1
|
Piazza CE, Mattos JJ, Lima D, Siebert MN, Zacchi FL, Dos Reis ÍMM, Ferrari FL, Balsanelli E, Toledo-Silva G, de Souza EM, Bainy ACD. Hepatic transcriptome, transcriptional effects and antioxidant responses in Poecilia vivipara exposed to sanitary sewage. MARINE POLLUTION BULLETIN 2024; 203:116426. [PMID: 38692005 DOI: 10.1016/j.marpolbul.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Aquatic environments are subject to threats from multiple human activities, particularly through the release of untreated sanitary sewage into the coastal environments. These effluents contain a large group of natural or synthetic compounds referred to as emerging contaminants. Monitoring the types and quantities of toxic substances in the environment, especially complex mixtures, is an exhausting and challenging task. Integrative effect-based tools, such as biomarkers, are recommended for environmental quality monitoring programs. In this study, fish Poecilia vivipara were exposed for 24 and 96 h to raw untreated sewage diluted 33 % (v/v) in order to identify hepatic genes to be used as molecular biomarkers. Through a de novo hepatic transcriptome assembly, using Illumina MiSeq, 54,285 sequences were assembled creating a reference transcriptome for this guppy species. Transcripts involved in biotransformation systems, antioxidant defenses, ABC transporters, nuclear and xenobiotic receptors were identified and evaluated by qPCR. Sanitary sewage induced transcriptional changes in AhR, PXR, CYP2K1, CYP3A30, NQO1, UGT1A1, GSTa3, GSTmu, ST1C1, SOD, ABCC1 and SOX9 genes from liver of fish, particularly after 96 h of exposure. Changes in hepatic enzyme activities were also observed. The enzymes showed differences in fish exposed to both periods, while in the gills there was a prevalence of significant results after 96 h. The observed differences were associated to gender and/or to sewage exposure. The obtained results support the use of P. vivipara as sentinel and model organism for ecotoxicological studies and evidence the importance of understanding the differential responses associated to gender.
Collapse
Affiliation(s)
- Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research, NEPAQ, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Ísis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Fernanda Luiza Ferrari
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Eduardo Balsanelli
- Department of Biochemistry, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Guilherme Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embriology and Genetics Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | | | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
2
|
Moraes B, Martins R, Lopes C, Martins R, Arcanjo A, Nascimento J, Konnai S, da Silva Vaz I, Logullo C. G6PDH as a key immunometabolic and redox trigger in arthropods. Front Physiol 2023; 14:1287090. [PMID: 38046951 PMCID: PMC10693429 DOI: 10.3389/fphys.2023.1287090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
The enzyme glucose-6-phosphate dehydrogenase (G6PDH) plays crucial roles in glucose homeostasis and the pentose phosphate pathway (PPP), being also involved in redox metabolism. The PPP is an important metabolic pathway that produces ribose and nicotinamide adenine dinucleotide phosphate (NADPH), which are essential for several physiologic and biochemical processes, such as the synthesis of fatty acids and nucleic acids. As a rate-limiting step in PPP, G6PDH is a highly conserved enzyme and its deficiency can lead to severe consequences for the organism, in particular for cell growth. Insufficient G6PDH activity can lead to cell growth arrest, impaired embryonic development, as well as a reduction in insulin sensitivity, inflammation, diabetes, and hypertension. While research on G6PDH and PPP has historically focused on mammalian models, particularly human disorders, recent studies have shed light on the regulation of this enzyme in arthropods, where new functions were discovered. This review will discuss the role of arthropod G6PDH in regulating redox homeostasis and immunometabolism and explore potential avenues for further research on this enzyme in various metabolic adaptations.
Collapse
Affiliation(s)
- Bruno Moraes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Renato Martins
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Ronald Martins
- Programa de Computação Científica, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | - Angélica Arcanjo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Jhenifer Nascimento
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Hokkaido University, Sapporo, Japan
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular–INCT, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Xuan R, Wu H, Li Y, Wei B, Wang L. Comparative responses of Sinopotamon henanense to acute and sub-chronic Cd exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:35038-35050. [PMID: 33665691 DOI: 10.1007/s11356-021-13230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Studies on the freshwater crab Sinopotamon henanense have shown that acute and sub-chronic Cd2+ exposure induced differential alterations in the respiratory physiology and gill morphology. To elucidate Cd2+ toxicity under these two exposure conditions, crabs were acutely exposed to 7.14, 14.28, and 28.55 mg/L Cd2+ for 96 h and sub-chronically exposed to 0.71, 1.43, and 2.86 mg/L Cd2+ for 3 weeks. The Cd2+ accumulation, total metallothionein (MT), superoxide dismutase, and malondialdehyde (MDA) contents in the gill tissues were detected. Moreover, the glucose-6-phosphate dehydrogenase (G6PDH) activity, NADPH content, reduced glutathione (GSH), oxidized glutathione (GSSG), and GSH/GSSG ratio in the hepatopancreas were determined. The morphology of the X-organ-sinus gland complex was also observed. The results showed that sub-chronical Cd2+ exposure induced lower MT content and higher MDA level in the gills than in the acute exposure. In the hepatopancreas, acute Cd2+ exposure decreased the pentose phosphate pathway activity and NADPH content; however, an increased G6PDH activity and NADPH content were detected in sub-chronic Cd2+ exposure (2.86 mg/L). Morphological changes occurred in the sinus gland in crabs exposed to 2.86 mg/L Cd2+ for 3 weeks. The tightly packed structure composed by the axons, enlarged terminals, and glial cells, became loose and porous. Ultra-structurally, a large number of vacuoles and few neurosecretory granules were observed in the axon terminal. These effects added to our understanding of the toxic effects of Cd2+ and provide biochemical and histopathological evidence for S. henanense as a biomarker of acute or long-term waterborne Cd2+ pollution.
Collapse
Affiliation(s)
- Ruijing Xuan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hao Wu
- Basic Medical School, Shanxi Medical University, Taiyuan, 030001, China
| | - Yingjun Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Bingyan Wei
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Rehberger K, Wernicke von Siebenthal E, Bailey C, Bregy P, Fasel M, Herzog EL, Neumann S, Schmidt-Posthaus H, Segner H. Long-term exposure to low 17α-ethinylestradiol (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss. ENVIRONMENT INTERNATIONAL 2020; 142:105836. [PMID: 32563011 DOI: 10.1016/j.envint.2020.105836] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Estrogenic endocrine disrupting compounds (EEDCs), such as ethinylestradiol (EE2), are well studied for their impact on the reproductive system of fish. EEDCs may also impact the immune system and, as a consequence, the disease susceptibility of fish. It is currently not yet known whether the low concentrations of EEDCs that are able to disrupt the reproductive system of trout are effective in disrupting the immune system and the fish host resistance towards pathogens, too, or whether such immunodisruptive effects would occur only at higher EEDC concentrations. Therefore, in the present study we compare the effect thresholds of low 17α-ethinylestradiol concentrations (1.5 and 5.5 EE2 ng/L) on the reproductive system, the immune system, the energy expenditures and the resistance of juvenile rainbow trout (Oncorhynchus mykiss) against the parasite Tetracapsuloides bryosalmonae - the etiological agent of proliferative kidney disease (PKD) of salmonids. The parasite infection was conducted without injection and under low pathogen exposure concentrations. The disease development was followed over 130 days post infection - in the presence or absence of EE2 exposure. The results show that the long-term EE2 exposure affected, at both concentrations, reproductive parameters like the mRNA levels of hepatic vitellogenin and estrogen receptors. At the same concentrations, EE2 exposure modulated the immune parameters: mRNA levels of several immune genes were altered and the parasite intensity as well as the disease severity (histopathology) were significantly reduced in EE2-exposed fish compared to infected control fish. The combination of EE2 exposure and parasite infection was energetically costly, as indicated by the decreased values of the swim tunnel respirometry. Although further substantiation is needed, our findings suggest that EE2 exerts endocrine disruptive and immunomodulating activities at comparable effect thresholds, since reproductive and immune parameters were affected by the same, low EE2 concentrations.
Collapse
Affiliation(s)
- Kristina Rehberger
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | - Christyn Bailey
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Patrick Bregy
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Fasel
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Elio L Herzog
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Silvia Neumann
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Sellaththurai S, Priyathilaka TT, Lee J. Molecular cloning, characterization, and expression level analysis of a marine teleost homolog of catalase from big belly seahorse (Hippocampus abdominalis). FISH & SHELLFISH IMMUNOLOGY 2019; 89:647-659. [PMID: 30936047 DOI: 10.1016/j.fsi.2019.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Organisms possess a cellular antioxidant defense system inclusive of ROS scavengers to maintain the homeostasis of antioxidant levels. Catalase is a major ROS scavenger enzyme that plays a significant role in the antioxidant defense mechanism of organisms by reducing toxic hydrogen peroxide molecules into a nontoxic form of oxygen and water with a high turnover rate. In the present study, we performed molecular and functional characterization of the catalase homolog from Hippocampus abdominalis (HaCat). The HaCat cDNA sequence was identified as a 1578 bp ORF (open reading frame) that encodes a polypeptide of 526 amino acids with 59.33 kDa molecular weight. Its estimated pI value is 7.7, and it does not have any signal sequences. HaCat shared a conserved domain arrangement including the catalase proximal active site signature and heme ligand signature domain with the previously identified catalase counterparts. Phylogenetic analysis displayed close evolutionary relationships between HaCat and catalases from other teleost fish. According to our qPCR results, ubiquitous expression of HaCat transcripts were observed in all the tested tissues with high expression in the kidney followed by liver. Significant modulations of HaCat transcription were observed in blood, liver, and kidney tissues post-challenge with Streptococcus iniae, Edwardsiella tarda, poly I:C, and LPS. Peroxidase activity of recombinant HaCat (rHaCat) was evaluated using an ABTS assay and the ROS removal effect was further confirmed by oxidative DNA damage protection and cell viability assays. The rHaCat showed more than 97% activity over a temperature and pH range of 10 °C-40 °C and 5 to 6, respectively. The above results suggest that HaCat plays an indispensable role in the oxidative homeostasis of the seahorse during pathogenic attack.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
6
|
Zhao C, Xu J, Xu X, Wang Q, Kong Q, Xu F, Du Y. Organ-specific responses to total ammonia nitrogen stress on juvenile grass carp (Ctenopharyngodon idellus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10826-10834. [PMID: 30778940 DOI: 10.1007/s11356-019-04524-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 02/06/2019] [Indexed: 06/09/2023]
Abstract
Fish are important in constructed wetland (CW) ecosystem. An 80-day experiment was conducted by exposing juvenile grass carp (Ctenopharyngodon idellus) to 0, 0.5, 2.0, 4.5, 9.0, and 18.0 mg L-1 total ammonia nitrogen (TAN) stress to determine the severity of physiological changes in fish organs (liver, gills, and muscle) in CW. Specific growth rate results indicated that low TAN (≤ 2.0 mg L-1) help maintain or enhance grass carp growth. Fish physiological indexes did not significantly change during exposure, except for the gill's reactive oxygen species (ROS) level that is susceptible to TAN exposure. Under high TAN (≥ 4.5 mg L-1), physiological changes and organ-specific responses were revealed. The ROS and malondialdehyde levels were higher in the gills than in the liver. At 9.0 mg L-1 TAN, the muscle cells manifested toxicity. The antioxidant system of different organs responded differently because the gills were more susceptible to low TAN than other organs. After TAN removal from the low TAN system, the antioxidative enzymes and antioxidants were increased to scavenge extra ROS and reverted to the normal level. However, grass carp cannot recover from the oxidative damage at ≥ 9.0 mg L-1 external TAN, resulting in organ dysfunction and failed ROS scavenging. This study provides information in maintaining CW sustainability.
Collapse
Affiliation(s)
- Congcong Zhao
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Xiaoli Xu
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | - Qian Wang
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qiang Kong
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Fei Xu
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yuanda Du
- College of Geography and Environment, Collaborative Innovation Center of Human-Nature and Green Development in Universities of Shandong, Shandong Normal University, Jinan, 250014, People's Republic of China
| |
Collapse
|
7
|
Rasinger J, Carroll T, Maranghi F, Tassinari R, Moracci G, Altieri I, Mantovani A, Lundebye AK, Hogstrand C. Low dose exposure to HBCD, CB-153 or TCDD induces histopathological and hormonal effects and changes in brain protein and gene expression in juvenile female BALB/c mice. Reprod Toxicol 2018; 80:105-116. [DOI: 10.1016/j.reprotox.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022]
|
8
|
Bruneau A, Landry C, Giraudo M, Douville M, Brodeur P, Boily M, Gagnon P, Houde M. Integrated spatial health assessment of yellow perch (Perca flavescens) populations from the St. Lawrence River (QC, Canada), part B: cellular and transcriptomic effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18211-18221. [PMID: 27272701 DOI: 10.1007/s11356-016-7001-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
Multi-biological level assessments have become great tools to evaluate the health of aquatic ecosystems. Using this approach, a complementary study was designed to evaluate the health of yellow perch (Perca flavescens) populations in the St. Lawrence River (Quebec, Canada). In the present study, stress responses were compared at the transcriptomic, cellular, and tissue levels in yellow perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island and Lake St. Pierre (north and south). These results complement the physiological and chemical parameters as well as pathogen infection investigated in a companion paper published in the present issue. Thiobarbituric acid reactive substance (TBARS) analyses indicated the presence of oxidative stress in fish collected in the southern part of Lake St. Louis and at the downstream sites of Lake St. Pierre. High lipid peroxidation levels were found in the muscle of yellow perch caught at Beauregard Island, located downstream of the Montreal's wastewater treatment plant, suggesting an impact of the municipal effluent on redox homeostasis. Transcriptomic results indicated the down-regulation of genes related to lipid, glucose, and retinoid in southern Lake St. Pierre as well as a decrease in retinoid storage. Overall, biochemical and molecular markers indicated that the health status of yellow perch followed a decreasing gradient from upstream to downstream of the St. Lawrence River. This gradient is representative of the cumulative negative impacts of human activities on water and habitat quality along the river.
Collapse
Affiliation(s)
- Audrey Bruneau
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| | - Catherine Landry
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada.
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| | - Philippe Brodeur
- Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune de la Mauricie et du Centre-du-Québec, 100, rue Laviolette, bureau 207, Trois-Rivières, QC, G9A 5S9, Canada
| | - Monique Boily
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Pierre Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| |
Collapse
|
9
|
Karami A, Teh SJ, Zakaria MP, Courtenay SC. Ploidy-, gender-, and dose-dependent alteration of selected biomarkers in Clarias gariepinus treated with benzo[a]pyrene. J Environ Sci (China) 2015; 38:95-102. [PMID: 26702972 DOI: 10.1016/j.jes.2015.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/10/2015] [Accepted: 05/04/2015] [Indexed: 06/05/2023]
Abstract
Naturally-occurring and artificially-induced polyploids have been documented in various fish species but to date no comparison has been reported of the impacts of ploidy on fish biomarker responses to organic pollutants. This study describes effects of ploidy, gender, and dose on biliary fluorescent aromatic compound (FAC) concentrations, hepatic ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST) activities in one of the most commonly cultured warm-water species, the African catfish Clarias gariepinus. Recently matured male and female diploid and triploid fish were intraperitoneally (i.p.) injected with 0, 5 or 25mg/kg benzo[a]pyrene (BaP) and liver and gallbladder were sampled 48hr later. No significant differences were found between ploidies in bile concentrations of 7,8 dihydrodiolbenzo[a]pyrene (7,8D BaP), 1-hydroxybenzo[a]pyrene (1-OH BaP) or 3-hydroxybenzo[a]pyrene (3-OH BaP). However, concentrations of the biliary FACs did differ between males and females at different dose of injection with generally higher concentrations in females at the low dose of BaP and higher concentrations in males at the higher BaP concentration. Hepatic EROD activity did not exhibit gender-dependent difference, whereas it was significantly higher in triploids than diploids. GST activities were not significantly influenced by any of the tested factors. This work advanced our understanding of the role of ploidy, gender, and dose in biotransformation of pollutants in fish.
Collapse
Affiliation(s)
- Ali Karami
- Laboratory of Aquatic Toxicology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Selangor, Malaysia.
| | - Swee J Teh
- School of Veterinary Medicine, Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA 95616, USA
| | - Mohamad Pauzi Zakaria
- Centre of Excellence for Environmental Forensics, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, UPM, Selangor, Malaysia
| | - Simon C Courtenay
- Department of Environment and Resource Studies, Canadian Water Network, Canadian Rivers Institute, University of Waterloo, Canada
| |
Collapse
|
10
|
Sinha AK, Zinta G, AbdElgawad H, Asard H, Blust R, De Boeck G. High environmental ammonia elicits differential oxidative stress and antioxidant responses in five different organs of a model estuarine teleost (Dicentrarchus labrax). Comp Biochem Physiol C Toxicol Pharmacol 2015; 174-175:21-31. [PMID: 26073360 DOI: 10.1016/j.cbpc.2015.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 12/24/2022]
Abstract
We investigated oxidative status and antioxidant profile in five tissues (brain, liver, gills, muscle and kidney) of European sea bass (Dicentrarchus labrax) when exposed to high environmental ammonia (HEA, 20 mg/L~1.18 mM as NH4HCO3) for 12 h, 2 days, 3.5 days, 7.5 days and 10 days. Results show that HEA triggered ammonia accumulation and induced oxidative stress in all tissues. Unlike other organs, hydrogen peroxide (H2O2) and malondialdehyde (MDA) accumulation in liver were restored to control levels. This recovery was associated with a concomitant augmentation in superoxide dismutase (SOD), catalase (CAT), components of glutathione redox cycle (glutathione peroxidase GPX, glutathione reductase, reduced glutathione), ascorbate peroxidase activity and reduced ascorbate content. On the contrary, in brain during prolonged exposure many of these anti-oxidant enzymes were either unaffected or inhibited, which resulted in persistent over-accumulation of H2O2 and MDA. Branchial and renal tissue both involved in osmo-regulation, revealed an entirely dissimilar compensatory response; the former rely mainly on the ascorbate dependent defensive system while the glutathione catalytic pathway was activated in the latter. In muscle, GPX activity first rose (3.5 days) followed by a subsequent drop, counterbalanced by simultaneous increment of CAT. HEA resulted in a relatively mild oxidative stress in the muscle and kidney, probably explaining the modest anti-oxidative responses. Our findings exemplify that oxidative stress as well as antioxidant potential are qualitatively diverse amongst different tissues, thereby demonstrating that for biomonitoring studies the screening of adaptive responses at organ level should be preferred over whole body response.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium.
| | - Gaurav Zinta
- Molecular Plant Physiology and Biotechnology group, Department of Biology, University of Antwerp, BE-2020 Antwerp, Belgium
| | - Hamada AbdElgawad
- Molecular Plant Physiology and Biotechnology group, Department of Biology, University of Antwerp, BE-2020 Antwerp, Belgium; Department of Botany, Faculty of Science, University of Beni-Sueif, Beni-Sueif 62511, Egypt
| | - Han Asard
- Molecular Plant Physiology and Biotechnology group, Department of Biology, University of Antwerp, BE-2020 Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, BE-2020 Antwerp, Belgium
| |
Collapse
|
11
|
Mosiichuk NM, Husak VV, Maksymiv IV, Hlodan OY, Storey JM, Storey KB, Lushchak VI. Toxicity of environmental Gesagard to goldfish may be connected with induction of low intensity oxidative stress in concentration- and tissue-related manners. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:249-258. [PMID: 26133465 DOI: 10.1016/j.aquatox.2015.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/27/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Prometryn is a selective herbicide commonly used in agriculture as the commercial preparation, Gesagard. Goldfish (Carassius auratus) exposure for 96h to 0.2, 1, or 5mgL(-1) Gesagard 500FW (corresponding to 0.1, 0.5, and 2.5mgL(-1) of prometryn) on indices of oxidative stress (lipid peroxides, protein carbonyls, and thiol content) and activities of antioxidant and related enzymes in gills, liver, and kidney was studied. Gills appeared to be the most resistant to Gesagard treatment, reacting to only the highest concentration of herbicide with enhanced levels of low molecular mass thiols and activities of glutathione S-transferase (GST) and glutathione reductase. Goldfish exposure to 0.2-5mgL(-1) Gesagard resulted in enhancement of carbonyl protein level and activity of superoxide dismutase (SOD), but reduced the lipid peroxide (LOOH) content and activity of glutathione peroxidase in liver. Kidney appeared to be the main target organ of Gesagard toxicity, showing the greatest number of parameters affected even under low concentrations of herbicide. An increase in the content of L-SH and activity of SOD was accompanied with decreased activities of catalase, GST, and glucose-6-phosphate dehydrogenase and reduced levels of LOOH in kidney of Gesagard treated fish. The treatment also induced various histological changes in goldfish liver and kidney which could be related to their dysfunction. The present study indicates that Gesagard induced oxidative stress of differing intensities in the three goldfish tissues and demonstrated that kidney would be the best target organ to analyze, reveal, and monitor Gesagard effects on fish.
Collapse
Affiliation(s)
- Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Viktor V Husak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Ivan V Maksymiv
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Oksana Y Hlodan
- Department of Human and Animal Anatomy and Physiology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76016, Ukraine
| | - Janet M Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vassyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
12
|
Maksymiv IV, Husak VV, Mosiichuk NM, Matviishyn TM, Sluchyk IY, Storey JM, Storey KB, Lushchak VI. Hepatotoxicity of herbicide Sencor in goldfish may result from induction of mild oxidative stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 122:67-75. [PMID: 26071809 DOI: 10.1016/j.pestbp.2014.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
The effects of 96 h exposure to 7.14, 35.7, or 71.4 mg L(-1) of Sencor were studied on liver and plasma parameters in goldfish, Carassius auratus L. Goldfish exposure to 71.4 mg L(-1) of Sencor for 96 h resulted in a decrease in glucose concentrations in plasma and liver by 55%, but did not affect liver glycogen levels. An increase in the activity of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase (by 24-27%, 32-72%, and 87-102%, respectively) occurred in plasma of Sencor exposed goldfish, whereas in liver activities of these enzymes decreased (by 15-17%, 19%, and 20%, respectively). Lactate concentration in plasma increased by 22-36% in all treated fish groups, whereas in liver it increased by 64% only after exposure to 35.7 mg L(-1) of Sencor. Herbicide exposure enhanced lipid peroxide levels by 49-75% and decreased activities of catalase by 46%, glutathione reductase by 25-48% and glutathione peroxidase by 21-26% suggesting development of oxidative stress in liver. The treatment induced various histological changes in goldfish liver, such as dilated sinusoids, hypertrophy and dystrophy of hepatic cells and detachment of endothelial cytoplasm with diffuse hemorrhage. The data collectively let us propose that mild oxidative stress might be responsible for the hepatotoxicity of Sencor.
Collapse
Affiliation(s)
- Ivan V Maksymiv
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vasyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Viktor V Husak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vasyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vasyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Tetiana M Matviishyn
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vasyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Iryna Y Sluchyk
- Department of Human and Animal Anatomy and Physiology, Precarpathian National University named after Vasyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine
| | - Janet M Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Precarpathian National University named after Vasyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk 76025, Ukraine.
| |
Collapse
|
13
|
Sinha AK, AbdElgawad H, Giblen T, Zinta G, De Rop M, Asard H, Blust R, De Boeck G. Anti-oxidative defences are modulated differentially in three freshwater teleosts in response to ammonia-induced oxidative stress. PLoS One 2014; 9:e95319. [PMID: 24740135 PMCID: PMC3989309 DOI: 10.1371/journal.pone.0095319] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/25/2014] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant potential clearly differ between salmonid and cyprinid species.
Collapse
Affiliation(s)
- Amit Kumar Sinha
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
- * E-mail:
| | - Hamada AbdElgawad
- Molecular Plant Physiology and Biotechnology group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Terri Giblen
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gaurav Zinta
- Molecular Plant Physiology and Biotechnology group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Michelle De Rop
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Han Asard
- Molecular Plant Physiology and Biotechnology group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Vergauwen L, Hagenaars A, Blust R, Knapen D. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:52-62. [PMID: 23143039 DOI: 10.1016/j.aquatox.2012.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
Standard ecotoxicity tests are performed at species' specific standard temperatures, but temperature is known to affect chemical toxicity. A temperature increase has been shown to increase cadmium toxicity in several aquatic species but information in fish is scarce. Based on literature we hypothesize that with increasing temperature, cadmium accumulation and oxidative stress increase, resulting in increased toxicity. In this study zebrafish acclimated to 12, 18, 26 (standard temperature) or 34°C for one month, were exposed to 5 μM cadmium for 4 or 28 days at the respective acclimation temperature. Cadmium toxicity (mortality) increased with increasing temperature. PCA showed that the high mortality at 34°C was closely correlated to an increasing tissue cadmium accumulation with increasing temperature, but not to liver oxidative damage under the form of protein carbonyl content or lipid peroxidation (measured as malondialdehyde levels) or liver antioxidative potential. Instead, acclimation to 12°C induced the highest oxidative damage to liver proteins and lipids, and transcript levels of glucose-6P-dehydrogenase, 6P-gluconate-dehydrogenase and glutathione peroxidase were particularly good markers of cold-induced oxidative stress. At this low temperature there was no interaction with cadmium exposure and there was no sign of cadmium sensitivity. Contrastingly, the combined effect of high temperature and cadmium exposure on mortality proved synergistic. Therefore we conclude that interactions between temperature and cadmium toxicity increased with increasing temperature and that this probably played part in increasing cadmium sensitivity. Increased cadmium compartmentalization and protein carbonyl content in liver of zebrafish acclimated to the standard temperature of 26°C probably played part in increased sensitivity towards the same cadmium body burden compared to lower temperatures. On the one hand we recognize and this study even confirms the importance of applying standard temperatures in standard ecotoxicity tests to ensure inter-study comparability. On the other hand temperatures in the field may deviate from standard temperatures and accounting for deviating temperatures, which can alter chemical sensitivity, in regulation can improve environmental protection.
Collapse
Affiliation(s)
- Lucia Vergauwen
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Belgium.
| | | | | | | |
Collapse
|
15
|
Ings JS, Oakes KD, Vijayan MM, Servos MR. Temporal changes in stress and tissue-specific metabolic responses to municipal wastewater effluent exposure in rainbow trout. Comp Biochem Physiol C Toxicol Pharmacol 2012; 156:67-74. [PMID: 22579662 DOI: 10.1016/j.cbpc.2012.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 04/17/2012] [Accepted: 04/17/2012] [Indexed: 01/23/2023]
Abstract
Sub-chronic exposure to municipal wastewater effluent (MWWE) in situ was recently shown to impact the acute response to a secondary stressor in rainbow trout (Oncorhynchus mykiss). However, little is known about whether MWWE exposure in itself is stressful to the animal. To address this, we carried out a laboratory study to examine the organismal and cellular stress responses and tissue-specific metabolic capacity in trout exposed to MWWE. Juvenile rainbow trout were exposed to 0, 20 and 90% MWWE (from a tertiary wastewater treatment plant), that was replenished every 2d, for 14 d. Fish were sampled 2, 8 or 14 d post-exposure. Plasma cortisol, glucose and lactate levels were measured as indicators of organismal stress response, while inducible heat shock protein 70 (hsp70), constitutive heat shock protein 70 (hsc70) and hsp90 expression in the liver were used as markers of cellular stress response. Impact of MWWE on cortisol signaling was ascertained by determining glucocorticoid receptor protein (GR) expression in the liver, brain and, heart, and metabolic capacity was evaluated by measuring liver glycogen content and tissue-specific activities of key enzymes in intermediary metabolism. Plasma glucose and lactate levels were unaffected by exposure to MWWEs, whereas cortisol showed a transient increase in the 20% group at 8d. Liver hsc70 and hsp90, but not hsp70 expression, were higher in the 90% MWWE group after 8d. There was a temporal change in GR expression in the liver and heart, but not brain of trout exposed to MWWE. Liver glycogen content and activities liver gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), and alanine aminotransferase (AlaAT) were significantly affected by MWWE exposure. The glycolytic enzymes pyruvate kinase (PK) and hexokinase (HK) activities were significantly higher temporally by MWWE exposure in the gill and heart, but not in the liver and brain. Overall, a 14 d exposure to MWWE evokes a cellular stress response and perturbs the cortisol stress response in rainbow trout. The tissue-specific temporal changes in the metabolic capacity suggest enhanced energy demand in fish exposed to MWWE, which may eventually lead to reduced fitness.
Collapse
Affiliation(s)
- Jennifer S Ings
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Bussolaro D, Filipak Neto F, Glinski A, Roche H, Guiloski IC, Mela M, Silva de Assis HC, Oliveira Ribeiro CA. Bioaccumulation and related effects of PCBs and organochlorinated pesticides in freshwater fish Hypostomus commersoni. ACTA ACUST UNITED AC 2012; 14:2154-63. [DOI: 10.1039/c2em10863a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Ellesat KS, Tollefsen KE, Åsberg A, Thomas KV, Hylland K. Cytotoxicity of atorvastatin and simvastatin on primary rainbow trout (Oncorhynchus mykiss) hepatocytes. Toxicol In Vitro 2010; 24:1610-8. [DOI: 10.1016/j.tiv.2010.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 12/24/2022]
|
18
|
Effects of zinc and cadmium on erythrocyte antioxidant systems of a freshwater fish Oreochromis niloticus. J Biochem Mol Toxicol 2010; 24:223-9. [DOI: 10.1002/jbt.20327] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Montes Nieto R, García-Barrera T, Gómez-Ariza JL, López-Barea J. Environmental monitoring of Domingo Rubio stream (Huelva Estuary, SW Spain) by combining conventional biomarkers and proteomic analysis in Carcinus maenas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:401-408. [PMID: 19815320 DOI: 10.1016/j.envpol.2009.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 07/31/2009] [Accepted: 09/01/2009] [Indexed: 05/28/2023]
Abstract
Element load, conventional biomarkers and altered protein expression profiles were studied in Carcinus maenas crabs, to assess contamination of "Domingo Rubio" stream, an aquatic ecosystem that receives pyritic metals, industrial contaminants, and pesticides. Lower antioxidative activities - glucose-6-phosphate and 6-phosphogluconate dehydrogenases, catalase - were found in parallel to higher levels of damaged biomolecules - malondialdehyde, oxidized glutathione -, due to oxidative lesions promoted by contaminants, as the increased levels of essential - Zn, Cu, Co - and nonessential - Cr, Ni, Cd - elements. Utility of Proteomics to assess environmental quality was confirmed, especially after considering the six proteins identified by de novo sequencing through capLC-muESI-ITMS/MS and homology search on databases. They include tripartite motif-containing protein 11 and ATF7 transcription factor (upregulated), plus CBR-NHR-218 nuclear hormone receptor, two components of the ABC transporters and aldehyde dehydrogenase (downregulated). These proteins could be used as novel potential biomarkers of the deleterious effects of pollutants present in the area.
Collapse
Affiliation(s)
- Rafael Montes Nieto
- Department of Biochemistry and Molecular Biology, University of Córdoba, Severo Ochoa Building, Rabanales Campus, Highway A4 Km 396a, 14071 Córdoba, Spain
| | | | | | | |
Collapse
|
20
|
Vega-López A, Jiménez-Orozco FA, Jiménez-Zamudio LA, García-Latorre E, Domínguez-López ML. Phase I enzyme induction in Girardinichthys viviparus, an endangered goodeid fish, exposed to water from native localities enriched with polychlorinated biphenyls. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:561-570. [PMID: 19198751 DOI: 10.1007/s00244-009-9289-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 01/20/2009] [Indexed: 05/27/2023]
Abstract
The present study examines the induction of mixed-function oxidase (MFO) enzymes, including CYP content CYP1A (EROD) activity and alcohol dehydrogenase activity (ADH), in an endemic Mexican fish species, the black-fin goodeid Girardinichthys viviparus, exposed to the water of two localities, Lake Texcoco (LTX) and Lake Zumpango, and to the same matrices enriched in polychlorinated biphenyls (PCBs) to simulate the potential toxic effects of sublethal increases in these xenobiotics. Fishes of both sexes born in the laboratory were exposed for 1, 2, 4, 8, and 16 days. Water from the two types of localities of the black-fin goodeid contains MFO inducers. Of the two, the most contaminated is LTX water, which also contains PCBs. EROD activity was higher in all treatments with female compared with male fish. This suggests greater metabolic compromise in female fish as a response to damage caused by these xenobiotics. In this species, CYP induction displayed two patterns that were not always concurrent with higher CYP1A activity. In the enriched matrix system, biotransformation processes were notably altered. Increased ADH may indicate that this enzyme is involved in the biotransformation of PCBs and their metabolites, particularly in male fish, and provides at least a part of reductive power required by the MFO enzymes; however, specific studies are needed to clarify this point.
Collapse
Affiliation(s)
- Armando Vega-López
- Laboratorio de Toxicología Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos Zacatenco, Del. Gustavo A. Madero, México Distrito Federal, CP 07738, Mexico.
| | | | | | | | | |
Collapse
|
21
|
Fırat Ö, Çogun HY, Aslanyavrusu S, Kargın F. Antioxidant responses and metal accumulation in tissues of Nile tilapiaOreochromis niloticusunder Zn, Cd and Zn + Cd exposures. J Appl Toxicol 2009; 29:295-301. [DOI: 10.1002/jat.1406] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Ibrahim SS, Nassar NN. Diallyl sulfide protects against N-nitrosodiethylamine-induced liver tumorigenesis: role of aldose reductase. World J Gastroenterol 2008; 14:6145-53. [PMID: 18985804 PMCID: PMC2761575 DOI: 10.3748/wjg.14.6145] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 09/20/2008] [Accepted: 09/27/2008] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the protective effect of diallyl sulfide (DAS) against N-nitrosodiethylamine (NDEA)-induced liver carcinogenesis. METHODS Male Wistar rats received either NDEA or NDEA together with DAS as protection. Liver energy metabolism was assessed in terms of lactate, pyruvate, lactate/pyruvate, ATP levels, lactate dehydrogenase (LDH) and glucose-6-phosphate dehydrogenase (G6PD) activities. In addition, membrane disintegration of the liver cells was evaluated by measuring lipid-peroxidation products, measured as malondialdehyde (MDA); nitric oxide (NO) levels; glucose-6-phosphatase (G6Pase), catalase (CAT) and superoxide dismutase (SOD) activities. Liver DNA level, glutathione-S-transferase (GST) and cytochrome c oxidase activities were used as DNA fragmentation indices. Aldose reductase (AR) activity was measured as an index for cancer cells resistant to chemotherapy and histopathological examination was performed on liver sections from different groups. RESULTS NDEA significantly disturbed liver functions and most of the aforementioned indices. Treatment with DAS significantly restored liver functions and hepatocellular integrity; improved parameters of energy metabolism and suppressed free-radical generation. CONCLUSION We provide evidence that DAS exerts a protective role on liver functions and tissue integrity in face of enhanced tumorigenesis caused by NDEA, as well as improving cancer-cell sensitivity to chemotherapy. This is mediated through combating oxidative stress of free radicals, improving the energy metabolic state of the cell, and enhancing the activity of G6Pase, GST and AR enzymes.
Collapse
|
23
|
Abstract
The Grenland fjords, southern Norway, have been heavily contaminated by dibenzo-p-dioxins and dibenzofurans (dioxins) over decades through inputs from a magnesium smelter. Despite radically decreased inputs since 1990, there are still high levels of dioxins in both biotic and abiotic components of the fjords. The aim of the study was to establish whether biomarkers' responses in three fish species, Atlantic cod (Gadus morhua L.), sea-trout (anadromous brown trout, Salmo trutta L.) and flounder (Platichthys flesus L.), could be used to discern the effects in the most contaminated ecosystem, Frierfjord, from the effects in the adjacent, less-contaminated ecosystem, Eidangerfjord. Biomarker responses clearly indicated that the three fish species were affected by dioxin exposure. Phase I responses in cod and trout could be used to differentiate exposure in the two fjord ecosystems. Phase II responses (glutathione S-transferase) in cod and trout similarly indicated a higher dioxin exposure in Frierfjord compared with Eidangerfjord. Results for glutathione S-transferase and glutathione reductase indicated different exposure levels in the two fjords, but also showed seasonal variability, and the results highlighted the need for baseline data for these biomarkers.
Collapse
Affiliation(s)
- K Hylland
- Norwegian Institute for Waters Research, Oslo, Norway.
| | | | | | | |
Collapse
|
24
|
Tintos A, Gesto M, Míguez JM, Soengas JL. beta-Naphthoflavone and benzo(a)pyrene treatment affect liver intermediary metabolism and plasma cortisol levels in rainbow trout Oncorhynchus mykiss. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 69:180-6. [PMID: 17482676 DOI: 10.1016/j.ecoenv.2007.03.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 03/19/2007] [Accepted: 03/31/2007] [Indexed: 05/15/2023]
Abstract
To assess the effects of the polycyclic aromatic hydrocarbons (PAHs) beta-naphthoflavone (beta-NF) and benzo(a)pyrene (BaP) on liver intermediary metabolism and plasma steroid hormones, immature female rainbow trout (Oncorhynchus mykiss) were intraperitoneally injected (2 microl g(-1)) with vegetable oil alone (control) or containing beta-NF or BaP (10 mg kg(-1)) and returned to their tanks; 3, 24, and 72 h after injection, 11 fish were sampled from each group. On each sampling time, plasma hormone levels (cortisol and 17beta-estradiol) and metabolic parameters in plasma (glucose, lactate, and alpha-amino acid levels) and liver (glycogen, glucose, lactate, and alpha-amino acid levels, and HK, GK, PK, LDH, G6Pase, G6PDH, FBPase, GDH, Asp-AT, and HOAD activities) were assessed. Changes described for hormonal systems resulted in an increase in plasma levels of cortisol after 24 and 72 h of treatment with both PAHs whereas no changes were noticed for 17beta-estradiol levels. Changes in intermediary metabolism described effects in several pathways due to treatment with both PAHs. These changes can be summarized as increased glucose and lactate levels in plasma, and increased glycogenolysis and gluconeogenesis in liver after 24 and 72 h of treatment with both PAHs. Furthermore, beta-NF treatment stimulated amino acid catabolism in liver. These metabolic changes can be associated with increased levels of plasma cortisol, and suggest a different metabolic behavior depending on PAHs.
Collapse
Affiliation(s)
- Adrián Tintos
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, E-36310 Vigo, Spain
| | | | | | | |
Collapse
|
25
|
Berglund AMM, Sturve J, Förlin L, Nyholm NEI. Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden. ENVIRONMENTAL RESEARCH 2007; 105:330-9. [PMID: 17631289 DOI: 10.1016/j.envres.2007.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 04/13/2007] [Accepted: 06/11/2007] [Indexed: 05/16/2023]
Abstract
Metals have been shown to induce oxidative stress in animals. One of the most metal polluted terrestrial environments in Sweden is the surroundings of a sulfide ore smelter plant located in the northern part of the country. Pied flycatcher nestlings (Ficedula hypoleuca) that grew up close to the industry had accumulated amounts of arsenic, cadmium, mercury, lead, iron and zinc in their liver tissue. The aim of this study was to investigate if pied flycatcher nestlings in the pollution gradient of the industry were affected by oxidative stress using antioxidant molecules and enzyme activities. The antioxidant assays were also evaluated in search for useful biomarkers in pied flycatchers. This study indicated that nestlings in metal contaminated areas showed signs of oxidative stress evidenced by up regulated hepatic antioxidant defense given as increased glutathione reductase (GR) and catalase (CAT) activities and slightly but not significantly elevated lipid peroxidation and glutathione-S-transferase (GST) activities. Stepwise linear regression indicated that lipid peroxidation and CAT activities were influenced mostly by iron, but iron and lead influenced the CAT activity to a higher degree. Positive relationships were found between GST and lead as well as GR activities and cadmium. We conclude that GR, CAT, GST activities and lipid peroxidation levels may function as useful biomarkers for oxidative stress in free-living pied flycatcher nestlings exposed to metal contaminated environments.
Collapse
Affiliation(s)
- A M M Berglund
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
26
|
Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:281-300. [PMID: 17560835 DOI: 10.1016/j.cbpc.2007.04.011] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/30/2007] [Accepted: 04/07/2007] [Indexed: 11/30/2022]
Abstract
The paper outlines a 2-tier approach for wide-scale biomonitoring programmes. To obtain a high level of standardization, we suggest the use of caged organisms (mussels or fish). An "early warning", highly sensitive, low-cost biomarker is employed in tier 1 (i.e. lysosomal membrane stability (LMS) and survival rate, a marker for highly polluted sites). Tier 2 is used only for animals sampled at sites in which LMS changes are evident and there is no mortality, with a complete battery of biomarkers assessing the levels of pollutant-induced stress syndrome. Possible approaches for integrating biomarker data in a synthetic index are discussed, along with our proposal to use a recently developed Expert System. The latter system allows a correct selection of biomarkers at different levels of biological organisation (molecular/cellular/tissue/organism) taking into account trends in pollutant-induced biomarker changes (increasing, decreasing, bell-shape). A selection of biomarkers of stress, genotoxicity and exposure usually employed in biomonitoring programmes is presented, together with a brief overview of new biomolecular approaches.
Collapse
Affiliation(s)
- A Viarengo
- Department of Environmental and Life Sciences (DiSAV), University of Piemonte Orientale, Via Bellini 25/G 15100 Alessandria, Italy.
| | | | | | | | | |
Collapse
|
27
|
Gene expression in the liver of rainbow trout, Oncorhynchus mykiss, during the stress response. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:303-15. [PMID: 20483302 DOI: 10.1016/j.cbd.2007.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 11/20/2022]
Abstract
To better appreciate the mechanisms underlying the physiology of the stress response, an oligonucleotide microarray and real-time RT-PCR (QRT-PCR) were used to study gene expression in the livers of rainbow trout (Oncorhynchus mykiss). For increased confidence in the discovery of candidate genes responding to stress, we conducted two separate experiments using fish from different year classes. In both experiments, fish exposed to a 3 h stressor were compared to control (unstressed) fish. In the second experiment some additional fish were exposed to only 0.5 h of stress and others were sampled 21 h after experiencing a 3 h stressor. This 21 h post-stress treatment was a means to study gene expression during recovery from stress. The genes we report as differentially expressed are those that responded similarly in both experiments, suggesting that they are robust indicators of stress. Those genes are a major histocompatibility complex class 1 molecule (MHC1), JunB, glucose 6-phosphatase (G6Pase), and nuclear protein 1 (Nupr1). Interestingly, Nupr1 gene expression was still elevated 21 h after stress, which indicates that recovery was incomplete at that time.
Collapse
|
28
|
Alsop D, Brown S, Van Der Kraak G. The effects of copper and benzo[a]pyrene on retinoids and reproduction in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 82:281-95. [PMID: 17433458 DOI: 10.1016/j.aquatox.2007.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 05/14/2023]
Abstract
This study examines whether a link exists between toxicant exposure, retinoids and reproduction in fish. Zebrafish were fed a control diet (8.1 microg Cu/g diet, 0 microg benzo[a]pyrene/g diet) or diets containing elevated copper (100 microg, 500 microg and 1000 microg Cu/g diet) or benzo[a]pyrene (B[a]P; 30 and 150 microg B[a]P/g diet) for 260 days. Toxicant-supplemented diets did not affect growth or mortality rates. While whole body retinoid levels in control zebrafish decreased during the experiment, females exposed to Cu or B[a]P for 200 days or more experienced additional losses of retinyl esters (45-100% depleted) and retinal (45% depleted in B[a]P-fed fish). Despite the reduced retinoids, Cu and B[a]P did not effect reproduction with respect to the number of eggs spawned, fertilization rates or egg retinal content (retinal was instead increased 55-65% in eggs from B[a]P-fed fish). There were no apparent deformities observed in 36 h post fertilization embryos from any treatment. It appears that although internal retinoid stores were depleted in adults, dietary retinoids were sufficient to meet the daily requirement for retinal deposition in the eggs and retinoic acid synthesis. This study has shown that retinoid levels in female zebrafish are sensitive to Cu and B[a]P, and are a good indicator of long-term exposure. It also brings to light the resiliency of the retinoid system in fish and the importance of the diet on the toxicological response. Specifically that dietary retinoids appear to support normal reproduction in the absence of internal retinoid stores.
Collapse
Affiliation(s)
- Derek Alsop
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | | | | |
Collapse
|
29
|
Vega-López A, Martínez-Tabche L, Martínez MG. Toxic effects of waterborne polychlorinated biphenyls and sex differences in an endangered goodeid fish (Girardinichthys viviparus). ENVIRONMENT INTERNATIONAL 2007; 33:540-5. [PMID: 17049376 DOI: 10.1016/j.envint.2006.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/06/2006] [Accepted: 09/04/2006] [Indexed: 05/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) elicit toxic effects in different species. PCBs undergo biotransformation by enzymes associated with the mixed functional oxidase system, such as cytochrome P450 (cyt P450), this biotransformation being sex-dependent. No other metabolic pathways are known, however, in connection with this process. Thus, the present study aims to evaluate the effects of waterborne PCBs at sublethal nominal concentrations (0.92 mg PCBs/L) on the black-fin goodeid Girardinichthys viviparus, an endangered fish native to the Valley of Mexico, as well as any sex differences related to PCB biotransformation. Eight-month-old adult fish born in the laboratory were exposed for 1, 2, 4, 8 and 16 days to half the LC(0) (calculated concentration at which no deaths occurred after 96 h) determined by an acute toxicity test. Specimens were sacrificed following exposure and the liver was used to evaluate different biomarkers: cyt P450 concentration and alcohol dehydrogenase (ADH) and ethoxyresorufin O-deethylase (EROD) activities. Results show sexual differentiation with regard to all biomarkers in both the control group and PCB-treated fish, with higher values found in males. The induction rate of cyt P450 remained constant throughout the study in males. In females, induction peaked on day 4, coinciding with maximum EROD activity, and fell significantly thereafter. EROD was lower in PCB-treated males than in the control group, but was greater in magnitude. ADH was significantly induced in both sexes from day 2 to day 16 of exposure. The highest response as compared to the control group occurred on day 8 in females. A correlation was found between ADH activity and exposure to PCBs. Three possible action mechanisms, operating either individually or concurrently, are proposed.
Collapse
Affiliation(s)
- Armando Vega-López
- Escuela Nacional de Ciencias Biológicas, Sección de Graduados, Laboratorio de Toxicología Acuática, Instituto Politécnico Nacional, 11340 México D.F., CP 11340, Mexico
| | | | | |
Collapse
|
30
|
Vega-López A, Galar-Martínez M, Jiménez-Orozco FA, García-Latorre E, Domínguez-López ML. Gender related differences in the oxidative stress response to PCB exposure in an endangered goodeid fish (Girardinichthys viviparus). Comp Biochem Physiol A Mol Integr Physiol 2007; 146:672-8. [PMID: 16829149 DOI: 10.1016/j.cbpa.2006.04.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/21/2006] [Accepted: 04/22/2006] [Indexed: 11/23/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent xenobiotics within aquatic environments, which elicit diverse toxic effects such as induction of oxidative stress. Despite numerous earlier studies, no detailed information exists on the toxic response by different sexes in fish. The aim of this study was to determine sex-linked differences in oxidative stress response and antioxidant defenses in Girardinichthys viviparus, an endangered fish endemic to Mexico, when exposed to sub-lethal concentrations of waterborne PCBs. The biological markers evaluated were lipid peroxidation (LPOX), superoxide dismutase (SOD) and catalase (CAT) activity. Adult eight-month-old specimens born in the laboratory were exposed to (1/2) of the LC0 (0.92 mg PCBs/L) in semi-hard synthetic water and sacrificed on days 1, 2, 4, 8 and 16 for biomarker assays. Sex-linked differences were observed in the control fish with respect to all three factors assayed. PCBs elicited significant (p<0.01) time- and sex-dependent LPOX levels which were higher in the case of males. In PCB-treated G. viviparus, SOD activity was depressed in both sexes and appears to return to pre-exposure levels after 16 days in males only. In contrast, CAT was significantly induced (p<0.01) in both sexes. This enzyme may be responsible for balancing oxidative stress and antioxidant defenses under experimental conditions. PCBs at sub-lethal concentrations are hazardous to both sexes of G. viviparus since these compounds are able to induce liver LPOX and changes in the antioxidant defense activities. The relationship between these biomarkers and cytochrome P450 and CYP1A induction is also discussed.
Collapse
Affiliation(s)
- Armando Vega-López
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Sección de Posgrado, IPN. Prol Carpio y Plan de Ayala s/n, Col. Plutarco Elías Calles, Casco de Santo Tomás. D.F. CP 11340, México.
| | | | | | | | | |
Collapse
|
31
|
Nammi S, Dembele K, Nyomba BLG. Increased 11β-hydroxysteroid dehydrogenase type-1 and hexose-6-phosphate dehydrogenase in liver and adipose tissue of rat offspring exposed to alcohol in utero. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1101-9. [PMID: 17122334 DOI: 10.1152/ajpregu.00255.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat offspring prenatally exposed to alcohol display features of metabolic syndrome characterized by a low birth weight, catch-up growth, dyslipidemia, and insulin-resistant diabetes with increased gluconeogenesis, during adult life. Gluconeogenesis is partly regulated by cyclic AMP- and glucocorticoid-dependent mechanisms. Glucocorticoid action at the receptor level depends on its circulating concentrations and is amplified at the prereceptor level by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which regenerates active glucocorticoids from inactive forms. To determine whether 11β-HSD1 is dysregulated in this rat model, we examined the expression and enzyme activity of 11β-HSD1 and its regulator enzyme hexose-6-phosphate dehydrogenase (H6PD) in the liver of postnatal day 7 (neonatal) and 3-mo-old (adult) rat offspring prenatally exposed to alcohol. Measurements of 11β-HSD1 and H6PD were also performed in the omental fat of adult rat offspring. In both neonatal and adult rats, prenatal alcohol exposure resulted in increased tissue corticosterone concentrations, increased expression, and oxoreductase activity of 11β-HSD1, and a parallel increase of H6PD expression. The data suggest that due to both transcriptional and posttranscriptional dysregulations, rats exposed to alcohol early in life have increased 11β-HSD1 activity, which may explain insulin-resistant diabetes in these animals later in life.
Collapse
Affiliation(s)
- Srinivas Nammi
- John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, Manitoba, Canada R3E3P4
| | | | | |
Collapse
|
32
|
Filby AL, Tyler CR. Appropriate 'housekeeping' genes for use in expression profiling the effects of environmental estrogens in fish. BMC Mol Biol 2007; 8:10. [PMID: 17288598 PMCID: PMC1802086 DOI: 10.1186/1471-2199-8-10] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 02/08/2007] [Indexed: 11/25/2022] Open
Abstract
Background Attempts to develop a mechanistic understanding of the effects of environmental estrogens on fish are increasingly conducted at the level of gene expression. Appropriate application of real-time PCR in such studies requires the use of a stably expressed 'housekeeping' gene as an internal control to normalize for differences in the amount of starting template between samples. Results We sought to identify appropriate genes for use as internal controls in experimental treatments with estrogen by analyzing the expression of eight functionally distinct 'housekeeping' genes (18S ribosomal RNA [18S rRNA], ribosomal protein l8 [rpl8], elongation factor 1 alpha [ef1a], glucose-6-phosphate dehydrogenase [g6pd], beta actin [bactin], glyceraldehyde-3-phosphate dehydrogenase [gapdh], hypoxanthine phosphoribosyltransferase 1 [hprt1], and tata box binding protein [tbp]) following exposure to the environmental estrogen, 17α-ethinylestradiol (EE2), in the fathead minnow (Pimephales promelas). Exposure to 10 ng/L EE2 for 21 days down-regulated the expression of ef1a, g6pd, bactin and gapdh in the liver, and bactin and gapdh in the gonad. Some of these effects were gender-specific, with bactin in the liver and gapdh in the gonad down-regulated by EE2 in males only. Furthermore, when ef1a, g6pd, bactin or gapdh were used for normalization, the hepatic expression of two genes of interest, vitellogenin (vtg) and cytochrome P450 1A (cyp1a) following exposure to EE2 was overestimated. Conclusion Based on the data presented, we recommend 18S rRNA, rpl8, hprt1 and/or tbp, but not ef1a, g6pd, bactin and/or gapdh, as likely appropriate internal controls in real-time PCR studies of estrogens effects in fish. Our studies show that pre-validation of control genes considering the scope and nature of the experiments to be performed, including both gender and tissue type, is critical for accurate assessments of the effects of environmental estrogens on gene expression in fish.
Collapse
Affiliation(s)
- Amy L Filby
- Environmental and Molecular Fish Biology Group, School of Biosciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, Devon, EX4 4PS, UK
| | - Charles R Tyler
- Environmental and Molecular Fish Biology Group, School of Biosciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, Devon, EX4 4PS, UK
| |
Collapse
|
33
|
Meyer JN, Volz DC, Freedman JH, Di Giulio RT. Differential display of hepatic mRNA from killifish (Fundulus heteroclitus) inhabiting a Superfund estuary. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2005; 73:327-41. [PMID: 15916819 DOI: 10.1016/j.aquatox.2005.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/22/2005] [Accepted: 03/28/2005] [Indexed: 05/02/2023]
Abstract
Fundulus heteroclitus (Atlantic killifish, mummichog) from a highly contaminated site on the Elizabeth River (VA, USA) are resistant to the toxicity of sediment from the site. However, the mechanistic changes that confer resistance to the toxicity are not yet well understood. We utilized differential display to identify mRNAs that are differentially expressed in hepatic tissue of male and female killifish from the Elizabeth River environment, compared to killifish from a non-contaminated reference site, King's Creek (VA, USA). Seventy-four differentially expressed mRNAs were initially identified (including sex and population-specific differences), and 65 of these were isolated and sequenced. A reverse northern blot array constructed of these cDNAs (plus an additional 15 previously sequenced mRNAs of interest) was used to confirm and quantify expression differences. High interindividual variability was observed in mRNA expression, but multiple differentially expressed mRNAs were identified, including 11 population-specific differences occurring in both sexes, 24 population-specific differences occurring in only one sex, and 22 sex-specific differences. Many of these differentially expressed mRNAs were novel, or not previously hypothesized to play a role in response to contaminant exposure. In addition, the results indicate that the effect of contaminated sediment exposure on the expression of a large proportion of the differentially expressed mRNAs was dependent on the sex of the fish.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Earth Sciences, and Integrated Toxicology Program, Duke University, Durham, NC 27708-0328, USA
| | | | | | | |
Collapse
|
34
|
Deane EE, Woo NYS. Expression studies on glucose-6-phosphate dehydrogenase in sea bream: effects of growth hormone, somatostatin, salinity and temperature. ACTA ACUST UNITED AC 2005; 303:676-88. [PMID: 16013052 DOI: 10.1002/jez.a.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the present study, the gene encoding hepatic glucose-6-phosphate dehydrogenase (G6PDH) was cloned and characterized from silver sea bream (Sparus sarba). The deduced amino acid sequence from sea bream g6pdh shared 78-84% homology with deduced amino acid sequences from previously cloned teleost g6pdh genes. A reverse transcriptase polymerase chain reaction (RT-PCR) coupled with radioisotope hybridization method was used for assessment of g6pdh expression and it was found that administration of growth hormone to sea bream increased g6pdh transcript and G6PDH activity whereas injections of somatostatin decreased both of these parameters. It was also found that sea bream maintained at an isoosmotic salinity (12 ppt) and cold temperature (12 degrees C) displayed upregulated g6pdh expression and enhanced G6PDH activtity. The results from this study demonstrate that g6pdh expression can be mediated by both hormonal and environmental factors in teleosts.
Collapse
Affiliation(s)
- Eddie E Deane
- Department of Biology, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR, China
| | | |
Collapse
|
35
|
Koehler A. The gender-specific risk to liver toxicity and cancer of flounder (Platichthys flesus (L.)) at the German Wadden Sea coast. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 70:257-76. [PMID: 15588639 DOI: 10.1016/j.aquatox.2004.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 06/30/2004] [Accepted: 07/12/2004] [Indexed: 05/06/2023]
Abstract
Flatfish living in coastal areas are chronically exposed to a wide range of toxic and (pro)carcinogenic compounds derived from agriculture and industry. Flounder (Platichthys flesus (L.)) is the main target species for monitoring health effects of contamination in North Sea and Baltic Sea since the species is abundant, benthic, and inhabits shallow waters such as the Wadden Seas and estuaries along salinity gradients into fresh water. Chemical analysis in the same livers as investigated for histopathology in the present study showed positive correlation between accumulation of certain organochlorines in liver and the extend of liver injury. Toxipathic liver changes including neoplasms in female and male flounder were analysed by macroscopic and light microscopic diagnosis during a five-year survey on the basis of internationally accepted criteria agreed upon during the European BEQUALM intercalibration of liver histopathology of flatfish. Hepatocellular carcinogenesis of wild flounder principally showed sequential changes similar to experimental chemical carcinogenesis in other fish species and mammals. These ranged from early foci of altered hepatocytes (vacuolated/clear/eosinophilic, basophilic cells) and the development of adenomas. With progression to hepatocellular carcinomas, livers of wild flounder entered a multistage phase of carcinogenesis comprising of early foci, hepatocellular adenomas and carcinomas, as observed in human liver cancers. Female flounder had three-fold higher frequencies of macroscopically visible neoplasms than males of the same age classes. Histopathological diagnosis showed that hepatocellular alterations in male flounder never developed further than stages of basophilic foci and adenomas, and never into malignancies. In females, tumors of hepatocellular origin clearly dominated, occurred alone and together with cancers of bile duct epithelial cells and endothelial cells (cholangio-carcinomas, angiosarcomas). Because mutations of relevant genes could not be identified in the liver cancers that were analysed in the present study, we conclude that epigenetic events initiate carcinogenesis. Therefore, we conclude that mitogenic carcinogens found in the Elbe estuary play a dominant role for cancer development in this flounder population. Furthermore, the lower availability of reducing power (NADPH) needed for detoxification reactions in females compared to males, together with annual upregulation of the highly potent promotor 17-beta-estradiol during sexual maturation, promote progression of preneoplastic foci of initiated cells to malignant cancers in females.
Collapse
Affiliation(s)
- Angela Koehler
- Department of Ecotoxicology, Alfred Wegener Institute for Marine and Polar Research, Am Handelshafen 12, Bremerhaven 27570, Germany.
| |
Collapse
|
36
|
Hasselberg L, Meier S, Svardal A. Effects of alkylphenols on redox status in first spawning Atlantic cod (Gadus morhua). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2004; 69:95-105. [PMID: 15210300 DOI: 10.1016/j.aquatox.2004.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2003] [Revised: 04/08/2004] [Accepted: 04/18/2004] [Indexed: 05/24/2023]
Abstract
Offshore oil production releases large amounts of lipophilic compounds in produced water and into the ocean. The discharge of produced water from the Norwegian petroleum sector has increased from 26 million m3 in 1993 to 120 million m3 in 2001, and it continues to increase. Produced water contains significant amounts of alkylphenols, which have been reported to be estrogenic, causing endocrine disruption in fish. In year 2000, approximately 44 tons of alkylphenols were released on the Norwegian continental shelf in connection with discharge of produced water. Except from being estrogenic, relatively little is known about the effects of alkylphenols when released in the marine environment. Our objective was to study how alkylphenols affect the redox status in first spawning Atlantic cod (Gadus morhua) of both sexes. Model compounds tested included 4-tert-butylphenol (C4), 4-n-pentylphenol (C5), 4-n-hexylphenol (C6) and 4-n-heptylphenol (C7), all found in produced water. First spawning Atlantic cod were force-fed a mixture of these four alkylphenols, ranging between 0.02 and 80 ppm or 5 ppm 17beta-estradiol (E2), for 1 or 4 weeks. Increased hepatic total glutathione concentration in response to alkylphenol exposure was detected in female fish compared to control group after 1-week exposure, an effect not seen after 4 weeks. Furthermore, hepatic total glutathione concentration was sex dependent, where male fish sampled after 4 weeks had higher levels of glutathione than female fish. Increased glutathione reductase catalytic activities in both male and female fish were seen after exposure to 0.02 ppm alkylphenol mixture in 4 weeks. The glutathione S-transferase activity was only affected in male fish exposed to 0.02 ppm alkylphenols, and glucose-6-phosphate dehydrogenase activity increased in female fish exposed to 0.02 ppm alkylphenol mixture for 1 week. The increase of hepatic total glutathione content as well as the effects on glutathione reductase activities suggests that alkylphenol exposure affects the redox status in Atlantic cod.
Collapse
Affiliation(s)
- Linda Hasselberg
- Department of Zoophysiology, Göteborg University, Box 463, SE 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
37
|
Gül S, Belge-Kurutaş E, Yildiz E, Sahan A, Doran F. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake, Turkey. ENVIRONMENT INTERNATIONAL 2004; 30:605-609. [PMID: 15051236 DOI: 10.1016/s0160-4120(03)00059-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Accepted: 02/26/2003] [Indexed: 05/24/2023]
Abstract
Specimen of freshwater fish (Cyprinidae) was collected from polluted and clean areas in dam Lake of Seyhan. Ten (n=10) fish were taken from each site. Liver preparations of fish from the two sources were comparatively assayed for glutathione-S-transferase (GST), lactic dehydrogenase (LDH), catalase (CAT), glucose-6-phosphate dehydrogenase (G6PDH), superoxide dismutase (SOD) and malondialdehyde (MDA). All systems were significantly (p<0.1) affected at the polluted site. The microscopic examination of the liver tissues of the fish living in the polluted area showed mononuclear inflammatory cell infiltration, cloudy degenerations, congestions and also micro- and macrovesicular fatty degenerations. These results provide evidence that both biochemical parameters and histopathological observations can be assumed as sensitive indicators of fish liver metabolism for polluted areas.
Collapse
Affiliation(s)
- Sermin Gül
- Arts and Sciences Faculty, University of Cukurova, Adana, Turkey.
| | | | | | | | | |
Collapse
|
38
|
Koehler A, Alpermann T, Lauritzen B, Van Noorden CJF. Clonal xenobiotic resistance during pollution-induced toxic injury and hepatocellular carcinogenesis in liver of female flounder (Platichthys flesus (L.)). Acta Histochem 2004; 106:155-70. [PMID: 15147637 DOI: 10.1016/j.acthis.2004.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Revised: 01/22/2004] [Accepted: 02/04/2004] [Indexed: 11/20/2022]
Abstract
Juvenile and adult female flounder (Platichthys flesus (L.)) were caught either in the estuary of the most polluted European river, the Elbe, or as controls in a reference site to study pollution-induced xenobiotic resistance in their livers in relation to pathological alterations. In juvenile fish, livers displayed reversible and irreversible degenerative toxipathic lesion types but never showed (pre)neoplastic changes. Tumour frequencies up to 70% were found macroscopically in livers of adult female flounder which had progressed to adenomas and carcinomas in the most polluted site. Because male adult flounder show only up to 50% of livers containing early preneoplastic foci but never malignancies, we focussed our study on female individuals. (Pre)neoplastic changes ranged from early eosinophilic foci to basophilic foci, adenomas and hepatocellular carcinomas. Adenomas were generally eosinophilic whereas carcinomas were mainly basophilic. These phenotypical sequential changes strongly resemble those found in chemically-induced liver carcinogenesis in mammals. Characteristic mutations known from mammalian cancers have not been found so far in these flounder livers. Therefore, we investigated whether epigenetic events had induced a metabolic "resistant phenotype" of (pre)malignant cancer cells during hepatocellular carcinogenesis. With a quantitative immunohistochemical approach, we studied expression of P-glycoprotein (P-gp)-mediated multixenobiotic resistance (MXR), cytochrome P4501A1, glutathione-S-transferase-A which are key proteins in xenobiotic metabolism and elimination. Glucose-6-phosphate dehydrogenase (G6PDH) activity, the major source of the reducing power NADPH which is needed for biotransformation, oxyradical scavenging and biosynthesis, was detected as well. We observed upregulation of G6PDH activity already in early preneoplastic eosinophilic foci and subsequent further upregulation in basophilic foci and carcinomas. P-gp started to become overexpressed in basophilic foci and was overexpressed even more strongly in carcinomas and their invasively-growing protrusions (satellites). In carcinomas, P-gp protein was predominantly present in membranes of lysosomes which are the intracellular sites of deposition of xenobiotics. CYP450 was reduced whereas GST-A was increased in these carcinomas. Progression towards malignancy was positively correlated with levels of mitogenic organochlorines in these livers which are "fingerprint contaminants" of the river Elbe. We conclude that (pre)neoplastic hepatocytes in female flounder acquire growth advantages over normal hepatocytes by epigenetic metabolic adaptations during liver carcinogenesis as a result of chronic exposure to (pro)carcinogens in the polluted habitat.
Collapse
Affiliation(s)
- Angela Koehler
- Department of Ecotoxicology, Alfred Wegener Institute for Marine and Polar Research, Am Handelshafen 12, Haus C, Bremerhaven 27570, Germany.
| | | | | | | |
Collapse
|
39
|
Au DWT. The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. MARINE POLLUTION BULLETIN 2004; 48:817-34. [PMID: 15111029 DOI: 10.1016/j.marpolbul.2004.02.032] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
During the past two decades, a variety of histopathological alterations in fish and bivalves have been developed and used as biomarkers in pollution monitoring. Some of these have been successfully adopted in major national monitoring programmes, while others, although show promise, are still in the experimental stage. This paper critically reviews the scientific basis, cause and effect relationship, reliability, advantages and limitations of 14 histo-cytopathological biomarkers. The usefulness and practical application of each biomarker have been evaluated against a number of objective criteria including: ecological relevance, sensitivity, specificity, dose-response relationship, confounding factors, technical difficulties and cost-effectiveness.
Collapse
Affiliation(s)
- D W T Au
- Centre of Coastal Pollution and Conservation, Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
40
|
Meyer JN, Smith JD, Winston GW, Di Giulio RT. Antioxidant defenses in killifish (Fundulus heteroclitus) exposed to contaminated sediments and model prooxidants: short-term and heritable responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2003; 65:377-95. [PMID: 14568353 DOI: 10.1016/j.aquatox.2003.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A population of killifish (Fundulus heteroclitus) inhabiting a Superfund site on the Elizabeth River (VA, USA) is tolerant of the acute toxicity of the sediments from the site; previous work suggests that this tolerance is based both on genetic adaptation and physiological acclimation. In this study, larval first- and second-generation (F1 and F2) offspring of Elizabeth River killifish were more resistant to the toxicity of t-butyl hydroperoxide (a model prooxidant) than were King's Creek (reference site) offspring, indicating a heritable tolerance of exposure to oxidative stress. In laboratory experiments designed to elucidate the mechanistic basis for this increased tolerance, we exposed laboratory-raised F1 and F2 offspring from Elizabeth River and King's Creek killifish to Elizabeth River sediments, menadione, or t-butyl hydroperoxide, and measured the following antioxidant parameters: total oxyradical scavenging capacity (TOSC); glutathione content (total and disulfide); activities of glutathione reductase (GR); glutathione peroxidase (GPx); and glutamate cysteine ligase (GCL) activities and protein levels of copper-zinc superoxide dismutase (CuZnSOD); and protein levels of manganese superoxide dismutase (MnSOD). Exposure to Elizabeth River sediments lead to consistent increases in total glutathione concentrations, GR activities, and MnSOD protein levels, and in some cases increased GPx and GCL activities, in both populations. In addition, Elizabeth River offspring (larvae) showed higher basal TOSC values, glutathione concentrations, and MnSOD protein levels. These data suggest that upregulated antioxidant defenses play a role in both short-term (physiological) and heritable (multigenerational/evolutionary) tolerance of the toxicity of these Superfund sediments. The responses of specific antioxidant parameters, including sex-specific responses in the cases of glutathione concentrations and GR activity, are also discussed.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Earth Sciences and Integrated Toxicology Program, Duke University, Durham, NC 27708-0328, USA
| | | | | | | |
Collapse
|
41
|
Williams TD, Gensberg K, Minchin SD, Chipman JK. A DNA expression array to detect toxic stress response in European flounder (Platichthys flesus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2003; 65:141-57. [PMID: 12946615 DOI: 10.1016/s0166-445x(03)00119-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As a first stage in developing a DNA array-based approach to investigating the effects of pollutants on an environmentally relevant European fish species, we have constructed a 160-gene custom microarray for European flounder. Degenerate primers were used to amplify 110 different fragments of stress-related and other genes from European flounder cDNA and genomic DNA. Additionally, 22 fragments were obtained by suppressive subtractive hybridisation (SSH). These fragments were cloned and sequenced, then, with additional control genes, used to create a cDNA microarray for flounder. After optimisation of the arraying process, hepatic mRNA was isolated from flounder caught in the polluted Tyne and relatively unpolluted Alde estuaries. Fluorescent cDNA probes were synthesised from the mRNA and used in dual-colour hybridisations to the microarray. A number of transcripts were differentially expressed between Tyne and Alde female flounder but these changes were not significant, due to high inter-individual variation. However, in comparisons between Tyne and Alde male flounder, 11 transcripts were found to significantly differ in expression (P<0.05). Seven transcripts were more highly expressed in the Tyne male fish (CYP1A, UDPGT, alpha-2HS-glycoprotein, dihydropyrimidine dehydrogenase, Cu/Zn SOD, aldehyde dehydrogenase and paraoxonase). Four transcripts (Elongation factor 1 (EF1), EF2, Int-6 and complement component C3) were found to be significantly less abundant in the Tyne male fish. Selected genes were assayed by real-time PCR, then normalised to alpha-tubulin. These assays confirmed the significance of the array results for CYP1A, UDPGT and EF1, but not for Cu/Zn SOD. This study provides a link between traditional single-gene biomarker studies and the emerging field of eco-toxicogenomics, demonstrating the utility of microarray studies on environmentally sampled, non-model organisms.
Collapse
Affiliation(s)
- T D Williams
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | |
Collapse
|
42
|
Oruç EO, Uner N. Marker enzyme assessment in the liver of cyprinus carpio (L.) exposed to 2,4-D and azinphosmethyl. J Biochem Mol Toxicol 2003; 16:182-8. [PMID: 12242687 DOI: 10.1002/jbt.10040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The potential utility of antioxidant enzymes and lipid peroxidation as indicators of exposure to 2,4-D and azinphosmethyl together with the toxic effects of these compounds in freshwater fish Cyprinus carpio were evaluated. Biochemical parameters were recorded spectrophotometrically in fish liver, which were exposed to a single dose of 2,4-D and azinphosmehtyl (1/3 LC(50)), and their mixture at 1:1 ratio for 24, 48, 72, and 96 h. The most sensitive parameter was glutathione S-transferase (GST) activity, which significantly increased with experimental exposures. Glucose 6-phosphate dehydrogenase activity did not change after 24 and 48 h while there was an elevation after 72 h in all exposure groups. The activity decreased only when these were applied in combination at 96 h. Superoxide dismutase activity increased after azinphosmethyl exposure for 48 and 96 h. 2,4-D decreased the activity after 24 h while the activity remained at the same level with control after 48 h. An elevation was found between 72 and 96 h. Mixture treatment did not changed the activity. Glutathione reductase and catalase enzyme activities, and malondialdehyde levels remained constant in all the treatment groups compared with controls. These results suggest that induction of GST activity may be used as biomarker for the assessment of water pollution in C. carpio.
Collapse
Affiliation(s)
- Elif Ozcan Oruç
- Department of Biology, Faculty of Arts and Sciences, Cukurova University, 01330 Balcali, Adana, Turkey.
| | | |
Collapse
|