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
18
|
De Zorzi L, Ranfaing S, Honoré J, Sequeira H. Autonomic reactivity to emotion: A marker of sub-clinical anxiety and depression symptoms? Psychophysiology 2021; 58:e13774. [PMID: 33538013 DOI: 10.1111/psyp.13774] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/04/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Anxiety and depression are both characterized by dysregulated autonomic reactivity to emotion. However, most experiments until now have focused on autonomic reactivity to stimuli presented in central vision (CV) even if affective saliency is also observed in peripheral vision (PV). We compared autonomic reactivity to CV and PV emotional stimulation in 58 participants with high anxious (HA) or low anxious (LA) and high depressive (HD) or low depressive (LD) symptomatology, based on STAI-B and BDI scores, respectively. Unpleasant (U), pleasant (P), and neutral (N) pictures from IAPS were presented at three eccentricities (0°: CV; -12 and 12°: PV). Skin conductance (SC), skin temperature, pupillary diameter, and heart rate (HR) were recorded. First, HA participants showed greater pupil dilation to emotional than to neutral stimuli in PV than in CV. Second, in contrast to HD, the valence effect indexed by SC and emotional arousal effect indexed by skin temperature were observed in LD. Third, both anxiety and depression lead to a valence effect indexed by pupillary light reflex and heart rate. These results suggest a hyperreactivity to emotion and hypervigilance to PV in anxiety. Depression is associated with an attenuation of positive effect and a global blunted autonomic reactivity to emotion. Moreover, anxiety mostly modulates the early processes of autonomic reactivity whereas depression mainly affects the later processes. The differential impact of emotional information over the visual field suggests the use of new stimulation strategies in order to attenuate anxious and depressive symptoms.
Collapse
Affiliation(s)
- Lucas De Zorzi
- UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| | - Stéphane Ranfaing
- UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| | - Jacques Honoré
- UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| | - Henrique Sequeira
- UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives, CNRS, University of Lille, Lille, France
| |
Collapse
|
19
|
Berntson GG, Norman GJ. Multilevel analysis: Integrating multiple levels of neurobehavioral systems. Soc Neurosci 2021; 16:18-25. [PMID: 33442999 DOI: 10.1080/17470919.2021.1874513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Traditional disciplines have frequently dealt with complex phenomena from a given level of analysis, be that molecular, cellular, organ system, or organismic level. This can yield highly valuable information on biological and psychological processes. There is an explanatory value added, however, by an integrative multilevel approach, in which different levels of analysis and different levels of the neural organization are considered in the models and theories of psychological functions. This is the essence of the emerging discipline of social neuroscience, promoted by John Cacioppo and Gary Berntson, which seeks to inform the interactions between social psychological and biological processes.
Collapse
Affiliation(s)
- Gary G Berntson
- Department of Psychology, The Ohio State University , Columbus, OH, USA
| | - Greg J Norman
- Department of Psychology, University of Chicago , Chicago, IL, USA
| |
Collapse
|
20
|
Ballaz SJ, Bourin M. Cholecystokinin-Mediated Neuromodulation of Anxiety and Schizophrenia: A "Dimmer-Switch" Hypothesis. Curr Neuropharmacol 2021; 19:925-938. [PMID: 33185164 PMCID: PMC8686311 DOI: 10.2174/1570159x18666201113145143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin (CCK), the most abundant brain neuropeptide, is involved in relevant behavioral functions like memory, cognition, and reward through its interactions with the opioid and dopaminergic systems in the limbic system. CCK excites neurons by binding two receptors, CCK1 and CCK2, expressed at low and high levels in the brain, respectively. Historically, CCK2 receptors have been related to the induction of panic attacks in humans. Disturbances in brain CCK expression also underlie the physiopathology of schizophrenia, which is attributed to the modulation by CCK1 receptors of the dopamine flux in the basal striatum. Despite this evidence, neither CCK2 receptor antagonists ameliorate human anxiety nor CCK agonists have consistently shown neuroleptic effects in clinical trials. A neglected aspect of the function of brain CCK is its neuromodulatory role in mental disorders. Interestingly, CCK is expressed in pivotal inhibitory interneurons that sculpt cortical dynamics and the flux of nerve impulses across corticolimbic areas and the excitatory projections to mesolimbic pathways. At the basal striatum, CCK modulates the excitability of glutamate, the release of inhibitory GABA, and the discharge of dopamine. Here we focus on how CCK may reduce rather than trigger anxiety by regulating its cognitive component. Adequate levels of CCK release in the basal striatum may control the interplay between cognition and reward circuitry, which is critical in schizophrenia. Hence, it is proposed that disturbances in the excitatory/ inhibitory interplay modulated by CCK may contribute to the imbalanced interaction between corticolimbic and mesolimbic neural activity found in anxiety and schizophrenia.
Collapse
Affiliation(s)
- Santiago J. Ballaz
- Address correspondence to this author at the School of Biological Sciences & Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí, Ecuador; Tel: 593 (06) 299 9100, ext. 2626; E-mail:
| | | |
Collapse
|
21
|
Spangler DP, Cox KR, Thayer JF, Brooks JR, Friedman BH. Interplay between state anxiety, heart rate variability, and cognition: An ex-Gaussian analysis of response times. Int J Psychophysiol 2020; 159:60-70. [PMID: 33069780 DOI: 10.1016/j.ijpsycho.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/30/2022]
Abstract
The present study employed an ex-Gaussian model of response times (RTs) to elucidate the cognitive processes related to experimentally induced state anxiety (SA) and vagally mediated heart rate variability (vmHRV), an indicator of adaptive responses in both cognitive and affective domains. Participants (n = 110) completed a dual task composed of (i) a flanker attention and (2) working memory load task, while SA was induced by threat of noise. Electrocardiography was measured during the dual task and during four baseline periods in order to calculate vmHRV. RTs on the flanker task were fit to an ex-Gaussian distribution, which estimated three RT parameters: mu (Gaussian mean), sigma (Gaussian SD), and tau (combination of exponential mean and SD). First, findings indicate that threat of noise was associated with reductions in mu and tau, suggesting that SA might improve attention and motor responding. Second, higher resting vmHRV was associated with lower tau (averaged across conditions) and stronger threat-related decreases in tau. Third, intra-individual decreases in vmHRV were accompanied by concomitant decreases in tau. These findings support roles for trait and state vagal control in guiding adaptive anxiety-related (and anxiety-unrelated) attentional responses. Findings are consistent with extant theories that emphasize functional interrelations among emotion, cognition, and vagal function.
Collapse
Affiliation(s)
- Derek P Spangler
- Human Research & Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, MD, USA; Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, USA.
| | - Katherine R Cox
- Human Research & Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, MD, USA
| | - Julian F Thayer
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Psychological Science, University of California, Irvine
| | - Justin R Brooks
- Human Research & Engineering Directorate, U.S. Army Research Laboratory, Aberdeen, MD, USA
| | | |
Collapse
|
22
|
Meyers EC, Kasliwal N, Solorzano BR, Lai E, Bendale G, Berry A, Ganzer PD, Romero-Ortega M, Rennaker RL, Kilgard MP, Hays SA. Enhancing plasticity in central networks improves motor and sensory recovery after nerve damage. Nat Commun 2019; 10:5782. [PMID: 31857587 PMCID: PMC6923364 DOI: 10.1038/s41467-019-13695-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Nerve damage can cause chronic, debilitating problems including loss of motor control and paresthesia, and generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. However, it remains unclear if this is a critical feature responsible for the expression of symptoms. Here, we use brief bursts of closed-loop vagus nerve stimulation (CL-VNS) delivered during rehabilitation to reverse the aberrant central plasticity resulting from forelimb nerve transection. CL-VNS therapy drives extensive synaptic reorganization in central networks paralleled by improved sensorimotor recovery without any observable changes in the nerve or muscle. Depleting cortical acetylcholine blocks the plasticity-enhancing effects of CL-VNS and consequently eliminates recovery, indicating a critical role for brain circuits in recovery. These findings demonstrate that manipulations to enhance central plasticity can improve sensorimotor recovery and define CL-VNS as a readily translatable therapy to restore function after nerve damage. Peripheral nerve damage generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. Here, the authors reverse the aberrant plasticity via vagus nerve stimulation to elicit synaptic reorganization and to improve sensorimotor recovery.
Collapse
Affiliation(s)
- Eric C Meyers
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - Nimit Kasliwal
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Bleyda R Solorzano
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Elaine Lai
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Geetanjali Bendale
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Abigail Berry
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Patrick D Ganzer
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Mario Romero-Ortega
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
23
|
Cakmak YO. Concerning Auricular Vagal Nerve Stimulation: Occult Neural Networks. Front Hum Neurosci 2019; 13:421. [PMID: 31920585 PMCID: PMC6920183 DOI: 10.3389/fnhum.2019.00421] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022] Open
Abstract
Auricular vagal nerve stimulation (AVNS) is an evolving neuromodulation technology that has a wide range of therapeutic applications across multiple disciplines of medical science. To date, AVNS results had been interpreted in the context of a monolog concept of the auricular branch of the vagus nerve (ABVN): that this is the sole network of the mechanism of action and/or structure in the auricular area of the stimulation in the context of activations in the brainstem nuclei, including the nucleus tractus solitarius (NTS), locus coeruleus (LC), trigeminal brainstem nuclei, and the nucleus cuneatus. This review considers the overlooked aspects of neural networks, connections, hijacking axons from cranial nerves and cervical sympathetic ganglions, the inhomogeneous distribution of perivascular sympathetic nerves, and intrinsic/extrinsic auricular muscles in the auricular zone that can explain the vagal and non-vagal nucleus activations in AVNS. In addition, the unique cortical representation of the human ear and interspecies differences in the auricula are discussed. The detailed auricular anatomy of the AVNS zone explored in the present study references structural and functional neural network information to overcome default designs and misinterpretations of existing research on AVNS to provide a better foundation for future investigations that use this modality.
Collapse
Affiliation(s)
- Yusuf Ozgur Cakmak
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Centre for Health Systems and Technologies, University of Otago, Dunedin, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| |
Collapse
|
24
|
Gianaros PJ, Jennings JR. Host in the machine: A neurobiological perspective on psychological stress and cardiovascular disease. ACTA ACUST UNITED AC 2019; 73:1031-1044. [PMID: 30394781 DOI: 10.1037/amp0000232] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Psychological stress still attracts scientific, clinical, and public interest because of its suspected connection to health, particularly cardiovascular health. Psychological stress is thought to arise from appraisal processes that imbue events and contexts with personal significance and threat-related meaning. These appraisal processes are also thought to be instantiated in brain systems that generate and control peripheral physiological stress reactions through visceral motor (brain-to-body) and visceral sensory (body-to-brain) mechanisms. In the short term, physiological stress reactions may enable coping and adaptive action. Among some individuals, however, the patterning of these reactions may predict or contribute to pathology in multiple organ systems, including the cardiovascular system. At present, however, we lack a precise understanding of the brain systems and visceral control processes that link psychological appraisals to patterns of stress physiology and physical health. This understanding is important: A mechanistic account of how the brain connects stressful experiences to bodily changes and health could help refine biomarkers of risk and targets for cardiovascular disease prevention and intervention. We review research contributing to this understanding, focusing on the neurobiology of cardiovascular stress reactivity and cardiovascular health. We suggest that a dysregulation of visceral motor and visceral sensory processes during stressful experiences may confer risk for poor cardiovascular health among vulnerable individuals. We further describe a need for new interpretive frameworks and markers of this brain-body dysregulation in cardiovascular behavioral medicine. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Collapse
Affiliation(s)
- Peter J Gianaros
- Department of Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh
| | | |
Collapse
|
25
|
Childs JE, Kim S, Driskill CM, Hsiu E, Kroener S. Vagus nerve stimulation during extinction learning reduces conditioned place preference and context-induced reinstatement of cocaine seeking. Brain Stimul 2019; 12:1448-1455. [PMID: 31289015 PMCID: PMC10766375 DOI: 10.1016/j.brs.2019.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Drug use causes the formation of strong cue/reward associations which persist long after cessation of drug-taking and contribute to the long-term risk of relapse. Extinguishing these associations may reduce cue-induced craving and relapse. Previously, we found that pairing vagus nerve stimulation (VNS) with extinction of cocaine self-administration reduces cue-induced reinstatement; however, it remains unclear whether this was primarily caused by extinguishing the context, the instrumental response, or both. OBJECTIVE Hypothesis: We hypothesized that VNS can facilitate the extinction of both contextual cues and instrumental responding. METHODS Extinction of context was first tested using Pavlovian conditioned place preference (CPP). Next, the impact of VNS on the extinction of instrumental responding was assessed under ABA and AAA context conditions. In each extinction context separate groups of rats were either provided the opportunity to perform the instrumental response, or the levers were retracted for the duration of extinction training. Reinstatement was induced by reintroduction of the conditioned stimuli and/or the drug-paired context. Data were analyzed using one-way or two-way repeated measures ANOVAs. RESULTS VNS during extinction reduced reinstatement of CPP. VNS also reduced cue- and context-induced reinstatement of the instrumental response under both AAA and ABA conditions. The subjects' ability to engage with the lever during extinction was crucial for this effect. P values < 0.05 were considered significant. CONCLUSIONS Craving occurs in response to a range of conditioned stimuli and contexts; VNS may improve outcomes of behavioral therapy by facilitating extinction of both an instrumental response and/or contextual cues.
Collapse
Affiliation(s)
- Jessica E Childs
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA
| | - Suhyeong Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA
| | - Christopher M Driskill
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA
| | - Emily Hsiu
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX, 75080, USA.
| |
Collapse
|
26
|
Soye A, O'Súilleabháin PS. Facets of openness to experience are associated with cardiovascular reactivity and adaptation across both active and passive stress exposures. Int J Psychophysiol 2019; 140:26-32. [PMID: 30946867 DOI: 10.1016/j.ijpsycho.2019.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/18/2019] [Accepted: 03/31/2019] [Indexed: 11/16/2022]
Abstract
Research suggests the personality trait of Openness to Experience is associated with cardiovascular stress processes. It is unknown if the underlying facets of Openness are associated with cardiovascular responsivity, and whether adaptation is evident across active and passive stress. The objective of this study was to determine if the facets of Openness are related to cardiovascular reactivity and adaptation across active and passive stress exposures. Personality measures and continuous cardiovascular data from sixty-six female adults across a protocol of active and passive stress tasks were collated. Multiple regression analysis revealed that the facet of Feelings was associated with systolic blood pressure (SBP) reactivity to active stress. Examination of cardiovascular adaption revealed that the facet of Feelings was positively associated with SBP and diastolic blood pressure (DBP) adaptation, whereas the facet of Actions demonstrated a negative association. Supplementary analyses revealed the significant effects for Feelings were not reliant on the remaining Openness facets, whereas the significant effects for Actions were. No significant effects emerged for the higher-order trait of Openness. These findings suggest that the underlying facet of Feelings is associated with active stress reactivity, with the facets of Feelings and Actions appearing to be of importance to cardiovascular adaptation. This study is the first to demonstrate personality effects on cardiovascular adaptation across active and passive stress. Attending to the facets of personality traits may provide a more precise understanding of the personality effects on cardiovascular stress psychophysiology.
Collapse
Affiliation(s)
- Anna Soye
- School of Psychology, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Páraic S O'Súilleabháin
- School of Psychology, National University of Ireland, Galway, University Road, Galway, Ireland.
| |
Collapse
|
27
|
Zhang Y, Ouyang K, Lipina TV, Wang H, Zhou Q. Conditioned stimulus presentations alter anxiety level in fear-conditioned mice. Mol Brain 2019; 12:28. [PMID: 30925893 PMCID: PMC6441152 DOI: 10.1186/s13041-019-0445-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/13/2019] [Indexed: 11/26/2022] Open
Abstract
It is generally believed that fear is rapidly triggered by a distinct cue while anxiety onset is less precise and not associated with a distinct cue. Although it has been claimed that both processes can be measured with certain independence of each other, it is unclear how exactly they differ. In this study, we measured anxiety in mice that received discriminative fear conditioning using behavioral, heart rate and calcium (Ca2+) responses in the ventral hippocampal CA1 (vCA1) neurons. We found that the occurrence of fear significantly interfered with anxiety measurements under various conditions. Diazepam reduced basal anxiety level but had no effect during the presentation of conditioned stimulus (CS). Injection of an inhibitory peptide of PKMzeta (ZIP) into the basolateral amygdala almost entirely abolished CS-triggered fear expression and reduced anxiety to basal level. Heart rate measures suggested a small reduction in anxiety during CS-. Calcium responses in the lateral hypothalamus-projecting vCA1 neurons showed a steady decay during CS suggesting a reduced anxiety. Thus, under our experimental conditions, CS presentations likely reduce anxiety level in the fear-conditioned mice.
Collapse
Affiliation(s)
- Yujie Zhang
- State key laboratory of chemical oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Kunfu Ouyang
- State key laboratory of chemical oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tatiana V Lipina
- Federal State Budgetary Scientific Institution, Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia.,University of Toronto, Department of Pharmacology & Toxicology, Toronto, Ontario, Canada
| | - Hong Wang
- State key laboratory of chemical oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- State key laboratory of chemical oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
28
|
Kim S, Zemon V, Lehrer P, McCraty R, Cavallo MM, Raghavan P, Ginsberg JJ, Foley FW. Emotion regulation after acquired brain injury: a study of heart rate variability, attentional control, and psychophysiology. Brain Inj 2019; 33:1012-1020. [PMID: 30907142 DOI: 10.1080/02699052.2019.1593506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Primary objective: To examine the efficacy of heart rate variability biofeedback (HRV-BF) to treat emotional dysregulation in persons with acquired brain injury. Design: A secondary analysis of a quasi-experimental study which enrolled 13 individuals with severe chronic acquired brain injury participating in a community-based programme. Response-to-treatment was measured with two HRV resonance indices (low frequency activity [LF] and low frequency/high frequency ratio [LF/HF]). Main outcome: Behavior Rating Inventory of Executive Function-informant report (emotional control subscale [EC]). Results: Results show significant correlation between LF and EC with higher LF activity associated with greater emotional control; the association between LF/HF pre-post-change score and EC is not statistically significant. A moderation model, however, demonstrates a significant influence of attention on the relation between LF/HF change and EC when attention level is high, with an increase in LF/HF activity associated with greater emotional control. Conclusions: HRV-BF is associated with large increases in HRV, and it appears to be useful for the treatment of emotional dysregulation in individuals with severe acquired brain injury. Attention training may enhance an individual's emotional control.
Collapse
Affiliation(s)
- Sonya Kim
- a Department of Neurology and Department of Rehabilitation Medicine , NYU School of Medicine , New York , NY , USA
| | - Vance Zemon
- b Ferkauf Graduate School of Psychology , Albert Einstein College of Medicine Yeshiva University , New York , NY , USA
| | - Paul Lehrer
- c Rutgers- Robert Wood Johnson Medical School , Piscataway , NJ , USA
| | | | | | - Preeti Raghavan
- f Rusk Institute of Rehabilitation Medicine NYU Langone Medical Center , New York , NY , USA
| | | | - Frederick W Foley
- b Ferkauf Graduate School of Psychology , Albert Einstein College of Medicine Yeshiva University , New York , NY , USA.,h Multiple Sclerosis Comprehensive Care Multiple Sclerosis Center , Holy Name Hospital , New York , NY , USA
| |
Collapse
|
29
|
Lueckel M, Panitz C, Nater UM, Mueller EM. Reliability and robustness of feedback-evoked brain-heart coupling after placebo, dopamine, and noradrenaline challenge. Int J Psychophysiol 2018; 132:298-310. [DOI: 10.1016/j.ijpsycho.2018.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/20/2017] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
|
30
|
Sellaro R, de Gelder B, Finisguerra A, Colzato LS. Transcutaneous vagus nerve stimulation (tVNS) enhances recognition of emotions in faces but not bodies. Cortex 2017; 99:213-223. [PMID: 29275193 DOI: 10.1016/j.cortex.2017.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/19/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022]
Abstract
The polyvagal theory suggests that the vagus nerve is the key phylogenetic substrate enabling optimal social interactions, a crucial aspect of which is emotion recognition. A previous study showed that the vagus nerve plays a causal role in mediating people's ability to recognize emotions based on images of the eye region. The aim of this study is to verify whether the previously reported causal link between vagal activity and emotion recognition can be generalized to situations in which emotions must be inferred from images of whole faces and bodies. To this end, we employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique that causes the vagus nerve to fire by the application of a mild electrical stimulation to the auricular branch of the vagus nerve, located in the anterior protuberance of the outer ear. In two separate sessions, participants received active or sham tVNS before and while performing two emotion recognition tasks, aimed at indexing their ability to recognize emotions from facial and bodily expressions. Active tVNS, compared to sham stimulation, enhanced emotion recognition for whole faces but not for bodies. Our results confirm and further extend recent observations supporting a causal relationship between vagus nerve activity and the ability to infer others' emotional state, but restrict this association to situations in which the emotional state is conveyed by the whole face and/or by salient facial cues, such as eyes.
Collapse
Affiliation(s)
- Roberta Sellaro
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Beatrice de Gelder
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alessandra Finisguerra
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Lorenza S Colzato
- Leiden University, Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden, The Netherlands; Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany; Institute for Sports and Sport Science, University of Kassel, Kassel, Germany
| |
Collapse
|
31
|
A review of human neuroimaging investigations involved with central autonomic regulation of baroreflex-mediated cardiovascular control. Auton Neurosci 2017; 207:10-21. [DOI: 10.1016/j.autneu.2017.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/10/2017] [Accepted: 05/13/2017] [Indexed: 12/30/2022]
|
32
|
Gianaros PJ, Sheu LK, Uyar F, Koushik J, Jennings JR, Wager TD, Singh A, Verstynen TD. A Brain Phenotype for Stressor-Evoked Blood Pressure Reactivity. J Am Heart Assoc 2017; 6:JAHA.117.006053. [PMID: 28835356 PMCID: PMC5634271 DOI: 10.1161/jaha.117.006053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Individuals who exhibit large‐magnitude blood pressure (BP) reactions to acute psychological stressors are at risk for hypertension and premature death by cardiovascular disease. This study tested whether a multivariate pattern of stressor‐evoked brain activity could reliably predict individual differences in BP reactivity, providing novel evidence for a candidate neurophysiological source of stress‐related cardiovascular risk. Methods and Results Community‐dwelling adults (N=310; 30–51 years; 153 women) underwent functional magnetic resonance imaging with concurrent BP monitoring while completing a standardized battery of stressor tasks. Across individuals, the battery evoked an increase systolic and diastolic BP relative to a nonstressor baseline period (M ∆systolic BP/∆diastolic BP=4.3/1.9 mm Hg [95% confidence interval=3.7–5.0/1.4–2.3 mm Hg]). Using cross‐validation and machine learning approaches, including dimensionality reduction and linear shrinkage models, a multivariate pattern of stressor‐evoked functional magnetic resonance imaging activity was identified in a training subsample (N=206). This multivariate pattern reliably predicted both systolic BP (r=0.32; P<0.005) and diastolic BP (r=0.25; P<0.01) reactivity in an independent subsample used for testing and replication (N=104). Brain areas encompassed by the pattern that were strongly predictive included those implicated in psychological stressor processing and cardiovascular responding through autonomic pathways, including the medial prefrontal cortex, anterior cingulate cortex, and insula. Conclusions A novel multivariate pattern of stressor‐evoked brain activity may comprise a phenotype that partly accounts for individual differences in BP reactivity, a stress‐related cardiovascular risk factor.
Collapse
Affiliation(s)
- Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA .,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA
| | - Lei K Sheu
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Fatma Uyar
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA
| | - Jayanth Koushik
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
| | - J Richard Jennings
- Departments of Psychology and Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - Tor D Wager
- Departments of Psychology and Neuroscience, University of Colorado at Boulder, CO
| | - Aarti Singh
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA
| | - Timothy D Verstynen
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA.,Department of Psychology, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
33
|
Cakmak YO, Apaydin H, Kiziltan G, Gündüz A, Ozsoy B, Olcer S, Urey H, Cakmak OO, Ozdemir YG, Ertan S. Rapid Alleviation of Parkinson's Disease Symptoms via Electrostimulation of Intrinsic Auricular Muscle Zones. Front Hum Neurosci 2017; 11:338. [PMID: 28701941 PMCID: PMC5487461 DOI: 10.3389/fnhum.2017.00338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Deep brain stimulation of the subthalamic nucleus (STN-DBS) and the pedunculopontine nucleus (PPN) significantly improve cardinal motor symptoms and postural instability and gait difficulty, respectively, in Parkinson's disease (PD). Objective and Hypothesis: Intrinsic auricular muscle zones (IAMZs) allow the potential to simultaneously stimulate the C2 spinal nerve, the trigeminal nerve, the facial nerve, and sympathetic and parasympathetic nerves in addition to providing muscle feedback and control areas including the STN, the PPN and mesencephalic locomotor regions. Our aim was to observe the clinical responses to IAMZ stimulation in PD patients. Method: Unilateral stimulation of an IAMZ, which includes muscle fibers for proprioception, the facial nerve, and C2, trigeminal and autonomic nerve fibers, at 130 Hz was performed in a placebo- and sham-controlled, double-blinded, within design, two-armed study of 24 PD patients. Results: The results of the first arm (10 patients) of the present study demonstrated a substantial improvement in Unified Parkinson's Disease Ratings Scale (UPDRS) motor scores due to 10 min of IAMZ electrostimulation (p = 0.0003, power: 0.99) compared to the placebo control (p = 0.130). A moderate to large clinical difference in the improvement in UPDRS motor scores was observed in the IAMZ electrostimulation group. The results of the second arm (14 patients) demonstrated significant improvements with dry needling (p = 0.011) and electrostimulation of the IAMZ (p < 0.001) but not with sham electrostimulation (p = 0.748). In addition, there was a significantly greater improvement in UPDRS motor scores in the IAMZ electrostimulation group compared to the IAMZ dry needling group (p < 0.001) and the sham electrostimulation (p < 0.001) groups. The improvement in UPDRS motor scores of the IAMZ electrostimulation group (ΔUPDRS = 5.29) reached moderate to high clinical significance, which was not the case for the dry needling group (ΔUPDRS = 1.54). In addition, both arms of the study demonstrated bilateral improvements in motor symptoms in response to unilateral IAMZ electrostimulation. Conclusion: The present study is the first demonstration of a potential role of IAMZ electrical stimulation in improving the clinical motor symptoms of PD patients in the short term.
Collapse
Affiliation(s)
- Yusuf O Cakmak
- Department of Anatomy, School of Medical Sciences, Otago UniversityDunedin, New Zealand
| | - Hülya Apaydin
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul UniversityIstanbul, Turkey
| | - Güneş Kiziltan
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul UniversityIstanbul, Turkey
| | - Ayşegül Gündüz
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul UniversityIstanbul, Turkey
| | - Burak Ozsoy
- Global Dynamic Systems (GDS) ARGE, Teknopark IstanbulIstanbul, Turkey
| | - Selim Olcer
- Department of Electrical Engineering, College of Engineering, Koç UniversityIstanbul, Turkey
| | - Hakan Urey
- Department of Electrical Engineering, College of Engineering, Koç UniversityIstanbul, Turkey
| | - Ozgur O Cakmak
- Department of Neurology, School of Medicine, Koç UniversityIstanbul, Turkey
| | - Yasemin G Ozdemir
- Department of Neurology, School of Medicine, Koç UniversityIstanbul, Turkey
| | - Sibel Ertan
- Department of Neurology, Cerrahpasa School of Medicine, Istanbul UniversityIstanbul, Turkey
| |
Collapse
|
34
|
Ginty AT, Kraynak TE, Fisher JP, Gianaros PJ. Cardiovascular and autonomic reactivity to psychological stress: Neurophysiological substrates and links to cardiovascular disease. Auton Neurosci 2017; 207:2-9. [PMID: 28391987 DOI: 10.1016/j.autneu.2017.03.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 12/30/2022]
Abstract
Psychologically stressful experiences evoke changes in cardiovascular physiology that may influence risk for cardiovascular disease (CVD). But what are the neural circuits and intermediate physiological pathways that link stressful experiences to cardiovascular changes that might in turn confer disease risk? This question is important because it has broader implications for our understanding of the neurophysiological pathways that link stressful and other psychological experiences to physical health. This review highlights selected findings from brain imaging studies of stressor-evoked cardiovascular reactivity and CVD risk. Converging evidence across these studies complements animal models and patient lesion studies to suggest that a network of cortical, limbic, and brainstem areas for central autonomic and physiological control are important for generating and regulating stressor-evoked cardiovascular reactivity via visceromotor and viscerosensory mechanisms. Emerging evidence further suggests that these brain areas may play a role in stress-related CVD risk, specifically by their involvement in mediating metabolically-dysregulated or extreme stressor-evoked cardiovascular reactions. Contextually, the research reviewed here offers an example of how brain imaging and health neuroscience methods can be integrated to address open and mechanistic questions about the neurophysiological pathways linking psychological stress and physical health.
Collapse
Affiliation(s)
- Annie T Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA.
| | - Thomas E Kraynak
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James P Fisher
- School of Sport, Exercise, and Rehabiliation Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Peter J Gianaros
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Berntson GG, Cacioppo JT. Psychobiology and Social Psychology: Past, Present, and Future. PERSONALITY AND SOCIAL PSYCHOLOGY REVIEW 2016; 4:3-15. [PMID: 15710559 DOI: 10.1207/s15327957pspr0401_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Social psychology and psychobiology have a rich historicalconnection, although over the last half century these two disciplineshave seemingly become estranged. To a significant extent, that alienation arose from an archaic and nonviable model of behavioral biology that retarded the development of both disciplines. With the emergence of modern biological perspectives, this impediment no longer limits fruitful collaborations among social psychologists and psychobiologists. Indeed, some of the most exciting contemporary developments are emerging from the areas of social neuroscience, cognitive neuroscience, and behavioral neuroscience. We review the history of links between social psychology and psychobiology, the factors that led to the segregation of these subdisciplines, and the modern biological perspectives that provide the basis for reintegration of these disciplines.
Collapse
Affiliation(s)
- G G Berntson
- Department of Psychology, Ohio State University, Columbus, USA.
| | | |
Collapse
|
36
|
Myhrer T, Aas P. Pretreatment and prophylaxis against nerve agent poisoning: Are undesirable behavioral side effects unavoidable? Neurosci Biobehav Rev 2016; 71:657-670. [PMID: 27773692 DOI: 10.1016/j.neubiorev.2016.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/28/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
The threat of chemical warfare agents like nerve agents requires life saving measures of medical pretreatment combined with treatment after exposure. Pretreatment (pyridostigmine) may cause some side effects in a small number of individuals. A comprehensive research on animals has been performed to clarify effects on behavior. The results from these studies are far from unambiguous, since pyridostigmine may produce adverse effects on behavior in animals in relatively high doses, but not in a consistent way. Other animal studies have examined the potential of drugs like physostigmine, galantamine, benactyzine, trihexyphenidyl, and procyclidine, but they all produce marked behavioral impairment at doses sufficient to contribute to protection against a convulsant dose of soman. Attempts have also been made to develop a combination of drugs capable of assuring full protection (prophylaxis) against nerve agents. However, common to all combinations is that they at anticonvulsant doses cause behavioral deficits. Therefore, the use of limited pretreatment doses may be performed without marked side effects followed by post-exposure therapy with a combination of drugs.
Collapse
Affiliation(s)
- Trond Myhrer
- Norwegian Defence Research Establishment (FFI), Protection and Societal Security Division, Kjeller, Norway
| | - Pål Aas
- Norwegian Defence Research Establishment (FFI), Protection and Societal Security Division, Kjeller, Norway.
| |
Collapse
|
37
|
Tummala S, Roy B, Park B, Kang DW, Woo MA, Harper RM, Kumar R. Associations between brain white matter integrity and disease severity in obstructive sleep apnea. J Neurosci Res 2016; 94:915-923. [PMID: 27315771 PMCID: PMC4990476 DOI: 10.1002/jnr.23788] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022]
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway blockage, with continued diaphragmatic efforts to breathe during sleep. Brain structural changes in OSA appear in various regions, including white matter sites that mediate autonomic, mood, cognitive, and respiratory control. However, the relationships between brain white matter changes and disease severity in OSA are unclear. This study examines associations between an index of tissue integrity, magnetization transfer (MT) ratio values (which show MT between free and proton pools associated with tissue membranes and macromolecules), and disease severity (apnea-hypopnea index [AHI]) in OSA subjects. We collected whole-brain MT imaging data from 19 newly diagnosed, treatment-naïve OSA subjects (50.4 ± 8.6 years of age, 13 males, AHI 39.7 ± 24.3 events/hr], using a 3.0-Tesla MRI scanner. With these data, whole-brain MT ratio maps were calculated, normalized to common space, smoothed, and correlated with AHI scores by using partial correlation analyses (covariates, age and gender; P < 0.005). Multiple brain sites in OSA subjects, including superior and inferior frontal regions, ventral medial prefrontal cortex and nearby white matter, midfrontal white matter, insula, cingulate and cingulum bundle, internal and external capsules, caudate nuclei and putamen, basal forebrain, hypothalamus, corpus callosum, and temporal regions, showed principally lateralized negative correlations (P < 0.005). These regions showed significant correlations even with correction for multiple comparisons (cluster-level, family-wise error, P < 0.05), except for a few superior frontal areas. Predominantly negative correlations emerged between local MT values and OSA disease severity, indicating potential usefulness of MT imaging for examining the OSA condition. These findings indicate that OSA severity plays a significant role in white matter injury. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sudhakar Tummala
- Department of Anesthesiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Bhaswati Roy
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Bumhee Park
- Department of Anesthesiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel W. Kang
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Mary A. Woo
- UCLA School of Nursing, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Ronald M. Harper
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Rajesh Kumar
- Department of Anesthesiology, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Anglin DM, Greenspoon M, Lighty Q, Ellman LM. Race-based rejection sensitivity partially accounts for the relationship between racial discrimination and distressing attenuated positive psychotic symptoms. Early Interv Psychiatry 2016; 10:411-8. [PMID: 25234291 DOI: 10.1111/eip.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 07/14/2014] [Indexed: 11/30/2022]
Abstract
AIM Self-reported experiences of racial discrimination have been associated with a continuum of psychotic experiences in racial and ethnic minority populations; however, the underlying mechanisms of this relationship are not yet clear. Race-based rejection sensitivity (RS-race) has been associated with thought intrusions about being the target of racial discrimination; therefore, the present study aimed to determine whether RS-race accounts for the relationship between racial discrimination and psychotic-like experiences in racial and ethnic minority populations. METHODS A sample of 644 young adults from a US urban, predominantly immigrant, and racial and ethnic minority population was administered a self-report inventory of psychosis risk (i.e. Prodromal Questionnaire (PQ) ), providing a dimensional assessment of the total number of attenuated positive psychotic symptoms experienced as distressing (APPS-distress). Participants also completed the Experiences of Discrimination Questionnaire and the Rejection Sensitivity Questionnaire-Race. RESULTS Hierarchical linear regression analyses revealed that RS-race and racial discrimination were both significantly related to higher levels of APPS-distress. Bootstrapping analyses of indirect effects indicated that RS-race partially accounted for the relationship between racial discrimination and APPS-distress. CONCLUSION Although the cross-sectional nature of the data limits conclusions about causal inference, our findings do suggest that racial discrimination and RS-race may both be important for understanding risk for distress in the psychotic spectrum among racial and ethnic minority young adults. Some individuals who report racial discrimination may be more vulnerable to APPS-distress in part because they are anxiously anticipating being racially slighted, and this should be explored further in prospective clinical high-risk studies.
Collapse
Affiliation(s)
- Deidre M Anglin
- Department of Psychology, The City College and Graduate Center of New York, CUNY, New York, New York, USA.
| | - Michelle Greenspoon
- Department of Psychology, Antioch University Santa Barbara, Santa Barbara, California, USA
| | - Quenesha Lighty
- Department of Psychology, The City College of New York, CUNY, New York, New York, USA
| | - Lauren M Ellman
- The Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Knox D. The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol Learn Mem 2016; 133:39-52. [PMID: 27264248 DOI: 10.1016/j.nlm.2016.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/30/2022]
Abstract
Cholinergic input to the neocortex, dorsal hippocampus (dHipp), and basolateral amygdala (BLA) is critical for neural function and synaptic plasticity in these brain regions. Synaptic plasticity in the neocortex, dHipp, ventral Hipp (vHipp), and BLA has also been implicated in fear and extinction memory. This finding raises the possibility that basal forebrain (BF) cholinergic neurons, the predominant source of acetylcholine in these brain regions, have an important role in mediating fear and extinction memory. While empirical studies support this hypothesis, there are interesting inconsistencies among these studies that raise questions about how best to define the role of BF cholinergic neurons in fear and extinction memory. Nucleus basalis magnocellularis (NBM) cholinergic neurons that project to the BLA are critical for fear memory and contextual fear extinction memory. NBM cholinergic neurons that project to the neocortex are critical for cued and contextual fear conditioned suppression, but are not critical for fear memory in other behavioral paradigms and in the inhibitory avoidance paradigm may even inhibit contextual fear memory formation. Medial septum and diagonal band of Broca cholinergic neurons are critical for contextual fear memory and acquisition of cued fear extinction. Thus, even though the results of previous studies suggest BF cholinergic neurons modulate fear and extinction memory, inconsistent findings among these studies necessitates more research to better define the neural circuits and molecular processes through which BF cholinergic neurons modulate fear and extinction memory. Furthermore, studies determining if BF cholinergic neurons can be manipulated in such a manner so as to treat excessive fear in anxiety disorders are needed.
Collapse
Affiliation(s)
- Dayan Knox
- Department of Psychological and Brain Sciences, Behavioral Neuroscience Program, University of Delaware, Newark, DE, United States.
| |
Collapse
|
40
|
Yang H, Yang J, Xi W, Hao S, Luo B, He X, Zhu L, Lou H, Yu YQ, Xu F, Duan S, Wang H. Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear. Nat Neurosci 2016; 19:283-9. [PMID: 26727549 DOI: 10.1038/nn.4208] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
Innate fear has a critical role in survival of animals. Unlike conditioned fear, the neuronal circuitry underlying innate fear is largely unknown. We found that the laterodorsal tegmentum (LDT) and lateral habenula (LHb) are specifically activated by the mouse predator odorant trimethylthiazoline (TMT). Using optogenetics to selectively stimulate GABAergic neurons in the LDT immediately produced fear-like responses (freezing, accelerated heart rate and increased serum corticosterone), whereas prolonged stimulation caused anxiety-like behaviors. Notably, although selective stimulation of parvalbumin (PV)-positive interneurons similarly induced fear-like responses, stimulation of somatostatin-positive interneurons or inhibition of PV neurons in the LDT suppressed TMT-induced fear-like responses without affecting conditioned fear. Finally, activation of LHb glutamatergic inputs to LDT interneurons was sufficient to generate fear-like responses. Thus, the LHb-LDT pathway is important for regulating olfactory cue-induced innate fear. Our results provide a potential target for therapeutic intervention for anxiety disorder.
Collapse
Affiliation(s)
- Hongbin Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Junhua Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Wang Xi
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Sijia Hao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobin He
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan, China
| | - Liya Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Huifang Lou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Yan-qin Yu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Shumin Duan
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| | - Hao Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology (Ministry of Health of China), Key Laboratory of Neurobiology of Zhejiang Province, Zhejiang School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Fedoce AG, Ferreira-Junior NC, Reis DG, Corrêa FMA, Resstel LBM. M3 muscarinic receptor in the ventral medial prefrontal cortex modulating the expression of contextual fear conditioning in rats. Psychopharmacology (Berl) 2016; 233:267-80. [PMID: 26518024 DOI: 10.1007/s00213-015-4109-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/03/2015] [Indexed: 01/16/2023]
Abstract
RATIONALE Basal forebrain cholinergic neurons modulate the activation of cortical neurons by several stimuli such as fear and anxiety. However, the role of the muscarinic receptor in the medial prefrontal cortex (MPFC) in the modulation of the conditioned emotional response (CER) evoked in the model contextual conditioned fear remains unclear. OBJECTIVES The objective of this study is to test the hypothesis that inhibition of the muscarinic receptor in ventral MPFC modulates CER observed during animal's re-exposure to the aversive context. METHODS Rats implanted with cannulae aimed at the prelimbic (PL) or the infralimbic (IL) were submitted to a high-intensity contextual fear conditioning protocol. Before the test session, they received microinjections of the hemicholinium (choline reuptake blocker), atropine (muscarinic antagonist), J104129 fumarate (M1-M3 muscarinic antagonists), pirenzepine (M1 muscarinic antagonist), neostigmine (inhibitor acetylcholinesterase enzyme), or the systemic administration of the FG7142 (inverse benzodiazepine agonist). Additional independent groups received the neostigmine or FG7142 before the ineffective doses of J104129 fumarate in the low-intensity protocol of contextual fear conditioning. RESULTS In the high-intensity protocol, the administration of hemicholinium (1 nmol), atropine (0.06-6 nmol), J104129 fumarate (6 nmol), or pirenzepine (6 nmol) attenuated the expression of CER in rats. However, in the low-intensity protocol, only J10129 fumarate (0.06 nmol) reduced the expression of the CER. Finally, neostigmine (0.1-1 nmol) or FG7142 (8 mg/Kg) increased CER expression, an effect inhibited by the low dose of the J10129 fumarate. CONCLUSIONS These results indicated that the blockade of M3 muscarinic receptor in the vMPFC attenuates the CER expression.
Collapse
Affiliation(s)
- A G Fedoce
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - N C Ferreira-Junior
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - D G Reis
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil.,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil
| | - F M A Corrêa
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil
| | - L B M Resstel
- Department of Pharmacology, Ribeirao Preto School of Medicine, University of Sao Paulo, Av. Bandeirantes, 3900, CEP: 14049-900, Ribeirao Preto, SP, Brazil. .,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
42
|
Nieuwenhuis S, De Geus EJ, Aston-Jones G. The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology 2015; 48:162-75. [PMID: 20557480 DOI: 10.1111/j.1469-8986.2010.01057.x] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many psychophysiologists have noted the striking similarities between the antecedent conditions for the P3 component of the event-related potential and the orienting response: both are typically elicited by salient, unexpected, novel, task-relevant, and other motivationally significant stimuli. Although the close coupling of the P3 and orienting response has been well documented, the neural basis and functional role of this relationship is still poorly understood. Here we propose that the simultaneous occurrence of the P3 and autonomic components of the orienting response reflects the co-activation of the locus coeruleus-norepinephrine system and the peripheral sympathetic nervous system by their common major afferent: the rostral ventrolateral medulla, a key sympathoexcitatory region. A comparison of the functional significance of the locus coeruleus-norepinephrine system and the peripheral sympathetic nervous system suggests that the P3 and orienting response reflect complementary cognitive and physical contributions to the mobilization for action following motivationally significant stimuli.
Collapse
Affiliation(s)
- Sander Nieuwenhuis
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The NetherlandsInstitute of Psychology, Leiden University, Leiden, The NetherlandsDepartment of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The NetherlandsDepartment of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Eco J De Geus
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The NetherlandsInstitute of Psychology, Leiden University, Leiden, The NetherlandsDepartment of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The NetherlandsDepartment of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Gary Aston-Jones
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The NetherlandsInstitute of Psychology, Leiden University, Leiden, The NetherlandsDepartment of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The NetherlandsDepartment of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
43
|
Gianaros PJ, Wager TD. Brain-Body Pathways Linking Psychological Stress and Physical Health. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2015; 24:313-321. [PMID: 26279608 DOI: 10.1177/0963721415581476] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Psychological stress is thought to arise from appraisal processes that ascribe threat-related meaning to experiences that tax or exceed our coping ability. Neuroimaging research indicates that these appraisal processes originate in brain systems that also control physiological stress reactions in the body. Separate lines of research in health psychology and behavioral medicine indicate that these physiological stress reactions confer risk for physical disease. Accordingly, integrative research that cuts across historically separated disciplines may help to define the brain-body pathways linking psychological stress to physical health. We describe recent studies aimed at this goal, focusing on studies of the brain bases of stressor-evoked cardiovascular system reactions and heart disease risk. We also outline an interpretive framework for these studies, as well as needs for next-generation models and metrics to better understand how the brain encodes and embodies stress in relation to health.
Collapse
Affiliation(s)
- Peter J Gianaros
- Department of Psychology, Center for the Neural Basis of Cognition, University of Pittsburgh
| | - Tor D Wager
- Departments of Psychology and Neuroscience, University of Colorado
| |
Collapse
|
44
|
Conrad M, Gorka SM, Kassel J. Smoking's effects on respiratory sinus arrhythmia in adolescent smokers. Int J Psychophysiol 2015; 97:8-13. [PMID: 25957697 PMCID: PMC4458705 DOI: 10.1016/j.ijpsycho.2015.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/01/2015] [Accepted: 05/03/2015] [Indexed: 11/24/2022]
Abstract
Respiratory sinus arrhythmia (RSA) has emerged as an indicator of how well the body maintains homeostasis and flexibly responds to environmental demands. Previous research has shown that smoking has both acute and chronic effects on RSA in adults. More recent work has focused on adolescent smokers because the natural decrease in RSA over the lifespan might be hastened by smoking at an early age. The goal of the current study, then, was to examine the acute effects of smoking on RSA and mean heart rate (HR) in a group of adolescent smokers. Participants completed two experimental sessions separated by 6-10 weeks, during which resting electrocardiogram (EKG) data were collected before and after smoking or not smoking a single cigarette ad libitum. Results indicate that smoking significantly decreased resting RSA and increased mean HR. In addition, those who smoked their first cigarette earlier in life (i.e., before age 8 or 10) evidenced a greater decrease in RSA during their smoking session relative to those who tried smoking after age 10. Importantly, these findings are largely consistent with the adult literature and suggest that smoking has acute effects on both RSA and HR in adolescence.
Collapse
Affiliation(s)
- Megan Conrad
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States; Cincinnati VA Medical Center, Cincinnati, OH, United States.
| | - Stephanie M Gorka
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jon Kassel
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
45
|
Thomas SJ, Gonsalvez CJ, Johnstone SJ. Electrophysiology of facilitation priming in obsessive-compulsive and panic disorders. Clin Neurophysiol 2015; 127:464-478. [PMID: 26111486 DOI: 10.1016/j.clinph.2015.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 04/01/2015] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Repeated experience with stimuli often primes faster, more efficient neuronal and behavioural responses. Exaggerated repetition priming effects have previously been reported in obsessive-compulsive disorder (OCD), however little is known of their underlying neurobiology or disorder-specificity, hence we investigated these factors. METHODS We examined event-related potentials (ERPs) and behaviour while participants with OCD, panic disorder and healthy controls (20 per group) performed a Go/NoGo task which manipulated target repetition sequences. RESULTS Both clinical groups showed stronger reaction time (RT) priming than HCs, which in OCD was greater in a checking, than washing, subgroup. Both clinical groups had similar RT deficits and ERP anomalies across several components, which correlated with psychopathology and RT priming. In OCD alone, N1 latency tended to increase to repeated stimuli, correlated with O-C symptoms, whereas it decreased in other groups. OCD-checkers had smaller target P2 amplitude than all other groups. CONCLUSIONS Enhanced neural priming is not unique to OCD and may contribute to salient sensory-cognitive experiences in anxiety generally. These effects are related to symptom severity and occur to neutral stimuli and in the context of overall RT impairment, suggesting they may be clinically relevant and pervasive. The results indicate overlapping information-processing and neurobiological factors across disorders, with indications of OCD-specific trends and subgroup differences. SIGNIFICANCE This first electrophysiological investigation of OCD priming in OCD to include anxious controls and OCD subgroups allows for differentiation between overlapping and OCD-specific phenomena, to advance neurobiological models of OCD.
Collapse
Affiliation(s)
- Susan J Thomas
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, NSW, Australia; Graduate School of Medicine, University of Wollongong, NSW, Australia.
| | - Craig J Gonsalvez
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, NSW, Australia; Centre for Psychophysics, Psychophysiology & Psychopharmacology, University of Wollongong, NSW, Australia; University of Western Sydney, NSW, Australia
| | - Stuart J Johnstone
- Brain & Behaviour Research Institute and School of Psychology, University of Wollongong, NSW, Australia; Centre for Psychophysics, Psychophysiology & Psychopharmacology, University of Wollongong, NSW, Australia
| |
Collapse
|
46
|
Garcez FB, Carvalho FUR, Soares APDS, Goes TC, dos Santos MRV, Teixeira-Silva F. The influence of trait anxiety on the elevation of arterial pressure induced by l-NAME in rats. Neurosci Lett 2014; 583:11-5. [DOI: 10.1016/j.neulet.2014.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/05/2014] [Accepted: 09/02/2014] [Indexed: 12/20/2022]
|
47
|
Canero EM, Hermitte G. New evidence on an old question: is the "fight or flight" stage present in the cardiac and respiratory regulation of decapod crustaceans? ACTA ACUST UNITED AC 2014; 108:174-86. [PMID: 25237011 DOI: 10.1016/j.jphysparis.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/12/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Abstract
The ability to stay alert to subtle changes in the environment and to freeze, fight or flight in the presence of predators requires integrating sensory information as well as triggering motor output to target tissues, both of which are associated with the autonomic nervous system. These reactions, which are commonly related to vertebrates, are the fundamental physiological responses that allow an animal to survive danger. The circulatory activity in vertebrates changes in opposite phases. The stage where circulatory activity is high is termed the "fight or flight stage", while the stage where circulatory activity slows down is termed the "rest and digest stage". It may be assumed that highly evolved invertebrates possess a comparable response system as they also require rapid cardiovascular and respiratory regulation to be primed when necessary. However, in invertebrates, the body plan may have developed such a system very differently. Since this topic is insufficiently studied, it is necessary to extend studies for a comparative analysis. In the present review, we use our own experimental results obtained in the crab Neohelice granulata and both older and newer findings obtained by other authors in decapod crustaceans as well as in other invertebrates, to compare the pattern of change in circulatory activity, especially in the "fight or flight" stage. We conclude that the main features of neuroautonomic regulation of the cardiac function were already present early in evolution, at least in highly evolved invertebrates, although conspicuous differences are also evident.
Collapse
Affiliation(s)
- Eliana M Canero
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Argentina
| | - Gabriela Hermitte
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIBYNE-CONICET, Argentina.
| |
Collapse
|
48
|
Howells FM, Laurie Rauch HG, Ives-Deliperi VL, Horn NR, Stein DJ. Mindfulness based cognitive therapy may improve emotional processing in bipolar disorder: pilot ERP and HRV study. Metab Brain Dis 2014; 29:367-75. [PMID: 24311196 DOI: 10.1007/s11011-013-9462-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/21/2013] [Indexed: 01/07/2023]
Abstract
Emotional processing in bipolar disorder (BD) is impaired. We aimed to measure the effects of mindfulness based cognitive-behavioral therapy (MBCT) in BD on emotional processing, as measured by event related potentials (ERP) and by heart rate variability (HRV). ERP and HRV were recorded during the completion of a visual matching task, which included object matching, affect matching, and affect labeling. Individuals with BD (n = 12) were compared with controls (n = 9) to obtain baseline data prior to the individuals with BD undergoing an 8-week MBCT intervention. ERP and HRV recording was repeated after the MBCT intervention in BD. Participants with BD had exaggerated ERP N170 amplitude and increased HRV HF peak compared to controls, particularly during the affect matching condition. After an 8-week MBCT intervention, participants with BD showed attenuation of ERP N170 amplitude and reduced HRV HF peak. Our findings support findings from the literature emphasizing that emotional processing in BD is altered, and suggesting that MBCT may improve emotional processing in BD.
Collapse
Affiliation(s)
- Fleur M Howells
- Department of Psychiatry, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa,
| | | | | | | | | |
Collapse
|
49
|
Schwerdtfeger AR, Schienle A, Leutgeb V, Rathner EM. Does cardiac reactivity in the laboratory predict ambulatory heart rate? Baseline counts. Psychophysiology 2014; 51:565-72. [PMID: 24697648 DOI: 10.1111/psyp.12199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Cardiovascular reactivity to laboratory stress might predict cardiovascular load in everyday life. However, previous research throws doubt on this hypothesis. This study examined associations between heart rate (HR) to a public speaking task and ambulatory HR throughout a day. Electrocardiogram, bodily movement, and psychosocial variables (affect, context) were recorded in 111 individuals. Ambulatory HR was positively associated with both positive and negative affect. Baseline HR in the laboratory significantly predicted ambulatory HR, but HR reactivity did not. The interaction of momentary negative affect and cardiac reactivity in the laboratory was also not significant. However, a significant interaction of baseline HR and reactivity indicated that, when baseline was high, there was a positive relation between HR reactivity and ambulatory HR. Findings suggest that baseline has to be considered when aiming to predict cardiovascular load in everyday life.
Collapse
|
50
|
Emotional stress and sympathetic activity: Contribution of dorsomedial hypothalamus to cardiac arrhythmias. Brain Res 2014; 1554:49-58. [DOI: 10.1016/j.brainres.2014.01.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 02/07/2023]
|