1
|
Sun X, Xiao C, Wang X, Wu S, Yang Z, Sui B, Song Y. Role of post-translational modifications of Sp1 in cancer: state of the art. Front Cell Dev Biol 2024; 12:1412461. [PMID: 39228402 PMCID: PMC11368732 DOI: 10.3389/fcell.2024.1412461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Specific protein 1 (Sp1) is central to regulating transcription factor activity and cell signaling pathways. Sp1 is highly associated with the poor prognosis of various cancers; it is considered a non-oncogene addiction gene. The function of Sp1 is complex and contributes to regulating extensive transcriptional activity, apart from maintaining basal transcription. Sp1 activity and stability are affected by post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, glycosylation, and SUMOylation. These modifications help to determine genetic programs that alter the Sp1 structure in different cells and increase or decrease its transcriptional activity and DNA binding stability in response to pathophysiological stimuli. Investigating the PTMs of Sp1 will contribute to a deeper understanding of the mechanism underlying the cell signaling pathway regulating Sp1 stability and the regulatory mechanism by which Sp1 affects cancer progression. Furthermore, it will facilitate the development of new drug targets and biomarkers, thereby elucidating considerable implications in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Chinese Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyang Wang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhendong Yang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bowen Sui
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Yin BK, Wang ZQ. Beyond HAT Adaptor: TRRAP Liaisons with Sp1-Mediated Transcription. Int J Mol Sci 2021; 22:12445. [PMID: 34830324 PMCID: PMC8625110 DOI: 10.3390/ijms222212445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
The members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family play vital roles in multiple biological processes, including DNA damage response, metabolism, cell growth, mRNA decay, and transcription. TRRAP, as the only member lacking the enzymatic activity in this family, is an adaptor protein for several histone acetyltransferase (HAT) complexes and a scaffold protein for multiple transcription factors. TRRAP has been demonstrated to regulate various cellular functions in cell cycle progression, cell stemness maintenance and differentiation, as well as neural homeostasis. TRRAP is known to be an important orchestrator of many molecular machineries in gene transcription by modulating the activity of some key transcription factors, including E2F1, c-Myc, p53, and recently, Sp1. This review summarizes the biological and biochemical studies on the action mode of TRRAP together with the transcription factors, focusing on how TRRAP-HAT mediates the transactivation of Sp1-governing biological processes, including neurodegeneration.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Fu PY, Hu B, Ma XL, Tang WG, Yang ZF, Sun HX, Yu MC, Huang A, Hu JW, Zhou CH, Fan J, Xu Y, Zhou J. Far upstream element-binding protein 1 facilitates hepatocellular carcinoma invasion and metastasis. Carcinogenesis 2021; 41:950-960. [PMID: 31587040 DOI: 10.1093/carcin/bgz171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Previous research suggests that far upstream element-binding protein 1 (FUBP1) plays an important role in various tumors including epatocellular carcinoma (HCC). However, the role of FUBP1 in liver cancer remains controversial, and the regulatory pathway by FUBP1 awaits to be determined. This study aims to identify the role of FUBP1 in HCC progression. Our result shows that the high level of FUBP1 expression in HCC predicts poor prognosis after surgery. Overexpression of FUBP1 promotes HCC proliferation, invasion, and metastasis by activating transforming growth factor-β (TGF-β)/Smad pathway and enhancing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Inhibitor of Thrombospondin-1 (LSKL) could inhibit HCC proliferation and invasion in vitro and in vivo by blocking the activation of TGF-β/Smad pathway mediated by thrombospondin-1 (THBS1). Our study identified the critical role of FUBP1-THBS1-TGF-β signaling axis in HCC and provides potentially new therapeutic modalities in HCC.
Collapse
Affiliation(s)
- Pei-Yao Fu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xiao-Lu Ma
- Laboratory Medicine Department, Shanghai Tumor Center of Fudan University, Shanghai, P.R. China
| | - Wei-Guo Tang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Hai-Xiang Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Min-Cheng Yu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jin-Wu Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Chen-Hao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Xu L, Zhang Y, Chen J, Xu Y. Thrombospondin-1: A Key Protein That Induces Fibrosis in Diabetic Complications. J Diabetes Res 2020; 2020:8043135. [PMID: 32626782 PMCID: PMC7306092 DOI: 10.1155/2020/8043135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Fibrosis accompanies most common pathophysiological features of diabetes complications in different organs. It is characterized by an excessive accumulation of extracellular matrix (ECM) components, the response to which contributes to inevitable organ injury. The extracellular protein thrombospondin-1 (TSP-1), a kind of extracellular glycoprotein, is upregulated by the increased activity of some transcription factors and results in fibrosis by activating multiple pathways in diabetes. The results of studies from our team and other colleagues indicate that TSP-1 is associated with the pathological process leading to diabetic complications and is considered to be the most important factor in fibrosis. This review summarizes the molecular mechanism of increased TSP-1 induced by hyperglycemia and the role of TSP-1 in fibrosis during the development of diabetes complications.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Yong Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang, China
| | - Jian Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
| |
Collapse
|
5
|
Ahn MY, Ham SA, Yoo T, Lee WJ, Hwang JS, Paek KS, Lim DS, Han SG, Lee CH, Seo HG. Ligand-Activated Peroxisome Proliferator-Activated Receptor δ Attenuates Vascular Oxidative Stress by Inhibiting Thrombospondin-1 Expression. J Vasc Res 2018; 55:75-86. [PMID: 29408825 DOI: 10.1159/000486570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022] Open
Abstract
Thrombospondin-1 (TSP-1) is implicated in vascular diseases associated with oxidative stress, such as abdominal aortic aneurysms, ischemia-reperfusion injury, and atherosclerosis. However, the regulatory mechanisms underlying TSP-1 expression are not fully elucidated. In this study, we found that peroxisome proliferator-activated receptor δ (PPARδ) inhibited oxidative stress-induced TSP-1 expression and migration in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly attenuated hydrogen peroxide (H2O2)-induced expression of TSP-1 in VSMCs. Small interfering RNA-mediated knockdown of PPARδ and treatment with GSK0660, a selective PPARδ antagonist, reversed the effect of GW501516 on H2O2-induced expression of TSP-1, suggesting that PPARδ is associated with GW501516 activity. Furthermore, JNK (c-Jun N-terminal kinase), but not p38 and ERK (extracellular signal-regulated kinase), mediated PPARδ-dependent inhibition of TSP-1 expression in VSMCs exposed to H2O2. GW501516- activated PPARδ also reduced the H2O2-induced generation of reactive oxygen species, concomitant with inhibition of VSMC migration. In particular, TSP-1 contributed to the action of PPARδ in the regulation of H2O2-induced interleukin-1β expression. These results suggest that PPARδ-modulated downregulation of TSP-1 is associated with reduced cellular oxidative stress, thereby inhibiting H2O2-induced pheno-typic changes in vascular cells.
Collapse
Affiliation(s)
- Min Young Ahn
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Sun Ah Ham
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Taesik Yoo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jung Seok Hwang
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyung Shin Paek
- Department of Nursing, Semyung University, Jechon, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Republic of Korea
| | - Sung Gu Han
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Chi-Ho Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Stenina-Adognravi O, Plow EF. Thrombospondin-4 in tissue remodeling. Matrix Biol 2017; 75-76:300-313. [PMID: 29138119 DOI: 10.1016/j.matbio.2017.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the thrombospondin protein family that consists of five highly homologous members. A number of novel functions have been recently assigned to TSP-4 in cardiovascular and nervous systems, inflammation, cancer, and the motor unit, which have attracted attention to this extracellular matrix (ECM) protein. These newly discovered functions set TSP-4 apart from other thrombospondins. For example, TSP-4 promotes angiogenesis while other TSPs either prevent it or have no effect on new blood vessel growth; TSP-4 reduces fibrosis and collagen production while TSP-1 and TSP-2 promote fibrosis in several organs; unlike other TSPs, TSP-4 appears to have some structural functions in ECM. The current information about TSP-4 functions in different organs and physiological systems suggests that this evolutionary conserved protein is a major regulator of the extracellular matrix (ECM) organization and production and tissue remodeling during the embryonic development and response to injury. In this review article, we summarize the properties and functions of TSP-4 and discuss its role in tissue remodeling.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Edward F Plow
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| |
Collapse
|
7
|
Thrombospondin-1 promotes cell migration, invasion and lung metastasis of osteosarcoma through FAK dependent pathway. Oncotarget 2017; 8:75881-75892. [PMID: 29100277 PMCID: PMC5652671 DOI: 10.18632/oncotarget.17427] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/24/2017] [Indexed: 01/21/2023] Open
Abstract
Microenvironment at the metastatic locus usually differs greatly from that present in the site of primary tumor formation and it has a significant impact on the fate of the extravasated cancer cells. We compared gene expression signatures of primary tumors and lung metastatic tumors, and identified Thrombospondin-1 (TSP1) as highly up-regulated in the lung metastatic tumors. Immunohistochemical staining further indicated that TSP1 protein expression was higher in lung metastatic tumors compared to primary tumors in both osteosarcoma xenograft model and human clinical samples. TSP1 mRNA level is significantly associated with the Enneking stage of osteosarcoma and lung metastasis. TGF-β pathways could stimulate the TSP1 expression in osteosarcoma cells. Knockdown of TSP1 expression in osteosarcoma cells dramatically suppressed cell wound healing, migration and invasion. Treatment with recombinant TSP1 protein in osteosarcoma cells significantly promoted cell wound healing, migration and invasion. Meanwhile, suppression of TSP1 in osteosarcoma cells resulted in decreased pulmonary metastasis in vivo. Mechanistically, TSP1 increased expression of metastasis related genes, including MMP2, MMP9 and Fibronectin 1. TSP1 promoted osteosarcoma cell motility through the activation of FAK pathway. Taken together, our study provides evidence of the contributions of TSP1 to the lung metastasis of osteosarcoma and suggests that this protein may represent a potential therapeutic target for osteosarcoma lung metastasis.
Collapse
|
8
|
Pal SK, Nguyen CTK, Morita KI, Miki Y, Kayamori K, Yamaguchi A, Sakamoto K. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J Oral Pathol Med 2016; 45:730-739. [PMID: 26850833 DOI: 10.1111/jop.12430] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND THBS1 (thrombospondin-1) is the extracellular matrix (ECM) protein that affects diverse cellular activities. It constitutes the tumor stroma, but the role of THBS1 in oral squamous cell carcinoma (OSCC) development is unclear. The aim of this study was to clarify the relevance of THBS1 in the pathogenesis of OSCC. MATERIALS AND METHODS The expression of THBS1 was examined in 44 OSCC by immunohistochemical analysis and in 43 OSCC by cDNA microarray analysis. Cell culture experiments were conducted using human OSCC cell lines HSC3 and HO1N1 and mouse fibroblast ST2 cells to examine the effect of TGFB1 on THBS1 expression, and the effect of THBS1 on cellular behaviors. RESULTS THBS1 was specifically induced in the tumor microenvironment of OSCC. THBS1 appeared to be produced mainly by the stromal cells, but also by OSCC cells. TGFB1 stimulated THBS1 expression in ST2, primary fibroblasts, and the OSCC cells. THBS1 promoted migration and invasion of HSC3 and HO1N1 in transwell migration assays. THBS1 stimulated the expression of MMP3 (matrix metalloprotease 3), MMP9, MMP11, and MMP13 in ST2 cells and MMP3, MMP11, and MMP13 in HO1N1 cells. The RGD peptide suppressed the THBS1-stimulated migration and upregulation of MMP11 and MMP13. CONCLUSIONS THBS1 is a tumor-specific ECM protein that is induced by TGFB1 and promotes migration of cancer cells and stimulates the expression of MMPs partly through the integrin signaling, thereby favoring OSCC invasion.
Collapse
Affiliation(s)
- Samir Kumar Pal
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chi Thi Kim Nguyen
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-Ichi Morita
- Department of Oral Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshio Miki
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
9
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
10
|
Jayakumar AR, Tong XY, Curtis KM, Ruiz-Cordero R, Shamaladevi N, Abuzamel M, Johnstone J, Gaidosh G, Rama Rao KV, Norenberg MD. Decreased astrocytic thrombospondin-1 secretion after chronic ammonia treatment reduces the level of synaptic proteins: in vitro and in vivo studies. J Neurochem 2014; 131:333-47. [PMID: 25040426 PMCID: PMC4364553 DOI: 10.1111/jnc.12810] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/16/2014] [Accepted: 06/22/2014] [Indexed: 12/23/2022]
Abstract
Chronic hepatic encephalopathy (CHE) is a major complication in patients with severe liver disease. Elevated blood and brain ammonia levels have been implicated in its pathogenesis, and astrocytes are the principal neural cells involved in this disorder. Since defective synthesis and release of astrocytic factors have been shown to impair synaptic integrity in other neurological conditions, we examined whether thrombospondin-1 (TSP-1), an astrocytic factor involved in the maintenance of synaptic integrity, is also altered in CHE. Cultured astrocytes were exposed to ammonia (NH₄Cl, 0.5-2.5 mM) for 1-10 days, and TSP-1 content was measured in cell extracts and culture media. Astrocytes exposed to ammonia exhibited a reduction in intra- and extracellular TSP-1 levels. Exposure of cultured neurons to conditioned media from ammonia-treated astrocytes showed a decrease in synaptophysin, PSD95, and synaptotagmin levels. Conditioned media from TSP-1 over-expressing astrocytes that were treated with ammonia, when added to cultured neurons, reversed the decline in synaptic proteins. Recombinant TSP-1 similarly reversed the decrease in synaptic proteins. Metformin, an agent known to increase TSP-1 synthesis in other cell types, also reversed the ammonia-induced TSP-1 reduction. Likewise, we found a significant decline in TSP-1 level in cortical astrocytes, as well as a reduction in synaptophysin content in vivo in a rat model of CHE. These findings suggest that TSP-1 may represent an important therapeutic target for CHE. Defective release of astrocytic factors may impair synaptic integrity in chronic hepatic encephalopathy. We found a reduction in the release of the astrocytic matricellular proteins thrombospondin-1 (TSP-1) in ammonia-treated astrocytes; such reduction was associated with a decrease in synaptic proteins caused by conditioned media from ammonia-treated astrocytes. Exposure of neurons to CM from ammonia-treated astrocytes, in which TSP-1 is over-expressed, reversed (by approx 75%) the reduction in synaptic proteins. NF-kB = nuclear factor kappa B; PSD95 = post-synaptic density protein 95; ONS = oxidative/nitrative stress.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Laboratory of Neuropathology, Veterans Affairs Medical Center, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Soto-Pantoja DR, Shih HB, Maxhimer JB, Cook KL, Ghosh A, Isenberg JS, Roberts DD. Thrombospondin-1 and CD47 signaling regulate healing of thermal injury in mice. Matrix Biol 2014; 37:25-34. [PMID: 24840925 PMCID: PMC4955854 DOI: 10.1016/j.matbio.2014.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/07/2014] [Accepted: 05/07/2014] [Indexed: 02/04/2023]
Abstract
More than 2.5 million Americans suffer from burn injuries annually, and burn management is a major public health problem. Treatments have been developed to manage wound injuries employing skin grafts, various dressings and topical and systemic agents. However, these often achieve limited degrees of success. We previously reported that targeting the interaction of thrombospondin-1 with its signaling receptor CD47 or deletion of the genes encoding either of these proteins in mice improves recovery from soft tissue ischemic injuries as well as tissue injuries caused by ionizing radiation. We now demonstrate that the absence of CD47 improves the rate of wound closure for a focal dermal second-degree thermal injury, whereas lack of thrombospondin-1 initially delays wound closure compared to healing in wild type mice. Doppler analysis of the wounded area showed increased blood flow in both CD47 and thrombospondin-1 null mice. Accelerated wound closure in the CD47 null mice was associated with increased fibrosis as demonstrated by a 4-fold increase in collagen fraction. Wound tissue of CD47 null mice showed increased thrombospondin-1 mRNA and protein expression and TGF-β1 mRNA levels. Activation of latent TGF-β1 was increased in thermally injured CD47-null tissue as assessed by phosphorylation of the TGF-β1 receptor-regulated transcription factors SMAD-2 and -3. Overall these results indicate that targeting CD47 may improve the speed of healing thermal injuries, but some level of CD47 expression may be required to limit the long term TGF-β1-dependent fibrosis of these wounds.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubert B Shih
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Howard Hughes Medical Institute-National Institutes of Health Research Scholars Program, Bethesda, MD 20814, USA
| | - Justin B Maxhimer
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine L Cook
- Department of Oncology and Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Arunima Ghosh
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey S Isenberg
- Division of Pulmonary, Allergy and Critical Care Medicine and the Vascular Medicine Institute of the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Stenina-Adognravi O. Invoking the power of thrombospondins: regulation of thrombospondins expression. Matrix Biol 2014; 37:69-82. [PMID: 24582666 DOI: 10.1016/j.matbio.2014.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests critical functions of thrombospondins (TSPs) in a variety of physiological and pathological processes. With the growing understanding of the importance of these matricellular proteins, the need to understand the mechanisms of regulation of their expression and potential approaches to modulate their levels is also increasing. The regulation of TSP expression is multi-leveled, cell- and tissue-specific, and very precise. However, the knowledge of mechanisms modulating the levels of TSPs is fragmented and incomplete. This review discusses the known mechanisms of regulation of TSP levels and the gaps in our knowledge that prevent us from developing strategies to modulate the expression of these physiologically important proteins.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave NB50, Cleveland, OH 44195, United States.
| |
Collapse
|
13
|
Amodeo V, Bazan V, Fanale D, Insalaco L, Caruso S, Cicero G, Bronte G, Rolfo C, Santini D, Russo A. Effects of anti-miR-182 on TSP-1 expression in human colon cancer cells: there is a sense in antisense? Expert Opin Ther Targets 2013; 17:1249-61. [PMID: 24053448 DOI: 10.1517/14728222.2013.832206] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE miRNAs are attractive molecules for cancer treatment, including colon rectal cancer (CRC). We investigate on the molecular mechanism by which miR-182 could regulate thrombospondin-1 (TSP-1) expression, a protein downregulated in CRC and inversely correlated with tumor vascularity and metastasis. BACKGROUND MicroRNAs are small non-coding RNAs that regulate the expression of different genes, involved in cancer progression, angiogenesis and metastasis. miR-182, over-expressed in colorectal cancer (CRC), has like predictive target thrombospondin-1 (TSP-1), a protein inversely correlated with tumor vascularity and metastasis that results downregulated in different types of cancer including CRC. RESULTS We found that TSP-1 increased after transfection with anti-miR-182 and we showed that miR-182 targets TSP-1 3'UTR-mRNA in both cells. Moreover, we observed that anti-miR-182 did not induce significant variation of Egr-1 expression, but affected the nuclear translocation and its binding on tsp-1 promoter in HCT-116. Equally, Sp-1 was slightly increased as total protein, rather we found a nuclear accumulation and its loading on the TSP-1 promoter in HT-29 transfected with anti-miR-182. CONCLUSION Our data suggest that miR-182 targets the anti-angiogenic factor TSP-1 and that anti-miR-182 determines an upregulation of TSP-1 expression in colon cancer cells. Moreover, anti-miR-182 exerts a transcriptional regulatory mechanism of tsp-1 modulating Egr-1 and Sp-1 function. Anti-miR-182 could be used to restore TSP-1 expression in order to contrast angiogenic and invasive events in CRC.
Collapse
Affiliation(s)
- Valeria Amodeo
- Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo , Via del Vespro 129, 90127, Palermo , Italy +011 39 091 6554529 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tervaniemi MH, Siitonen HA, Söderhäll C, Minhas G, Vuola J, Tiala I, Sormunen R, Samuelsson L, Suomela S, Kere J, Elomaa O. Centrosomal localization of the psoriasis candidate gene product, CCHCR1, supports a role in cytoskeletal organization. PLoS One 2012. [PMID: 23189171 PMCID: PMC3506594 DOI: 10.1371/journal.pone.0049920] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
CCHCR1 (Coiled-Coil α-Helical Rod protein 1), within the major psoriasis susceptibility locus PSORS1, is a plausible candidate gene with the psoriasis associated risk allele CCHCR1*WWCC. Although its expression pattern in psoriatic skin differs from healthy skin and its overexpression influences cell proliferation in transgenic mice, its role as a psoriasis effector gene has remained unsettled. The 5′-region of the gene contains a SNP (rs3130453) that controls a 5′-extended open reading frame and thus the translation of alternative isoforms. We have now compared the function of two CCHCR1 isoforms: the novel longer isoform 1 and the previously studied isoform 3. In samples of Finnish and Swedish families, the allele generating only isoform 3 shows association with psoriasis (P<10−7). Both isoforms localize at the centrosome, a cell organelle playing a role in cell division. In stably transfected cells the isoform 3 affects cell proliferation and with the CCHCR1*WWCC allele, also apoptosis. Furthermore, cells overexpressing CCHCR1 show isoform- and haplotype-specific influences in the cell size and shape and alterations in the organization and expression of the cytoskeletal proteins actin, vimentin, and cytokeratins. The isoform 1 with the non-risk allele induces the expression of keratin 17, a hallmark for psoriasis; the silencing of CCHCR1 reduces its expression in HEK293 cells. CCHCR1 also regulates EGF-induced STAT3 activation in an isoform-specific manner: the tyrosine phosphorylation of STAT3 is disturbed in isoform 3-transfected cells. The centrosomal localization of CCHCR1 provides a connection to the abnormal cell proliferation and offers a link to possible cellular pathways altered in psoriasis.
Collapse
Affiliation(s)
- Mari H. Tervaniemi
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - H. Annika Siitonen
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Cilla Söderhäll
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Gurinder Minhas
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki Burn Centre, Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Inkeri Tiala
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Raija Sormunen
- Biocenter Oulu, Department of Pathology, University of Oulu, Oulu, Finland
| | - Lena Samuelsson
- Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sari Suomela
- Department of Dermatology, University of Helsinki, and Helsinki University Central Hospital, Helsinki, Finland
| | - Juha Kere
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Outi Elomaa
- Haartman Institute, Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Research Program's Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
15
|
The novel tumor suppressor NOL7 post-transcriptionally regulates thrombospondin-1 expression. Oncogene 2012; 32:4377-86. [PMID: 23085760 DOI: 10.1038/onc.2012.464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 12/30/2022]
Abstract
Thrombospondin-1 (TSP-1) is an endogenous inhibitor of angiogenesis whose expression suppresses tumor growth in vivo. Like many angiogenesis-related genes, TSP-1 expression is tightly controlled by various mechanisms, but there is little data regarding the contribution of post-transcriptional processing to this regulation. NOL7 is a novel tumor suppressor that induces an antiangiogenic phenotype and suppresses tumor growth, in part through upregulation of TSP-1. Here we demonstrate that NOL7 is an mRNA-binding protein that must localize to the nucleoplasm to exert its antiangiogenic and tumor suppressive effects. There, it associates with the RNA-processing machinery and specifically interacts with TSP-1 mRNA through its 3'UTR. Reintroduction of NOL7 into SiHa cells increases luciferase expression through interaction with the TSP-1 3'UTR at both the mRNA and protein levels. NOL7 also increases endogenous TSP-1 mRNA half-life. Further, NOL7 post-transcriptional stabilization is observed in a subset of angiogenesis-related mRNAs, suggesting that the stabilization of TSP-1 may be part of a larger novel mechanism. These data demonstrate that NOL7 significantly alters TSP-1 expression and may be a master regulator that coordinates the post-transcriptional expression of key signaling factors critical for the regulation of the angiogenic phenotype.
Collapse
|
16
|
Masuda T, Muto S, Fujisawa G, Iwazu Y, Kimura M, Kobayashi T, Nonaka-Sarukawa M, Sasaki N, Watanabe Y, Shinohara M, Murakami T, Shimada K, Kobayashi E, Kusano E. Heart angiotensin II-induced cardiomyocyte hypertrophy suppresses coronary angiogenesis and progresses diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 2012; 302:H1871-83. [PMID: 22389386 DOI: 10.1152/ajpheart.00663.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To examine whether and how heart ANG II influences the coordination between cardiomyocyte hypertrophy and coronary angiogenesis and contributes to the pathogenesis of diabetic cardiomyopathy, we used Spontaneously Diabetic Torii (SDT) rats treated without and with olmesartan medoxomil (an ANG II receptor blocker). In SDT rats, left ventricular (LV) ANG II, but not circulating ANG II, increased at 8 and 16 wk after diabetes onset. SDT rats developed LV hypertrophy and diastolic dysfunction at 8 wk, followed by LV systolic dysfunction at 16 wk, without hypertension. The SDT rat LV exhibited cardiomyocyte hypertrophy and increased hypoxia-inducible factor-1α expression at 8 wk and to a greater degree at 16 wk and interstitial fibrosis at 16 wk only. In SDT rats, coronary angiogenesis increased with enhanced capillary proliferation and upregulation of the angiogenic factor VEGF at 8 wk but decreased VEGF with enhanced capillary apoptosis and suppressed capillary proliferation despite the upregulation of VEGF at 16 wk. In SDT rats, the phosphorylation of VEGF receptor-2 increased at 8 wk alone, whereas the expression of the antiangiogenic factor thrombospondin-1 increased at 16 wk alone. All these events, except for hyperglycemia or blood pressure, were reversed by olmesartan medoxomil. These results suggest that LV ANG II in SDT rats at 8 and 16 wk induces cardiomyocyte hypertrophy without affecting hyperglycemia or blood pressure, which promotes and suppresses coronary angiogenesis, respectively, via VEGF and thrombospondin-1 produced from hypertrophied cardiomyocytes under chronic hypoxia. Thrombospondin-1 may play an important role in the progression of diabetic cardiomyopathy in this model.
Collapse
Affiliation(s)
- Takahiro Masuda
- Divisions of Nephrology, Department of Internal Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mcgray AJR, Gingerich T, Petrik JJ, Lamarre J. Regulation of thrombospondin-1 expression through AU-rich elements in the 3'UTR of the mRNA. Cell Mol Biol Lett 2011; 16:55-68. [PMID: 21161418 PMCID: PMC6275769 DOI: 10.2478/s11658-010-0037-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/24/2010] [Indexed: 01/20/2023] Open
Abstract
Thrombospondin-1 (TSP-1) is a matricellular protein that participates in numerous normal and pathological tissue processes and is rapidly modulated by different stimuli. The presence of 8 highly-conserved AU rich elements (AREs) within the 3'-untranslated region (3'UTR) of the TSP-1 mRNA suggests that post-transcriptional regulation is likely to represent one mechanism by which TSP-1 gene expression is regulated. We investigated the roles of these AREs, and proteins which bind to them, in the control of TSP-1 mRNA stability. The endogenous TSP-1 mRNA half-life is approximately 2.0 hours in HEK293 cells. Luciferase reporter mRNAs containing the TSP-1 3'UTR show a similar rate of decay, suggesting that the 3'UTR influences the decay rate. Site-directed mutagenesis of individual and adjacent AREs prolonged reporter mRNA halflife to between 2.2 and 4.4 hours. Mutation of all AREs increased mRNA half life to 8.8 hours, suggesting that all AREs have some effect, but that specific AREs may have key roles in stability regulation. A labeled RNA oligonucleotide derived from the most influential ARE was utilized to purify TSP-1 ARE-binding proteins. The AU-binding protein AUF1 was shown to associate with this motif. These studies reveal that AREs in the 3'UTR control TSP-1 mRNA stability and that the RNA binding protein AUF1 participates in this control. These studies suggest that ARE-dependent control of TSP-1 mRNA stability may represent an important component in the control of TSP-1 gene expression.
Collapse
Affiliation(s)
- Asa J. Robert Mcgray
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Timothy Gingerich
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Jonathan Lamarre
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| |
Collapse
|
18
|
Tarkkonen K, Ruohola J, Härkönen P. Fibroblast growth factor 8 induced downregulation of thrombospondin 1 is mediated by the MEK/ERK and PI3K pathways in breast cancer cells. Growth Factors 2010; 28:256-67. [PMID: 20370578 DOI: 10.3109/08977191003745480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Expression of fibroblast growth factor 8 (FGF-8) is increased in several forms of hormonal cancer. It was previously shown to regulate expression of thrombospondin 1 (TSP-1), an inhibitor of angiogenesis, in S115 breast cancer cells. Here, we studied the FGF-8-activated signalling pathways mediating TSP-1 repression in S115 cells and in non-tumorigenic MCF10A cells. Inhibition of FGF receptors or of MEK1/2 and PI3K with specific inhibitors (PD173074, U0126 or LY294002, respectively) restored TSP-1 mRNA expression in the presence of FGF-8 in S115 cells. Furthermore, U0126 and LY294002 increased TSP-1 mRNA expression in S115 cells over-expressing FGF-8. In MCF10A cells, FGF-8 treatment also decreased TSP-1 expression and the effect was dependent on active MEK1/2. In conclusion, FGF-8 suppresses TSP-1 expression through two independent pathways, MEK1/2 and PI3K. Repression of TSP-1 may be an important mechanism involved in induction of an angiogenic phenotype and growth of FGF-8-expressing breast cancer.
Collapse
Affiliation(s)
- Kati Tarkkonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, 20520, Turku, Finland.
| | | | | |
Collapse
|
19
|
Lau WM, Weber KL, Doucet M, Chou YT, Brady K, Kowalski J, Tsai HL, Yang J, Kominsky SL. Identification of prospective factors promoting osteotropism in breast cancer: a potential role for CITED2. Int J Cancer 2010; 126:876-84. [PMID: 19642106 DOI: 10.1002/ijc.24780] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Breast cancer metastases develop in the bone more frequently than any other site and are a common cause of morbidity in the form of bone pain, pathological fractures, nerve compression and life-threatening hypercalcemia. Despite ongoing research efforts, the molecular and cellular mechanisms that regulate breast cancer cell homing to and colonization of the bone as well as resultant pathological bone alteration remain poorly understood. To identify key mediators promoting breast cancer metastasis to bone, we utilized an immunocompetent, syngeneic murine model of breast cancer metastasis employing the mammary tumor cell line NT2.5. Following intracardiac injection of NT2.5 cells in neu-N mice, metastases developed in the bone, liver and lung, closely mimicking the anatomical distribution of metastases in patients with breast cancer. Using an in vivo selection process, we established NT2.5 sublines demonstrating an enhanced ability to colonize the bone and liver. Genome-wide cDNA microarray analysis comparing gene expression between parental NT2.5 cells and established sublines revealed both known and novel mediators of bone metastasis and osteolysis, including the transcriptional co-activator CITED2. In further studies, we found that expression of CITED2 was elevated in human primary breast tumors and bone metastasis compared to normal mammary epithelium and was highest in breast cancer cell lines that cause osteolytic bone metastasis in animal models. In addition, reducing CITED2 expression in NT2.5 cells inhibited the establishment of bone metastasis and osteolysis in vivo, suggesting a potential role for CITED2 in promoting breast cancer bone metastasis.
Collapse
Affiliation(s)
- Wen Min Lau
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kojic N, Chung E, Kho AT, Park JA, Huang A, So PTC, Tschumperlin DJ. An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium. FASEB J 2010; 24:1604-15. [PMID: 20056713 DOI: 10.1096/fj.09-145367] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The mechanical landscape in biological systems can be complex and dynamic, with contrasting sustained and fluctuating loads regularly superposed within the same tissue. How resident cells discriminate between these scenarios to respond accordingly remains largely unknown. Here, we show that a step increase in compressive stress of physiological magnitude shrinks the lateral intercellular space between bronchial epithelial cells, but does so with strikingly slow exponential kinetics (time constant approximately 110 s). We confirm that epidermal growth factor (EGF)-family ligands are constitutively shed into the intercellular space and demonstrate that a step increase in compressive stress enhances EGF receptor (EGFR) phosphorylation with magnitude and onset kinetics closely matching those predicted by constant-rate ligand shedding in a slowly shrinking intercellular geometry. Despite the modest degree and slow nature of EGFR activation evoked by compressive stress, we find that the majority of transcriptomic responses to sustained mechanical loading require ongoing activity of this autocrine loop, indicating a dominant role for mechanotransduction through autocrine EGFR signaling in this context. A slow deformation response to a step increase in loading, accompanied by synchronous increases in ligand concentration and EGFR activation, provides one means for cells to mount a selective and context-appropriate response to a sustained change in mechanical environment.
Collapse
Affiliation(s)
- Nikola Kojic
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Maloney SL, Sullivan DC, Suchting S, Herbert JMJ, Rabai EM, Nagy Z, Barker J, Sundar S, Bicknell R. Induction of thrombospondin-1 partially mediates the anti-angiogenic activity of dexrazoxane. Br J Cancer 2009; 101:957-66. [PMID: 19738618 PMCID: PMC2743367 DOI: 10.1038/sj.bjc.6605203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Considerable interest lies in the identification of novel anti-angiogenic compounds for cancer therapy. We have investigated whether dexrazoxane has anti-angiogenic properties and if so, the mechanism of the inhibition. Methods: The phenotypic effects of dexrazoxane on endothelial cell behaviour was investigated both in vitro using human umbilical vein endothelial cells (HUVECs) in cell proliferation, migration, cell cycle and aortic ring assays; and in vivo using the mouse angiogenesis subcutaneous sponge assay. Custom angiogenesis pathway microarrays were used to identify differentially expressed genes in endothelial cells after treatment with dexrazoxane vs a control. The differentially expressed genes were validated using real-time RT–PCR and western blotting; and the functional effect of one induced gene was confirmed using siRNA technology. Results: Treatment of endothelial cells with dexrazoxane resulted in a dose–response inhibition of cell growth lasting for up to 5 days after a single dose of the drug. Dexrazoxane was inhibitory in the aortic ring tube forming assay and strongly anti-angiogenic in vivo in the rodent subcutaneous sponge model. The anti-angiogenic effect in the sponge was seen after systemic injection into the tail vein as well as after direct injection of dexrazoxane into the sponge. Treatment of microvascular endothelial cells in vitro with subtoxic doses of dexrazoxane stimulated thrombospondin-1 (THBS-1) secretion. Knockdown of THBS-1 with siRNA removed the angiogenesis inhibition effect of dexrazoxane, which is consistent with the anti-angiogenic and vascular normalising properties of the drug being principally mediated by THBS-1. Conclusion: We show that dexrazoxane administered in small repeated doses is strongly anti-angiogenic and that this activity is mediated by induction of the anti-angiogenic THBS-1 in endothelial cells.
Collapse
Affiliation(s)
- S L Maloney
- Cancer Research UK Angiogenesis Group, Institute for Biomedical Research, College of Medicine and Dentistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Komuro A, Yashiro M, Iwata C, Morishita Y, Johansson E, Matsumoto Y, Watanabe A, Aburatani H, Miyoshi H, Kiyono K, Shirai YT, Suzuki HI, Hirakawa K, Kano MR, Miyazono K. Diffuse-type gastric carcinoma: progression, angiogenesis, and transforming growth factor beta signaling. J Natl Cancer Inst 2009; 101:592-604. [PMID: 19351925 PMCID: PMC2669102 DOI: 10.1093/jnci/djp058] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Diffuse-type gastric carcinoma is a cancer with poor prognosis that has high levels of transforming growth factor β (TGF-β) expression and thick stromal fibrosis. However, the association of TGF-β signaling with diffuse-type gastric carcinoma has not been investigated in detail. Methods We used a lentiviral infection system to express a dominant-negative TGF-β type II receptor (dnTβRII) or green fluorescent protein (GFP) as a control in the diffuse-type gastric carcinoma cell lines, OCUM-2MLN and OCUM-12. These infected cells and the corresponding parental control cells were subcutaneously or orthotopically injected into nude mice. Angiogenesis was inhibited by infecting cells with a lentivirus carrying the gene for angiogenic inhibitor thrombospondin-1 or by injecting mice intraperitoneally with the small-molecule angiogenic inhibitor sorafenib or with anti-vascular endothelial growth factor (VEGF) neutralizing antibody (six or eight mice per group). Expression of phospho-Smad2 and thrombospondin-1 was investigated immunologically in human gastric carcinoma tissues from 102 patients. All statistical tests were two-sided. Results Expression of dnTβRII into OCUM-2MLN cells did not affect their proliferation in vitro, but it accelerated the growth of subcutaneously or orthotopically transplanted tumors in vivo (eg, for mean volume of subcutaneous tumors on day 10 relative to that on day 0: dnTβRII tumors = 3.49 and GFP tumors = 2.46, difference = 1.02, 95% confidence interval [CI] = 0.21 to 1.84; P = .003). The tumors expressing dnTβRII had higher levels of angiogenesis than those expressing GFP because of decreased thrombospondin-1 production. Similar results were obtained with OCUM-12 cells. Expression of thrombospondin-1 in the dnTβRII tumor or treatment with sorafenib or anti-VEGF antibody reduced tumor growth, whereas knockdown of thrombospondin-1 expression resulted in more accelerated growth of OCUM-2MLN tumors than of GFP tumors (eg, mean tumor volumes on day 14 relative to those on day 0: thrombospondin-1–knockdown tumors = 4.91 and GFP tumors = 3.79, difference = 1.12, 95% CI = 0.80 to 1.44; P < .001). Positive association between phosphorylated Smad2 and thrombospondin-1 immunostaining was observed in human gastric carcinoma tissues. Conclusions Disruption of TGF-β signaling in diffuse-type gastric carcinoma models appeared to accelerate tumor growth, apparently through increased tumor angiogenesis that was induced by decreased expression of thrombospondin-1.
Collapse
Affiliation(s)
- Akiyoshi Komuro
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gao L, Zhang Y, Qiu W, Xu W, Feng X, Ren J, Jiang X, Wang H, Zhao D, Wang Y. Effects of PI3-k/Akt short hairpin RNA on proliferation, fibronectin production and synthesis of thrombospondin-1 and transforming growth factor-beta1 in glomerular mesangial cells induced by sublytic C5b-9 complexes. Cell Prolif 2009; 42:83-93. [PMID: 19143766 PMCID: PMC6495855 DOI: 10.1111/j.1365-2184.2008.00575.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 04/07/2008] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To explore proliferation of glomerular mesangial cells (GMC) and secretion of extracellular matrix (fibronectin induced by sublytic C5b-9 complexes), and then ascertain the role of phosphatidylinositol 3-kinase (PI3-k)/Akt signal pathway in these processes, by using small hairpin RNAs. MATERIAL AND METHODS The expression of cyclin D(2), (3)H-thymidine into DNA and production of fibronectin including thrombospondin-1 and transforming growth factor-beta(1) in the GMCs stimulated by sublytic C5b-9 or transfected with expression vectors of PI3-k and Akt short hairpin RNA or LY294002 (PI3-k inhibitor) were measured by Real-time quantitative polymerase chain reaction (PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and (3)H-thymidine incorporation ((3)H-TdR), respectively. RESULTS The expression of cyclin D(2), (3)H-thymidine into DNA and fibronectin in the GMCs stimulated by sublytic C5b-9 could all be increased, and the elevations of these parameters mentioned above were also markedly reduced in the GMCs transfected with vectors of PI3-k and Akt short hairpin RNA or LY294002, respectively. CONCLUSIONS These data indicate that sublytic C5b-9 can promote proliferation of GMCs and secretion of fibronectin as well as synthesis of thrombospondin-1 and transforming growth factor-beta(1). The PI3-k/Akt signal pathway in these reactions, mediated by sublytic C5b-9 complexes, may play at least a partial role.
Collapse
Affiliation(s)
- L. Gao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Y. Zhang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - W. Qiu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - W. Xu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - X. Feng
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - J. Ren
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - X. Jiang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - H. Wang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - D. Zhao
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| | - Y. Wang
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Lu T, Huang CC, Lu YC, Lin KL, Liu SI, Wang BW, Chang PM, Chen IS, Chen SS, Tsai JY, Chou CT, Jan CR. Desipramine-induced Ca-independent apoptosis in Mg63 human osteosarcoma cells: dependence on P38 mitogen-activated protein kinase-regulated activation of caspase 3. Clin Exp Pharmacol Physiol 2008; 36:297-303. [PMID: 18986328 DOI: 10.1111/j.1440-1681.2008.05065.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. It has been shown that the antidepressant desipramine is able to induce increases in [Ca(2+)](i) and cell death in MG63 human osteosacroma cells, but whether apoptosis is involved is unclear. In the present study, the effect of desipramine on apoptosis and the underlying mechanisms were explored. It was demonstrated that desipramine induced cell death in a concentration- and time-dependent manner. 2. Cells treated with 100-800 mmol/L desipramine showed typical apoptotic features, including an increase in sub-diploid nuclei and activation of caspase 3, indicating that these cells underwent apoptosis. Immunoblotting revealed that 100 mmol/L desipramine activated extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Although pretreatment of cells with 20 mmol/L PD98059 (an ERK inhibitor) or 20 mmol/L SP600125 (an inhibitor of JNK) did not inhibit cell death, the addition of 20 mmol/L SB203580 (a p38 MAPK inhibitor) partially rescued cells from apoptosis. Desipramine-induced caspase 3 activation required p38 MAPK activation. 3. Pretreatment of cells with BAPTA/AM (20 mmol/L) to prevent desipramine-induced increases in [Ca(2+)](i) did not protect cells from death. 4. The results of the present study suggest that, in MG63 human osteosarcoma cells, desipramine causes Ca(2+)-independent apoptosis by inducing p38 MAPK-associated activation of caspase 3.
Collapse
Affiliation(s)
- Ti Lu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao HY, Ooyama A, Yamamoto M, Ikeda R, Haraguchi M, Tabata S, Furukawa T, Che XF, Iwashita KI, Oka T, Fukushima M, Nakagawa M, Ono M, Kuwano M, Akiyama SI. Down regulation of c-Myc and induction of an angiogenesis inhibitor, thrombospondin-1, by 5-FU in human colon cancer KM12C cells. Cancer Lett 2008; 270:156-63. [DOI: 10.1016/j.canlet.2008.04.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 02/02/2008] [Accepted: 04/29/2008] [Indexed: 10/21/2022]
|
26
|
Zhao HY, Ooyama A, Yamamoto M, Ikeda R, Haraguchi M, Tabata S, Furukawa T, Che XF, Zhang S, Oka T, Fukushima M, Nakagawa M, Ono M, Kuwano M, Akiyama SI. Molecular basis for the induction of an angiogenesis inhibitor, thrombospondin-1, by 5-fluorouracil. Cancer Res 2008; 68:7035-41. [PMID: 18757417 DOI: 10.1158/0008-5472.can-07-6496] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most commonly used anticancer drugs in chemotherapy against various solid tumors. 5-FU dose-dependently increased the expression levels of intrinsic antiangiogenic factor thrombospondin-1 (TSP-1) in human colon carcinoma KM12C cells and human breast cancer MCF7 cells. We investigated the molecular basis for the induction of TSP-1 by 5-FU in KM12C cells. Promoter assays showed that the region with the Egr-1 binding site is critical for the induction of TSP-1 promoter activity by 5-FU. The binding of Egr-1 to the TSP-1 promoter was increased in KM12C cells treated with 5-FU. Immunofluorescence staining revealed that 5-FU significantly increased the level of Egr-1 in the nuclei of KM12C cells. The suppression of Egr-1 expression by small interfering RNA decreased the expression level of TSP-1. Furthermore, 5-FU induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27). Blockade of the p38 MAPK pathway by SB203580 remarkably inhibited the phosphorylation of HSP27 induced by 5-FU and decreased the induction of Egr-1 and TSP-1 by 5-FU in KM12C cells. These findings suggest that the p38 MAPK pathway plays a crucial role in the induction of Egr-1 by 5-FU and that induced Egr-1 augments TSP-1 promoter activity, with the subsequent production of TSP-1 mRNA and protein.
Collapse
Affiliation(s)
- Hong-Ye Zhao
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kang JH, Kim MJ, Chang SY, Sim SS, Kim MS, Jo YH. CCAAT box is required for the induction of human thrombospondin-1 gene by trichostatin A. J Cell Biochem 2008; 104:1192-203. [PMID: 18275041 DOI: 10.1002/jcb.21697] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Histone deacetylase (HDAC) inhibitors have been reported to inhibit angiogenesis as well as tumor growth. Thrombospondin-1 (TSP1) has been recognized as a potent inhibitor of angiogenesis. Such an action of TSP1 may account for the effect of HDAC inhibitors. In the present study, we investigated the molecular mechanism by which trichostatin A, a HDAC inhibitor, induces the expression of TSP1 gene. Trichostatin A increased both mRNA and protein levels of TSP1 in HeLa cells. Promoter and actinomycin D chase assays showed that trichostatin A-induced TSP1 expression was regulated at the transcriptional level without changing mRNA stability. CCAAT box on the TSP1 promoter was found to primarily mediate the trichostatin A response by deletion and mutation analyses of the TSP1 promoter. Electrophoretic mobility shift assay indicated that CCAAT-binding factor (CBF) was specifically bound to the CCAAT box of TSP1 promoter. Moreover, chromatin immunoprecipitation assay showed that trichostatin A increased the binding of acetylated form of histone H3 to the CCAAT box region of TSP1 promoter. Taken together, these results strongly suggest that trichostatin A activates the transcription of TSP1 gene through the binding of transcription factor CBF to CCAAT box and the enhanced histone acetylation. Thus, the present study provides the clue that the inhibition of angiogenesis by trichostatin A is accomplished through the upregulation of TSP1, the anti-angiogenic factor.
Collapse
Affiliation(s)
- Jung-Hoon Kang
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Jennings J, Chen D, Feldman D. Transcriptional response of dermal fibroblasts in direct current electric fields. Bioelectromagnetics 2008; 29:394-405. [PMID: 18302142 DOI: 10.1002/bem.20408] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the course of normal wound healing, fibroblasts at the wound edge are exposed to electric fields (EFs) ranging from 40 to 200 mV/mm. Various forms of EFs influence fibroblast migration, proliferation, and protein synthesis. Thus, EFs may contribute to fibroblast activation during wound repair. To elucidate the role of EFs during the normal progression of healing, this study compares gene expression in normal adult dermal fibroblasts exposed to a 100 mV/mm EF for 1 h to non-stimulated controls. Significantly increased expression of 162 transcripts and decreased expression of 302 transcripts was detected using microarrays, with 126 transcripts above the level of 1.4-fold increases or decreases compared to the controls. Above the level of twofold, only 11 genes were significantly increased or decreased compared to controls. Many of these significantly regulated genes are associated with wound repair through the processes of matrix production, cellular signaling, and growth. Activity within specific cellular signaling pathways is noted, including TGF-beta, G-proteins, and inhibition of apoptosis. In addition, RT-PCR analysis of the expression of KLF6, FN1, RGS2, and JMJD1C over continued stimulation and at different field strengths suggests that there are specific windows of field characteristics for maximum induction of these genes. EFs thus appear to have an important role in controlling fibroblast activity in the process of wound healing.
Collapse
Affiliation(s)
- Jessica Jennings
- Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | |
Collapse
|
29
|
Abstract
The thrombospondins (TSPs) are a family of five proteins that are involved in the tissue remodeling that is associated with embryonic development, wound healing, synaptogenesis, and neoplasia. These proteins mediate the interaction of normal and neoplastic cells with the extracellular matrix and surrounding tissue. In the tumor microenvironment, TSP-1 has been shown to suppress tumor growth by inhibiting angiogenesis and by activating transforming growth factor beta. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival, and through effects on vascular endothelial cell growth factor bioavailability. In addition, TSP-1 may affect tumor cell function through interaction with cell surface receptors and regulation of extracellular proteases. Whereas the role of TSP-1 in the tumor microenvironment is the best characterized, the other TSPs may have similar functions. (Part of a Multi-author Review).
Collapse
Affiliation(s)
- S. Kazerounian
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Avenue, RN 270C, Boston, Massachussetts 02215 USA
| | - K. O. Yee
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Avenue, RN 270C, Boston, Massachussetts 02215 USA
| | - J. Lawler
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, 99 Brookline Avenue, RN 270C, Boston, Massachussetts 02215 USA
| |
Collapse
|
30
|
Farhat N, Matouk CC, Mamarbachi AM, Marsden PA, Allen BG, Thorin E. Activation of ETB receptors regulates the abundance of ET-1 mRNA in vascular endothelial cells. Br J Pharmacol 2008; 153:1420-31. [PMID: 18278064 DOI: 10.1038/bjp.2008.25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The factors that influence the cellular levels of endothelin-1 (ET-1) include transcription, mRNA localization, stability and translation, post-translational maturation of preproET-1 and degradation of ET-1. We investigated the regulation of ET-1 mRNA abundance by extracellular ET-1 in porcine aortic endothelial cells (PAECs). EXPERIMENTAL APPROACH Passsage one cultures of PAECs were incubated in starving medium in the presence or absence of ET-1 and antagonists or pharmacological inhibitors. PreproET-1 mRNA, endothelin-1 promoter activity, Erk and p38 MAPK activation were determined. KEY RESULTS Exogenous ET-1 reduced cellular ET-1 mRNA content: a reduction of 10 000-fold was observed after 4 h. ET-1 simultaneously reduced the stability of ET-1 mRNA and increased the loading of RNA Polymerase II at the endothelin-1 promoter. In the absence of exogenous ET-1, the ETB-selective antagonist, BQ788, increased ET-1 mRNA. An ETA-selective antagonist had no effect. ET-1 mRNA returned to control levels within 24 h. Whereas activation of p38 MAPK induced by ET-1 peaked at 30 min and returned to control levels within 90 min, Erk1/2 remained active after 4 h of stimulation. Inhibition of p38 MAPK prevented the ET-1-induced decrease in ET-1 mRNA. In contrast, Erk1/2 inhibition increased ET-1 mRNA. Similarly, inhibition of receptor internalization increased ET-1 mRNA in the presence or absence of exogenous ET-1. CONCLUSIONS AND IMPLICATIONS These results suggest that extracellular ET-1 regulates the abundance of ET-1 mRNA in PAECs, in an ETB receptor-dependent manner, by modulating both mRNA stability and transcription via mechanisms involving receptor endocytosis and both ERK and p38 MAPK pathways.
Collapse
Affiliation(s)
- N Farhat
- Department of Biochemistry, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Hultgårdh-Nilsson A, Durbeej M. Role of the extracellular matrix and its receptors in smooth muscle cell function: implications in vascular development and disease. Curr Opin Lipidol 2007; 18:540-5. [PMID: 17885425 DOI: 10.1097/mol.0b013e3282ef77e9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular disease affects millions of people worldwide, while the sarcoglycan deficient cardiomyopathies are rare disorders. One important common feature, however, is the vascular smooth muscle. Here we focus on the roles of extracellular matrix components and their receptors in the functions of vascular smooth muscle cells. RECENT FINDINGS Recent observations highlight the importance of integrins and the dystrophin-glycoprotein complex in development and cardiomyopathy. For example, integrin alpha4 and alpha7 subunits are important for distributing vascular smooth muscle cells during blood vessel development. Studies on delta-sarcoglycan deficient animals have revealed abnormal vascular smooth muscle proliferation and apoptosis. Furthermore, data suggest that perlecan, by affecting smooth muscle cell proliferation, participates in the atherosclerotic process. Overexpression of decorin leads to reduced progression of atherosclerosis and thrombospondin-1 has been implicated in regulation of smooth muscle cell contractility via inhibition of nitric oxide. Novel findings on versican suggest that the binding of versican to fibulin is of great importance for regulating smooth muscle cell function. SUMMARY By regulating migration, proliferation and apoptosis as well as extracellular matrix synthesis and assembly, proteoglycans, integrins and the dystrophin-glycoprotein complex may be of great importance both during development and in vascular disease.
Collapse
Affiliation(s)
- Anna Hultgårdh-Nilsson
- Vessel Wall Biology Unit, Sweden bMuscle Biology Unit, University of Lund, Lund, Sweden.
| | | |
Collapse
|
32
|
Myung SJ, Yoon JH, Gwak GY, Kim W, Yang JI, Lee SH, Jang JJ, Lee HS. Bile acid-mediated thrombospondin-1 induction in hepatocytes leads to transforming growth factor-beta-dependent hepatic stellate cell activation. Biochem Biophys Res Commun 2006; 353:1091-6. [PMID: 17204245 DOI: 10.1016/j.bbrc.2006.12.157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 12/20/2006] [Indexed: 11/22/2022]
Abstract
In cholestasis, bile acids induce hepatocyte apoptosis, while activation of hepatic stellate cells (HSCs) results in fibrosis. Since transforming growth factor-beta (TGF-beta) is a critical mediator in this process, we hypothesized that bile acids may participate in TGF-beta-mediated HSC activation in cholestasis. Bile acid treatment increased TGF-beta transcription in hepatocytes, while the total TGF-beta concentration in culture media rapidly decreased following bile acid treatment. Bile acid treatment promptly induced thrombospondin-1 expression in hepatocytes, which is a potent activator of latent TGF-beta, whereas this induction was not observed in bile acid-treated HSCs. HSCs co-cultured with hepatocytes showed a significantly higher level of Smad2 phosphorylation and collagen alpha1 synthesis following bile acid treatment than cells cultured without hepatocytes. Moreover, this enhanced collagen synthesis was significantly inhibited in the presence of TGF-beta receptor inhibitor. These observations imply that bile acids induce thrombospondin-1 expression in hepatocytes, which activates latent TGF-beta leading to HSC activation.
Collapse
Affiliation(s)
- Sun Jung Myung
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rath GM, Schneider C, Dedieu S, Rothhut B, Soula-Rothhut M, Ghoneim C, Sid B, Morjani H, El Btaouri H, Martiny L. The C-terminal CD47/IAP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1125-34. [PMID: 16962673 DOI: 10.1016/j.bbamcr.2006.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 11/29/2022]
Abstract
Camptothecin and doxorubicin belong to a family of anticancer drugs that exert cytotoxic effects by triggering apoptosis in various cell types. However there have only been few investigations showing that matricellular proteins like thrombospondin-1 (TSP-1) could be involved in the underlying mechanism of this cytotoxicity. In this report, using Hoechst reagent staining, reactive oxygen species production and caspase-3 activity measurement, we determined that both camptothecin and doxorubicin induced apoptosis in human thyroid carcinoma cells (FTC-133). On the one hand, we demonstrated that camptothecin and doxorubicin inhibited TSP-1 expression mainly occurring at the transcriptional level. On the other hand, drug-induced apoptosis determined by western blot analysis for PARP cleavage and caspase-3 activity measurement, was significantly decreased in presence of exogenous TSP-1. In order to identify the sequence responsible for this effect, we used the CD47/IAP-binding peptide 4N1 (RFYVVMWK), derived from the C-terminal domain of TSP-1, and known to play a role in apoptosis. Thus, in presence of 4N1, camptothecin and doxorubicin-induced pro-apoptotic activity was considerably inhibited. These findings suggest that induction of apoptosis by camptothecin or doxorubicin in FTC-133 cells is greatly dependent by a down-regulation of TSP-1 expression and shed new light on a possible role for TSP-1 in drug resistance.
Collapse
Affiliation(s)
- G M Rath
- Université de Reims Champagne-Ardenne, IFR 53 Biomolécules, UMR-CNRS 6198 Matrice extracellulaire et régulation cellulaire, UFR Sciences de Reims, Moulin de la Housse-BP 1039-51687 Reims Cedex 2, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gao L, Qiu W, Wang Y, Xu W, Xu J, Tong J. Sublytic complement C5b-9 complexes induce thrombospondin-1 production in rat glomerular mesangial cells via PI3-k/Akt: association with activation of latent transforming growth factor-beta1. Clin Exp Immunol 2006; 144:326-34. [PMID: 16634807 PMCID: PMC1809655 DOI: 10.1111/j.1365-2249.2006.03069.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2006] [Indexed: 11/30/2022] Open
Abstract
Mesangial cell proliferation is a common cellular response to a variety of different types of glomerular injury. Complement C5b-9 is a prime candidate to mediate mesangial cell proliferation, especially sublytic C5b-9, which can induce the production of multiple inflammatory factors and cytokines. Transforming growth factor (TGF)-beta1 plays a major role in the accumulation of extracellular matrix (ECM), while thrombospondin (TSP)-1 has been identified as an activator of latent TGF-beta1 in an in vitro system. Using rat glomerular mesangial cells (GMCs) as a model system, we assessed the effect of sublytic C5b-9 on the expression of TSP-1 and TGF-beta1 and explored the relevant pathway of signal transduction. First, we ensured the concentrations of anti-Thy1 antibody and complement, which were regarded as a sublytic C5b-9 dose, and examined whether the sublytic C5b-9 induced expression of TSP-1 in rat GMCs which, in turn, activated latent TGF-beta1 by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Then, we investigated the role of the PI3-k/Akt pathway in sublytic C5b-9-induced TSP-1 production in rat GMCs by Western blot analysis. The addition of sublytic C5b-9 (5% anti-Thy1 antibody and 4% normal serum) to rat GMCs induced activation of latent TGF-beta1 via TSP-1. The addition of sublytic C5b-9 apparently increased the protein of Akt phosphorylation, whereas PI3-k inhibitor LY294002 could clearly reduce the increase of TSP-1 induced by sublytic C5b-9. These results indicate that TSP-1 is an activator of latent TGF-beta1 in sublytic C5b-9-induced rat GMCs; furthermore, the PI3-k/Akt signal transduction pathway may play a key role in sublytic C5b-9-induced TSP-1 production.
Collapse
Affiliation(s)
- L Gao
- Department of Immunology, Nanjing Medical University, 210019 Nanjing, China
| | | | | | | | | | | |
Collapse
|
35
|
McGillicuddy FC, O'Toole D, Hickey JA, Gallagher WM, Dawson KA, Keenan AK. TGF-beta1-induced thrombospondin-1 expression through the p38 MAPK pathway is abolished by fluvastatin in human coronary artery smooth muscle cells. Vascul Pharmacol 2006; 44:469-75. [PMID: 16624629 DOI: 10.1016/j.vph.2006.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 02/13/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
Thrombospondin-1 (TSP-1) and transforming growth factor-beta1 (TGF-beta1) are both implicated in the pathogenesis of in-stent restenosis. This study evaluated the hypothesis that the HMG-CoA reductase inhibitor fluvastatin inhibits TGF-beta1 induced TSP-1 expression via inhibition of p38 mitogen activated protein kinase (MAPK) phosphorylation in human coronary artery smooth muscle cells (HCASMC) and may therefore have anti-restenosis potential. Fluvastatin significantly reduced TSP-1 mRNA and protein expression in HCASMC in a concentration-dependent manner with a significant reduction in expression observed after treatment with 0.25 microM fluvastatin. TGF-beta1 (5 ng/ml) induced phosphorylation of p38 MAPK and induced TSP-1 mRNA and protein expression in HCASMC. Fluvastatin abolished TGF-beta1-induced phosphorylation of p38 MAPK and TGF-beta1-induced TSP-1 expression. Blockade of the p38 MAPK pathway with the upstream inhibitor SB-203580 also abolished TGF-beta1-induced TSP-1 expression. We conclude that fluvastatin decreases expression of TSP-1 and abolishes the ability of TGF-beta1 to induce TSP-1 expression in HCASMC; this may be achieved by preventing signalling through the p38 MAPK pathway. Targeted delivery of fluvastatin may therefore be a useful therapeutic objective for prevention of the intimal hyperplasia associated with in-stent restenosis.
Collapse
MESH Headings
- Adult
- Cells, Cultured
- Coronary Restenosis/prevention & control
- Coronary Vessels/drug effects
- Coronary Vessels/enzymology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Fatty Acids, Monounsaturated/pharmacology
- Fatty Acids, Monounsaturated/therapeutic use
- Fluvastatin
- Gene Expression Regulation
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Imidazoles/pharmacology
- Indoles/pharmacology
- Indoles/therapeutic use
- MAP Kinase Signaling System
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Phosphorylation
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Transforming Growth Factor beta/pharmacology
- Transforming Growth Factor beta1
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Fiona C McGillicuddy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Transforming growth factor beta (TGF-beta) is a biologically multipotent regulatory protein implicated in functions that include the regulation of cellular growth, differentiation, extracellular matrix formation, and wound healing. It also plays a role in the pathologies of Alzheimer's disease, cancer and autoimmune disorders. TGF-beta modulates gene expression by affecting transcriptional activation and mRNA turnover rate. Steady-state mRNA levels depend on both the transcriptional activity and mRNA half-life. The stability of mRNA can be modified by the binding of trans-acting factors to cis-elements on the message. These can protect the mRNA from cleavage by RNAses, or they may promote mRNA cleavage. Changes in mRNA stability can lead to changes in the proteome and subsequently in cellular metabolism. The SMAD family of proteins has been implicated in the transduction of the TGF-beta signal, where they regulate transcriptional activity. This review attempts to provide new insights into the role played by TGF-beta in the regulation of mRNA turnover.
Collapse
|
37
|
Kang JH, Kim SA, Hong KJ. Induction of TSP1 gene expression by heat shock is mediated via an increase in mRNA stability. FEBS Lett 2005; 580:510-6. [PMID: 16388804 DOI: 10.1016/j.febslet.2005.12.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/30/2005] [Accepted: 12/14/2005] [Indexed: 11/20/2022]
Abstract
Thrombospondin-1 (TSP1) expression has previously been shown to be regulated primarily at the level of transcription. In the present study, transcriptional control was not involved in the induction of TSP1 by heat shock. In contrast, heat shock caused significant stabilization of TSP1 mRNA. Fusion of the 3'-untranslated region (UTR) of TSP1 mRNA, with a reporter gene, increased the stability of the reporter transcript by heat shock. Furthermore, we identified a putative region from 968 to 1258 from the stop codon in the TSP1 3'-UTR, involved in the stability by heat shock. Thus, the induction of TSP1 by heat shock may occur through a post-transcriptional mechanism.
Collapse
Affiliation(s)
- Jung-Hoon Kang
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Republic of Korea
| | | | | |
Collapse
|
38
|
Banerjee S, Sengupta K, Saxena NK, Dhar K, Banerjee SK. Epidermal Growth Factor Induces WISP-2/CCN5 Expression in Estrogen Receptor-α-Positive Breast Tumor Cells through Multiple Molecular Cross-talks. Mol Cancer Res 2005; 3:151-62. [PMID: 15798095 DOI: 10.1158/1541-7786.mcr-04-0130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Epidermal growth factor (EGF) is a mitogen for estrogen receptor (ER)–positive breast tumor cells, and it has been proven that EGF occasionally mimicked estrogen action and cross-talks with ER-α to exert its activity. Therefore, the present study was undertaken to explore whether EGF is able to modulate the expression of Wnt-1-induced signaling protein-2/connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed 5 (WISP-2/CCN5), an estrogen-responsive gene, in normal and transformed cell lines of the human breast and, if so, whether this induction is critical for EGF mitogenesis and what downstream signaling pathways are associated with this event. Here, we show that EGF-induced WISP-2 expression in ER- and EGF receptor–positive noninvasive MCF-7 breast tumor cells was dose and time dependent and that expression was modulated at transcription level. A synergism was seen in combination with estrogen. Moreover, small interfering RNA–mediated inhibition of WISP-2/CCN5 activity in MCF-7 cells resulted in abrogation of proliferation by EGF. The multiple molecular cross-talks, including the interactions between phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways and two diverse receptors (i.e., ER-α and EGFR), were essential in the event of EGF-induced WISP-2/CCN5 up-regulation in MCF-7 cells. Moreover, EGF action on WISP-2/CCN5 is restricted to ER- and EGFR-positive noninvasive breast tumor cells, and this effect of EGF cannot be instigated in ER-α-negative and EGFR-positive normal or invasive breast tumor cells by introducing ER-α. Finally, regulation of phosphorylation of ER-α and EGFR may play critical roles in EGF-induced transcriptional activation of WISP-2 gene in breast tumor cells.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Breast Neoplasms/metabolism
- Butadienes/pharmacology
- CCN Intercellular Signaling Proteins
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Proliferation
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Epidermal Growth Factor/physiology
- Estrogen Receptor alpha/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Intercellular Signaling Peptides and Proteins/biosynthesis
- MAP Kinase Signaling System
- Microscopy, Confocal
- Microscopy, Fluorescence
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Nitriles/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- RNA/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Repressor Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Subcellular Fractions
- Time Factors
- Transcription Factors/biosynthesis
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Snigdha Banerjee
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, USA.
| | | | | | | | | |
Collapse
|
39
|
Soula-Rothhut M, Coissard C, Sartelet H, Boudot C, Bellon G, Martiny L, Rothhut B. The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells. Exp Cell Res 2005; 304:187-201. [PMID: 15707585 DOI: 10.1016/j.yexcr.2004.10.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2004] [Revised: 10/29/2004] [Accepted: 10/30/2004] [Indexed: 11/26/2022]
Abstract
Thrombospondin-1 (TSP-1) is a multidomain extracellular macromolecule that was first identified as natural modulator of angiogenesis and tumor growth. In the present study, we found that epidermal growth factor (EGF) up-regulated TSP-1 expression in FTC-133 (primary tumor) but not in FTC-238 (lung metastasis) thyroid cancer cells. Both EGF and TSP-1 induced expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. In FTC-133 cells, EGF induced proliferation in a TSP-1- and TIMP-1-dependent manner. In addition, we determined that re-expression of the tumor suppressor protein PTEN induced cell death, an effect that correlated with a block of Akt kinase phosphorylation. EGF-induced TSP-1 and TIMP-1 promoter activity and protein expression were inhibited in FTC-133 cells stably expressing wtPTEN but not in cells expressing mutant PTEN. Furthermore, we found that wtPTEN inhibited EGF--but not TSP-1--stimulated FTC-133 cell migration and also inhibited invasion induced by EGF and by TSP-1. Finally, an antibody against TSP-1 reversed EGF-stimulated FTC-133 cell invasion as well as the constitutive invasive potential of FTC-238 cells. Overall, our results suggest that PTEN can function as an important modulator of extracellular matrix proteins in thyroid cancer. Therefore, analyzing differential regulation of TSP-1 by growth factors such as EGF can be helpful in understanding thyroid cancer development.
Collapse
Affiliation(s)
- Mahdhia Soula-Rothhut
- Unité Matrice Extracellulaire et Régulations Cellulaires, CNRS UMR 6198, Laboratory of Biochemistry, University of Reims Champagne-Ardenne, Moulin de la Housse, 51687 Reims Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Yee KO, Streit M, Hawighorst T, Detmar M, Lawler J. Expression of the type-1 repeats of thrombospondin-1 inhibits tumor growth through activation of transforming growth factor-beta. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:541-52. [PMID: 15277228 PMCID: PMC1618557 DOI: 10.1016/s0002-9440(10)63319-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the present study, the type-1 repeats of thrombospondin-1 (TSP-1) were transfected into A431 cells. Expression of all three type-1 repeats (3TSR) and expression of just the second type-1 repeat containing the transforming growth factor (TGF)-beta activating sequence KRFK (TSR2 + KRFK) significantly inhibited in vivo tumor angiogenesis and growth in nude mice. These tumors expressed increased levels of both active and total TGF-beta. A431 cells expressing the second type-1 repeat without the KRFK sequence (TSR2 - KRFK) produced tumors that were slightly larger than the 3TSR and TSR2 + KRFK tumors. These tumors expressed elevated levels of active TGF-beta but levels of total TGF-beta were not different from control tumors. Injection of the peptide, LSKL, which blocks TSP-1 activation of TGF-beta, reversed the growth inhibition observed with cells expressing TSR2 + KRFK to a level comparable to controls. Various residues in the WSHWSPW region and the VTCG sequence of both TSR2+/- KRFK were mutated. Although mutation of the VTCG sequence had no significant effect on tumor growth, mutation of the WSHWSPW sequence reduced inhibition of tumor growth. These findings suggest that the inhibition of tumor angiogenesis and growth by endogenous TSP-1 involves regulation of both active and total TGF-beta and the sequences KRFK and WSHWSPW in the second type-1 repeat.
Collapse
Affiliation(s)
- Karen O Yee
- Department of Pathology, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Research North 270C, Boston MA 02215, USA
| | | | | | | | | |
Collapse
|
41
|
Xiao Y, Kleeff J, Guo J, Gazdhar A, Liao Q, Di Cesare PE, Büchler MW, Friess H. Cartilage oligomeric matrix protein expression in hepatocellular carcinoma and the cirrhotic liver. J Gastroenterol Hepatol 2004; 19:296-302. [PMID: 14748877 DOI: 10.1111/j.1440-1746.2003.03268.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cartilage oligomeric matrix protein (COMP) is the fifth member of the thrombospondin family of extracellular, calcium-binding proteins. It was initially isolated and characterized in cartilage tissue, where it is thought to contribute to the extracellular matrix composition and cell-extracellular matrix interaction. In the present study the expression of COMP was investigated in normal liver (n=19), liver cirrhosis (n=14) and hepatocellular carcinoma (HCC; n=16) tissues, both at the mRNA and protein level. METHODS AND RESULTS By northern blot and western blot analysis, COMP was absent or rarely expressed in the normal liver and liver cirrhosis tissues, but significantly overexpressed in HCC tissue samples. The COMP mRNA overexpression in HCC was not related to the clinical stage or tumor grade. By in situ hybridization and immunohistochemistry analysis, COMP mRNA and protein expression were localized within the cytoplasm of the tumor cells. CONCLUSION COMP is highly expressed within the tumor cells of HCC, suggesting that COMP might play a role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Yi Xiao
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yerian LM, Anders RA, Tretiakova M, Hart J. Caveolin and Thrombospondin Expression During Hepatocellular Carcinogenesis. Am J Surg Pathol 2004; 28:357-64. [PMID: 15104298 DOI: 10.1097/00000478-200403000-00008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Macroregenerative and dysplastic nodules (MDNs) are hepatocellular carcinoma (HCC) precursor lesions and exhibit distinct vascular profiles relative to adjacent cirrhotic liver. Recent microarray analysis of MDN identified aberrant expression of caveolin-1 and thrombospondin-1, genes suspected to play a role in tumorigenesis at other sites. We used immunohistochemistry to localize caveolin and thrombospondin expression in 14 MDNs from livers with hepatitis C cirrhosis and in tissue arrays that included samples of MDNs, HCC, and nonneoplastic liver. Hepatocytes were uniformly negative for caveolin. Sinusoidal endothelial cells exhibited increased caveolin expression in MDNs relative to adjacent cirrhotic liver in most (28 of 36, 78%) MDNs evaluated. However, few HCCs showed increased caveolin expression as compared with nonneoplastic liver (5 of 19, 26%). Unpaired arteries showed strong positive endothelial cell staining. Thrombospondin staining was weak or negative in hepatocytes in nearly all (77 of 92, 84%) MDNs and in 46 of 49 HCCs evaluated (94%). Sinusoidal endothelial cells were negative for thrombos pondin, but hepatic arteries and MDNs showed positive mural staining; portal veins were positive both in vessel walls and in endothelial cells. The altered expression profiles of these genes identified in microarray analysis are not likely related directly to malignant transformation of hepatocytes but rather to an alteration in the vascular supply to these lesions. The results illustrate the critical role of histologic techniques in interpretation of microarray data.
Collapse
Affiliation(s)
- Lisa M Yerian
- Department of Pathology, University of Chicago Hospitals, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
43
|
Naito T, Masaki T, Nikolic-Paterson DJ, Tanji C, Yorioka N, Kohno N. Angiotensin II induces thrombospondin-1 production in human mesangial cells via p38 MAPK and JNK: a mechanism for activation of latent TGF-beta1. Am J Physiol Renal Physiol 2004; 286:F278-F287. [PMID: 14583433 DOI: 10.1152/ajprenal.00139.2003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ANG II induces secretion and activation of transforming growth factor-beta (TGF-beta) by glomerular mesangial cells. However, the mechanisms that operate this are unclear. Thrombospondin-1 (TSP-1), which is produced by mesangial cells in damaged glomeruli, is one of several molecules known to activate the latent TGF-beta1 complex. Therefore, we examined whether the ANG II-induced activation of latent TGF-beta1 in human mesangial cells (HMC) operates via TSP-1. The addition of ANG II (1-100 nM) to HMC significantly increased TSP-1 mRNA within 6 h, followed by an increase in TSP-1 protein production as shown by Western blot analysis of cells and immunoassay of the culture supernatant. Production of ANG II-induced TSP-1 mRNA and protein was completely inhibited by an ANG II type 1 (AT1)-receptor antagonist but was unaffected by an AT2-receptor antagonist. Use of a TSP-1-specific blocking peptide demonstrated that the ANG II-induced activation of latent TGF-beta1 operates via TSP-1. Next, we investigated the role of ERK1/2, p38 MAPK, and JNK in ANG II-induced TSP-1 production in HMC. The addition of the upstream ERK1/2 inhibitor PD-98059 did not affect ANG II-induced TSP-1 production, whereas addition of either the p38 MAPK inhibitor SB-203580 or the JNK inhibitor SP-600125 significantly reduced TSP-1 production. In conclusion, this study has demonstrated that ANG II-induced activation of latent TGF-beta1 in HMC operates via TSP-1. Furthermore, ANG II-induced TSP-1 production is dependent on p38 MAPK and JNK signaling.
Collapse
Affiliation(s)
- Takayuki Naito
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City 734-8551, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Sadoun E, Reed MJ. Impaired angiogenesis in aging is associated with alterations in vessel density, matrix composition, inflammatory response, and growth factor expression. J Histochem Cytochem 2003; 51:1119-30. [PMID: 12923237 DOI: 10.1177/002215540305100902] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is generally accepted that angiogenesis is delayed in aging. To define the effects of age on the neovascular response, polyvinyl alcohol sponges were implanted SC in young (6-8 months old, n=11) and aged (23-25 months old, n=13) mice and sampled at 14 and 19 days. Angiogenic invasion was significantly delayed in aged mice at 14d relative to young at 14d (% area of invasion 9.0 +/- 3.7 vs 19.0 +/- 5.6; p=0.02). Although microvessel morphology and basement membrane composition were similar between the age groups, a significant decrease in capillary density was noted in aged tissues at 14d (7.5 +/- 4.1) and 19d (12.1 +/- 2.8) relative to young at 14d (18.7 +/- 2.3) (p<0.01 A14d vs Y14d). In comparison to young at 14d, the inflammatory response was decreased by 43 +/- 2.9% and 36 +/- 7.8% in aged mice at 14d and 19d, respectively. Tissues of aged mice showed less newly deposited collagen. There was a lack of expression of transforming growth factor-beta1 (TGF-beta1) and vascular endothelial growth factor (VEGF) in aged mice at 14d (0.63 +/- 0.3) and 19d (1.14 +/- 0.5) vs young at 14d (1.92 +/- 0.5) (p< or =0.01 A14d vs Y14d for VEGF). However, similar production of VEGF receptor2 was observed. In contrast to young mice, there was significantly increased expression of thrombospondin-2 (TSP-2) in aged mice from 14d (14.6 x 10(3) +/- 7.3 x 10(3)) to 19d (34.9 x 10(3) +/- 17 x 10(3)). We conclude that angiogenesis in aging is not merely delayed, but is altered due to multiple impairments.
Collapse
Affiliation(s)
- Eman Sadoun
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104, USA.
| | | |
Collapse
|
45
|
Dumont N, Arteaga CL. The tumor microenvironment: a potential arbitrator of the tumor suppressive and promoting actions of TGFbeta. Differentiation 2002; 70:574-82. [PMID: 12492498 DOI: 10.1046/j.1432-0436.2002.700910.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor beta (TGFbeta) members are secreted in biologically inactive complexes that must be activated in order to enable binding to their cell surface receptors. Interestingly, many of the proteins that can activate TGFbeta have been implicated in either suppressing or promoting tumorigenesis. Included among these are matrix proteins (thrombospondin-1), receptors (integrins alphanubeta6 and alphanubeta8) and proteases (matrix metalloproteases and plasmin). These proteins cannot only activate TGFbeta, but can also modulate cell responsiveness to TGFbeta. In this section, we review data highlighting the complexity and bidirectionality of TGFbeta matrix interactions within the tumor microenvironment, and propose that these dynamic interactions are a critical spatial and temporal determinant of the effects of TGFbeta on tumorigenesis.
Collapse
Affiliation(s)
- Nancy Dumont
- Division of Oncology, Vanderbilt University School of Medicine, TN 37232-6307, USA
| | | |
Collapse
|