1
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
2
|
Dhamad A, Zampiga M, Greene ES, Sirri F, Dridi S. Neuropeptide Y and its receptors are expressed in chicken skeletal muscle and regulate mitochondrial function. Gen Comp Endocrinol 2021; 310:113798. [PMID: 33961876 DOI: 10.1016/j.ygcen.2021.113798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Neuropeptide Y (NPY) is a highly conserved 36-amino acid neurotransmitter, which is primarily expressed in the mammalian arcuate nucleus of the hypothalamus. It is a potent orexigenic neuropeptide, stimulating appetite and inducing feed intake in a variety of species. Recent research has shown that NPY and its receptors can be expressed by peripheral tissues, but their role is not yet well defined. Specifically, this information is particularly sparse in avian species. Therefore, the aim of this study was to determine the expression of NPY and its receptors, and determine their regulation by environmental and nutritional stressors, in the skeletal muscle of avian species using in vivo and in vitro approaches. Here, we show that NPY and its receptors are expressed in chicken breast and leg muscle as well as in quail myoblast (QM7) cell line. Intraperitoneal injection of recombinant NPY increased feed intake in 9-d old chicks and upregulated the expression of NPY and NPY receptors in breast and leg muscle, suggesting autocrine and/or paracrine roles for NPY. Additionally, NPY is able to modulate the mitochondrial network. In breast muscle, a low dose of NPY upregulated (P < 0.05) the expression of genes involved in ATP production (uncoupling protein, UCP; nuclear factor erythroid 2 like 2, NFE2L2) and dynamics (mitofusin 1, MFN1), while a high dose decreased (P < 0.05) markers of mitochondrial dynamics (mitofusin 2, MFN2; OPA1 mitochondrial dynamin like GTPase, OPA1) and increased (P < 0.05) genes involved in mitochondrial biogenesis (D-loop, peroxisome proliferator activated receptor gamma, PPARG). In leg muscle, NPY decreased (P < 0.05) markers of mitochondrial biogenesis and ATP synthesis (D-loop; peroxisome proliferator activated receptor alpha, PCG1A; peroxisome proliferator-activated receptor gamma, coactivator 1 beta, PPARGC1B; PPARG; NFE2L2). In QM7 cells, genes associated with mitochondrial biogenesis, dynamics, and ATP synthesis were all upregulated (P < 0.05), even though basal respiration and ATP production were decreased (P < 0.05) with NPY treatment as measured by XF Flux analysis. Together, these data show that the NPY system is expressed in avian skeletal muscle and plays a role in mitochondrial function.
Collapse
Affiliation(s)
- Ahmed Dhamad
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States
| | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Elizabeth S Greene
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, United States.
| |
Collapse
|
3
|
Tanaka M, Yamada S, Watanabe Y. The Role of Neuropeptide Y in the Nucleus Accumbens. Int J Mol Sci 2021; 22:ijms22147287. [PMID: 34298907 PMCID: PMC8307209 DOI: 10.3390/ijms22147287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Neuropeptide Y (NPY), an abundant peptide in the central nervous system, is expressed in neurons of various regions throughout the brain. The physiological and behavioral effects of NPY are mainly mediated through Y1, Y2, and Y5 receptor subtypes, which are expressed in regions regulating food intake, fear and anxiety, learning and memory, depression, and posttraumatic stress. In particular, the nucleus accumbens (NAc) has one of the highest NPY concentrations in the brain. In this review, we summarize the role of NPY in the NAc. NPY is expressed principally in medium-sized aspiny neurons, and numerous NPY immunoreactive fibers are observed in the NAc. Alterations in NPY expression under certain conditions through intra-NAc injections of NPY or receptor agonists/antagonists revealed NPY to be involved in the characteristic functions of the NAc, such as alcohol intake and drug addiction. In addition, control of mesolimbic dopaminergic release via NPY receptors may take part in these functions. NPY in the NAc also participates in fat intake and emotional behavior. Accumbal NPY neurons and fibers may exert physiological and pathophysiological actions partly through neuroendocrine mechanisms and the autonomic nervous system.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5300
| | - Shunji Yamada
- Department of Anatomy, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| | - Yoshihisa Watanabe
- Department of Basic Geriatrics, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
4
|
Yu X, Xin Y, Cui L, Jia J, Yuan X, Fu S, Zhang J, Sun C, Miao X, Li W. Effects of neuropeptide Y as a feed additive on stimulating the growth of tilapia (Oreochromis niloticus) fed low fish meal diets. Peptides 2021; 138:170505. [PMID: 33539872 DOI: 10.1016/j.peptides.2021.170505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
Neuropeptide Y is known to stimulate food intake in fish. In this study, we investigated tilapia NPY (tNPY) both for its effects on the growth of tilapia (Oreochromis niloticus, GIFT) in low fish meal and for its thermal stability. Three diets were formulated containing 0, 3 and 10 % fish meal (NF, LF and HF). From these diets, six experimental diets were prepared by spraying either tNPY solution (0.3 μg/g feed) or distilled water (DW) onto the surface of formulated feeds (NF + DW, NF + tNPY, LF + DW, LF + tNPY, HF + DW and HF + tNPY). Tilapia were fed the six experimental diets for 8 weeks. Fish in the NF + tNPY, LF + tNPY and HF + tNPY groups showed increasing trends in the weight gain rate and specific growth rate compared to its corresponding control group. The feed coefficient of group HF + tNPY was significantly lower than that of the control group. The growth performance of the LF + tNPY approached that of the HF + DW group. The mRNA levels of npy in NF + tNPY were significantly higher than those in NF + DW. A field experiment in which tNPY was sprayed in feeds by the vacuum spray method with doses of 0, 0.2 and 0.4 μg/g feed was performed for three months, and the FBW of tilapia receiving tNPY at 0.2 and 0.4 μg/g feed was higher than that of the control group although not significantly. The bioactivity of tNPY was confirmed by its ability to reduce cAMP levels and activate the ERK1/2 pathway. These results demonstrated that tNPY could promote tilapia growth with oral administration low fish meal diets.
Collapse
Affiliation(s)
- Xiaozheng Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ying Xin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lili Cui
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China; College of Animal, Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jirong Jia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shiwei Fu
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China
| | - Jiahui Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiangjun Miao
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Dietrich P, Wormser L, Fritz V, Seitz T, De Maria M, Schambony A, Kremer AE, Günther C, Itzel T, Thasler WE, Teufel A, Trebicka J, Hartmann A, Neurath MF, von Hörsten S, Bosserhoff AK, Hellerbrand C. Molecular crosstalk between Y5 receptor and neuropeptide Y drives liver cancer. J Clin Invest 2021; 130:2509-2526. [PMID: 31999643 DOI: 10.1172/jci131919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/23/2020] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is clearly age-related and represents one of the deadliest cancer types worldwide. As a result of globally increasing risk factors including metabolic disorders, the incidence rates of HCC are still rising. However, the molecular hallmarks of HCC remain poorly understood. Neuropeptide Y (NPY) and NPY receptors represent a highly conserved, stress-activated system involved in diverse cancer-related hallmarks including aging and metabolic alterations, but its impact on liver cancer had been unclear. Here, we observed increased expression of NPY5 receptor (Y5R) in HCC, which correlated with tumor growth and survival. Furthermore, we found that its ligand NPY was secreted by peritumorous hepatocytes. Hepatocyte-derived NPY promoted HCC progression by Y5R activation. TGF-β1 was identified as a regulator of NPY in hepatocytes and induced Y5R in invasive cancer cells. Moreover, NPY conversion by dipeptidylpeptidase 4 (DPP4) augmented Y5R activation and function in liver cancer. The TGF-β/NPY/Y5R axis and DPP4 represent attractive therapeutic targets for controlling liver cancer progression.
Collapse
Affiliation(s)
- Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Department of Medicine 1, University Hospital Erlangen, and
| | | | | | | | - Monica De Maria
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | | | | - Timo Itzel
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Andreas Teufel
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jonel Trebicka
- Department of Medicine I, University Hospital Bonn, Bonn, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University Hospital Erlangen, and.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Franz Penzoldt Center, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum.,Comprehensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg, Erlangen, Germany
| |
Collapse
|
6
|
Cheon M, Park H, Chung C. Protein kinase C mediates neuropeptide Y-induced reduction in inhibitory neurotransmission in the lateral habenula. Neuropharmacology 2020; 180:108295. [PMID: 32882226 DOI: 10.1016/j.neuropharm.2020.108295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 08/29/2020] [Indexed: 11/30/2022]
Abstract
Neuropeptide Y (NPY) is one of peptide neuromodulators, well known for orexigenic, anxiolytic and antidepressant effects. We previously reported that NPY decreases GABAergic transmission in the lateral habenula (LHb). In the current study, we aim to investigate the underlying signaling pathways that mediate inhibitory action of NPY in the LHb by employing whole-cell patch clamp recording with pharmacological interventions. Here, we revealed that Y1 receptors (Y1Rs) but not Y2Rs mediate NPY-induced decrease of GABAergic transmission in the LHb. Surprisingly, NPY-induced decrease of inhibitory transmission in the LHb was not dependent on adenylyl cyclase (AC)/protein kinase A (PKA)-dependent pathway as reported in other brain areas. Instead, pharmacological blockade of phospholipase C (PLC) or protein kinase C (PKC) activity abolished the decrease of GABAergic transmission by NPY in the LHb. Our findings suggest that Y1Rs in the LHb may trigger the activation of PLC/PKC-dependent pathway but not the classical AC/PKA-dependent pathway to decrease inhibitory transmission of the LHb.
Collapse
Affiliation(s)
- Myunghyun Cheon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - Hoyong Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
7
|
Chen F, Zhou Y, Yang K, Shen M, Wang Y. NPY stimulates cholesterol synthesis acutely by activating the SREBP2-HMGCR pathway through the Y1 and Y5 receptors in murine hepatocytes. Life Sci 2020; 262:118478. [PMID: 32976883 DOI: 10.1016/j.lfs.2020.118478] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/07/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
AIMS The development of non-alcoholic fatty liver disease (NAFLD) is partially attributed to disturbance in cholesterol metabolism and sympathetic overactivity. Excessive levels of the sympathetic neurotransmitter neuropeptide Y (NPY) positively correlated with both NAFLD and cholesterol accumulation. We wanted to determine, for the first time, whether NPY promotes cholesterol accumulation directly in hepatocytes and elucidate the underlying mechanism. MAIN METHODS In vivo, NPY was injected through the hepatic portal vein into SD rats. One hour later, serum and liver tissues were collected. In vitro, BRL-3A hepatocytes were treated with NPY, and with Y1, Y2, Y5, receptor antagonists as well as with extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) antagonist, respectively. Cholesterol content was measured by coupled enzyme method. Precursor sterol-regulatory element binding protein 2 (pSREBP2), mature SREBP2 (mSREBP2), HMG-CoA reductase (HMGCR), ERK1/2, pERK1/2, cAMP-dependent protein kinase (PKA), and pPKA protein expression levels were examined by western blotting. KEY FINDINGS In rats, intraportal vein injection of NPY activates pSREBP2, mSREBP2, and HMGCR protein expression, and induces hepatic cholesterol accumulation. In BRL-3A cells, we observed that NPY increases cholesterogenic protein expression and cholesterol synthesis through Y1 and Y5 receptors. This effect is mediated by the activation of the ERK1/2 signaling pathway. SIGNIFICANCE We demonstrated, for the first time, that NPY can activate the cholesterogenic pathway and elucidated the underlying mechanism. Thus, NPY and NPY receptors might be new targets for the treatment of NAFLD and dyslipidemia.
Collapse
Affiliation(s)
- Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang City, Liaoning Province 110032, China
| | - Yong Zhou
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang City, Liaoning Province 110032, China
| | - Keyu Yang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang City, Liaoning Province 110032, China
| | - Mingyang Shen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang City, Liaoning Province 110032, China
| | - Yong Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang City, Liaoning Province 110032, China.
| |
Collapse
|
8
|
Clark DL, McCormick JL, Velleman SG. Effect of incubation temperature on neuropeptide Y and neuropeptide Y receptors in turkey and chicken satellite cells. Comp Biochem Physiol A Mol Integr Physiol 2018; 219-220:58-66. [PMID: 29505887 DOI: 10.1016/j.cbpa.2018.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/21/2022]
Abstract
Neuropeptide Y (NPY) is an appetite stimulating peptide released from the central nervous system and impacts the function of many different cell types. A recent transcriptome study showed that NPY expression was altered when turkey breast muscle satellite cells were incubated at low or high temperatures, suggesting NPY may mediate temperature effects on satellite cells. However, to date minimal information exists describing the expression and function of NPY in satellite cells. The objective of this study was to determine how temperature impacts NPY and NPY receptor gene expression in satellite cells isolated from turkeys and chickens with differing genetic lineages. Two broiler and two turkey breast muscle satellite cell lines were incubated at 35, 38 or 41 °C during proliferation and differentiation. In both turkey lines, NPY, and receptors NPY2R and NPY5R expression increased at elevated temperatures after 72 h of proliferation. During differentiation NPY and NPY5R expression increased in both turkey lines with higher temperatures, whereas NPY2R was minimally affected by temperature. In contrast, in both chicken cell lines there were few significant differences for NPY and NPY receptor expression across temperature during proliferation. During differentiation, the temperature effect was different in the two chicken cell lines. In the BPM8 chicken line, there were few differences in NPY and NPY receptors across temperature; whereas elevated temperatures increased NPY, NPY2R, and NPY5R expression in the 708 line. The differences between turkey and chicken lines suggest NPY has species specific satellite cell functions in response to heat stress.
Collapse
Affiliation(s)
- Daniel L Clark
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States.
| | - Janet L McCormick
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, United States
| |
Collapse
|
9
|
Waldmann J, Fendrich V, Reichert M, Hecker A, Bartsch DK, Padberg W, Holler JP. Expression of neuropeptide Y and its receptors Y1 and Y2 in pancreatic intraepithelial neoplasia and invasive pancreatic cancer in a transgenic mouse model and human samples of pancreatic cancer. J Surg Res 2018; 223:230-236. [DOI: 10.1016/j.jss.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 10/02/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022]
|
10
|
González-Stegmaier R, Villarroel-Espíndola F, Manríquez R, López M, Monrás M, Figueroa J, Enríquez R, Romero A. New immunomodulatory role of neuropeptide Y (NPY) in Salmo salar leucocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:303-309. [PMID: 28676307 DOI: 10.1016/j.dci.2017.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Neuropeptide Y (NPY) plays different roles in mammals such as: regulate food intake, memory retention, cardiovascular functions, and anxiety. It has also been shown in the modulation of chemotaxis, T lymphocyte differentiation, and leukocyte migration. In fish, NPY expression and functions have been studied but its immunomodulatory role remains undescribed. This study confirmed the expression and synthesis of NPY in S. salar under inflammation, and validated a commercial antibody for NPY detection in teleost. Additionally, immunomodulatory effects of NPY were assayed in vitro and in vivo. Phagocytosis and superoxide anion production in leukocytes and SHK cells were induced under stimulation with a synthetic peptide. IL-8 mRNA was selectively and strongly induced in the spleen, head kidney, and isolated cells, after in vivo challenge with NPY. All together suggest that NPY is expressed in immune tissues and modulates the immune response in teleost fish.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| | | | - René Manríquez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio López
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Mónica Monrás
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Figueroa
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Ricardo Enríquez
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Alex Romero
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| |
Collapse
|
11
|
Gao S, Zhang J, He C, Meng F, Bu G, Zhu G, Li J, Wang Y. Molecular characterization of neuropeptide Y (NPY) receptors (Y1, Y4 and Y6) and investigation of the tissue expression of their ligands (NPY, PYY and PP) in chickens. Gen Comp Endocrinol 2017; 240:46-60. [PMID: 27641685 DOI: 10.1016/j.ygcen.2016.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 01/06/2023]
Abstract
Neuropeptide Y (NPY) receptors and its ligands, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are suggested to regulate many physiological processes including food intake in birds. However, our knowledge regarding this avian NPY system remains rather limited. Here, we examined the tissue expression of NPY, PYY and PP and the gene structure, expression and signaling of three NPY receptors (cY1, cY4 and cY6) in chickens. The results showed that 1) NPY is widely expressed in chicken tissues with abundance noted in the hypothalamus via quantitative real-time PCR, whereas PYY is highly expressed in the pancreas, gastrointestinal tract and various brain regions, and PP is expressed almost exclusively in the pancreas; 2) cY1, cY4 and cY6 contain novel non-coding exon(s) at their 5'-UTR; 3) The wide tissue distribution of cY1 and cY4 and cY6 were detected in chickens by quantitative real-time PCR and their expression is controlled by the promoter near exon 1, which displays strong promoter activity in DF-1 cells as demonstrated by Dual-luciferase reporter assay; 4) Monitored by luciferase reporter assays, activation of cY1 and cY4 expressed in HEK293 cells by chicken NPY1-36, PYY1-37, and PP1-36 treatment inhibits cAMP/PKA and activates MAPK/ERK signaling pathways, while cY6-expressing cells show little response to peptide treatment, indicating that cY1 and cY4, and not cY6, can transmit signals in vitro. Taken together, our study offers novel information about the expression and functionality of cY1, cY4, cY6 and their ligands in birds, and helps to decipher their conserved roles in vertebrates.
Collapse
Affiliation(s)
- Shunyu Gao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China; College of Chemistry and Life Sciences, Chuxiong Normal University, Chuxiong 675000, PR China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Chen He
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Fengyan Meng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Guoqiang Zhu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
12
|
Schmeltzer SN, Herman JP, Sah R. Neuropeptide Y (NPY) and posttraumatic stress disorder (PTSD): A translational update. Exp Neurol 2016; 284:196-210. [PMID: 27377319 PMCID: PMC8375392 DOI: 10.1016/j.expneurol.2016.06.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a trauma-evoked syndrome, with variable prevalence within the human population due to individual differences in coping and resiliency. In this review, we discuss evidence supporting the relevance of neuropeptide Y (NPY), a stress regulatory transmitter in PTSD. We consolidate findings from preclinical, clinical, and translational studies of NPY that are of relevance to PTSD with an attempt to provide a current update of this area of research. NPY is abundantly expressed in forebrain limbic and brainstem areas that regulate stress and emotional behaviors. Studies in rodents demonstrate a role for NPY in stress responses, anxiety, fear, and autonomic regulation, all relevant to PTSD symptomology. Genetic studies support an association of NPY polymorphisms with stress coping and affect. Importantly, cerebrospinal fluid (CSF) measurements in combat veterans provide direct evidence of NPY association with PTSD diagnosis and symptomology. In addition, NPY involvement in pain, depression, addiction, and metabolism may be relevant to comorbidities associated with PTSD. Collectively, the literature supports the relevance of NPY to PTSD pathophysiology, although knowledge gaps remain. The NPY system is an attractive target in terms of understanding the physiological basis of PTSD as well as treatment of the disorder.
Collapse
Affiliation(s)
- Sarah N Schmeltzer
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States
| | - Renu Sah
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH 45237, United States; VA Medical Center, Cincinnati, OH, 45220, United States.
| |
Collapse
|
13
|
He C, Zhang J, Gao S, Meng F, Bu G, Li J, Wang Y. Molecular characterization of three NPY receptors (Y2, Y5 and Y7) in chickens: Gene structure, tissue expression, promoter identification, and functional analysis. Gen Comp Endocrinol 2016; 236:24-34. [PMID: 27142335 DOI: 10.1016/j.ygcen.2016.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 02/02/2023]
Abstract
Six neuropeptide Y (NPY) receptors are suggested to mediate the biological actions of NPY, peptide YY (PYY), and pancreatic polypeptide (PP), such as food intake in birds, however, information regarding the structure and signaling of avian NPY receptors are rather limited. In this study, we investigated the gene structure, tissue expression and signaling property of three NPY receptors (cY2, cY5 and cY7) in chickens. The results showed that 1) cY2, cY5 and cY7 contain novel non-coding exons upstream of their start codon and alternative mRNA splicing in their 5'-UTR results in the formation of multiple transcript variants; 2) cY2, cY5 and cY7 transcripts were detected to be widely expressed in adult chicken tissues including various brain regions by RT-PCR, and their expression is controlled by a promoter(s) near exon 1, which display promoter activity in DF-1 cells as demonstrated by Dual-luciferase reporter assay; 3) cY2, cY5 and cY7 expressed in HEK293 cells were preferentially (or potently) activated by cNPY1-36 and cPYY1-37, but not by cPP1-36, and their activation led to the inhibition of cAMP/PKA signaling pathway and activation of MAPK/ERK signaling pathway, monitored by the cell-based luciferase reporter systems or western blots, indicating that the three NPY receptors are functional and capable of transmitting signals effectively. On the whole, our data establishes a molecular basis to elucidate the actions of three functional NPY receptors (cY2, cY5 and cY7) and their ligands in birds, which helps to uncover the conserved roles of these ligand-receptor pairs in vertebrates.
Collapse
Affiliation(s)
- Chen He
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Shunyu Gao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China; College of Chemistry and Life Sciences, Chuxiong Normal University, Chuxiong 675000, PR China
| | - Fengyan Meng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
14
|
Lecat S, Belemnaba L, Galzi JL, Bucher B. Neuropeptide Y receptor mediates activation of ERK1/2 via transactivation of the IGF receptor. Cell Signal 2015; 27:1297-304. [PMID: 25817573 DOI: 10.1016/j.cellsig.2015.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/19/2015] [Accepted: 03/08/2015] [Indexed: 12/24/2022]
Abstract
Neuropeptide Y binds to G-protein coupled receptors whose action results in inhibition of adenylyl cyclase activity. Using HEK293 cells stably expressing the native neuropeptide Y Y1 receptors, we found that the NPY agonist elicits a transient phosphorylation of the extracellular signal-regulated kinases (ERK1/2). We first show that ERK1/2 activation following Y1 receptor stimulation is dependent on heterotrimeric Gi/o since it is completely inhibited by pre-treatment with pertussis toxin. In addition, ERK1/2 activation is internalization-independent since mutant Y1 receptors unable to recruit β-arrestins, can still activate ERK signaling to the same extent as wild-type receptors. We next show that this activation of the MAPK pathway is inhibited by the MEK inhibitor U0126, is not dependent on calcium signaling at the Y1 receptor (no effect upon inhibition of phospholipase C, protein kinase C or protein kinase D) but instead dependent on Gβ/γ and associated signaling pathways that activate PI3-kinase. Although inhibition of the epidermal-growth factor receptor tyrosine kinase did not influence NPY-induced ERK1/2 activation, we show that the inhibition of insulin growth factor receptor IGFR by AG1024 completely blocks activation of ERK1/2 by the Y1 receptor. This Gβ/γ-PI3K-AG1024-sensitive pathway does not involve activation of IGFR through the release of a soluble ligand by metalloproteinases since it is not affected by the metalloproteinase inhibitor marimastat. Finally, we found that a similar pathway, sensitive to wortmannin-AG1024 but insensitive to marimastat, is implicated in activation of ERK signaling in HEK293 cells by endogenously expressed GPCRs coupled to Gq-protein (muscarinic M3 receptors) or coupled to Gs-protein (endothelin ETB receptors). Our analysis is the first to show that β-arrestin recruitment to the NPY Y1 receptor is not necessary for MAPK activation by this receptor but that transactivation of the IGFR receptor is required.
Collapse
Affiliation(s)
- Sandra Lecat
- GPCRs, Pain and Inflammation Team, UMR7242, CNRS-University of Strasbourg, LabEx Medalis 300 Bvd Sébastien Brant, CS 10413, 67412 Illkirch, France.
| | - Lazare Belemnaba
- UMR 7213, CNRS-University of Strasbourg, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, 74 route du Rhin, CS 60024, 67401 Illkirch, France
| | - Jean-Luc Galzi
- GPCRs, Pain and Inflammation Team, UMR7242, CNRS-University of Strasbourg, LabEx Medalis 300 Bvd Sébastien Brant, CS 10413, 67412 Illkirch, France
| | - Bernard Bucher
- UMR 7213, CNRS-University of Strasbourg, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, 74 route du Rhin, CS 60024, 67401 Illkirch, France
| |
Collapse
|
15
|
Abstract
Hepatocellular accumulation of free fatty acids (FFAs) in the form of triglycerides constitutes the metabolic basis for the development of nonalcoholic fatty liver disease (NAFLD). Recent data demonstrate that excess FFA hepatocyte storage is likely to lead to lipotoxicity and hepatocyte apoptosis. Hence, FFA-mediated hepatocyte injury is a key contributor to the pathogenesis of nonalcoholic steatohepatitis (NASH). Nonalcoholic steatohepatitis, obesity, type 2 diabetes, essential hypertension, and other common medical problems together comprise metabolic syndrome. Evidence suggests that peptide hormones from the L cells of the distal small intestine, which comprise the core of the enteroendocrine system (EES), play two key roles, serving either as incretins, or as mediators of appetite and satiety in the central nervous system. Recent data related to glucagon-like peptide-1 (GLP-1) and other known L-cell hormones have accumulated due to the increasing frequency of bariatric surgery, which increase delivery of bile salts to the hindgut. Bile acids are a key stimulus for the TGR5 receptor of the L cells. Enhanced bile-salt flow and subsequent EES stimulation may be central to elimination of hepatic steatosis following bariatric surgery. Although GLP-1 is a clinically relevant pharmacological analogue that drives pancreatic β-cell insulin output, GLP-1 analogues also have independent benefits via their effects on hepatocellular FFA metabolism. The authors also discuss recent data regarding the role of the major peptides released by the EES, which promote satiety and modulate energy homeostasis and utilization, as well as those that control fat absorption and intestinal permeability. Taken together, elucidating novel functions for EES-related peptides and pharmacologic development of peptide analogues offer potential far-ranging treatment for obesity-related human disease.
Collapse
Affiliation(s)
- Jamie Eugene Mells
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| | - Frank A. Anania
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
NPY Y1 receptors differentially modulate GABAA and NMDA receptors via divergent signal-transduction pathways to reduce excitability of amygdala neurons. Neuropsychopharmacology 2013; 38:1352-64. [PMID: 23358240 PMCID: PMC3656378 DOI: 10.1038/npp.2013.33] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuropeptide Y (NPY) administration into the basolateral amygdala (BLA) decreases anxiety-like behavior, mediated in part through the Y1 receptor (Y1R) isoform. Activation of Y1Rs results in G-protein-mediated reduction of cAMP levels, which results in reduced excitability of amygdala projection neurons. Understanding the mechanisms linking decreased cAMP levels to reduced excitability in amygdala neurons is important for identifying novel anxiolytic targets. We studied the intracellular mechanisms of activation of Y1Rs on synaptic transmission in the BLA. Activating Y1Rs by [Leu(31),Pro(34)]-NPY (L-P NPY) reduced the amplitude of evoked NMDA-mediated excitatory postsynaptic currents (eEPSCs), without affecting AMPA-mediated eEPSCs, but conversely increased the amplitude of GABAA-mediated evoked inhibitory postsynaptic currents (eIPSCs). Both effects were abolished by the Y1R antagonist, PD160170. Intracellular GDP-β-S, or pre-treatment with either forskolin or 8Br-cAMP, eliminated the effects of L-P NPY on both NMDA- and GABAA-mediated currents. Thus, both the NMDA and GABAA effects of Y1R activation in the BLA are G-protein-mediated and cAMP-dependent. Pipette inclusion of protein kinase A (PKA) catalytic subunit blocked the effect of L-P NPY on GABAA-mediated eIPSCs, but not on NMDA-mediated eEPSCs. Conversely, activating the exchange protein activated by cAMP (Epac) with 8CPT-2Me-cAMP blocked the effect of L-P NPY on NMDA-mediated eEPSCs, but not on GABAA-mediated eIPSCs. Thus, NPY regulates amygdala excitability via two signal-transduction events, with reduced PKA activity enhancing GABAA-mediated eIPSCs and Epac deactivation reducing NMDA-mediated eEPSCs. This multipathway regulation of NMDA- and GABAA-mediated currents may be important for NPY plasticity and stress resilience in the amygdala.
Collapse
|
17
|
Zhou JR, Zhang LD, Wei HF, Wang X, Ni HL, Yang F, Zhang T, Jiang CL. Neuropeptide Y induces secretion of high-mobility group box 1 protein in mouse macrophage via PKC/ERK dependent pathway. J Neuroimmunol 2013; 260:55-9. [PMID: 23623189 DOI: 10.1016/j.jneuroim.2013.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 11/26/2022]
Abstract
Despite increasing evidence highlighting the role of NPY in the modulation of inflammatory reaction, surprisingly little is known about the direct effects of NPY on the release of proinflammatory mediators. In the present work, we have evaluated the effects of NPY on the release of TNF-α, IL-1β, IL-6 and HMGB1 mediators in peritoneal macrophages. Our results demonstrate for the first time that NPY can directly induce active HMGB1 release and cytoplasmic translocation, while the production of TNF-α, IL-1β and IL-6 is not affected. PKC and ERK pathway inhibitors can abolish the promotive effect of NPY on HMGB1 secretion. Thus, our results indicate that NPY might impact on the innate immune system by directly potentiating the HMGB1 release from the macrophage.
Collapse
Affiliation(s)
- Jiang-Rui Zhou
- Laboratory of Stress Medicine, Second Military Medical University, No.800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cheng PW, Wu ATH, Lu PJ, Yang YC, Ho WY, Lin HC, Hsiao M, Tseng CJ. Central hypotensive effects of neuropeptide Y are modulated by endothelial nitric oxide synthase after activation by ribosomal protein S6 kinase. Br J Pharmacol 2013; 167:1148-60. [PMID: 22708658 DOI: 10.1111/j.1476-5381.2012.02077.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Neuropeptide Y (NPY) is a 36-amino acid polypeptide found abundantly in the central and peripheral nervous systems. NPY exerts a potent depressor effect via the activation of both Y(1) and Y(2) receptors in the nucleus tractus solitarii (NTS) of rats. However, the precise mechanisms involved in this NPY-mediated action remained unclear. EXPERIMENTAL APPROACH Effects of a selective antagonist of Y(1) receptors, a PKC inhibitor, a PI3 kinase inhibitor, a NOS inhibitor, an endothelial NOS (eNOS)-selective inhibitor, a neuronal NOS (nNOS)-specific inhibitor or a MAPK inhibitor, on responses to microinjection of NPY into the NTS of Wistar-Kyoto rats were studied to determine the underlying mechanisms. Blood pressure and heart rate were measured and, in NTS, protein phosphorylation assessed by immunohistochemical techniques. KEY RESULTS Unilateral microinjection of exogenous NPY (4.65pmol/60nL) into the NTS of urethane-anesthetized Wistar-Kyoto rats markedly decreased blood pressure and heart rate. Microinjection of the Y(1) receptor antagonist BIBP3226 or the G(i) /G(o) -protein inhibitor, Pertussis toxin, into the NTS attenuated these NPY-induced hypotensive effects. A selective Y(1) receptor agonist increased expression of ERK1/2, ribosomal protein S6 kinase (RSK) and the phosphorylation of eNOS. RSK also bound directly to eNOS and induced its phosphorylation at Ser(1177) . Pretreatment of the NTS with an eNOS inhibitor, but not a nNOS inhibitor, attenuated the NPY-induced hypotensive effects. CONCLUSIONS AND IMPLICATIONS Together, these results suggested that NPY-induced depressor effects were mediated by activating NPY Y(1) receptor-PKC-ERK-RSK-eNOS and Ca(2+) -eNOS signalling pathways, which are involved in regulation of blood pressure in the NTS.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Xu B, Sundström G, Kuraku S, Lundell I, Larhammar D. Cloning and pharmacological characterization of the neuropeptide Y receptor Y5 in the sea lamprey, Petromyzon marinus. Peptides 2013. [PMID: 23178200 DOI: 10.1016/j.peptides.2012.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The neuropeptide Y system is known to have expanded in early vertebrate evolution. Three neuropeptide Y receptors have been proposed to have existed before the two basal vertebrate tetraploidizations, namely a Y1-like, a Y2-like, and a Y5-like receptor, with their genes in the same chromosomal region. Previously we have described a Y1-subfamily and a Y2-subfamily receptor in the river lamprey, Lampetra fluviatilis. Here we report the identification of a Y5 receptor in the genome of the sea lamprey, Petromyzon marinus. In phylogenetic analyses, the Y5 receptor clusters together with gnathostome Y5 receptors with high bootstrap value and shares the long intracellular loop 3. This lamprey receptor has an even longer loop 3 than the gnathostome Y5 receptors described so far, with the expansion of amino acid repeats. Functional expression in a human cell line, co-transfected with a modified human G-protein, resulted in inositol phosphate turnover in response to the three lamprey NPY-family peptides NPY, PYY and PMY at nanomolar concentrations. Our results confirm that the Y1-Y2-Y5 receptor gene triplet arose before the cyclostome-gnathostome divergence. However, it is not clear from the NPY receptors whether cyclostomes diverged from the gnathostome lineage after the first or the second tetraploidization. Duplicates resulting from the tetraploidizations exist for both Y1 and Y2 in gnathostomes, but only a single copy of Y5 has survived in all vertebrates characterized to date, making the physiological roles of Y5 interesting to explore.
Collapse
Affiliation(s)
- Bo Xu
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
20
|
Gonçalves J, Ribeiro CF, Malva JO, Silva AP. Protective role of neuropeptide Y Y2receptors in cell death and microglial response following methamphetamine injury. Eur J Neurosci 2012; 36:3173-83. [DOI: 10.1111/j.1460-9568.2012.08232.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Cheung A, Newland PL, Zaben M, Attard GS, Gray WP. Intracellular nitric oxide mediates neuroproliferative effect of neuropeptide y on postnatal hippocampal precursor cells. J Biol Chem 2012; 287:20187-96. [PMID: 22474320 PMCID: PMC3370201 DOI: 10.1074/jbc.m112.346783] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/23/2012] [Indexed: 01/25/2023] Open
Abstract
Neuropeptide Y (NPY) is widely expressed in the central and peripheral nervous systems and is proliferative for a range of cells types in vitro. NPY plays a key role in regulating adult hippocampal neurogenesis in vivo under both basal and pathological conditions, although the underlying mechanisms are largely unknown. We have investigated the role of nitric oxide (NO) on the neurogenic effects of NPY. Using postnatal rat hippocampal cultures, we show that the proliferative effect of NPY on nestin(+) precursor cells is NO-dependent. As well as the involvement of neuronal nitric-oxide synthase, the proliferative effect is mediated via an NO/cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) and extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. We show that NPY-mediated intracellular NO signaling results in an increase in neuroproliferation. By contrast, extracellular NO had an opposite, inhibitory effect on proliferation. The importance of the NO-cGMP-PKG signaling pathway in ERK1/2 activation was confirmed using Western blotting. This work unites two significant modulators of hippocampal neurogenesis within a common signaling framework and provides a mechanism for the independent extra- and intracellular regulation of postnatal neural precursors by NO.
Collapse
Affiliation(s)
- Angela Cheung
- From the Division of Clinical Neurosciences
- Centre for Biological Sciences, and
| | | | | | - George S. Attard
- School of Chemistry, University of Southampton, Southampton SO17 1BJ and
| | - William P. Gray
- From the Division of Clinical Neurosciences
- the Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF14 4XN, Wales, United Kingdom
| |
Collapse
|
22
|
The intriguing mission of neuropeptide Y in the immune system. Amino Acids 2011; 45:41-53. [DOI: 10.1007/s00726-011-1185-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/23/2011] [Indexed: 12/12/2022]
|
23
|
The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol Ther 2011; 131:91-113. [DOI: 10.1016/j.pharmthera.2011.03.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022]
|
24
|
Alvaro AR, Martins J, Araújo IM, Rosmaninho-Salgado J, Ambrósio AF, Cavadas C. Neuropeptide Y stimulates retinal neural cell proliferation--involvement of nitric oxide. J Neurochem 2010; 105:2501-10. [PMID: 18331583 DOI: 10.1111/j.1471-4159.2008.05334.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neuropeptide Y (NPY) is a 36 amino acid peptide widely present in the CNS, including the retina. Previous studies have demonstrated that NPY promotes cell proliferation of rat post-natal hippocampal and olfactory epithelium precursor cells. The aim of this work was to investigate the role of NPY on cell proliferation of rat retinal neural cells. For this purpose, primary retinal cell cultures expressing NPY, and NPY Y(1), Y(2), Y(4) and Y(5) receptors [Alvaro et al., (2007) Neurochem. Int., 50, 757] were used. NPY (10-1000 nM) stimulated cell proliferation through the activation of NPY Y(1), Y(2) and Y(5) receptors. NPY also increased the number of proliferating neuronal progenitor cells (BrdU(+)/nestin(+) cells). The intracellular mechanisms coupled to NPY receptors activation that mediate the increase in cell proliferation were also investigated. The stimulatory effect of NPY on cell proliferation was reduced by L-nitroarginine-methyl-esther (L-NAME; 500 microM), a nitric oxide synthase inhibitor, 1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ; 20 microM), a soluble guanylyl cyclase inhibitor or U0126 (1 microM), an inhibitor of the extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, NPY stimulates retinal neural cell proliferation, and this effect is mediated through nitric oxide-cyclic GMP and ERK 1/2 pathways.
Collapse
Affiliation(s)
- Ana Rita Alvaro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
25
|
Choi Y, Tee JB, Gallegos TF, Shah MM, Oishi H, Sakurai H, Kitamura S, Wu W, Bush KT, Nigam SK. Neuropeptide Y functions as a facilitator of GDNF-induced budding of the Wolffian duct. Development 2010; 136:4213-24. [PMID: 19934016 DOI: 10.1242/dev.037580] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ureteric bud (UB) emergence from the Wolffian duct (WD), the initiating step in metanephric kidney morphogenesis, is dependent on GDNF; however, GDNF by itself is generally insufficient to induce robust budding of the isolated WD in culture. Thus, additional factors, presumably peptides or polypeptide growth factors, might be involved. Microarray data from in vivo budding and non-budding conditions were analyzed using non-negative matrix factorization followed by gene ontology filtering and network analysis to identify sets of genes that are highly regulated during budding. These included the GDNF co-receptors GFRalpha1 and RET, as well as neuropeptide Y (NPY). By using ANOVA with pattern matching, NPY was also found to correlate most significantly to the budded condition with a high degree of connectedness to genes with developmental roles. Exogenous NPY [as well as its homolog, peptide YY (PYY)] augmented GDNF-dependent budding in the isolated WD culture; conversely, inhibition of NPY signaling or perturbation of NPY expression inhibited budding, confirming that NPY facilitates this process. NPY was also found to reverse the decreased budding, the downregulation of RET expression, the mislocalization of GFRalpha1, and the inhibition of AKT phosphorylation that resulted from the addition of BMP4 to the isolated WD cultures, suggesting that NPY acts through the budding pathway and is reciprocally regulated by GDNF and BMP4. Thus, the outgrowth of the UB from the WD might result from a combination of the upregulation of the GDNF receptors together with genes that support GDNF signaling in a feed-forward loop and/or counteraction of the inhibitory pathway regulated by BMP4.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee M, Choi S, Halldén G, Yo SJ, Schichnes D, Aponte GW. P2Y5 is a G(alpha)i, G(alpha)12/13 G protein-coupled receptor activated by lysophosphatidic acid that reduces intestinal cell adhesion. Am J Physiol Gastrointest Liver Physiol 2009; 297:G641-54. [PMID: 19679818 PMCID: PMC2763810 DOI: 10.1152/ajpgi.00191.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
P2Y5 is a G protein-coupled receptor that binds and is activated by lysophosphatidic acid (LPA). We determined that P2Y5 transcript is expressed along the intestinal mucosa and investigated the intracellular pathways induced by P2Y5 activation, which could contribute to LPA effects on intestinal cell adhesion. P2Y5 heterologously expressed in CHO and small intestinal hBRIE 380i cells was activated by LPA resulting in an increase in intracellular calcium ([Ca(2+)](i)) when the cells concurrently expressed G(alpha)(Delta6qi5myr). P2Y5 activation also increased the phosphorylation of ERK1/2 that was sensitive to pertussis toxin. Together these indicate that P2Y5 activation by LPA induces an increase in [Ca(2+)](i) and ERK1/2 phosphorylation through G(alpha)(i). We discovered that P2Y5 was activated by farnesyl pyrophosphate (FPP) without a detectable change in [Ca(2+)](i). The activation of P2Y5 by LPA or FPP induced the activity of a serum response element (SRE)-linked luciferase reporter that was inhibited by the RGS domain of p115RhoGEF, C3 exotoxin, and Y-27632, suggesting the involvement of G(alpha)(12/13), Rho GTPase, and ROCK, respectively. However, only LPA-mediated induction of SRE reporter activity was sensitive to inhibitors targeting p38 MAPK, PI3K, PLC, and PKC. In addition, only LPA transactivated the epidermal growth factor receptor, leading to an induction of ERK1/2 phosphorylation. These observations correlate with our subsequent finding that P2Y5 activation by LPA, and not FPP, reduced intestinal cell adhesion. This study elucidates a mechanism whereby LPA can act as a luminal and/or serosal cue to alter mucosal integrity.
Collapse
Affiliation(s)
- Mike Lee
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Sungwon Choi
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Gunnel Halldén
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Sek Jin Yo
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| | - Denise Schichnes
- 2College of Natural Resources Biological Imaging Facility, University of California at Berkeley, Berkeley, California
| | - Gregory W. Aponte
- 1Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, California; and
| |
Collapse
|
27
|
Mullins D, Adham N, Hesk D, Wu Y, Kelly J, Huang Y, Guzzi M, Zhang X, McCombie S, Stamford A, Parker E. Identification and characterization of pseudoirreversible nonpeptide antagonists of the neuropeptide Y Y5 receptor and development of a novel Y5-selective radioligand. Eur J Pharmacol 2008; 601:1-7. [PMID: 18976648 DOI: 10.1016/j.ejphar.2008.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/24/2008] [Accepted: 10/09/2008] [Indexed: 11/24/2022]
Abstract
The neuropeptide Y (NPY) Y(5) receptor is believed to be involved in the central regulation of appetite. Thus, antagonists of this receptor have been pursued as potential therapeutic agents for the treatment of obesity. A novel series of potent and selective phenylamide or biaryl urea NPY Y(5) receptor antagonists was identified. Four representative compounds from this series, SCH 208639 (N-[4-[(1,1-dimethylbutyl)thio]phenyl]-2,2-dimethylpropanamide), SCH 430765 (N-[[[3'-fluoro[1,1'-biphenyl]-4-yl]amino]carbonyl]-N-methyl-1-(methylsulfonyl)-4-piperidinamine), SCH 488106 (N-[[[3',5'-difluoro[1,1'-biphenyl]-4-yl]amino]carbonyl]-N-methyl-1-[(5-methyl-3-pyridinyl)carbonyl]-4-piperidinamine) and SCH 500946 (N-[[[5-(3,5-difluorophenyl)-2-pyrazinyl]amino]carbonyl]-N-methyl-1-(methylsulfonyl)-4-piperidinamine), behaved as competitive antagonists in radioligand binding assays, but displayed apparently insurmountable antagonism in a cell-based functional assay. The apparently insurmountable antagonism was due to slow receptor dissociation rates rather than covalent binding, because the antagonists' effects could be reduced by extensive washing of cells after antagonist exposure. A novel radioligand, [(35)S]SCH 500946, was also developed and used to characterize the interaction of these antagonists with the NPY Y(5) receptor. [(35)S]SCH 500946 had high affinity for the NPY Y(5) receptor (K(d)=0.29 nM), and the binding kinetics (k(on) 4.414 x 10(7) M(-)(1) min(-1); k(off) 0.009816 min(-1)) confirmed that the compound slowly dissociates from the receptor. In a competition binding assay, NPY failed to displace [(35)S]SCH 500946 completely, indicating that the binding sites for NPY and [(35)S]SCH 500946 are not identical. These data indicate that the apparent insurmountable antagonism of these NPY Y(5) receptor antagonists is attributable both to slow receptor dissociation rates and to binding at a site distinct from NPY.
Collapse
Affiliation(s)
- Deborra Mullins
- Department of Neurobiology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Mendieta-Zerón H, López M, Diéguez C. Gastrointestinal peptides controlling body weight homeostasis. Gen Comp Endocrinol 2008; 155:481-95. [PMID: 18164707 DOI: 10.1016/j.ygcen.2007.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 11/06/2007] [Accepted: 11/12/2007] [Indexed: 12/25/2022]
Abstract
Obesity has become an international public health problem. Unfortunately, effective treatment options are limited. In the last 20 years, research in obesity and associated pathologies has derived in a significant increase in the knowledge of the physiological and molecular mechanism regulating body mass, such as gastrointestinal-neuroendocrine communications. Gut-brain peptides may provide attractive therapeutic targets against this disease. This review summarizes research into energy balance through gastrointestinal tract peptides. Understanding these molecular mechanisms will provide new pharmacological targets for the treatment of obesity and appetite disorders.
Collapse
Affiliation(s)
- Hugo Mendieta-Zerón
- Department of Physiology, School of Medicine, University of Santiago de Compostela, San Franscisco s/n, 15782 Santiago de Compostea, A Coruña, Spain
| | | | | |
Collapse
|
29
|
Abstract
Endocrine cells, enteric neurons and enterocytes provide an integrated functional defense against luminal factors, including nutrients, microbes and toxins. Prominent among intrinsic mediators is peptide YY (PYY) which is present in approximately 50% of colorectal endocrine cells and neuropeptide Y (NPY), a neurotransmitter expressed in submucous and myenteric nerves. Both peptides and their long fragments (PYY(3-36) and NPY(3-36)) are potent, long-lasting anti-secretory agents in vitro and in vivo and, they provide significant Y receptor-mediated absorptive tone in human and mouse colon mucosa. The main function of the colon is to absorb 90% of approximately 2l of daily ileal effluent (in adult humans) and Y-absorptive tone can contribute significantly to this electrolyte absorption. Blockade or loss of this mucosal Y-absorptive tone (i.e. with Y(1) or Y(2) antagonists) leads to hypersecretion and potentially to diarrhea, so Y agonists are predicted to rescue absorption by mimicking endogenous neuroendocrine PYY or neuronal NPY.
Collapse
Affiliation(s)
- Helen M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, School of Biomedical and Health Sciences, Guy's Campus, Hodgkin Building, London SE1 1UL, UK.
| |
Collapse
|
30
|
Ruscica M, Dozio E, Motta M, Magni P. Role of neuropeptide Y and its receptors in the progression of endocrine-related cancer. Peptides 2007; 28:426-34. [PMID: 17204352 DOI: 10.1016/j.peptides.2006.08.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 08/20/2006] [Indexed: 10/23/2022]
Abstract
The neuropeptide Y (NPY) family of peptides, in addition to its many physiological actions, has also been involved in the modulation of tumor progression, with specific reference to endocrine-related cancers such as neuroendocrine tumors, breast and prostate cancers. These have been found either to express NPY receptors, or to secrete NPY-related peptides, or both. The study of the role of the NPY family of peptides in the biology of endocrine-related tumors, specifically concerning cell proliferation, angiogenesis, invasion and metastatization, may help to clarify some aspects of tumor pathophysiology, as well as to indicate novel diagnostic markers and therapeutical approaches.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Center for Endocrinological Oncology, Istituto di Endocrinologia, Università degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy
| | | | | | | |
Collapse
|
31
|
Ma W, Quirion R. The ERK/MAPK pathway, as a target for the treatment of neuropathic pain. Expert Opin Ther Targets 2007; 9:699-713. [PMID: 16083338 DOI: 10.1517/14728222.9.4.699] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peripheral nerve injury produces neuropathic pain as well as phosphorylation of mitogen activated protein kinase (MAPK) family in dorsal root ganglia (DRG) and dorsal horn. Following nerve injury, phosphorylation of extracellular signal-regulated protein kinase (ERK), an important member of this family, is sequentially increased in neurons, microglia and astrocytes of the dorsal horn and gracile nucleus, and in injured large DRG neurons. Nerve injury-induced phosphorylation of ERK occurs early and is long-lasting. In several animal models of neuropathic pain, MEK inhibitors, known to suppress the synthesis of ERK, have proven effective to alleviate pain at various time points. Thus, the regulation of ERK/MAPK can be considered as a promising therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Weiya Ma
- Douglas Hospital Research Center, McGill University, Verdun, Montreal, Quebec, H4H 1R3, Canada
| | | |
Collapse
|
32
|
Cox HM. Neuropeptide Y receptors; antisecretory control of intestinal epithelial function. Auton Neurosci 2006; 133:76-85. [PMID: 17140858 DOI: 10.1016/j.autneu.2006.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/12/2006] [Accepted: 10/23/2006] [Indexed: 12/11/2022]
Abstract
This paper reviews the cellular localisation, mechanisms of release and intestinal absorptive actions of neuropeptide Y and its related peptides, peptide YY, pancreatic polypeptide and major fragments NPY(3-36) and PYY(3-36). While NPY is commonly found in inhibitory enteric neurons that can be interneurons, motor neurons or secretomotor-nonvasodilator in nature, its analogue, peptide YY in contrast, is located in neuroendocrine L-cells that predominate in the colorectal mucosa. Peptide YY is released from these cells when nutrients arrive in the small or large bowel, exerting paracrine as well as hormonal actions. Pancreatic polypeptide is found in relatively few, scattered intestinal endocrine cells, the majority of this peptide being produced by, and released from pancreatic islet F-cells in response to food intake. An introduction to the current pharmacology of this family of peptides is provided and the different types of neuropeptide Y (termed Y) receptors, their agonist preferences, antagonism, and preferred signalling pathways, are described. Our current understanding of specific Y receptor localisation within the intestine as determined by immunohistochemistry, is presented as a prelude to an assessment of functional studies that have monitored ion transport across isolated mucosal preparations. It is becoming clear that three Y receptor types are significant functionally in human colon, as well as particular rodent models (e.g. mouse) and these, namely the Y(1), Y(2) and Y(4) receptors, are discussed in detail. Their presence within the basolateral aspect of the epithelial layer (Y(1) and Y(4) receptors) or on enteric neurons (Y(1) and Y(2) receptors) and their activation by endogenous neuropeptide Y, peptide YY (Y(1) and Y(2) receptors) or pancreatic polypeptide (which prefers Y(4) receptors) results consistently in antisecretory/absorptive responses. The recent use of novel mouse knockouts has helped establish loss of specific intestinal functions including Y(1) and Y(2) receptor-mediated absorptive tone in colon mucosa. Progress in this field has been rapid recently, aided by the availability of selective antagonists and mutant mice lacking either one (e.g. Y(4)-/-, for which no antagonists exist at present) or more Y receptor types. It is therefore timely to review this work and present a rational basis for developing stable synthetic Y receptor agonists as novel anti-diarrhoeals.
Collapse
Affiliation(s)
- Helen M Cox
- Wolfson Centre for Age-Related Diseases, King's College London, Hodgkin Building, Guy's Campus, London, SE1 1UL, United Kingdom.
| |
Collapse
|
33
|
Abstract
The role of gastrointestinal hormones in the regulation of appetite is reviewed. The gastrointestinal tract is the largest endocrine organ in the body. Gut hormones function to optimize the process of digestion and absorption of nutrients by the gut. In this capacity, their local effects on gastrointestinal motility and secretion have been well characterized. By altering the rate at which nutrients are delivered to compartments of the alimentary canal, the control of food intake arguably constitutes another point at which intervention may promote efficient digestion and nutrient uptake. In recent decades, gut hormones have come to occupy a central place in the complex neuroendocrine interactions that underlie the regulation of energy balance. Many gut peptides have been shown to influence energy intake. The most well studied in this regard are cholecystokinin (CCK), pancreatic polypeptide, peptide YY, glucagon-like peptide-1 (GLP-1), oxyntomodulin and ghrelin. With the exception of ghrelin, these hormones act to increase satiety and decrease food intake. The mechanisms by which gut hormones modify feeding are the subject of ongoing investigation. Local effects such as the inhibition of gastric emptying might contribute to the decrease in energy intake. Activation of mechanoreceptors as a result of gastric distension may inhibit further food intake via neural reflex arcs. Circulating gut hormones have also been shown to act directly on neurons in hypothalamic and brainstem centres of appetite control. The median eminence and area postrema are characterized by a deficiency of the blood-brain barrier. Some investigators argue that this renders neighbouring structures, such as the arcuate nucleus of the hypothalamus and the nucleus of the tractus solitarius in the brainstem, susceptible to influence by circulating factors. Extensive reciprocal connections exist between these areas and the hypothalamic paraventricular nucleus and other energy-regulating centres of the central nervous system. In this way, hormonal signals from the gut may be translated into the subjective sensation of satiety. Moreover, the importance of the brain-gut axis in the control of food intake is reflected in the dual role exhibited by many gut peptides as both hormones and neurotransmitters. Peptides such as CCK and GLP-1 are expressed in neurons projecting both into and out of areas of the central nervous system critical to energy balance. The global increase in the incidence of obesity and the associated burden of morbidity has imparted greater urgency to understanding the processes of appetite control. Appetite regulation offers an integrated model of a brain-gut axis comprising both endocrine and neurological systems. As physiological mediators of satiety, gut hormones offer an attractive therapeutic target in the treatment of obesity.
Collapse
Affiliation(s)
| | | | - Steve Bloom
- Department of Metabolic Medicine, Imperial College Faculty of MedicineHammersmith Hospital, Du Cane Road, London W12 ONN, UK
| |
Collapse
|
34
|
Thiriet N, Deng X, Solinas M, Ladenheim B, Curtis W, Goldberg SR, Palmiter RD, Cadet JL. Neuropeptide Y protects against methamphetamine-induced neuronal apoptosis in the mouse striatum. J Neurosci 2006; 25:5273-9. [PMID: 15930374 PMCID: PMC6725003 DOI: 10.1523/jneurosci.4893-04.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (METH) is an illicit drug that causes neuronal apoptosis in the mouse striatum, in a manner similar to the neuronal loss observed in neurodegenerative diseases. In the present study, injections of METH to mice were found to cause the death of enkephalin-positive projection neurons but not the death of neuropeptide Y (NPY)/nitric oxide synthase-positive striatal interneurons. In addition, these METH injections were associated with increased expression of neuropeptide Y mRNA and changes in the expression of the NPY receptors Y1 and Y2. Administration of NPY in the cerebral ventricles blocked METH-induced apoptosis, an effect that was mediated mainly by stimulation of NPY Y2 receptors and, to a lesser extent, of NPY Y1 receptors. Finally, we also found that neuropeptide Y knock-out mice were more sensitive than wild-type mice to METH-induced neuronal apoptosis of both enkephalin- and nitric oxide synthase-containing neurons, suggesting that NPY plays a general neuroprotective role within the striatum. Together, our results demonstrate that neuropeptide Y belongs to the class of factors that maintain neuronal integrity during cellular stresses. Given the similarity between the cell death patterns induced by METH and by disorders such as Huntington's disease, our results suggest that NPY analogs might be useful therapeutic agents against some neurodegenerative processes.
Collapse
Affiliation(s)
- Nathalie Thiriet
- Centre National de la Recherche Scientifique 6187, University of Poitiers, 86000 Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Ruscica M, Dozio E, Boghossian S, Bovo G, Martos Riaño V, Motta M, Magni P. Activation of the Y1 receptor by neuropeptide Y regulates the growth of prostate cancer cells. Endocrinology 2006; 147:1466-73. [PMID: 16339211 DOI: 10.1210/en.2005-0925] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study deals with the role of neuropeptide Y (NPY) in the regulation of cell proliferation. NPY is expressed in the normal and tumoral prostate, but no data on its possible role in prostate cancer (PCa) progression are available. Therefore, we evaluated the direct effect of NPY on the growth of the human PCa cell lines LNCaP (androgen dependent) and DU145 and PC3 (androgen independent). All PCa cell lines expressed Y1-R gene and protein. NPY treatment reduced the proliferation of LNCaP and DU145 cells and increased that of PC3 cells. The Y1-R antagonist BIBP3226 abolished such effects, suggesting a mandatory role of Y1-R in this process. LNCaP cells showed elevated constitutive levels of phosphorylated ERK1/2, which were not affected by NPY. In DU145 cells, NPY stimulated a long-lasting ERK1/2 activation, whereas, in PC3 cells, this effect was rapid and transient and required activation of protein kinase C. Moreover, in both cell lines, pretreatment with BIBP3226 prevented the NPY-induced ERK1/2 phosphorylation, further supporting Y1-R involvement. NPY treatment reduced forskolin-stimulated cAMP accumulation only in PC3 cells and did not change intracellular calcium concentration in any PCa cell line. These data indicate that NPY may directly regulate PCa cell growth via Y1-R. The direction of this effect appears to be related to the time kinetics of MAPK activation, i.e. long-lasting vs. transient, and to the clone-specific involvement of other intracellular signals. These findings suggest that NPY-related mechanisms might play a relevant role in the progression of PCa, at both androgen dependent and independent stages.
Collapse
|
36
|
Ammoun S, Lindholm D, Wootz H, Akerman KEO, Kukkonen JP. G-protein-coupled OX1 orexin/hcrtr-1 hypocretin receptors induce caspase-dependent and -independent cell death through p38 mitogen-/stress-activated protein kinase. J Biol Chem 2005; 281:834-42. [PMID: 16282319 DOI: 10.1074/jbc.m508603200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the signaling of OX(1) receptors to cell death using Chinese hamster ovary cells as a model system. OX(1) receptor stimulation with orexin-A caused a delayed cell death independently of cytosolic Ca(2+) elevation. The classical mitogen-activated protein kinase (MAPK) pathways, ERK and p38, were strongly activated by orexin-A. p38 was essential for induction of cell death, whereas the ERK pathway appeared protective. A pathway often implicated in the p38-mediated cell death, activation of p53, did not mediate the cell death, as there was no stabilization of p53 or increase in p53-dependent transcriptional activity, and dominant-negative p53 constructs did not inhibit cell demise. Under basal conditions, orexin-A-induced cell death was associated with compact chromatin condensation and it required de novo gene transcription and protein synthesis, the classical hallmarks of programmed (apoptotic) cell death. However, though the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-(O-methyl)fluoromethyl ketone (Z-VAD-fmk) fully inhibited the caspase activity, it did not rescue the cells from orexin-A-induced death. In the presence of Z-VAD-fmk, orexin-A-induced cell death was still dependent on p38 and de novo protein synthesis, but it no longer required gene transcription. Thus, caspase inhibition causes activation of alternative, gene transcription-independent death pathway. In summary, the present study points out mechanisms for orexin receptor-mediated cell death and adds to our general understanding of the role of G-protein-coupled receptor signaling in cell death by suggesting a pathway from G-protein-coupled receptors to cell death via p38 mitogen-/stress-activated protein kinase independent of p53 and caspase activation.
Collapse
Affiliation(s)
- Sylwia Ammoun
- Department of Neuroscience, Unit of Physiology, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
37
|
Li AJ, Ritter S. Functional expression of neuropeptide Y receptors in human neuroblastoma cells. ACTA ACUST UNITED AC 2005; 129:119-24. [PMID: 15927706 DOI: 10.1016/j.regpep.2005.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 02/04/2005] [Indexed: 11/17/2022]
Abstract
Expression of neuropeptide Y (NPY) receptors in human SK-N-MC neuroblastoma cells was investigated. Reverse transcriptase-polymerase chain reaction (RT-PCR) revealed that Y1, Y4, and Y5 receptors were expressed in these cells. Expression was confirmed by Western blot and immunocytochemistry demonstrated abundant presence of all three receptors on cell membranes. NPY peptide was also expressed in these cells, but other members of the larger peptide family (peptide YY and pancreatic polypeptide) were not expressed. Incubation with U0126, a specific mitogen-activated protein kinase (MAPK) inhibitor, decreased cell number in serum-free medium culture. Since NPY activates MAPK via different subtypes of NPY receptors, results suggest that endogenously expressed NPY may control proliferation of these cells through a paracrine/autocrine mechanism.
Collapse
Affiliation(s)
- Ai-Jun Li
- Programs in Neuroscience, Washington State University, Pullman, Washington 99164-6520, USA.
| | | |
Collapse
|
38
|
Abstract
Neuropeptide Y (NPY) was first reported as an abundant peptide in brain tissue in 1982. Shortly thereafter, NPY was found to be a member of a peptide family consisting of the endocrine peptides pancreatic polypeptide (PP) and peptide YY (PYY). These peptides exert most of their biological effects through five G-protein coupled receptors termed Y1, Y2, Y4, Y5 and y6 that mediate either inhibition adenylate cyclase or increases in intracellular calcium. Since the discovery of NPY, a robust a body of literature has developed around the potential functions of this peptide. While initial findings identified NPY is an important contributor to the regulation of feeding, body weight and blood pressure, more recent work as revealed more subtle functions of this peptide and its potential role in affective disorders, bone formation and cravings. The accompanying twelve reviews detail important developments in our understanding of the functional role of NPY.
Collapse
Affiliation(s)
- D R Gehlert
- Lilly Research Laboratories, Neuroscience Division, Eli Lilly and Company, Lilly Corporate Center, Mail Code 0510, Indianapolis, IN 46285, USA.
| |
Collapse
|
39
|
Khan AM, Watts AG. Intravenous 2-deoxy-D-glucose injection rapidly elevates levels of the phosphorylated forms of p44/42 mitogen-activated protein kinases (extracellularly regulated kinases 1/2) in rat hypothalamic parvicellular paraventricular neurons. Endocrinology 2004; 145:351-9. [PMID: 14525908 DOI: 10.1210/en.2003-0539] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CRH neurons within the medial parvicellular part of the hypothalamic paraventricular nucleus (PVHmp) can respond to afferent inputs encoding stress-related information by initiating peptide synthesis (signaling cascades, transcription, and translation) and/or peptide release. However, understanding these cellular events is hampered by three outstanding issues: 1) neural inputs that activate CRH neurons remain incompletely identified; 2) the identity and temporal dynamics of signaling pathways within CRH neurons are poorly understood; and 3) the precise coupling of the first two issues has not been established. Here, we report that the phosphorylated forms of p44/p42 MAPKs (pERK1/2) are rapidly detected in PVHmp cells after i.v. infusion of the antimetabolite, 2-deoxy-D-glucose (2-DG). Combined immunocytochemistry and in situ hybridization revealed that pERK1/2 immunoreactivity is detectable 10 min after 2-DG infusion not only within most PVHmp neurons containing CRH mRNA (78.6% of mean total CRH cells counted) but also in many non-CRH neurons (45.5% of mean total sampled cells). In contrast, Fos protein in the PVHmp was not detected within this time period, consistent with the known time course for its translation. Stress associated with halothane exposure also robustly elevated pERK1/2 levels in PVHmp neurons approximately 10 min after exposure. Our results implicate pERK1/2 in stress-induced activation of CRH neurosecretory cells and underscore their utility as indices of rapid cellular activation. Because 2-DG-induced activation of CRH gene transcription in these neurons requires a catecholaminergic input, our data also suggest that pERK1/2 could couple afferent catecholaminergic signals with CRH gene expression in these neurons.
Collapse
Affiliation(s)
- Arshad M Khan
- Program in Neural, Informational and Behavioral Sciences, University of Southern California, Los Angeles, California 90089, USA.
| | | |
Collapse
|
40
|
Li L, Lee EW, Ji H, Zukowska Z. Neuropeptide Y-induced acceleration of postangioplasty occlusion of rat carotid artery. Arterioscler Thromb Vasc Biol 2003; 23:1204-10. [PMID: 12689918 DOI: 10.1161/01.atv.0000071349.30914.25] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Attempts to restore blood flow through atherosclerotic vessels by angioplasty often result in restenosis. Because the role of nerves in this process is unclear, we investigated whether neuropeptide Y (NPY), a sympathetic cotransmitter with vascular mitogenic activities, contributes to postangioplasty restenosis. METHODS AND RESULTS Carotid artery balloon angioplasty upregulated vascular expression of NPY and its processing enzyme (DPPIV/cd26) and receptors (Y1, Y2, Y5 mRNA and protein) within 6 to 24 hours and stimulated neointima formation and accumulation of NPY in platelets after 14 days. NPY pellets (1 to 10 microg/pellet for 14 days) inserted next to the injured artery elevated platelet and vascular NPY immunoreactivity to stress-like levels and dose-dependently augmented angioplasty-induced neointima. Strikingly, 10 microg NPY for 14 days led to vessel occlusion with an atherosclerotic-like lesion, with thrombus and neointima containing neovessels, macrophages, matrix, and lipids. Y1 or Y5 receptor antagonist completely prevented the effect of NPY and reduced angioplasty-induced neointima by 50%. CONCLUSIONS Angioplasty upregulates platelet and vascular NPY systems, which then contribute to neointima formation via Y1 and Y5 receptor activation. Increasing NPY to high stress levels triggers formation of a thrombotic atherosclerotic-like lesion and vessel occlusion. Thus, NPY may be a risk factor for accelerated atherosclerosis, and NPY receptor antagonists may be a possible new treatment for restenosis.
Collapse
Affiliation(s)
- Lijun Li
- Department of Physiology and Biophysics, Georgetown University, Washington, DC 20057-1460, USA
| | | | | | | |
Collapse
|
41
|
Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228:217-44. [PMID: 12626767 DOI: 10.1177/153537020322800301] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.
Collapse
Affiliation(s)
- Magnus M Berglund
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|