1
|
Abstract
The incidence of cutaneous melanoma has been increasing worldwide, and melanoma disproportionately contributes to skin cancer mortality. The pathogenesis of melanoma involves genetic and environmental factors, and while the effects of ultraviolet B radiation on melanoma development are well researched, fewer studies have investigated the role of ultraviolet A (UVA) radiation. We comprehensively reviewed cell, animal and epidemiology studies on the association between UVA exposure and melanomagenesis. UVA radiation has been found to have negative effects on melanocytes due to the induction of oxidative stress, dysregulation of gene transcription and creation of mutagenic photoproducts in DNA. Animal studies demonstrate adverse effects of UVA on melanocytes, including the development of melanoma. Epidemiology studies, of varying quality, that examined participants' exposure to tanning devices which use UVA radiation primarily found that UVA exposure increased the risk for melanoma. Some studies reported larger associations with increased frequency of device use, suggestive of a dose-response relationship. Overall, we found that many studies supported a positive association between UVA exposure and melanoma on both molecular and population levels. Understanding the role of UVA in the development of melanoma will inform the implementation of preventive health interventions, such as those related to sunscreen development and use and increasing restrictions on indoor tanning.
Collapse
Affiliation(s)
- Raj P Fadadu
- Department of Dermatology, University of California
- Dermatology Service, San Francisco Veterans Affairs Health Care Center, San Francisco, California, USA
| | - Maria L Wei
- Department of Dermatology, University of California
- Dermatology Service, San Francisco Veterans Affairs Health Care Center, San Francisco, California, USA
| |
Collapse
|
2
|
Humayun A, Fornace AJ. GADD45 in Stress Signaling, Cell Cycle Control, and Apoptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:1-22. [PMID: 35505159 DOI: 10.1007/978-3-030-94804-7_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
GADD45 is a gene family consisting of GADD45A, GADD45B, and GADD45G that is often induced by DNA damage and other stress signals associated with growth arrest and apoptosis. Many of these roles are carried out via signaling mediated by p38 mitogen-activated protein kinases (MAPKs). The GADD45 proteins can contribute to p38 activation either by activation of upstream kinase(s) or by direct interaction, as well as suppression of p38 activity in certain cases. In vivo, there are important tissue and cell type specific differences in the roles for GADD45 in MAPK signaling. In addition to being p53-regulated, GADD45A has also been found to contribute to p53 activation via p38. Like other stress and signaling proteins, GADD45 proteins show complex regulation and numerous effectors. More recently, aberrant GADD45 expression has been found in several human cancers, but the mechanisms behind these findings largely remain to be understood.
Collapse
Affiliation(s)
- Arslon Humayun
- Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Albert J Fornace
- Lombardi Comprehensive Cancer Center, Washington, DC, USA.
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA.
| |
Collapse
|
3
|
Blazer VS, Shaw CH, Smith CR, Emerson P, Jones T. Malignant melanoma of brown bullhead (Ameiurus nebulosus) in Lake Memphremagog, Vermont/Quebec. JOURNAL OF FISH DISEASES 2020; 43:91-100. [PMID: 31724204 DOI: 10.1111/jfd.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
In 2012, brown bullhead (Ameiurus nebulosus) with large, raised, black growths were first reported from multiple areas within the Vermont portion of Lake Memphremagog. Subsequent surveys conducted from 2014 to 2017 at two sites within the lake indicated a prevalence of 30% in adult brown bullhead 200 mm and above total length. These lesions ranged from slightly raised smooth black areas to large nodular areas on the body surface and fins and within the oral cavity. Microscopically, these lesions were determined to be malignant melanoma with invasion into surrounding hypodermis, skeletal muscle and bone as well as metastases to gill, ovary and intestine. Liver neoplasms were also observed in 8% of the bullhead collected from Lake Memphremagog in 2015. Neither skin nor liver neoplasms were noted in Ticklenaked Pond, a site used for comparison.
Collapse
Affiliation(s)
- Vicki S Blazer
- National Fish Health Research Laboratory, U.S. Geological Survey Leetown Science Center, Kearneysville, WV, USA
| | - Cassidy H Shaw
- Vermont Fish and Wildlife Department, Burlington, VT, USA
| | - Cheyenne R Smith
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | - Peter Emerson
- Vermont Fish and Wildlife Department, St. Johnsbury, VT, USA
| | - Thomas Jones
- Vermont Fish and Wildlife Department, Montpelier, VT, USA
| |
Collapse
|
4
|
Ou WB, Ni N, Zuo R, Zhuang W, Zhu M, Kyriazoglou A, Wu D, Eilers G, Demetri GD, Qiu H, Li B, Marino-Enriquez A, Fletcher JA. Cyclin D1 is a mediator of gastrointestinal stromal tumor KIT-independence. Oncogene 2019; 38:6615-6629. [PMID: 31371779 DOI: 10.1038/s41388-019-0894-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022]
Abstract
Oncogenic KIT or PDGFRA tyrosine kinase mutations are compelling therapeutic targets in most gastrointestinal stromal tumors (GISTs), and the KIT inhibitor, imatinib, is therefore standard of care for patients with metastatic GIST. However, some GISTs lose expression of KIT oncoproteins, and therefore become KIT-independent and are consequently resistant to KIT-inhibitor drugs. We identified distinctive biologic features in KIT-independent, imatinib-resistant GISTs as a step towards identifying drug targets in these poorly understood tumors. We developed isogenic GIST lines in which the parental forms were KIT oncoprotein-dependent, whereas sublines had loss of KIT oncoprotein expression, accompanied by markedly downregulated expression of the GIST biomarker, protein kinase C-theta (PRKCQ). Biologic mechanisms unique to KIT-independent GISTs were identified by transcriptome sequencing, qRT-PCR, immunoblotting, protein interaction studies, knockdown and expression assays, and dual-luciferase assays. Transcriptome sequencing showed that cyclin D1 expression was extremely low in two of three parental KIT-dependent GIST lines, whereas cyclin D1 expression was high in each of the KIT-independent GIST sublines. Cyclin D1 inhibition in KIT-independent GISTs had anti-proliferative and pro-apoptotic effects, associated with Rb activation and p27 upregulation. PRKCQ, but not KIT, was a negative regulator of cyclin D1 expression, whereas JUN and Hippo pathway effectors YAP and TAZ were positive regulators of cyclin D1 expression. PRKCQ, JUN, and the Hippo pathway coordinately regulate GIST cyclin D1 expression. These findings highlight the roles of PRKCQ, JUN, Hippo, and cyclin D1 as oncogenic mediators in GISTs that have converted, during TKI-therapy, to a KIT-independent state. Inhibitors of these pathways could be effective therapeutically for these now untreatable tumors.
Collapse
Affiliation(s)
- Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China. .,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Nan Ni
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Rui Zuo
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Weihao Zhuang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Meijun Zhu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Anastasios Kyriazoglou
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Duolin Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Grant Eilers
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - George D Demetri
- Ludwig Center at Dana-Farber/Harvard Cancer Center and Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
| | - Haibo Qiu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Li
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Division of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Adrian Marino-Enriquez
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Hirschbiel AF, Geyer S, Yameen B, Welle A, Nikolov P, Giselbrecht S, Scholpp S, Delaittre G, Barner-Kowollik C. Photolithographic patterning of 3D-formed polycarbonate films for targeted cell guiding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:2621-2626. [PMID: 25787094 DOI: 10.1002/adma.201500426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 06/04/2023]
Abstract
A facile photolithographic platform for the design of cell-guiding polymeric substrates is introduced. Specific areas of the substrate are photo-deactivated for the subsequent growth of bioresistant polymer brushes, creating zones for cell proliferation, and protein adhesion.
Collapse
Affiliation(s)
- Astrid F Hirschbiel
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany; Preparative Macromolecular Chemistry Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) Engesserstr. 18, 76128, Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang X, Jiang Q, Wang W, Su L, Han Y, Wang C. Molecular mechanism of polypeptides from Chlamys farreri (PCF)’s anti-apoptotic effect in UVA-exposed HaCaT cells involves HSF1/HSP70, JNK, XO, iNOS and NO/ROS. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:47-56. [DOI: 10.1016/j.jphotobiol.2013.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/04/2013] [Accepted: 11/05/2013] [Indexed: 12/01/2022]
|
7
|
Martinez-Levasseur LM, Gendron D, Knell RJ, Acevedo-Whitehouse K. Control and target gene selection for studies on UV-induced genotoxicity in whales. BMC Res Notes 2013; 6:264. [PMID: 23837727 PMCID: PMC3716943 DOI: 10.1186/1756-0500-6-264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/11/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite international success in reducing ozone-depleting emissions, ultraviolet radiation (UV) is not expected to decrease for several decades. Thus, it is pressing to implement tools that allow investigating the capacity of wildlife to respond to excessive UV, particularly species like cetaceans that lack anatomical or physiological protection. One approach is to examine epidermal expression of key genes involved in genotoxic stress response pathways. However, quantitation of mRNA transcripts requires previous standardization, with accurate selection of control and target genes. The latter is particularly important when working with environmental stressors such as UV that can activate numerous genes. RESULTS Using 20 epidermal biopsies from blue, fin and sperm whale, we found that the genes encoding the ribosomal proteins L4 and S18 (RPL4 and RPS18) were the most suitable to use as controls, followed by the genes encoding phosphoglycerate kinase 1 (PGK1) and succinate dehydrogenase complex subunit A (SDHA). A careful analysis of the transcription pathways known to be activated by UV-exposure in humans and mice led us to select as target genes those encoding for i) heat shock protein 70 (HSP70) an indicator of general cell stress, ii) tumour suppressor protein P53 (P53), a transcription factor activated by UV and other cell stressors, and iii) KIN17 (KIN), a cell cycle protein known to be up-regulated following UV exposure. These genes were successfully amplified in the three species and quantitation of their mRNA transcripts was standardised using RPL4 and RPS18. Using a larger sample set of 60 whale skin biopsies, we found that the target gene with highest expression was HSP70 and that its levels of transcription were correlated with those of KIN and P53. Expression of HSP70 and P53 were both related to microscopic sunburn lesions recorded in the whales' skin. CONCLUSION This article presents groundwork data essential for future qPCR-based studies on the capacity of wildlife to resolve or limit UV-induced damage. The proposed target genes are HSP70, P53 and KIN, known to be involved in genotoxic stress pathways, and whose expression patterns can be accurately assessed by using two stable control genes, RPL4 and RPS18.
Collapse
|
8
|
Wang H, Ao M, Wu J, Yu L. TNFα and Fas/FasL pathways are involved in 9-Methoxycamptothecin-induced apoptosis in cancer cells with oxidative stress and G2/M cell cycle arrest. Food Chem Toxicol 2013; 55:396-410. [PMID: 23369935 DOI: 10.1016/j.fct.2012.12.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/11/2012] [Accepted: 12/12/2012] [Indexed: 11/25/2022]
Abstract
9-Methoxycamptothecin (MCPT) has been recently reported to have a strong anticancer activity. However, its detailed mechanism of action in human cancer cells has not been well clarified. The results showed that MCPT induced cytotoxicity in seven human cancer cell lines in a dose dependent manner after 72h, with A2780 and Hela cell lines more sensitive, so the two cell lines were chosen to do further studies. MCPT induced strong G2/M arrest in both A2780 cells and Hela cells after 24h, following by substantial sub-G1 arrest (indicating apoptosis). The apoptosis was verified by staining with Annexin V-FITC and propidium iodide. ROS generation increased significantly in MCPT-induced apoptosis. Meanwhile, the apoptosis appeared to be dependent on caspase-3, -8 and -9 in A2780 cells, and caspase-3 in Hela cells. In addition, MCPT induced up-regulation expression of most of seventeen genes in both cell lines. Western blot verified that changes of TNFα, Fas, P53 and P27 protein level were consistent with their gene expression changes. Taken together, MCPT plays an important role in tumor growth suppression by inducing apoptosis in both cell lines via extrinsic and intrinsic apoptotic pathways, and has the potential to be developed into an antitumor agent.
Collapse
Affiliation(s)
- Haiyan Wang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
9
|
Leyva-Illades D, Cherla RP, Lee MS, Tesh VL. Regulation of cytokine and chemokine expression by the ribotoxic stress response elicited by Shiga toxin type 1 in human macrophage-like THP-1 cells. Infect Immun 2012; 80:2109-20. [PMID: 22431646 PMCID: PMC3370584 DOI: 10.1128/iai.06025-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/04/2012] [Indexed: 01/20/2023] Open
Abstract
Shiga toxins (Stxs) are cytotoxins produced by the enteric pathogens Shigella dysenteriae serotype 1 and Shiga toxin-producing Escherichia coli (STEC). Stxs bind to a membrane glycolipid receptor, enter cells, and undergo retrograde transport to ultimately reach the cytosol, where the toxins exert their protein synthesis-inhibitory activity by depurination of a single adenine residue from the 28S rRNA component of eukaryotic ribosomes. The depurination reaction activates the ribotoxic stress response, leading to signaling via the mitogen-activated protein kinase (MAPK) pathways (Jun N-terminal protein kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) in human epithelial, endothelial, and myeloid cells. We previously showed that treatment of human macrophage-like THP-1 cells with Stxs resulted in increased cytokine and chemokine expression. In the present study, we show that individual inactivation of ERK, JNK, and p38 MAPKs using pharmacological inhibitors in the presence of Stx1 resulted in differential regulation of the cytokines tumor necrosis factor alpha and interleukin-1β (IL-1β) and chemokines IL-8, growth-regulated protein-β, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β. THP-1 cells exposed to Stx1 upregulate the expression of select dual-specificity phosphatases (DUSPs), enzymes that dephosphorylate and inactivate MAPKs in mammalian cells. In this study, we confirmed DUSP1 protein production by THP-1 cells treated with Stx1. DUSP1 inhibition by triptolide showed that ERK and p38 phosphorylation is regulated by DUSP1, while JNK phosphorylation is not. Inhibition of p38 MAPK signaling blocked the ability of Stx1 to induce DUSP1 mRNA expression, suggesting that an autoregulatory signaling loop may be activated by Stxs. Thus, Stxs appear to be capable of eliciting signals which both activate and deactivate signaling for increased cytokine/chemokine production in human macrophage-like cells.
Collapse
Affiliation(s)
- Dinorah Leyva-Illades
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | | | | | | |
Collapse
|
10
|
Global transcriptional response of macrophage-like THP-1 cells to Shiga toxin type 1. Infect Immun 2010; 78:2454-65. [PMID: 20351145 DOI: 10.1128/iai.01341-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Shiga toxins (Stxs) are bacterial cytotoxins produced by the enteric pathogens Shigella dysenteriae serotype 1 and some serotypes of Escherichia coli that cause bacillary dysentery and hemorrhagic colitis, respectively. To date, approaches to studying the capacity of Stxs to alter gene expression in intoxicated cells have been limited to individual genes. However, it is known that many of the signaling pathways activated by Stxs regulate the expression of multiple genes in mammalian cells. To expand the scope of analysis of gene expression and to better understand the underlying mechanisms for the various effects of Stxs on host cell functions, we carried out comparative microarray analyses to characterize the global transcriptional response of human macrophage-like THP-1 cells to Shiga toxin type 1 (Stx1) and lipopolysaccharides. The data were analyzed by using a rigorous combinatorial approach with three separate statistical algorithms. A total of 36 genes met the criteria of upregulated expression in response to Stx1 treatment, with 14 genes uniquely upregulated by Stx1. Microarray data were validated by real-time reverse transcriptase PCR for genes encoding early growth response 1 (Egr-1) (transcriptional regulator), cyclooxygenase 2 (COX-2; inflammation), and dual specificity phosphatase 1 (DUSP1), DUSP5, and DUSP10 (regulation of mitogen-activated protein kinase signaling). Stx1-mediated signaling through extracellular signal-regulated kinase 1/2 and Egr-1 appears to be involved in the increased expression and production of the proinflammatory mediator tumor necrosis factor alpha. Activation of COX-2 is associated with the increased production of proinflammatory and vasoactive eicosanoids. However, the capacity of Stx1 to increase the expression of genes encoding phosphatases suggests that mechanisms to dampen the macrophage proinflammatory response may be built into host response to the toxins.
Collapse
|
11
|
Baxter LL, Loftus SK, Pavan WJ. Networks and pathways in pigmentation, health, and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2009; 1:359-371. [PMID: 20161540 PMCID: PMC2804986 DOI: 10.1002/wsbm.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extensive studies of the biology of the pigment-producing cell (melanocyte) have resulted in a wealth of knowledge regarding the genetics and developmental mechanisms governing skin and hair pigmentation. The ease of identification of altered pigment phenotypes, particularly in mouse coat color mutants, facilitated early use of the pigmentary system in mammalian genetics and development. In addition to the large collection of developmental genetics data, melanocytes are of interest because their malignancy results in melanoma, a highly aggressive and frequently fatal cancer that is increasing in Caucasian populations worldwide. The genetic programs regulating melanocyte development, function, and malignancy are highly complex and only partially understood. Current research in melanocyte development and pigmentation is revealing new genes important in these processes and additional functions for previously known individual components. A detailed understanding of all the components involved in melanocyte development and function, including interactions with neighboring cells and response to environmental stimuli, will be necessary to fully comprehend this complex system. The inherent characteristics of pigmentation biology as well as the resources available to researchers in the pigment cell community make melanocytes an ideal cell type for analysis using systems biology approaches. In this review, the study of melanocyte development and pigmentation is considered as a candidate for systems biology-based analyses.
Collapse
Affiliation(s)
- Laura L Baxter
- Mouse Embryology Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stacie K Loftus
- Mouse Embryology Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Mouse Embryology Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Ridley AJ, Whiteside JR, McMillan TJ, Allinson SL. Cellular and sub-cellular responses to UVA in relation to carcinogenesis. Int J Radiat Biol 2009; 85:177-95. [PMID: 19296341 DOI: 10.1080/09553000902740150] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE UVA radiation (315-400 nm) contributes to skin aging and carcinogenesis. The aim of this review is to consider the mechanisms that underlie UVA-induced cellular damage, how this damage may be prevented or repaired and the signal transduction processes that are elicited in response to it. RESULTS Exposure to ultraviolet (UV) light is well-established as the causative factor in skin cancer. Until recently, most work on the mechanisms that underlie skin carcinogenesis focused on shorter wavelength UVB radiation (280-315 nm), however in recent years there has been increased interest in the contribution made by UVA. UVA is able to cause a range of damage to cellular biomolecules including lipid peroxidation, oxidized protein and DNA damage, such as 8-oxoguanine and cyclobutane pyrimidine dimers. Such damage is strongly implicated in both cell death and malignant transformation and cells have a number of mechanisms in place to mitigate the effects of UVA exposure, including antioxidants, DNA repair, and stress signalling pathways. CONCLUSIONS The past decade has seen a surge of interest in the biological effects of UVA exposure as its significance to the process of photo-carcinogenesis has become increasingly evident. However, unpicking the unique complexity of the cellular response to UVA, which is only now becoming apparent, will be a major challenge for the field of photobiology in the 21st century.
Collapse
Affiliation(s)
- Andrew J Ridley
- Division of Biomedical and Life Sciences, School of Health and Medicine, Lancaster University, UK.
| | | | | | | |
Collapse
|
13
|
Franzellitti S, Valbonesi P, Contin A, Biondi C, Fabbri E. HSP70 expression in human trophoblast cells exposed to different 1.8 Ghz mobile phone signals. Radiat Res 2009; 170:488-97. [PMID: 19024656 DOI: 10.1667/rr1405.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The heat-shock proteins (HSPs) are important cellular stress markers and have been proposed as candidates to infer biological effects of high-frequency electromagnetic fields (EMFs). In the current study, HSP70 gene and protein expression were evaluated in cells of the human trophoblast cell line HTR-8/SVneo after prolonged exposure (4 to 24 h) to 1.8 GHz continuous-wave (CW) and different GSM signals (GSM-217Hz and GSM-Talk) to assess the possible effects of time and modulation schemes on cell responses. Inducible HSP70 protein expression was not modified by high-frequency EMFs under any condition tested. The inducible HSP70A, HSP70B and the constitutive HSC70 transcripts did not change in cells exposed to high-frequency EMFs with the different modulation schemes. Instead, levels of the inducible HSP70C transcript were significantly enhanced after 24 h exposure to GSM-217Hz signals and reduced after 4 and 16 h exposure to GSM-Talk signals. As in other cell systems, in HTR-8/SVneo cells the response to high-frequency EMFs was detected at the mRNA level after exposure to amplitude-modulated GSM signals. The present results suggest that the expression analysis for multiple transcripts, though encoding the same or similar protein products, can be highly informative and may account for subtle changes not detected at the protein level.
Collapse
Affiliation(s)
- Silvia Franzellitti
- Interdepartmental Centre for Environmental Science Research, University of Bologna, 48100 Ravenna, Italy
| | | | | | | | | |
Collapse
|
14
|
Papp LV, Wang J, Kennedy D, Boucher D, Zhang Y, Gladyshev VN, Singh RN, Khanna KK. Functional characterization of alternatively spliced human SECISBP2 transcript variants. Nucleic Acids Res 2008; 36:7192-206. [PMID: 19004874 PMCID: PMC2602786 DOI: 10.1093/nar/gkn829] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synthesis of selenoproteins depends on decoding of the UGA stop codon as the amino acid selenocysteine (Sec). This process requires the presence of a Sec insertion sequence element (SECIS) in the 3′-untranslated region of selenoprotein mRNAs and its interaction with the SECIS binding protein 2 (SBP2). In humans, mutations in the SBP2-encoding gene Sec insertion sequence binding protein 2 (SECISBP2) that alter the amino acid sequence or cause splicing defects lead to abnormal thyroid hormone metabolism. Herein, we present the first in silico and in vivo functional characterization of alternative splicing of SECISBP2. We report a complex splicing pattern in the 5′-region of human SECISBP2, wherein at least eight splice variants encode five isoforms with varying N-terminal sequence. One of the isoforms, mtSBP2, contains a mitochondrial targeting sequence and localizes to mitochondria. Using a minigene-based in vivo splicing assay we characterized the splicing efficiency of several alternative transcripts, and show that the splicing event that creates mtSBP2 can be modulated by antisense oligonucleotides. Moreover, we show that full-length SBP2 and some alternatively spliced variants are subject to a coordinated transcriptional and translational regulation in response to ultraviolet type A irradiation-induced stress. Overall, our data broadens the functional scope of a housekeeping protein essential to selenium metabolism.
Collapse
Affiliation(s)
- Laura V Papp
- Signal Transduction Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen Y, Zheng W, Li Y, Zhong J, Ji J, Shen P. Apoptosis induced by methylene-blue-mediated photodynamic therapy in melanomas and the involvement of mitochondrial dysfunction revealed by proteomics. Cancer Sci 2008; 99:2019-27. [PMID: 19016762 PMCID: PMC11159616 DOI: 10.1111/j.1349-7006.2008.00910.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 11/30/2022] Open
Abstract
Methylene blue (MB) is a widely studied agent currently under investigation for its properties relating to photodynamic therapy (PDT). Recent studies have demonstrated that MB exhibits profound phototoxicity affecting a variety of tumor cell lines. However, the mechanistic explanation for methylene-blue-mediated photodynamic therapy (MB-PDT) in the context of melanoma therapy is still obscure. In the present study, B16F1 melanoma cells were treated by MB-PDT under different conditions, and thereafter subjected to cell viability detection assays. MB-PDT could induce intense apoptotic cell death through a series of steps beginning with the photochemical generation of reactive oxygen species that activate the caspase-9/caspase-3 apoptosis pathway. Blocking activation of caspase-3 and induction of oxidative stress by caspase inhibitor and by glutathione, respectively, markedly reduced apoptotic cell death in vitro. Importantly, proteomics study defining altered protein expression in treated cells suggests the involvement of several mitochondrial proteins playing important roles in electron transfer chain, implying mitochondrial dysfunction during the treatment. Furthermore, a transplantable mouse melanoma model was utilized to estimate the effectiveness of MB-PDT in vivo. The treated mice displayed decreased tumor size and prolonged survival days, which was associated with enhanced apoptotic cell death. These results, offering solid evidence of the induction of mitochondria-related apoptosis in tumor cells, reveal new aspects of MB-PDT having potential to be a palliative treatment of melanoma.
Collapse
Affiliation(s)
- Yongjun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
16
|
Effects of Cadmium on MAPK Signalling Pathways and HSP70 Expression in a Human Trophoblast Cell Line. Placenta 2008; 29:725-33. [DOI: 10.1016/j.placenta.2008.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/07/2008] [Accepted: 05/08/2008] [Indexed: 11/18/2022]
|
17
|
Kobayashi MS, Asai S, Ishikawa K, Nishida Y, Nagata T, Takahashi Y. Global profiling of influence of intra-ischemic brain temperature on gene expression in rat brain. ACTA ACUST UNITED AC 2008; 58:171-91. [PMID: 18440647 DOI: 10.1016/j.brainresrev.2008.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 02/08/2008] [Accepted: 03/08/2008] [Indexed: 12/20/2022]
Abstract
Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we screened 24000 genes in the hippocampus under hypothermic (32 degrees C), normothermic (37 degrees C), and hyperthermic (39 degrees C) conditions in a rat ischemia-reperfusion model. When the ischemic group at each intra-ischemic brain temperature was compared to a sham-operated control group, genes whose expression levels changed more than three-fold with statistical significance could be detected. In our screening condition, thirty-three genes (some of them novel) were obtained after screening, and extensive functional surveys and literature reviews were subsequently performed. In the hypothermic condition, many neuroprotective factor genes were obtained, whereas cell death- and cell damage-associated genes were detected as the brain temperature increased. At all intra-ischemic brain temperatures, multiple molecular chaperone genes were obtained. The finding that intra-ischemic brain temperature affects the expression level of many genes related to neuroprotection or neurotoxicity coincides with the different pathological outcomes at different brain temperatures, demonstrating the utility of the genetic approach.
Collapse
Affiliation(s)
- Megumi Sugahara Kobayashi
- Division of Genomic Epidemiology and Clinical Trials, Advanced Medical Research Center, Nihon University School of Medicine, Oyaguchi-Kami Machi, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Valbonesi P, Franzellitti S, Piano A, Contin A, Biondi C, Fabbri E. Evaluation of HSP70 Expression and DNA Damage in Cells of a Human Trophoblast Cell Line Exposed to 1.8 GHz Amplitude-Modulated Radiofrequency Fields. Radiat Res 2008; 169:270-9. [DOI: 10.1667/rr1061.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 10/05/2007] [Indexed: 11/03/2022]
|
19
|
Hoek KS. DNA microarray analyses of melanoma gene expression: a decade in the mines. ACTA ACUST UNITED AC 2007; 20:466-84. [DOI: 10.1111/j.1600-0749.2007.00412.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Marshall JC, Nantel A, Blanco P, Ash J, Cruess SR, Burnier MN. Transcriptional profiling of human uveal melanoma from cell lines to intraocular tumors to metastasis. Clin Exp Metastasis 2007; 24:353-62. [PMID: 17487557 DOI: 10.1007/s10585-007-9072-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 03/31/2007] [Indexed: 10/23/2022]
Abstract
Uveal melanoma is the most common primary intraocular tumor in adults and exclusively disseminates haematogenously in order to form metastases. The aim of this study was to measure the transcriptional profiles of human uveal melanoma cells isolated from a primary intraocular tumor, circulating malignant cells (CMCs), and metastases in order to elucidate the changes in gene expression associated with this progression. Human EST microarrays and universal reference RNA were used to measure the differences between tissue samples isolated from an immunosuppressed xenograft rabbit model of uveal melanoma. Cells were isolated from a single rabbit at the time of sacrifice from an intraocular tumor, peripheral blood, and metastasis. RNA was extracted from each sample and subjected to transcriptional profiling analysis. Results were compared to the transcriptional profiles previously obtained from the original cell line used for intraocular injections. Changes were verified using real-time PCR analysis. A total of 314 significant changes in gene expression were seen from the intraocular tumor to metastasis, as determined by transcript abundance. Principle Components Analysis was used to cluster these changes into four distinct groups. An additional 61 statistically significant changes were observed between the recultured and CMCs, with the latter believed to represent an intermediate step in the progression from intraocular tumor to metastasis. In conclusion, we have produced a detailed analysis of the transcriptional changes that take place as human uveal melanoma cells evolve from a primary tumor to metastasis in a xenograft animal model, including the decrease in expression of specific melanoma markers.
Collapse
Affiliation(s)
- Jean-Claude Marshall
- The Henry C. Witelson Ocular Pathology Laboratory and Registry, McGill University, 3775 University Street, Lyman Duff Building, Room 216, Montreal, QC, Canada, H3A 2B4.
| | | | | | | | | | | |
Collapse
|
21
|
Pastila R, Leszczynski D. Ultraviolet-A radiation induces changes in cyclin G gene expression in mouse melanoma B16-F1 cells. Cancer Cell Int 2007; 7:7. [PMID: 17474990 PMCID: PMC1871570 DOI: 10.1186/1475-2867-7-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 05/02/2007] [Indexed: 11/30/2022] Open
Abstract
Background We have previously shown that ultraviolet-A (UVA) radiation enhances metastatic lung colonization capacity of B16-F1 melanoma cells. The aim of this study was to examine changes in expression profile of genes in mouse melanoma B16-F1 cells exposed to UVA radiation. Results B16-F1 melanoma cells were exposed to a single UVA radiation dose of 8 J/cm2 and mRNA was isolated 4 h after the end of UVA exposure. Atlas™ Mouse Cancer 1.2 cDNA expression arrays were used for the large-scale screening to identify the genes involved in the regulation of carcinogenesis, tumor progression and metastasis. Physiologically relevant UVA dose induced differential expression in 9 genes in the UVA exposed melanoma cells as compared to the unexposed control cells. The expression of seven genes out of nine was upregulated (HSC70, HSP86, α-B-crystallin, GST mu2, Oxidative stress induced protein OSI, VEGF, cyclin G), whereas the expression of two genes was down-regulated (G-actin, non-muscle cofilin). The gene expression of cyclin G was mostly affected by UVA radiation, increasing by 4.85-folds 4 hour after exposure. The analysis of cyclin G protein expression revealed 1.36-fold increase at the 6 hour time point after UVA exposure. Cell cycle arrest in G2/M phase, which is known to be regulated by cyclin G, occurred at 4-h hour time-point, peaking 8 hours after the end of UVA irradiation, suggesting that cyclin G might play a role in the cell cycle arrest. Conclusion Our results suggest that UVA radiation-induces changes in the expression of several genes. Some of these changes, e.g. in expression of cyclin G, possibly might affect cell physiology (cell cycle arrest).
Collapse
Affiliation(s)
- Riikka Pastila
- Non-ionizing Radiation Laboratory; STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Dariusz Leszczynski
- Radiation Biology Laboratory; Department of Research and Environmental Surveillance, STUK-Radiation and Nuclear Safety Authority, Helsinki, Finland
| |
Collapse
|
22
|
Tsai KY, Tsao H. Primer on the human genome. J Am Acad Dermatol 2007; 56:719-35. [PMID: 17437886 DOI: 10.1016/j.jaad.2006.10.985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 08/21/2006] [Accepted: 10/31/2006] [Indexed: 11/20/2022]
Abstract
UNLABELLED The study of the expression patterns of many genes, or even the entire genome, is now routinely possible. Such powerful tools have enabled hypothesis-generating research at a scale never before possible. Moreover, spatially or temporally linked gene and protein expression, implying co-regulation and functional relatedness, has led to the identification of particular clusters of genes important for fundamental biologic processes, such as development and cancer. Not only is this expected to yield further mechanistic insights into disease processes, but perhaps most exciting, it will likely establish the foundation of predictive medicine, in which understanding of individual genomic signatures leads to the use of appropriately targeted therapy. LEARNING OBJECTIVE At the conclusion of this learning activity, participants should be able to understand the fundamental tenets of molecular biology as they relate to the field of genomics.
Collapse
|
23
|
Hegedüs M, Módos K, Rontó G, Fekete A. Validation of Phage T7 Biological Dosimeter by Quantitative Polymerase Chain Reaction Using Short and Long Segments of Phage T7 DNA ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780213voptbd2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Marrot L, Belaïdi JP, Jones C, Perez P, Meunler JR. Molecular Responses to Stress Induced in Normal Human Caucasian Melanocytes in Culture by Exposure to Simulated Solar UV¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb00196.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Mariani O, Brennetot C, Coindre JM, Gruel N, Ganem C, Delattre O, Stern MH, Aurias A. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 2007; 11:361-74. [PMID: 17418412 DOI: 10.1016/j.ccr.2007.02.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 08/16/2006] [Accepted: 02/08/2007] [Indexed: 01/12/2023]
Abstract
The human oncogene JUN encodes a component of the AP-1 complex and is consequently involved in a wide range of pivotal cellular processes, including cell proliferation, transformation, and apoptosis. Nevertheless, despite extensive analyses of its functions, it has never been directly involved in a human cancer. We demonstrate here that it is highly amplified and overexpressed in undifferentiated and aggressive human sarcomas, which are blocked at an early step of adipocyte differentiation. We confirm by cellular and xenograft mouse models recapitulating these sarcoma genetics that the failure to differentiate is dependent upon JUN amplification/overexpression.
Collapse
Affiliation(s)
- Odette Mariani
- Institut Curie, Genetics and Biology of Cancers, 26 rue d'Ulm, 75248 Paris cedex 05, France; INSERM U830, F-75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kis E, Szatmári T, Keszei M, Farkas R, Esik O, Lumniczky K, Falus A, Sáfrány G. Microarray analysis of radiation response genes in primary human fibroblasts. Int J Radiat Oncol Biol Phys 2006; 66:1506-14. [PMID: 17069989 DOI: 10.1016/j.ijrobp.2006.08.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/07/2006] [Accepted: 08/13/2006] [Indexed: 12/14/2022]
Abstract
PURPOSE To identify radiation-induced early transcriptional responses in primary human fibroblasts and understand cellular pathways leading to damage correction. METHODS AND MATERIALS Primary human fibroblast cell lines were irradiated with 2 Gy gamma-radiation and RNA isolated 2 h later. Radiation-induced transcriptional alterations were investigated with microarrays covering the entire human genome. Time- and dose dependent radiation responses were studied by quantitative real-time polymerase chain reaction (RT-PCR). RESULTS About 200 genes responded to ionizing radiation on the transcriptional level in primary human fibroblasts. The expression profile depended on individual genetic backgrounds. Thirty genes (28 up- and 2 down-regulated) responded to radiation in identical manner in all investigated cells. Twenty of these consensus radiation response genes were functionally categorized: most of them belong to the DNA damage response (GADD45A, BTG2, PCNA, IER5), regulation of cell cycle and cell proliferation (CDKN1A, PPM1D, SERTAD1, PLK2, PLK3, CYR61), programmed cell death (BBC3, TP53INP1) and signaling (SH2D2A, SLIC1, GDF15, THSD1) pathways. Four genes (SEL10, FDXR, CYP26B1, OR11A1) were annotated to other functional groups. Many of the consensus radiation response genes are regulated by, or regulate p53. Time- and dose-dependent expression profiles of selected consensus genes (CDKN1A, GADD45A, IER5, PLK3, CYR61) were investigated by quantitative RT-PCR. Transcriptional alterations depended on the applied dose, and on the time after irradiation. CONCLUSIONS The data presented here could help in the better understanding of early radiation responses and the development of biomarkers to identify radiation susceptible individuals.
Collapse
Affiliation(s)
- Enikö Kis
- Department of Molecular and Tumor Radiobiology, NCPH-Frederic Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yang G, Zhang G, Pittelkow MR, Ramoni M, Tsao H. Expression Profiling of UVB Response in Melanocytes Identifies a Set of p53-Target Genes. J Invest Dermatol 2006; 126:2490-506. [PMID: 16888633 DOI: 10.1038/sj.jid.5700470] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Epidermal melanocytes execute specific physiological programs in response to UV radiation (UVR) at the cutaneous interface. Many melanocytic responses, including increased dendrite formation, enhanced melanogenesis/melanization, and cell cycle arrest impact the ability of melanocytes to survive and to attenuate the UVR insult. Although some of the molecules that underlie these UVR programs are known, a coherent view of UVR-induced transcriptional changes is lacking. Using primary melanocyte cultures, we assessed for UVR-mediated alterations in over 47,000 transcripts using Affymetrix Human Genome U133 Plus 2.0 microarrays. From the 100 most statistically robust changes in transcript level, there were 84 genes that were suppressed >2.0-fold by UVR; among these transcripts, the identities of 48 of these genes were known. Similarly, there were 99 genes that were induced >2.0-fold by UVR; the identity of 57 of these genes were known. We then subjected these top 100 changes to the Ingenuity Pathway analysis program and identified a group of p53 targets including the cell cycle regulator CDKN1A (p21CIP), the WNT pathway regulator DKK1 (dickkopf homolog 1), the receptor tyrosine kinase EPHA2, growth factor GDF15, ferrodoxin reductase (FDXR), p53-inducible protein TP53I3, transcription factor ATF3, DNA repair enzyme DDB2, and the beta-adrenergic receptor ADBR2. These genes were also found to be consistently elevated by UVR in six independent melanocyte lines, although there were interindividual variations in magnitude. WWOX, whose protein product interacts and regulates p53 and p73, was found to be consistently suppressed by UVR. There was also a subgroup of neurite/axonal developmental genes that were altered in response to UVR, suggesting that melanocytic and neuronal arborization may share similar mechanisms. When compared to melanomas, the basal levels of many of these p53-responsive genes were greatly dysregulated. Three genes--CDKN1A, DDB2 and ADRB2--exhibited a trend towards loss of expression in melanomas thereby raising the possibility of a linked role in tumorigenesis. These expression data provide a global view of UVR-induced changes in melanocytes and, more importantly, generate novel hypotheses regarding melanocyte physiology.
Collapse
Affiliation(s)
- Guang Yang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
28
|
Hazane F, Valenti K, Sauvaigo S, Peinnequin A, Mouret C, Favier A, Beani JC. Ageing effects on the expression of cell defence genes after UVA irradiation in human male cutaneous fibroblasts using cDNA arrays. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2006; 79:171-90. [PMID: 15896644 DOI: 10.1016/j.jphotobiol.2005.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 02/03/2005] [Accepted: 02/03/2005] [Indexed: 11/23/2022]
Abstract
Ageing is a multifactorial process in which reactive oxygen species (ROS) are thought to be implicated. ROS cause oxidative alterations on cell constituents, and damage accumulation can lead to mutations in DNA. Modulation of gene expression during ageing is now quite documented but results are often controversial and/or incomplete. As ultraviolet A is one of the exogenous factors involved in skin ageing, by the production of ROS, we further document the modifications in gene expression during ageing process and response to an oxidative stress. For this purpose, we used a cDNA macroarray containing 82 genes related to cell defence, essentially represented by antioxidant and DNA repair proteins. Ageing-associated gene expression was assessed in normal skin human fibroblasts from three age groups: children (n=4), adults (n=4) and olders (n=3), at the basal state and after a 5J/cm2 UVA irradiation. Analysis revealed that 22 genes were never detected, whereas certain were always expressed such as those related to antioxidant defence, extracellular matrix (ECM) regulator and XPC. Transcripts related to ECM, MMP1 and MMP3 were increased with age and after UVA irradiation, independently of age. It appeared that transcripts involved in the redox status control (TXN and APEX) decreased as a function of age, at the basal state and after irradiation, respectively. Most of transcripts involved in DNA repair were not detected but repression of POLD1 in the adult group and induction of XRCC5 and LIG4 were observed after UVA irradiation, as a function of age. In the basal state, the transcript of GAS1, regulator of cell cycle arrest in G1 phase was found to be decreased with age. HMOX1 increased after UVA irradiation. In conclusion, the decrease in expression of some antioxidant system, cell cycle control gene and extracellular matrix enzymes, particularly after UV exposure can explain the occurrence of photoaging.
Collapse
Affiliation(s)
- Florence Hazane
- Laboratoire Oligoéléments et Résistance au Stress Oxydant induit par les Xénobiotiques, Université Joseph Fourier, UFR de Médecine et Pharmacie, Domaine de la Merci, 38700 La Tronche, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Passe CMM, Cooper G, Quirk CC. The murine p8 gene promoter is activated by activating transcription factor 4 (ATF4) in the gonadotrope-derived LbetaT2 cell line. Endocrine 2006; 30:81-91. [PMID: 17185796 DOI: 10.1385/endo:30:1:81] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/09/2006] [Accepted: 06/22/2006] [Indexed: 11/11/2022]
Abstract
The factor p8 is a high mobility group (HMG) A family member that is upregulated during the cellular stress response in numerous tissues. Because expression of this protein encourages cellular transformation, our goal is to characterize the mechanism by which the p8 gene is regulated. Using LbetaT2 cells as a model of a transformed cell in which p8 plays a role in tumor formation, we dissected the p8 promoter into its minimal functional units and found that activating transcription factor 4 (ATF4), a factor also upregulated during cellular stress responses, enhances p8 promoter activity in a dose-dependent manner. In addition, ATF4 binds in the highly conserved major activation domain of the p8 proximal promoter between -130 and -100 bp. Furthermore, we show that six of the nine base pairs that encompass the putative element are essential for ATF4 binding. These findings increase our knowledge of the mechanisms regulating the p8 gene in a genetically defined tumor model.
Collapse
|
30
|
Kim MS, Diamond SL. Photocleavage of o-nitrobenzyl ether derivatives for rapid biomedical release applications. Bioorg Med Chem Lett 2006; 16:4007-10. [PMID: 16713258 DOI: 10.1016/j.bmcl.2006.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 01/09/2023]
Abstract
The externally controlled cleavage of covalently linked prodrugs, proteins, or solid-phase formulation vehicles offers potential advantages for controlled drug or gene delivery. A series of o-nitrobenzyl ester compounds (1-8) were synthesized to allow a systematic study of photolability. The o-nitrobenzyl ester was strictly required for photolability, while imido esters were not photolabile. The degradation kinetics of 1-o-phenylethyl ester was an order of magnitude faster than that of o-nitrobenzyl ester. Tosylate, phosphate, and benzoate derivatives of 1-o-nitrophenylethyl displayed similar photolability (>80% decomposition within 10 min at 3.5 mW/cm2 at 365 nm). O-o-Nitrobenzyl O',O''-diethyl phosphate displayed the fastest decomposition at photoirradiation condition (3.5 mW/cm2, 365 nm) suitable for biological systems. We report the synthesis and photo-decomposition of 1-o-nitrophenylethyl derivatives amenable for the creation of photolabile prodrugs or formulation particles for drug depots, DNA condensation, or tissue engineering applications.
Collapse
Affiliation(s)
- Moon Suk Kim
- Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, 1024 Vagelos Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
31
|
Frötschl R, Weickardt S, Staszewski S, Kaufmann G, Kasper P. Effects of chlorpromazine with and without UV irradiation on gene expression of HepG2 cells. Mutat Res 2005; 575:47-60. [PMID: 15924885 DOI: 10.1016/j.mrfmmm.2005.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 03/04/2005] [Accepted: 03/10/2005] [Indexed: 05/02/2023]
Abstract
Damage to DNA can trigger a variety of stress-related signals that alter the expression of genes associated with numerous biological pathways. In this study, we have used a cDNA microarray representing 1089 genes related to DNA damage and repair, cell cycle, transcription, metabolism and other toxicologically important cell functions to identify genes regulated in response to DNA damage in HepG2 cells induced by UV-activated chlorpromazine (CPZ). CPZ itself is not genotoxic but, upon UV irradiation with a non-genotoxic dose in the UVA range, it produces reactive free radical intermediates with DNA damaging properties. Genotoxicity in HepG2 cells was assessed concomitantly to gene expression profiling using the Comet assay. Kinetic studies were performed at a non-cytotoxic but clearly photogenotoxic concentration of CPZ (1.25 microg/ml) to characterize gene expression profiles at four different time points (3, 7, 15, 23 h) post short-term treatment. The results obtained from repeated experiments display a time-dependent expression pattern of up-regulated and repressed genes with distinct peaks in the number of differentially expressed genes at the 7 and 23 h time points. Most of the genes with altered expression belonged to the functional categories of cell cycle regulation and cell proliferation. A comparison with published expression profiles established in response to other genotoxic compounds showed low levels of concordance, which is most likely caused by the fact that extremely different testing conditions were used.
Collapse
Affiliation(s)
- Roland Frötschl
- Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany.
| | | | | | | | | |
Collapse
|
32
|
Keeton AB, Bortoff KD, Franklin JL, Messina JL. Blockade of rapid versus prolonged extracellularly regulated kinase 1/2 activation has differential effects on insulin-induced gene expression. Endocrinology 2005; 146:2716-25. [PMID: 15731359 DOI: 10.1210/en.2004-1662] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present work, insulin's regulation of expression of activating transcription factor 3 (ATF-3), the putative transcription factor proline-rich induced protein (Pip)92, and insulin-inducible gene-1 (Insig-1) (an ER resident protein involved in regulation of sterol-responsive element-binding protein 1 activation) have been examined in a liver-derived cell line (rat H4IIE hepatoma cells). We report that: 1) insulin-induced transcription of ATF-3, Pip92, and Insig-1 required MEK-ERK activation; 2) insulin-induced transcription of ATF-3 and Pip92 reached maximum levels within 15 min and was blocked by wortmannin but not LY294002; 3) in contrast, the maximum level of insulin-induced transcription of Insig-1 was delayed and was not blocked by either wortmannin or LY294002; 4) insulin activated ERK1/2 in two distinct phases, a rapid peak and a later plateau; 5) the delayed plateau phase of insulin-induced ERK1/2 activation was partially phosphatidylinositol 3-OH-kinase dependent; and 6) however, the rapid, insulin-induced peak of ERK1/2 activation was blocked by wortmannin but not LY294002.
Collapse
Affiliation(s)
- Adam B Keeton
- Department of Pathology, Division of Molecular and Cellular Pathology, Volker Hall, G019, 1670 University Boulevard, University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | |
Collapse
|
33
|
Kroll TM, Bommiasamy H, Boissy RE, Hernandez C, Nickoloff BJ, Mestril R, Le Poole IC. 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 2005; 124:798-806. [PMID: 15816839 PMCID: PMC1747533 DOI: 10.1111/j.0022-202x.2005.23653.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The trigger initiating an autoimmune response against melanocytes in vitiligo remains unclear. Patients frequently experience stress to the skin prior to depigmentation. 4-tertiary butyl phenol (4-TBP) was used as a model compound to study the effects of stress on melanocytes. Heat shock protein (HSP)70 generated and secreted in response to 4-TBP was quantified. The protective potential of stress proteins generated following 4-TBP exposure was examined. It was studied whether HSP70 favors dendritic cell (DC) effector functions as well. Melanocytes were more sensitive to 4-TBP than fibroblasts, and HSP70 generated in response to 4-TBP exposure was partially released into the medium by immortalized vitiligo melanocyte cell line PIG3V. Stress protein HSP70 in turn induced membrane tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and activation of DC effector functions towards stressed melanocytes. Melanocytes exposed to 4-TBP demonstrated elevated TRAIL death receptor expression. DC effector functions were partially inhibited by blocking antibodies to TRAIL. TRAIL expression and infiltration by CD11c+ cells was abundant in perilesional vitiligo skin. Stressed melanocytes may mediate DC activation through release of HSP70, and DC effector functions appear to play a previously unappreciated role in progressive vitiligo.
Collapse
Affiliation(s)
- Tara M. Kroll
- Department of Pathology/Oncology Institute, Loyola University, Chicago, Illinois, USA
| | - Hemamalini Bommiasamy
- Department of Pathology/Oncology Institute, Loyola University, Chicago, Illinois, USA
| | | | | | - Brian J. Nickoloff
- Department of Pathology/Oncology Institute, Loyola University, Chicago, Illinois, USA
| | - Ruben Mestril
- Department of Physiology/Cardiovascular Institute, Loyola University, Chicago, Illinois, USA
| | - I. Caroline Le Poole
- Department of Pathology/Oncology Institute, Loyola University, Chicago, Illinois, USA
- Address correspondence to: I. Caroline Le Poole, PhD, Cardinal Bernardin Cancer Center, Rm 203, Loyola University Medical Center, 2160 S. 1st Avenue, Maywood, Illinois 60153, USA.
| |
Collapse
|
34
|
Sellheyer K, Belbin TJ. DNA microarrays: from structural genomics to functional genomics. The applications of gene chips in dermatology and dermatopathology. J Am Acad Dermatol 2005; 51:681-92; quiz 693-6. [PMID: 15523345 DOI: 10.1016/j.jaad.2004.03.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The human genome project was successful in sequencing the entire human genome and ended earlier than expected. The vast genetic information now available will have far-reaching consequences for medicine in the twenty-first century. The knowledge gained from the mapping and sequencing of human genes on a genome-wide scale--commonly referred to as structural genomics--is prerequisite for studies that focus on the functional aspects of genes. A recently invented technique, known as gene chip, or DNA microarray, technology, allows the study of the function of thousands of genes at once, thereby opening the door to the new field of functional genomics. At its core, the DNA microarray utilizes a unique feature of DNA known as complementary hybridization. As such, it is not different from Southern (DNA) blot or northern (RNA) blot hybridizations, or the polymerase chain reaction, with the exception that it allows expression profiling of the entire human genome in a single hybridization experiment. The article highlights the principles, technology, and applications of DNA microarrays as they pertain to the field of dermatology and dermatopathology. The most important applications are the gene expression profiling of skin cancer, especially of melanoma. Other potential applications include gene expression profiling of inflammatory skin diseases, the mutational analysis of genodermatoses, and polymorphism screening, as well as drug development and chemosensitivity prediction. cDNA microarrays will shape the diagnostic approach of the dermatology and the dermatopathology of the future and may lead to new therapeutic options.
Collapse
Affiliation(s)
- Klaus Sellheyer
- Department of Dermatology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
35
|
Champier J, Jouvet A, Rey C, Brun V, Bernard A, Fèvre-Montange M. Identification of differentially expressed genes in human pineal parenchymal tumors by microarray analysis. Acta Neuropathol 2005; 109:306-13. [PMID: 15627204 DOI: 10.1007/s00401-004-0964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/08/2004] [Accepted: 11/08/2004] [Indexed: 10/26/2022]
Abstract
Human pineal parenchymal tumors (PPTs) are rare tumors, and little is known about their molecular pathogenesis. We used Atlas plastic human 8 K microarray analysis to identify the genes expressed in four human PPTs of different grades, in normal brain tissue and in a normal fetal pineal gland. We selected the most highly expressed genes in PPT (n=39) and compared their expression to that both in normal brain and fetal pineal gland. Nine genes were expressed more than twice as strongly and 3 at about half the level in PPT. Furthermore, real-time reverse transcription-PCR was performed to compare mRNA levels in the four PPTs, in four medulloblastomas (MBs) (the most common type of similar embryonal neoplasm in the cerebellum), and in normal brain, for 9 of the 39 genes. Among genes showing an expression similar to that obtained with microarray, puromycin-sensitive aminopeptidase and teratocarcinoma-derived growth factor 3 were up-regulated in PPT and in MB, and adenomatous polyposis coli like was down-regulated only in PPT. Up-regulated expression of chromosome 17 open reading frame 1A was seen in high-grade PPT and in MB, but not in lower grade PPT. In conclusion, our results identified a number of genes that are differentially expressed in PPT and MB, and some of them may serve as prognostic markers and can be used to define mechanisms of tumorigenesis.
Collapse
Affiliation(s)
- Jacques Champier
- INSERM U433, Faculté de Médecine RTH Laennec, 69372, Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
36
|
Marrot L, Belaïdi JP, Jones C, Perez P, Meunier JR. Molecular Responses to Stress Induced in Normal Human Caucasian Melanocytes in Culture by Exposure to Simulated Solar UV¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-10-13-ra-343.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Yu J, de Belle I, Liang H, Adamson ED. Coactivating factors p300 and CBP are transcriptionally crossregulated by Egr1 in prostate cells, leading to divergent responses. Mol Cell 2004; 15:83-94. [PMID: 15225550 DOI: 10.1016/j.molcel.2004.06.030] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 05/10/2004] [Accepted: 05/13/2004] [Indexed: 11/25/2022]
Abstract
Related coactivators p300 and CBP affect the transcriptional activities of many transcription factors (TF), producing multiple downstream effects. Here we show that immediate early response TF, Egr1, acts upstream of p300/CBP to induce or to repress transcription, depending on the stimulus. Cells induced with serum to increase endogenous Egr1 increase the transcription of p300/CBP only when Egr1 binding sites in the promoter are not mutated, causing the expression of downstream targets of Egr1 which leads to survival and growth. Induction of p300/CBP by Egr1 results in acetylation and stabilization of Egr1 and transactivation of survival genes but repression of Egr1 and p300/CBP in negative feedback loops. In contrast, induction of Egr1 by UV-C irradiation leads to repression of p300/CBP transcription: Egr1 is preferentially phosphorylated, leading to regulation of target genes that cause cell death. This complex balance of opposing effects appears to finely modulate important cellular life and death responses.
Collapse
Affiliation(s)
- Jianxiu Yu
- The Burnham Institute, Cancer Research Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
38
|
Putney LK, Barber DL. Expression profile of genes regulated by activity of the Na-H exchanger NHE1. BMC Genomics 2004; 5:46. [PMID: 15257760 PMCID: PMC499544 DOI: 10.1186/1471-2164-5-46] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 07/16/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In mammalian cells changes in intracellular pH (pHi), which are predominantly controlled by activity of plasma membrane ion exchangers, regulate a diverse range of normal and pathological cellular processes. How changes in pHi affect distinct cellular processes has primarily been determined by evaluating protein activities and we know little about how pHi regulates gene expression. RESULTS A global profile of genes regulated in mammalian fibroblasts by decreased pHi induced by impaired activity of the plasma membrane Na-H exchanger NHE1 was characterized by using cDNA microarrays. Analysis of selected genes by quantitative RT-PCR, TaqMan, and immunoblot analyses confirmed results obtained from cDNA arrays. Consistent with established roles of pHi and NHE1 activity in cell proliferation and oncogenic transformation, grouping regulated genes into functional categories and biological pathways indicated a predominant number of genes with altered expression were associated with growth factor signaling, oncogenesis, and cell cycle progression. CONCLUSION A comprehensive analysis of genes selectively regulated by pHi provides insight on candidate targets that might mediate established effects of pHi on a number of normal and pathological cell functions.
Collapse
Affiliation(s)
- Luanna K Putney
- Department of Stomatology, University of California San Francisco, San Francisco, CA 94143, USA
- Office of Research Technology Transfer Center, University of California, Davis, Davis, CA 95616, USA
| | - Diane L Barber
- Department of Stomatology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
39
|
Koch-Paiz CA, Amundson SA, Bittner ML, Meltzer PS, Fornace AJ. Functional genomics of UV radiation responses in human cells. Mutat Res 2004; 549:65-78. [PMID: 15120963 DOI: 10.1016/j.mrfmmm.2004.01.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Revised: 01/26/2004] [Accepted: 01/26/2004] [Indexed: 11/25/2022]
Abstract
The gene expression responses of MCF-7, a p53 wild-type (wt) human cell line, were monitored by cDNA microarray hybridization after exposure to different wavelengths of UV irradiation. Equitoxic doses of UVA, UVB, and UVC radiation were used to reduce survival to 37%. The effects of suramin, a signal pathway inhibitor, on the gene expression responses to the three UV wavelengths were also compared in this model system. UVB radiation triggered the broadest gene expression responses, and 172 genes were found to be consistently responsive in at least two-thirds of independent UVB experiments. These UVB radiation-responsive genes encode proteins with diverse cellular roles including cell cycle control, DNA repair, signaling, transcription, protein synthesis, protein degradation, and RNA metabolism. The set of UVB-responsive genes included most of the genes responding to an equitoxic dose of UVC radiation, plus additional genes that were not strongly triggered by UVC radiation. There was also some overlap with genes responding to an equitoxic dose of UVA radiation, although responses to this lower energy UV radiation were overall weaker. Signaling through growth factor receptors and other cytokine receptors was shown to have a major role in mediating UV radiation stress responses, as suramin, which inhibits such receptors, attenuated responses to UV radiation in nearly all the cases. Inhibition by suramin was greater for UVC than for UVB irradiation. This probably reflects the more prominent role in UVB damage response of signaling by reactive oxygen species, which would not be affected by suramin. Our results with suramin demonstrate the power of cDNA microarray hybridization to illuminate the global effects of a pharmacologic inhibitor on cell signaling.
Collapse
|
40
|
Abstract
Reactive oxygen species (ROS) are associated not only with initiation, but also with promotion and progression in the multistage carcinogenesis model. In the present review, we will focus on the involvement of ROS in skin carcinogenesis, especially that induced by ultraviolet (UV) radiation. UV-specific DNA damage has been well studied thus far. However, recent reports have revealed the previously unknown participation of oxidative stress in UV-induced skin carcinogenesis. Indeed, in addition to transition-type mutations at dipyrimidine sites, G:C to T:A transversions, which may be induced by the presence of 8-oxoguanine during DNA replication, are frequently observed in the ras oncogene and p53 tumor suppressor gene in human skin cancers of sun-exposed areas and in UV-induced mouse skin cancers. Recent studies have shown that not only UV-B, but also UV-A is involved in UV-induced carcinogenesis. A wide variety of biological phenomena other than direct influence by UV, such as inflammatory and immunological responses and oxidative modifications of DNA and proteins, appear to play roles in UV-induced skin carcinogenesis. Furthermore, it has become clear that genetic diseases such as xeroderma pigmentosum show deficient repair of oxidatively modified DNA lesions. The involvement of ROS in skin carcinogeneisis caused by arsenic and chemical carcinogens will also be discussed.
Collapse
Affiliation(s)
- Chikako Nishigori
- Division of Dermatology, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan.
| | | | | |
Collapse
|
41
|
Czyz J, Guan K, Zeng Q, Nikolova T, Meister A, Schönborn F, Schuderer J, Kuster N, Wobus AM. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics 2004; 25:296-307. [PMID: 15114639 DOI: 10.1002/bem.10199] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Effects of electromagnetic fields (EMF) simulating exposure to the Global System for Mobile Communications (GSM) signals were studied using pluripotent embryonic stem (ES) cells in vitro. Wild-type ES cells and ES cells deficient for the tumor suppressor p53 were exposed to pulse modulated EMF at 1.71 GHz, lower end of the uplink band of GSM 1800, under standardized and controlled conditions, and transcripts of regulatory genes were analyzed during in vitro differentiation. Two dominant GSM modulation schemes (GSM-217 and GSM-Talk), which generate temporal changes between GSM-Basic (active during talking phases) and GSM-DTX (active during listening phases thus simulating a typical conversation), were applied to the cells at and below the basic safety limits for local exposures as defined for the general public by the International Commission on Nonionizing Radiation Protection (ICNIRP). GSM-217 EMF induced a significant upregulation of mRNA levels of the heat shock protein, hsp70 of p53-deficient ES cells differentiating in vitro, paralleled by a low and transient increase of c-jun, c-myc, and p21 levels in p53-deficient, but not in wild-type cells. No responses were observed in either cell type after EMF exposure to GSM-Talk applied at similar slot-averaged specific absorption rates (SAR), but at lower time-averaged SAR values. Cardiac differentiation and cell cycle characteristics were not affected in embryonic stem and embryonic carcinoma cells after exposure to GSM-217 EMF signals. Our data indicate that the genetic background determines cellular responses to GSM modulated EMF. Bioelectromagnetics 25:296-307, 2004.
Collapse
Affiliation(s)
- Jaroslaw Czyz
- In Vitro Differentiation Group, Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abe T, Oue N, Yasui W, Ryoji M. Rapid and preferential induction of ATF3 transcription in response to low doses of UVA light. Biochem Biophys Res Commun 2003; 310:1168-74. [PMID: 14559238 DOI: 10.1016/j.bbrc.2003.09.143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Long-wavelength UV light (UVA) is known to induce transcription of various genes in the cell and to cause a variety of pathological or protective responses in the skin. To find additional UVA-responsive genes, human skin-derived fibroblasts were exposed to UVA under non- or partially lethal conditions, and the effects of UVA on the transcriptional profile were examined by using DNA microarray and RT-PCR. Transcription of several genes including those already known to be UVA-responsive was induced to a significant extent under 50% lethal conditions of exposure. Among those, ATF3 was the most sensitive and its transcription was increased 10-fold within 1h. Even at a non-lethal dose of UVA (8J/cm(2)), it was increased 8-fold, if cells were cultured for 3h post-exposure. Typical immediate-early genes such as c-fos and c-jun were not affected at this dose. We thus suggest that ATF3 could be a key regulator for a variety of cellular responses in the skin, particularly to low doses of UVA.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory of Molecular Biology, Department of Bioresources, Hiroshima Prefectural University, 562 Nanatsuka, Shobara, Hiroshima 727-0023, Japan
| | | | | | | |
Collapse
|
43
|
Hegedüs M, Módos K, Rontó G, Fekete A. Validation of phage T7 biological dosimeter by quantitative polymerase chain reaction using short and long segments of phage T7 DNA. Photochem Photobiol 2003; 78:213-9. [PMID: 14556305 DOI: 10.1562/0031-8655(2003)078<0213:voptbd>2.0.co;2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phage T7 can be used as a biological dosimeter; its reading, the biologically effective dose (BED), is proportional to the inactivation rate |ln (n/n0)|. For the measurement of DNA damage in phage T7 dosimeter, a quantitative polymerase chain reaction (QPCR) methodology has been developed using 555 and 3826 bp fragments of phage T7 DNA. Both optimized reactions are so robust that an equally good amplification was obtained when intact phage T7 was used in the reaction mixture. In the biologically relevant dose range a good correlation was obtained between the BED of the phage T7 dosimeter and the amount of ultraviolet (UV) photoproducts determined by QPCR with both fragments under the effect of five various UV sources. A significant decrease in the yield of photoproducts was detected by QPCR in isolated T7 DNA and in heated phage compared with intraphage DNA with all irradiation sources. Because the yield of photoproducts was the same in B, C and A conformational states of T7 DNA, a possible explanation for modulation of photoproduct frequency in intraphage T7 DNA is that the presence of bound phage proteins induces an alteration in DNA structure that can result in increased induction of photoproducts.
Collapse
Affiliation(s)
- M Hegedüs
- Institute of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | | | | | | |
Collapse
|
44
|
Rouzaud F, Annereau JP, Valencia JC, Costin GE, Hearing VJ. Regulation of melanocortin 1 receptor expression at the mRNA and protein levels by its natural agonist and antagonist. FASEB J 2003; 17:2154-6. [PMID: 14500544 DOI: 10.1096/fj.03-0206fje] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Five melanocortin receptors, which form a subfamily of G protein-coupled receptors, are expressed in mammalian tissues and regulate such diverse physiological processes as pigmentation, adrenal function, energy homeostasis, feeding efficiency, and sebaceous gland lipid production, as well as immune and sexual function. Pigmentation in mammals is stimulated by alpha-melanocyte stimulating hormone (MSH), which binds to the melanocortin 1 receptor (Mc1r) and induces an activation of melanogenic enzymes through stimulation of adenylate cyclase and protein kinase A. The antagonist agouti signal protein (ASP) interacts with the Mc1r and blocks its stimulation by MSH. We examined the influence of ASP or MSH on Mc1r gene expression, and we report that both ligands influence the Mc1r 5' promoter structure in distinct manners. Our study further shows that MSH regulates Mc1r function at both the mRNA and protein levels, whereas ASP acts only on its translation.
Collapse
Affiliation(s)
- Francois Rouzaud
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
45
|
Baldi A, Santini D, De Luca A, Paggi MG. cDNA array technology in melanoma: an overview. J Cell Physiol 2003; 196:219-23. [PMID: 12811814 DOI: 10.1002/jcp.10255] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic aberrations, mostly resulting in changes in gene expression, are critical events in cancer onset and progression. The advent of the cDNA array technology allows the screening and the efficient measurement of expression of thousands genes simultaneously in a wide spectrum of experimental and clinical models. This genomic scale approach is being currently used to obtain global views of human cancer gene expression and to identify genetic markers that might be important for diagnosis, prognosis, and therapy. This review discusses some recent findings obtained by means of cDNA arrays investigating the human melanoma.
Collapse
Affiliation(s)
- Alfonso Baldi
- Regina Elena Cancer Institute, CRS, Via delle Messi d'Oro, Rome, Italy
| | | | | | | |
Collapse
|
46
|
Befort K, Karchewski L, Lanoue C, Woolf CJ. Selective up-regulation of the growth arrest DNA damage-inducible gene Gadd45 alpha in sensory and motor neurons after peripheral nerve injury. Eur J Neurosci 2003; 18:911-22. [PMID: 12925017 DOI: 10.1046/j.1460-9568.2003.02827.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The growth arrest and DNA damage-inducible gene 45 alpha (Gadd45a) was one of 240 genes found previously by high density oligonucleotide microarray analysis to be regulated in the rat L4 and L5 dorsal root ganglia 3 days after transection of the sciatic nerve (>four-fold up-regulation). The Gadd45a mRNA expression profile investigated by northern blot, RNase protection assay and in situ hybridization in the rat shows negligible constitutive mRNA levels in embryonic, neonatal or adult intact dorsal root ganglia. Within 24 h of a sciatic nerve injury, a very large induction is found that persists for as long as regeneration of injured fibres is prevented by peripheral nerve ligation. When axons are allowed to regrow following sciatic nerve crush injury, Gadd45a expression is terminated at later time points, when levels of other markers of injury return towards normal. Colocalization with activating transcription factor 3-LI and c-jun mRNA implies that all peripherally injured primary sensory and motor neurons express Gadd45a mRNA. Injury to the central axons of dorsal root ganglion neurons produces only a minimal induction of Gadd45a while peripheral inflammation is without effect. Gadd45a is a specific marker of the presence of peripheral axonal injury in adult primary sensory and motor neurons.
Collapse
Affiliation(s)
- Katia Befort
- Neural Plasticity Research Group, Department of Anaesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | | | | | | |
Collapse
|
47
|
Dooley TP, Curto EV, Davis RL, Grammatico P, Robinson ES, Wilborn TW. DNA microarrays and likelihood ratio bioinformatic methods: discovery of human melanocyte biomarkers. PIGMENT CELL RESEARCH 2003; 16:245-53. [PMID: 12753397 DOI: 10.1034/j.1600-0749.2003.00036.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this article, some of the advantages and limitations of DNA microarray technologies for gene expression profiling are summarized. As a model experiment, DermArray DNA microarrays were utilized to identify potential biomarkers of cultured normal human melanocytes in two different experimental comparisons. In the first case, melanocyte RNA was compared with vastly dissimilar non-melanocytic RNA samples of normal skin keratinocytes and fibroblasts. In the second case, melanocyte RNA was compared with a primary cutaneous melanoma line (MS7) and a metastatic melanoma cell line (SKMel-28). The alternative approaches provide dramatically different lists of 'normal melanocyte' biomarkers. The most robust biomarkers were identified using principal component analysis bioinformatic methods related to likelihood ratios. Only three of 25 robust biomarkers in the melanocyte-proximal study (i.e. melanocytes vs. melanoma cells) were coincidentally identified in the melanocyte-distal study (i.e. melanocytes vs. non-melanocytic cells). Selected up-regulated biomarkers of melanocytes (i.e. TRP-1, melan-A/MART-1, silver/Pmel17, and nidogen-2) were validated by qRT-PCR. Some of the melanocytic biomarkers identified here may be useful in molecular diagnostics, as potential molecular targets for drug discovery, and for understanding the biochemistry of melanocytic cells.
Collapse
|