1
|
Zhao G, Liu R, Ge L, Qi D, Wu Q, Lin Z, Song H, Zhong L, Cui H. NONO regulates m 5C modification and alternative splicing of PTEN mRNAs to drive gastric cancer progression. J Exp Clin Cancer Res 2025; 44:81. [PMID: 40033337 PMCID: PMC11877715 DOI: 10.1186/s13046-024-03260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/16/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The effect of m5C modification on oncogene mRNAs has been well studied, while little is known about its influence on mRNAs of tumor suppressor genes (TSGs). Early studies showed PTEN, a key TSG, undergoes alternative splicing (AS) in cancers, however, the underlying regulatory mechanism remains elusive. METHODS We analyzed tissue microarrays and transcriptomic data derived from gastric cancer, with an emphasis on RNA splicing and m5C regulators. To unravel the role of NONO in GC, we employed RNA sequencing, RNA-Bis-Seq, RNA immunoprecipitation, RNA in situ hybridization, and Minigene reporter assay with NONO knockdown cells. The clinical relevance was validated using CDX models and human tissue microarrays. RESULTS Analysis of publicly available datasets and immunohistochemistry assay of tissue microarrays containing 40 GC tissues showed NONO was upregulated in GC and contributed to poor prognosis. In vitro and in vivo experiments indicated a positive regulatory role of NONO in terms of cell proliferation, migration, and invasion of GC. Mechanically, NONO interacted directly with PTEN pre-mRNA and recruited the RNA m5C methyltransferase NSUN2 via RNA-recognition motif (RRM) domains, altering the mRNA methylation pattern across PTEN pre-mRNA. The oncogenic role of NONO/NSUN2/PTEN axis in GC progression was further confirmed with pre-clinical experiments and clinical data. CONCLUSION Here, we revealed NONO-regulated AS of PTEN mRNA in an m5C-dependent manner, resulting in the downregulation of PTEN expression in gastric cancer (GC).This study unveils a novel regulatory mechanism of tumor suppressor gene inactivation mediated by m5C modification and related alternative splicing in cancer.
Collapse
Affiliation(s)
- Gaichao Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Lingjun Ge
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Dan Qi
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Qishu Wu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Zini Lin
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Houji Song
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
2
|
Choi S, Cho N, Kim EM, Kim KK. The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int 2023; 23:249. [PMID: 37875914 PMCID: PMC10594706 DOI: 10.1186/s12935-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Torices L, Nunes-Xavier CE, López JI, Pulido R. Novel anti-PTEN C2 domain monoclonal antibodies to analyse the expression and function of PTEN isoform variants. PLoS One 2023; 18:e0289369. [PMID: 37527256 PMCID: PMC10393154 DOI: 10.1371/journal.pone.0289369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023] Open
Abstract
PTEN is a major tumor suppressor gene frequently mutated in human tumors, and germline PTEN gene mutations are the molecular diagnostic of PTEN Hamartoma Tumor Syndrome (PHTS), a heterogeneous disorder that manifests with multiple hamartomas, cancer predisposition, and neurodevelopmental alterations. A diversity of translational and splicing PTEN isoforms exist, as well as PTEN C-terminal truncated variants generated by disease-associated nonsense mutations. However, most of the available anti-PTEN monoclonal antibodies (mAb) recognize epitopes at the PTEN C-terminal tail, which may introduce a bias in the analysis of the expression of PTEN isoforms and variants. We here describe the generation and precise characterization of anti-PTEN mAb recognizing the PTEN C2-domain, and their use to monitor the expression and function of PTEN isoforms and PTEN missense and nonsense mutations associated to disease. These anti-PTEN C2 domain mAb are suitable to study the pathogenicity of PTEN C-terminal truncations that retain stability and function but have lost the PTEN C-terminal epitopes. The use of well-defined anti-PTEN mAb recognizing distinct PTEN regions, as the ones here described, will help to understand the deleterious effects of specific PTEN mutations in human disease.
Collapse
Affiliation(s)
- Leire Torices
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Caroline E Nunes-Xavier
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Pulido
- Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Obayashi F, Hamada A, Yamasaki S, Kanda T, Toratani S, Okamoto T. Identification of a Cowden syndrome patient with a novel PTEN mutation and establishment of patient-derived induced pluripotent stem cells. In Vitro Cell Dev Biol Anim 2022; 58:69-78. [PMID: 34984555 PMCID: PMC8803725 DOI: 10.1007/s11626-021-00637-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Cowden syndrome (CS) is an autosomal dominant inherited disorder characterized by multiple hamartomas in various organs such as the mucosa, skin, and gastrointestinal tract. Patients with CS are at high risk for breast and thyroid cancers. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor gene that negatively regulates the AKT pathway, and PTEN mutations are known to be the major causes of this syndrome. However, the pathogenesis of this syndrome has not been clarified. Here, we present a case of a Japanese woman with multiple oral polyps, breast cancer, and thyroid cancer who was clinically diagnosed with CS. We obtained DNA and RNA samples from the patient's peripheral blood mononuclear cells (PBMCs) and buccal mucosa tumor. Next-generation sequencing revealed novel germline mutations (c.1020delT and c.1026G > A) in exon 8 of PTEN. Sanger sequencing identified no PTEN transcript from the mutant allele. Furthermore, CS-specific induced pluripotent stem cells (CS-iPSCs) were established from PBMCs of the patient under feeder- and serum-free culture. Compared with healthy PBMCs and iPSCs, both of the CS-derived PBMCs and CS-iPSCs exhibited significantly reduced expression of the PTEN transcript. The transcriptional variant, PTENδ, was increased in CS-iPSCs, suggesting that it may be the cause of the disease.
Collapse
Affiliation(s)
- Fumitaka Obayashi
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Atsuko Hamada
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan.
| | - Sachiko Yamasaki
- Department of Oral and Maxillofacial Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Taku Kanda
- Department of Oral and Maxillofacial Surgery, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Shigeaki Toratani
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
- School of Medical Sciences, The University of East Asia, Yamaguchi, Japan.
| |
Collapse
|
5
|
Wang S, Liang H, Wei Y, Zhang P, Dang Y, Li G, Zhang SH. Alternative Splicing of MoPTEN Is Important for Growth and Pathogenesis in Magnaporthe oryzae. Front Microbiol 2021; 12:715773. [PMID: 34335554 PMCID: PMC8322540 DOI: 10.3389/fmicb.2021.715773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Human PTEN, a dual-phosphatase tumor suppressor, is frequently dysregulated by alternative splicing. Fungi harbor PTEN homologs, but alternative splicing of fungal PTENs has not been reported as far as we know. Here, we described an alternative splicing case in the PTEN homolog of Magnaporthe oryzae (MoPTEN). Two splice variants of MoPTEN were detected and identified, which are resulted from an intron retention and exclusion (MoPTEN-1/2). Both proteins were different in lipid and protein phosphatase activity and in expression patterns. The MoPTEN deletion mutant (ΔMoPTEN) showed the defects in conidiation, appressorium formation, and pathogenesis. ΔMoPTEN could be completely restored by MoPTEN, but rescued partially by MoPTEN-1 in the defect of conidium and appressorium formation, and by MoPTEN-2 in the defect of invasive development. Assays to assess sensitivity to oxidative stress reveal the involvement of MoPTEN-2 in scavenging exogenous and host-derived H2O2. Taken together, MoPTEN undergoes alternative splicing, and both variants cooperatively contribute to conidium and appressorium development, and invasive hyphae growth in plant cells, revealing a novel disease development pathway in M. oryzae.
Collapse
Affiliation(s)
- Shaowei Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hao Liang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China.,Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Penghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuejia Dang
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Guihua Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.,Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
6
|
Sellars E, Gabra M, Salmena L. The Complex Landscape of PTEN mRNA Regulation. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036236. [PMID: 31871240 DOI: 10.1101/cshperspect.a036236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a key tumor suppressor in the development and progression of different tumor types. Emerging data indicate that small reductions in PTEN protein levels can promote cancer. PTEN protein levels are tightly controlled by a plethora of mechanisms beginning with epigenetic and transcriptional regulation and ending with control of protein synthesis and stability. PTEN messenger RNA (mRNA) is also subject to exquisite regulation by microRNAs, coding and long noncoding RNAs, and RNA-binding proteins. Additionally, PTEN mRNA is markedly influenced by alternative splicing and variable polyadenylation. Herein we provide a synoptic description of the current understanding of the complex regulatory landscape of PTEN mRNA regulation including several specific processes that modulate its stability and expression, in the context of PTEN loss-associated cancers.
Collapse
Affiliation(s)
- Erin Sellars
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Martino Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
7
|
Pulido R, Mingo J, Gaafar A, Nunes-Xavier CE, Luna S, Torices L, Angulo JC, López JI. Precise Immunodetection of PTEN Protein in Human Neoplasia. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036293. [PMID: 31501265 DOI: 10.1101/cshperspect.a036293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PTEN is a major tumor-suppressor protein whose expression and biological activity are frequently diminished in sporadic or inherited cancers. PTEN gene deletion or loss-of-function mutations favor tumor cell growth and are commonly found in clinical practice. In addition, diminished PTEN protein expression is also frequently observed in tumor samples from cancer patients in the absence of PTEN gene alterations. This makes PTEN protein levels a potential biomarker parameter in clinical oncology, which can guide therapeutic decisions. The specific detection of PTEN protein can be achieved by using highly defined anti-PTEN monoclonal antibodies (mAbs), characterized with precision in terms of sensitivity for the detection technique, specificity for PTEN binding, and constraints of epitope recognition. This is especially relevant taking into consideration that PTEN is highly targeted by mutations and posttranslational modifications, and different PTEN protein isoforms exist. The precise characterization of anti-PTEN mAb reactivity is an important step in the validation of these reagents as diagnostic and prognostic tools in clinical oncology, including their routine use in analytical immunohistochemistry (IHC). Here, we review the current status on the use of well-defined anti-PTEN mAbs for PTEN immunodetection in the clinical context and discuss their potential usefulness and limitations for a more precise cancer diagnosis and patient benefit.
Collapse
Affiliation(s)
- Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Ayman Gaafar
- Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo N-0310, Norway
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Javier C Angulo
- Department of Urology, University Hospital of Getafe, Getafe, Madrid 28904, Spain.,Clinical Department, European University of Madrid, Laureate Universities, Madrid 28904, Spain
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain.,Department of Pathology, Cruces University Hospital, Barakaldo 48903, Spain.,University of the Basque Country, Leioa 48940, Spain
| |
Collapse
|
8
|
Precise definition of PTEN C-terminal epitopes and its implications in clinical oncology. NPJ Precis Oncol 2019; 3:11. [PMID: 30993208 PMCID: PMC6465295 DOI: 10.1038/s41698-019-0083-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Anti-PTEN monoclonal antibodies (mAb) are arising as important tools for immunohistochemistry (IHC) and protein quantification routine analysis in clinical oncology. Although an effort has been made to document the reliability of tumor tissue section immunostaining by anti-PTEN mAb, and to standardize their IHC use in research and in the clinical practice, the precise topological and biochemical definition of the epitope recognized by each mAb has been conventionally overlooked. In this study, six commercial anti-PTEN mAb have been validated and characterized for sensitivity and specificity by IHC and FISH, using a set of prostate and urothelial bladder tumor specimens, and by immunoblot, using PTEN positive and PTEN negative human cell lines. Immunoblot precise epitope mapping, performed using recombinant PTEN variants and mutations, revealed that all mAb recognized linear epitopes of 6–11 amino acid length at the PTEN C-terminus. Tumor-associated or disease-associated mutations at the PTEN C-terminus did not affect subcellular localization or PIP3 phosphatase activity of PTEN in cells, although resulted in specific loss of reactivity for some mAb. Furthermore, specific mimicking-phosphorylation mutations at the PTEN C-terminal region also abolished binding of specific mAb. Our study adds new evidence on the relevance of a precise epitope mapping in the validation of anti-PTEN mAb for their use in the clinics. This will be substantial to provide a more accurate diagnosis in clinical oncology based on PTEN protein expression in tumors and biological fluids.
Collapse
|
9
|
Zhang HD, Jiang LH, Hou JC, Zhong SL, Zhu LP, Wang DD, Zhou SY, Yang SJ, Wang JY, Zhang Q, Xu HZ, Zhao JH, Ji ZL, Tang JH. Exosome: a novel mediator in drug resistance of cancer cells. Epigenomics 2018; 10:1499-1509. [PMID: 30309258 DOI: 10.2217/epi-2017-0151] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small membrane vesicles with a diameter of 40–100 nm, which are released into the intracellular environment. Exosomes could influence the genetic and epigenetic changes of receptor cells by promoting the horizontal transfer of various proteins or RNAs, especially miRNAs. Moreover, exosomes also play an important role in tumor microenvironment. Exosomes could promote the short- and long-distance exchanges of genetic information by acting as mediators of cell-to-cell communication. In addition, exosomes participate in drug resistance of tumor cells by genetic exchange between cells. It is reported that exosomes could be absorbed by recipient cells and transmit chemoresistance from drug-resistant tumor cells to sensitive ones. Then understanding the mechanisms of chemotherapy failure and controlling tumor progression effectively will be a major challenge for us. Therefore, in this review, we will briefly reveal the role of exosomes in drug resistance.
Collapse
Affiliation(s)
- He-da Zhang
- Department of General Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Lin-Hong Jiang
- Department of Oncology, Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jun-Chen Hou
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Shan-Liang Zhong
- Center of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Ling-Ping Zhu
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dan-Dan Wang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Si-Ying Zhou
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Su-Jin Yang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jin-Yan Wang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Qian Zhang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Han-Zi Xu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jian-Hua Zhao
- Center of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Zhen-Ling Ji
- Department of General Surgery, School of Medicine, Southeast University, Nanjing, Jiangsu, PR China
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, PR China
| | - Jin-Hai Tang
- Department of General Surgery, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, PR China
| |
Collapse
|
10
|
Breuksch I, Welter J, Bauer HK, Enklaar T, Frees S, Thüroff JW, Hasenburg A, Prawitt D, Brenner W. In renal cell carcinoma the PTEN splice variant PTEN-Δ shows similar function as the tumor suppressor PTEN itself. Cell Commun Signal 2018; 16:35. [PMID: 29954386 PMCID: PMC6025732 DOI: 10.1186/s12964-018-0247-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Background Loss of PTEN is involved in tumor progression of several tumor entities including renal cell carcinoma (RCC). During the translation process PTEN generates a number of splice variants, including PTEN-Δ. We analyzed the impact of PTEN-Δ in RCC progression. Methods In specimens of RCC patients the expression of PTEN-Δ and PTEN was quantified. The PTEN expressing RCC cell line A498 and the PTEN deficient 786-O cell line were stably transfected with the PTEN-Δ or PTEN transcript. In Caki-1 cells that highly express PTEN-Δ, this isoform was knocked down by siRNA. Cell migration, adhesion, apoptosis and signaling pathways activities were consequently analyzed in vitro. Results Patients with a higher PTEN-Δ expression had a longer lymph node metastasis free and overall survival. In RCC specimens, the PTEN-Δ expression correlated with the PTEN expression. PTEN-Δ as well as PTEN induced a reduced migration when using extracellular matrix (ECM) compounds as chemotaxins. This effect was confirmed by knockdown of PTEN-Δ, inducing an enhanced migration. Likewise a decreased adhesion on these ECM components could be shown in PTEN-Δ and PTEN transfected cells. The apoptosis rate was slightly increased by PTEN-Δ. In a phospho-kinase array and Western blot analyses a consequently reduced activity of AKT, p38 and JNK could be shown. Conclusions We could show that the PTEN splice variant PTEN-Δ acts similar to PTEN in a tumor suppressive manner, suggesting synergistic effects of the two isoforms. The impact of PTEN-Δ in context of tumor progression should thus be taken into account when generating new therapeutic options targeting PTEN signaling in RCC. Electronic supplementary material The online version of this article (10.1186/s12964-018-0247-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ines Breuksch
- Department of Gynecology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany.,Department of Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Jonas Welter
- Department of Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Heide-Katharina Bauer
- Department of Gynecology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Thorsten Enklaar
- Department of Pediatrics, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sebastian Frees
- Department of Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Joachim W Thüroff
- Department of Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Annette Hasenburg
- Department of Gynecology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Dirk Prawitt
- Department of Pediatrics, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Walburgis Brenner
- Department of Gynecology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany. .,Department of Urology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
11
|
McLoughlin NM, Mueller C, Grossmann TN. The Therapeutic Potential of PTEN Modulation: Targeting Strategies from Gene to Protein. Cell Chem Biol 2018; 25:19-29. [PMID: 29153852 DOI: 10.1016/j.chembiol.2017.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023]
|
12
|
Malaney P, Uversky VN, Davé V. PTEN proteoforms in biology and disease. Cell Mol Life Sci 2017; 74:2783-2794. [PMID: 28289760 PMCID: PMC11107534 DOI: 10.1007/s00018-017-2500-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 01/30/2023]
Abstract
Proteoforms are specific molecular forms of protein products arising from a single gene that possess different structures and different functions. Therefore, a single gene can produce a large repertoire of proteoforms by means of allelic variations (mutations, indels, SNPs), alternative splicing and other pre-translational mechanisms, post-translational modifications (PTMs), conformational dynamics, and functioning. Resulting proteoforms that have different sizes, alternative splicing patterns, sets of post-translational modifications, protein-protein interactions, and protein-ligand interactions, might dramatically increase the functionality of the encoded protein. Herein, we have interrogated the tumor suppressor PTEN for its proteoforms and find that this protein exists in multiple forms with distinct functions and sub-cellular localizations. Furthermore, the levels of each PTEN proteoform in a given cell may affect its biological function. Indeed, the paradigm of the continuum model of tumor suppression by PTEN can be better explained by the presence of a continuum of PTEN proteoforms, diversity, and levels of which are associated with pathological outcomes than simply by the different roles of mutations in the PTEN gene. Consequently, understanding the mechanisms underlying the dysregulation of PTEN proteoforms by several genomic and non-genomic mechanisms in cancer and other diseases is imperative. We have identified different PTEN proteoforms, which control various aspects of cellular function and grouped them into three categories of intrinsic, function-induced, and inducible proteoforms. A special emphasis is given to the inducible PTEN proteoforms that are produced due to alternative translational initiation. The novel finding that PTEN forms dimers with biological implications supports the notion that PTEN proteoform-proteoform interactions may play hitherto unknown roles in cellular homeostasis and in pathogenic settings, including cancer. These PTEN proteoforms with unique properties and functionalities offer potential novel therapeutic opportunities in the treatment of various cancers and other diseases.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, FL, 33612, USA
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave., Saint Petersburg, Russia, 194064
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, MDC 64, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL, 33612, USA.
- Department of Oncological Sciences, Morsani College of Medicine, University of South Florida, Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
13
|
Zhang HD, Jiang LH, Sun DW, Li J, Ji ZL. The role of miR-130a in cancer. Breast Cancer 2017; 24:521-527. [PMID: 28477068 DOI: 10.1007/s12282-017-0776-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRs) are short and highly conserved non-coding RNAs molecules consisting of 18-25 nucleotides that regulate gene expression at post-transcriptional level by direct binding to complementary binding sites within the 3'untranslated region (3'UTR) of target mRNAs. New evidences have demonstrated that miRNAs play an important role in diverse physiological processes, including regulating cell growth, apoptosis, metastasis, drug resistance, and invasion. In chromosomes 11 and 22 of the miR-130 family, paralogous miRNA sequences, miR-130a and miR-130b are situated, respectively. MiR-130a has participated in different pathogenesis, including hepatocellular carcinoma, cervical cancer, ovarian cancer, glioblastoma, prostate carcinoma, leukemia, etc. Most important of all, more and more evidences indicate that miR-130a is associated with drug resistance and acts as an intermediate in PI3 K/Akt/PTEN/mTOR, Wnt/β-catenin and NF-kB/PTEN drug resistance signaling pathways. Drug resistance has emerged as a major obstacle to successful treatment of cancer nowadays and in this review, we will reveal the function of miR-130a in cancer, especially in drug resistance. Therefore, it will provide a new therapeutic target for the treatment of cancer, especially in chemotherapy.
Collapse
Affiliation(s)
- He-da Zhang
- Department of General Surgery, Southeast University Medical School, 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China
| | - Lin-Hong Jiang
- Xuzhou Infectious Disease Hospital, Xuzhou, Jiangsu, China
| | - Da-Wei Sun
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Jian Li
- Department of General Surgery, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China
| | - Zhen-Ling Ji
- Department of General Surgery, Southeast University Medical School, 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, China.
- Department of General Surgery, Institute for Minimally Invasive Surgery, Zhongda Hospital Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Pérez-Ramírez C, Cañadas-Garre M, Molina MÁ, Faus-Dáder MJ, Calleja-Hernández MÁ. PTEN and PI3K/AKT in non-small-cell lung cancer. Pharmacogenomics 2015; 16:1843-62. [DOI: 10.2217/pgs.15.122] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer deaths worldwide. In the last years, the identification of activating EGFR mutations, conferring increased sensitivity and disease response to tyrosine kinase inhibitors, has changed the prospect of NSCLC patients. The PTEN/PI3K/AKT pathway regulates multiple cellular functions, including cell growth, differentiation, proliferation, survival, motility, invasion and intracellular trafficking. Alterations in this pathway, mainly PTEN inactivation, have been associated with resistance to EGFR-tyrosine kinase inhibitor therapy and lower survival in NSCLC patients. In this review, we will briefly discuss the main PTEN/PI3K/AKT pathway alterations found in NSCLC, as well as the cell processes regulated by PTEN/PI3K/AKT leading to tumorigenesis.
Collapse
Affiliation(s)
- Cristina Pérez-Ramírez
- Pharmacogenetics Unit. UGC Provincial de Farmacia de Granada. Instituto de Investigación Biosanitaria de Granada. Complejo Hospitalario Universitario de Granada. Avda. Fuerzas Armadas, 2. 18014 Granada, Spain
- Department of Biochemistry. Faculty of Pharmacy. University of Granada Campus Universitario de Cartuja, s/n. 18071 Granada, Spain
| | - Marisa Cañadas-Garre
- Pharmacogenetics Unit. UGC Provincial de Farmacia de Granada. Instituto de Investigación Biosanitaria de Granada. Complejo Hospitalario Universitario de Granada. Avda. Fuerzas Armadas, 2. 18014 Granada, Spain
| | - Miguel Ángel Molina
- PANGAEA BIOTECH, S.L. Hospital Universitario Quirón Dexeus. C/Sabino Arana, 5-19. 08028 Barcelona
| | - María José Faus-Dáder
- Department of Biochemistry. Faculty of Pharmacy. University of Granada Campus Universitario de Cartuja, s/n. 18071 Granada, Spain
| | - Miguel Ángel Calleja-Hernández
- Pharmacogenetics Unit. UGC Provincial de Farmacia de Granada. Instituto de Investigación Biosanitaria de Granada. Complejo Hospitalario Universitario de Granada. Avda. Fuerzas Armadas, 2. 18014 Granada, Spain
- Department of Pharmacology. Faculty of Pharmacy. University of Granada. Campus Universitario de Cartuja, s/n. 18071 Granada, Spain
| |
Collapse
|
15
|
Radulovich N, Leung L, Ibrahimov E, Navab R, Sakashita S, Zhu CQ, Kaufman E, Lockwood WW, Thu KL, Fedyshyn Y, Moffat J, Lam WL, Tsao MS. Coiled-coil domain containing 68 (CCDC68) demonstrates a tumor-suppressive role in pancreatic ductal adenocarcinoma. Oncogene 2015; 34:4238-47. [PMID: 25381825 PMCID: PMC5153324 DOI: 10.1038/onc.2014.357] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/26/2022]
Abstract
Using integrative genomics and functional screening, we identified coiled-coil domain containing 68 (CCDC68) as a novel putative tumor suppressor gene (TSG) in pancreatic ductal adenocarcinoma (PDAC). CCDC68 allelic losses were documented in 48% of primary PDAC patient tumors, 50% of PDAC cell lines and 30% of primary patient derived xenografts. We also discovered a single nucleotide polymorphism (SNP) variant (SNP rs1344011) that leads to exon skipping and generation of an unstable protein isoform CCDC68Δ(69-114) in 31% of PDAC patients. Overexpression of full length CCDC68 (CCDC68(wt)) in PANC-1 and Hs.766T PDAC cell lines lacking CDCC68 expression decreased proliferation and tumorigenicity in scid mice. In contrast, the downregulation of endogenous CCDC68 in MIAPaca-2 cells increased tumor growth rate. These effects were not observed with the deletion-containing isoform, CCDC68Δ(69-114).
Collapse
Affiliation(s)
- Nikolina Radulovich
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology Department, University of Toronto, Ontario, Canada
| | - Lisa Leung
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | - Emin Ibrahimov
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Roya Navab
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Shingo Sakashita
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Chang-Qi Zhu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Ethan Kaufman
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - William W. Lockwood
- British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Kelsie L. Thu
- British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Yaroslav Fedyshyn
- Department of Molecular Genetics, Banting & Best Department of Medical Research, University of Toronto, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, Banting & Best Department of Medical Research, University of Toronto, ON, Canada
| | - Wan L. Lam
- British Columbia Cancer Research Centre and Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology Department, University of Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| |
Collapse
|
16
|
An intronic polymorphic deletion in the PTEN gene: implications for molecular diagnostic testing. Br J Cancer 2013; 108:438-41. [PMID: 23299532 PMCID: PMC3566822 DOI: 10.1038/bjc.2012.562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: A cohort of 629 patients with suspected Bannayan–Riley–Ruvalcaba syndrome or Cowden syndrome was tested for mutations in the PTEN gene. Methods: Dosage analysis of PTEN was carried out using a PTEN-specific multiplex ligation-dependent probe amplification (MLPA) kit, whereas point mutation analysis was performed using direct sequencing. Results: Approximately 4% of the patients from the testing cohort were heterozygously deleted for the two MLPA probe-binding sites situated in intron 1. The same deletion was subsequently seen in ∼3% of 220 normal controls, and in patients from the testing cohort with a causative mutation elsewhere in the PTEN gene. Sequencing of the variant revealed an 899 bp deletion, the 3′ breakpoint of which is only 58 bp from the start of exon 2. Conclusion: Although all evidence suggests that the 899 bp deletion is a polymorphism with no clinical effect, it removes the binding sites of almost all published PTEN exon 2 forward primers, resulting in allelic loss during PCR.
Collapse
|
17
|
Davies EM, Sheffield DA, Tibarewal P, Fedele CG, Mitchell CA, Leslie NR. The PTEN and Myotubularin phosphoinositide 3-phosphatases: linking lipid signalling to human disease. Subcell Biochem 2012; 58:281-336. [PMID: 22403079 DOI: 10.1007/978-94-007-3012-0_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two classes of lipid phosphatases selectively dephosphorylate the 3 position of the inositol ring of phosphoinositide signaling molecules: the PTEN and the Myotubularin families. PTEN dephosphorylates PtdIns(3,4,5)P(3), acting in direct opposition to the Class I PI3K enzymes in the regulation of cell growth, proliferation and polarity and is an important tumor suppressor. Although there are several PTEN-related proteins encoded by the human genome, none of these appear to fulfill the same functions. In contrast, the Myotubularins dephosphorylate both PtdIns(3)P and PtdIns(3,5)P(2), making them antagonists of the Class II and Class III PI 3-kinases and regulators of membrane traffic. Both phosphatase groups were originally identified through their causal mutation in human disease. Mutations in specific myotubularins result in myotubular myopathy and Charcot-Marie-Tooth peripheral neuropathy; and loss of PTEN function through mutation and other mechanisms is evident in as many as a third of all human tumors. This chapter will discuss these two classes of phosphatases, covering what is known about their biochemistry, their functions at the cellular and whole body level and their influence on human health.
Collapse
Affiliation(s)
- Elizabeth M Davies
- Division of Cell Signalling and Immunology, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, United Kingdom,
| | | | | | | | | | | |
Collapse
|
18
|
Liu Y, Malaviarachchi P, Beggs M, Emanuel PD. PTEN transcript variants caused by illegitimate splicing in "aged" blood samples and EBV-transformed cell lines. Hum Genet 2010; 128:609-14. [PMID: 20839010 PMCID: PMC2978886 DOI: 10.1007/s00439-010-0886-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/29/2010] [Indexed: 01/08/2023]
Abstract
PTEN is one of the most frequently mutated tumor suppressor genes in human cancers. Mutations occur in either heritable or sporadic fashion. Sequencing of cDNA from patients and normal individuals often reveals splicing variants (SVs) of PTEN, some of which are non-mutation related. To investigate whether these SVs were the result of illegitimate splicing (a general decrease of fidelity in splicing site selection in "aged" samples), we tested "aged" blood from individuals who had normal PTEN transcripts in their "fresh" mononuclear cells. Blood from 20 normal individuals was collected and split into two aliquots. Total RNA and DNA were extracted immediately ("fresh") and 48 h later ("aged"), respectively. Using RT-PCR, subcloning and sequencing, we found seven types of SVs. No mutation was detected in the related intron-exon flanking region in genomic DNA in either "fresh" or "aged" samples. Some of the SVs were also consistently present in both the "fresh" and "aged" EBV-transformed lymphoblastoid cells from six normal individuals. Western blot data indicated that the PTEN protein level (in full length) was not altered in the "fresh" EBV-transformed lymphoblastoid cells with SVs. In conclusion, our data demonstrate that PTEN illegitimate splicing often occurs in "aged" blood and EBV-transformed lymphoblastoid cells. Therefore, it is critical to note the time point of RNA extraction when investigating for PTEN aberrant transcripts. We hope that our data will increase awareness about the sample status, because gene expression data may be potentially flawed from "aged" samples, particularly when dealing with clinical samples.
Collapse
Affiliation(s)
- Yunying Liu
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Priyangi Malaviarachchi
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Marjorie Beggs
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Peter D. Emanuel
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR USA
| |
Collapse
|
19
|
Hlobilková A, Knillová J, Bártek J, Lukás J, Kolár Z. The mechanism of action of the tumour suppressor gene PTEN. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008. [PMID: 15034601 DOI: 10.5507/bp.2003.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intracellular levels of phosphorylation are regulated by the coordinated action of protein kinases and phosphatases. Disregulation of this balance can lead to cellular transformation. Here we review knowledge of the mechanisms of one protein phosphatase, the tumour suppressor PTEN/MMAC/TEP 1 apropos its role in tumorigenesis and signal transduction. PTEN plays an important role in the phosphatidyl-inositol-3-kinase (PI3-K) pathway by catalyzing degradation of phosphatidylinositol-(3,4,5)-triphosphate generated by PI3-K. This inhibits downstream targets mainly protein kinase B (PKB/Akt), cell survival and proliferation. PTEN contributes to cell cycle regulation by blockade of cells entering the S phase of the cell cycle, and by upregulation of p27(Kip1) which is recruited into the cyclin E/cdk2 complex. PTEN also modulates cell migration and motility by regulation of the extracellular signal-related kinase - mitogen activated protein kinase (ERK-MAPK) pathway and by dephosphorylation of focal adhesion kinase (FAK). We also emphasize the increasingly important role that PTEN has from an evolutionary point of view. A number of PTEN functions have been elucidated but more information is needed for utilization in clinical application and potential cancer therapy.
Collapse
Affiliation(s)
- Alice Hlobilková
- Institute of Pathology and Laboratory of Molecular Pathology, Faculty of Medicine, Palacký University, Hnevotínská 3, 775 15 Olomouc, Czech Republic.
| | | | | | | | | |
Collapse
|
20
|
Assessment of PTEN tumor suppressor activity in nonmammalian models: the year of the yeast. Oncogene 2008; 27:5431-42. [DOI: 10.1038/onc.2008.240] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Yea S, Narla G, Zhao X, Garg R, Tal-Kremer S, Hod E, Villanueva A, Loke J, Tarocchi M, Akita K, Shirasawa S, Sasazuki T, Martignetti JA, Llovet JM, Friedman SL. Ras promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma. Gastroenterology 2008; 134:1521-31. [PMID: 18471523 PMCID: PMC2600656 DOI: 10.1053/j.gastro.2008.02.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 02/02/2008] [Accepted: 02/07/2008] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer worldwide and the third most lethal. Dysregulation of alternative splicing underlies a number of human diseases, yet its contribution to liver cancer has not been explored fully. The Krüppel-like factor 6 (KLF6) gene is a zinc finger transcription factor that inhibits cellular growth in part by transcriptional activation of p21. KLF6 function is abrogated in human cancers owing to increased alternative splicing that yields a dominant-negative isoform, KLF6 splice variant 1 (SV1), which antagonizes full-length KLF6-mediated growth suppression. The molecular basis for stimulation of KLF6 splicing is unknown. METHODS In human HCC samples and cell lines, we functionally link oncogenic Ras signaling to increased alternative splicing of KLF6 through signaling by phosphatidylinositol-3 kinase and Akt, mediated by the splice regulatory protein ASF/SF2. RESULTS In 67 human HCCs, there is a significant correlation between activated Ras signaling and increased KLF6 alternative splicing. In cultured cells, Ras signaling increases the expression of KLF6 SV1, relative to full-length KLF6, thereby enhancing proliferation. Abrogation of oncogenic Ras signaling by small interfering RNA (siRNA) or a farnesyl-transferase inhibitor decreases KLF6 SV1 and suppresses growth. Growth inhibition by farnesyl-transferase inhibitor in transformed cell lines is overcome by ectopic expression of KLF6 SV1. Down-regulation of the splice factor ASF/SF2 by siRNA increases KLF6 SV1 messenger RNA levels. KLF6 alternative splicing is not coupled to its transcriptional regulation. CONCLUSIONS Our findings expand the role of Ras in human HCC by identifying a novel mechanism of tumor-suppressor inactivation through increased alternative splicing mediated by an oncogenic signaling cascade.
Collapse
Affiliation(s)
- Steven Yea
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Goutham Narla
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Xiao Zhao
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Rakhi Garg
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Sigal Tal-Kremer
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Eldad Hod
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Augusto Villanueva
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Johnny Loke
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Mirko Tarocchi
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Kunihara Akita
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| | - Senji Shirasawa
- Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - Takehiko Sasazuki
- Research Institute, International Medical Center of Japan, Tokyo, Japan
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, 10029
| | - Josep M Llovet
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
- BCLC Group, Liver Unit, Hospital Clinic, Barcelona
| | - Scott L Friedman
- Division of Liver Diseases and Department of Medicine, New York, NY, 10029
| |
Collapse
|
22
|
Mao X, James SY, Yáñez-Muñoz RJ, Chaplin T, Molloy G, Oliver RTD, Young BD, Lu YJ. Rapid high-resolution karyotyping with precise identification of chromosome breakpoints. Genes Chromosomes Cancer 2007; 46:675-83. [PMID: 17431877 DOI: 10.1002/gcc.20452] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many techniques have been developed in recent years for genome-wide analysis of genetic alterations, but no current approach is capable of rapidly identifying all chromosome rearrangements with precise definition of breakpoints. Combining multiple color fluorescent in situ hybridization and high-density single nucleotide polymorphism array analyses, we present here an approach for high resolution karyotyping and fast identification of chromosome breakpoints. We characterized all of the chromosome amplifications and deletions, and most of the chromosome translocation breakpoints of three prostate cancer cell lines at a resolution which can be further analyzed by sequence-based techniques. Genes at the breakpoints were readily determined and potentially fused genes identified. Using high-density exon arrays we simultaneously confirmed altered exon expression patterns in many of these breakpoint genes.
Collapse
Affiliation(s)
- Xueying Mao
- Medical Oncology Center, Cancer Institute, Barts and London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Riehle MA, Brown JM. Characterization of phosphatase and tensin homolog expression in the mosquito Aedes aegypti: six splice variants with developmental and tissue specificity. INSECT MOLECULAR BIOLOGY 2007; 16:277-86. [PMID: 17433073 DOI: 10.1111/j.1365-2583.2007.00724.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phosphatase and tensin homologue (PTEN), an inhibitor of insulin signalling, was characterized in Aedes aegypti. Surprisingly, six splice variants were identified: three with alternative terminal exons (AaegPTEN2 : 3 : 6) and three formed by intron retention (AaegPTEN1 : 4 : 5). All variants encoded active phosphatase domains. Variants with alternative terminal exons also encoded C2 and COOH-domains, and AaegPTEN6 encoded a PDZ binding motif. These three variants also had unique expression patterns. AaegPTEN2 was expressed primarily in the ovary. AaegPTEN3 was predominant in heads and midguts, and throughout development, except early embryogenesis. AaegPTEN6 was expressed in fat body, ovaries, and throughout development. Intron retention variants were weakly expressed in most samples. These expression patterns suggest that AaegPTEN variants play unique roles in regulating insulin's pleiotropic effects.
Collapse
|
24
|
Mazurek N, Sun YJ, Liu KF, Gilcrease MZ, Schober W, Nangia-Makker P, Raz A, Bresalier RS. Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells. J Biol Chem 2007; 282:21337-48. [PMID: 17420249 DOI: 10.1074/jbc.m608810200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galectin-3 (GAL3), a beta-galactoside-binding lectin, confers chemoresistance to a wide variety of cancer cell types. It may exhibit anti- or pro-apoptotic activity depending on the nature of the stimulus. We report here that introducing phosphorylated galectin-3 (P-GAL3) into GAL3-null, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant human breast carcinoma cells promotes TRAIL-induced apoptotic cell death by stimulating the phosphorylation/inactivation of the pro-apoptotic molecule Bad resulting in the inhibition of mitochondrial depolarization and the release of cytochrome c. Exposure of the transfectant cells to TRAIL leads to the recruitment of the initiator capase-8 followed by activation of the effector caspase-9, independent of cytochrome c, and subsequently the processing of the executioner caspase-3. P-GAL3 and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) were coordinately expressed, with concomitant dephosphorylation of Akt in TRAIL-sensitive cells. In contrast, overexpression of phospho-mutant GAL3 (incapable of phosphorylation) failed to elicit similar responses. Depletion of PTEN using small interference RNAs reinstated Akt phosphorylation and conferred TRAIL resistance. In addition phosphatidylinositol 3-kinase inhibitors rendered the phospho-mutant GAL3-resistant cells sensitive to TRAIL. These findings suggest a pivotal role for P-GAL3 in promoting TRAIL sensitivity through activation of a nonclassic apoptotic pathway and identify P-GAL3 as a novel regulator of PTEN.
Collapse
Affiliation(s)
- Nachman Mazurek
- Department of Gastrointestinal Medicine and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Sharrard RM, Maitland NJ. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines. Cell Signal 2007; 19:129-38. [PMID: 16842970 DOI: 10.1016/j.cellsig.2006.05.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Protein Kinase B (PKB/Akt) is a key regulator of cell proliferation, motility and survival. The activation status of PKB is regulated by phosphatidylinositol 3-kinase (PI3K) via the synthesis of phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3, PIP3). PTEN antagonises PI3K by degrading PIP3 to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Deregulation of PKB through loss of functional PTEN has frequently been implicated in the progression of tumours, including prostate cancer, and the PTEN-negative prostate cancer cell lines LNCaP and PC3 have been widely used as models for this mechanism of constitutive PKB activation. However, other enzymes in addition to PTEN can antagonise PI3K, including SHIP2, which degrades PIP3 to phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2). We investigated the role of PTEN and SHIP2 in the regulation of PKB phosphorylation in a panel of human prostate-derived epithelial cell lines. In the PTEN-positive prostate-derived cell lines PNT2, PNT1a and P4E6, PI3K inhibition by LY294002 caused rapid dephosphorylation of PKB at ser473 (T(1/2)<2 min), leading to its inactivation. In the PTEN-null line LNCaP, LY294002-induced PKB dephosphorylation was much slower (T(1/2)>20 min), but in PC3 cells (also PTEN-null) it was only slightly slower than in PTEN-positive cells (T(1/2)=3 min). PKB dephosphorylation paralleled loss of plasma membrane PIP3. PNT1a, P4E6 and PC3, but not PNT2 or LNCaP, expressed SHIP2. SiRNA-mediated knockdown of SHIP2 expression markedly slowed PKB inactivation in response to LY294002 in PC3 but not in other SHIP2-positive cells, whereas knockdown of PTEN expression in PNT2, PNT1a and P4E6 resulted in higher steady-state levels of PKB phosphorylation and slowed, but did not prevent, LY294002-induced PKB inactivation. Thus SHIP2 substitutes for PTEN in the acute regulation of PKB in PC3 cells but not other prostate cell lines, where PTEN may share this role with further PIP3-degrading mechanisms.
Collapse
Affiliation(s)
- R Michael Sharrard
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | | |
Collapse
|
26
|
Kanae Y, Endoh D, Yokota H, Taniyama H, Hayashi M. Expression of the PTEN tumor suppressor gene in malignant mammary gland tumors of dogs. Am J Vet Res 2006; 67:127-33. [PMID: 16426222 DOI: 10.2460/ajvr.67.1.127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether changes in expression level of the phosphatase and tensin homolog deleted on the chromosome 10 (PTEN) gene are associated with malignant transformation in mammary gland tumors in dogs. SAMPLE POPULATION Specimens of 5 benign and 8 malignant mammary gland tumors and 2 unaffected mammary glands from dogs. PROCEDURE The open reading frame (ORF) sequence of PTEN gene in each specimen was analyzed via a direct-sequencing method; expression levels of PTEN gene were quantified via a competitive reverse transcription (RT)-PCR method. RESULTS Compared with findings in clinically normal samples, amounts of PTEN mRNA were increased 2- to 4-fold in 4 of the 5 benign mammary gland tumor samples. In contrast, PTEN expression was remarkably low in 4 of the 8 malignant tumor samples (approx 12% to 37% of the level in unaffected mammary gland specimens). Gene amplification via the RT-PCR method with total RNA prepared from malignant tumor samples as a template yielded 3 bands that were smaller than the full-length ORF product of PTEN gene; in 2 of those 3 RT-PCR products, exons 6 and 7 or exons 3 to 8 were absent. No mutation was detected in the full-length ORF product of PTEN gene. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that a decreased level of PTEN gene expression (compared with unaffected mammary gland tissue) is associated with malignancy in canine mammary tumors. Analysis of PTENgene expression level in dogs with mammary gland tumors may provide useful prognostic information.
Collapse
Affiliation(s)
- Yutaka Kanae
- Department of Veterinary Radiology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | |
Collapse
|
27
|
Sarquis MS, Agrawal S, Shen L, Pilarski R, Zhou XP, Eng C. Distinct expression profiles for PTEN transcript and its splice variants in Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome. Am J Hum Genet 2006; 79:23-30. [PMID: 16773562 PMCID: PMC1474112 DOI: 10.1086/504392] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 03/20/2006] [Indexed: 01/18/2023] Open
Abstract
Cowden syndrome (CS) and Bannayan-Riley-Ruvalcaba syndrome (BRRS) are autosomal dominant hamartoma syndromes. Germline PTEN mutations have been associated with 85% of CS cases and 65% of BRRS cases and also with other disorders, which are collectively referred to as the "PTEN hamartoma tumor syndrome." The human PTEN gene has been previously found to express two naturally occurring splice variants (SVs). Recently, we identified eight novel naturally occurring PTEN SVs that result in different downstream signaling effects: SV3a, SV3b, SV3c (inclusion of various lengths of intron 3 3' of exon 3), SV5a, SV5b, SV5c, SV5d (inclusion of various lengths of intron 5 3' of exon 5), and SV Delta Ex6 (deletion of exon 6). We therefore sought to characterize the relative expression of 5', middle, and 3' full-length PTEN mRNA (FL-PTEN) and also of these eight PTEN SVs in 85 (65 female and 20 male) patients with CS/BRRS (with or without PTEN mutations) compared with 27 controls, using a SYBR green quantitative polymerase chain reaction method. Significantly reduced FL-PTEN levels were found in the probands, compared with those of controls (P < .01). Apart from FL-PTEN, SV3a is the most consistently relatively underexpressed in patients compared with controls. The patients showed relative underexpression of SV3a and SV3b and overexpression of SV5b (P = .005, P = .02, and P = .04, respectively). Indeed, there appears to be an SV expressional genotype-phenotype correlation in which the SV expressional profiles are distinct among CS, CS-like, and BRRS. The reduced FL-PTEN transcript expression, associated with differential expression of PTEN SVs, regardless of PTEN mutation status, supports the concept that modulation of PTEN inactivation may also occur at the transcription level influencing the specific phenotypes seen in these syndromes.
Collapse
|
28
|
Agrawal S, Eng C. Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer. Hum Mol Genet 2006; 15:777-87. [PMID: 16436456 DOI: 10.1093/hmg/ddi492] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PTEN, a dual-phosphatase tumor suppressor, is inactivated in Cowden syndrome (CS), characterized by high risk of breast and thyroid cancer, and in variety of sporadic cancers. Despite the importance of alternative splicing, very limited information on its role in PTEN and associated cancers is available. We identified eight novel PTEN splice variants (SVs) that retained intron 3 regions (3a, 3b, 3c); intron 5 regions (5a, 5b, 5c); excluded part of exon 5 (DelE5) or all of exon 6 (DelE6), respectively. Analysis of SVs in 12 sporadic breast cancers revealed full-length (FL)-PTEN transcript reduction in 10; SVs 3b, 3c and 5c not expressed in 7, 6 and 4, respectively, and under-expressed in the rest. In contrast, SV-5b was over-expressed in breast cancers. PTEN SV analysis in 16 CS/CS-like patients and eight controls revealed that SV-5a is under-expressed and SV-3a over-expressed in the germline of CS/CS-like individuals when compared with controls. Although SV-5a expression decreased P-Akt level and cyclin D1 promoter activity, SVs 5b and 5c increased cyclin D1 promoter activity. Thus, SV-5a behaving like FL-PTEN corroborates our observation that SV-5a is under-expressed in CS when compared with controls. Similarly, SV-5b functionally counters PTEN's action and is over-expressed in sporadic breast cancers. Furthermore, we demonstrate that expression of these SVs is under the regulation of p53. Our observations suggest that differential expression of PTEN and its SVs could play a role in the pathogenesis of sporadic breast cancers and CS, and may lend a novel way of making a rapid molecular diagnosis of CS without mutation analysis.
Collapse
Affiliation(s)
- Shipra Agrawal
- Genomic Medicine Institute, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Mailcode NE-50, Cleveland, OH 44195, USA
| | | |
Collapse
|
29
|
Narla G, DiFeo A, Yao S, Banno A, Hod E, Reeves HL, Qiao RF, Camacho-Vanegas O, Levine A, Kirschenbaum A, Chan AM, Friedman SL, Martignetti JA. Targeted inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth and spread. Cancer Res 2005; 65:5761-8. [PMID: 15994951 DOI: 10.1158/0008-5472.can-05-0217] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is a leading cause of cancer death in men. Risk prognostication, treatment stratification, and the development of rational therapeutic strategies lag because the molecular mechanisms underlying the initiation and progression from primary to metastatic disease are unknown. Multiple lines of evidence now suggest that KLF6 is a key prostate cancer tumor suppressor gene including loss and/or mutation in prostate cancer tumors and cell lines and decreased KLF6 expression levels in recurrent prostate cancer samples. Most recently, we identified a common KLF6 germ line single nucleotide polymorphism that is associated with an increased relative risk of prostate cancer and the increased production of three alternatively spliced, dominant-negative KLF6 isoforms. Here we show that although wild-type KLF6 (wtKLF6) acts as a classic tumor suppressor, the single nucleotide polymorphism-increased splice isoform, KLF6 SV1, displays a markedly opposite effect on cell proliferation, colony formation, and invasion. In addition, whereas wtKLF6 knockdown increases tumor growth in nude mice >2-fold, short interfering RNA-mediated KLF6 SV1 inhibition reduces growth by approximately 50% and decreases the expression of a number of growth- and angiogenesis-related proteins. Together, these findings begin to highlight a dynamic and functional antagonism between wtKLF6 and its splice variant KLF6 SV1 in tumor growth and dissemination.
Collapse
Affiliation(s)
- Goutham Narla
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Trojan J, Plotz G, Brieger A, Raedle J, Meltzer SJ, Wolter M, Zeuzem S. Activation of a cryptic splice site of PTEN and loss of heterozygosity in benign skin lesions in Cowden disease. J Invest Dermatol 2001; 117:1650-3. [PMID: 11886535 DOI: 10.1046/j.0022-202x.2001.01954.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cowden disease is an autosomal dominant syndrome characterized by facial trichilemmomas, acral keratoses, papillomatous papules, mucosal lesions, and an increased risk for breast and nonmedullary thyroid cancer. Here, we describe a novel PTEN splicing site mutation in a family with classical Cowden disease and we studied benign skin lesions typical for Cowden disease for loss of heterozygosity. We found a PTEN IVS2 + 1G > Alpha 5'-splicing acceptor mutation resulting in activation of a cryptic splice site. Activation of this cryptic splice site is predicted to result in a frameshift with a premature stop codon, thus disrupting the phosphatase core motif of PTEN. Loss of heterozygosity analysis of two trichilemmomas, one fibroma, and three acanthomas of the index patient demonstrated loss of heterozygosity at the PTEN locus in four of these lesions. In conclusion, our data demonstrate that a PTEN splicing site mutation causes activation of a cryptic splice site, which results in aberrant transcripts.
Collapse
Affiliation(s)
- J Trojan
- Second Department of Medicine, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Yamada KM, Araki M. Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 2001; 114:2375-82. [PMID: 11559746 DOI: 10.1242/jcs.114.13.2375] [Citation(s) in RCA: 323] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PTEN (also known as MMAC-1 or TEP-1) is one of the most frequently mutated tumor suppressors in human cancer. It is also essential for embryonic development. PTEN functions primarily as a lipid phosphatase to regulate crucial signal transduction pathways; a key target is phosphatidylinositol 3,4,5-trisphosphate. In addition, it displays weak tyrosine phosphatase activity, which may downmodulate signaling pathways that involve focal adhesion kinase (FAK) or Shc. Levels of PTEN are regulated in embryos and adult organisms, and gene-targeting studies demonstrate that it has a crucial role in normal development. Functions for PTEN have been identified in the regulation of many normal cell processes, including growth, adhesion, migration, invasion and apoptosis. PTEN appears to play particularly important roles in regulating anoikis (apoptosis of cells after loss of contact with extracellular matrix) and cell migration. Gene targeting and transient expression studies have provided insight into the specific signaling pathways that regulate these processes. Characterization of the diverse signaling networks modulated by PTEN, as well as the regulation of PTEN concentration, enzymatic activity, and coordination with other phosphatases, should provide intriguing new insight into the biology of normal and malignant cells.
Collapse
Affiliation(s)
- K M Yamada
- Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892, USA.
| | | |
Collapse
|