1
|
Fettig R, Gonda Z, Walter N, Sallmann P, Thanisch C, Winter M, Bauer S, Zhang L, Linden G, Litfin M, Khamanaeva M, Storm S, Münzing C, Etard C, Armant O, Vázquez O, Kassel O. Short internal open reading frames repress the translation of N-terminally truncated proteoforms. EMBO Rep 2025; 26:1566-1589. [PMID: 39962229 PMCID: PMC11933307 DOI: 10.1038/s44319-025-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Internal translation initiation sites, as revealed by ribosome profiling experiments can potentially drive the translation of many N-terminally truncated proteoforms. We report that internal short open reading frame (sORF) within coding sequences regulate their translation. nTRIP6 represents a short nuclear proteoform of the cytoplasmic protein TRIP6. We have previously reported that nTRIP6 regulates the dynamics of skeletal muscle progenitor differentiation. Here we show that nTRIP6 is generated by translation initiation at an internal AUG after leaky scanning at the canonical TRIP6 AUG. The translation of nTRIP6 is repressed by an internal sORF immediately upstream of the nTRIP6 AUG. Consistent with this representing a more general regulatory feature, we have identified other internal sORFs which repress the translation of N-terminally truncated proteoforms. In an in vitro model of myogenic differentiation, the expression of nTRIP6 is transiently upregulated through a mechanistic Target of Rapamycin Complex 1-dependent increase in translation initiation at the internal AUG. Thus, the translation of N-terminally truncated proteoforms can be regulated independently of the canonical ORF.
Collapse
Affiliation(s)
- Raphael Fettig
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Zita Gonda
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Niklas Walter
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Paul Sallmann
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christiane Thanisch
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Markus Winter
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Susanne Bauer
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Lei Zhang
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
| | - Greta Linden
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
| | - Margarethe Litfin
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Marina Khamanaeva
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Sarah Storm
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christina Münzing
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christelle Etard
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | - Olalla Vázquez
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Olivier Kassel
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany.
| |
Collapse
|
2
|
Brock K, Alpha KM, Brennan G, De Jong EP, Luke E, Turner CE. A comparative analysis of paxillin and Hic-5 proximity interactomes. Cytoskeleton (Hoboken) 2025; 82:12-31. [PMID: 38801098 PMCID: PMC11599474 DOI: 10.1002/cm.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.
Collapse
Affiliation(s)
- Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Kyle M. Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Ebbing P. De Jong
- Proteomics Core facility, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Elizabeth Luke
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
3
|
Daniel P, Balušíková K, Václavíková R, Šeborová K, Ransdorfová Š, Valeriánová M, Wei L, Jelínek M, Tlapáková T, Fleischer T, Kristensen VN, Souček P, Ojima I, Kovář J. ABCB1 Amplicon Contains Cyclic AMP Response Element-Driven TRIP6 Gene in Taxane-Resistant MCF-7 Breast Cancer Sublines. Genes (Basel) 2023; 14:genes14020296. [PMID: 36833223 PMCID: PMC9957548 DOI: 10.3390/genes14020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
A limited number of studies are devoted to regulating TRIP6 expression in cancer. Hence, we aimed to unveil the regulation of TRIP6 expression in MCF-7 breast cancer cells (with high TRIP6 expression) and taxane-resistant MCF-7 sublines (manifesting even higher TRIP6 expression). We found that TRIP6 transcription is regulated primarily by the cyclic AMP response element (CRE) in hypomethylated proximal promoters in both taxane-sensitive and taxane-resistant MCF-7 cells. Furthermore, in taxane-resistant MCF-7 sublines, TRIP6 co-amplification with the neighboring ABCB1 gene, as witnessed by fluorescence in situ hybridization (FISH), led to TRIP6 overexpression. Ultimately, we found high TRIP6 mRNA levels in progesterone receptor-positive breast cancer and samples resected from premenopausal women.
Collapse
Affiliation(s)
- Petr Daniel
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Kamila Balušíková
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Karolína Šeborová
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Šárka Ransdorfová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, 128 00 Prague, Czech Republic
| | - Marie Valeriánová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, 128 00 Prague, Czech Republic
| | - Longfei Wei
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY 11794, USA
| | - Michael Jelínek
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
| | - Tereza Tlapáková
- Department of Cell Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Vessela N. Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0424 Oslo, Norway
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine, Charles University, 323 00 Pilsen, Czech Republic
| | - Iwao Ojima
- Department of Chemistry, Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY 11794, USA
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic
- Correspondence: ; Tel.: +420-267-102-658
| |
Collapse
|
4
|
Byron A, Griffith BGC, Herrero A, Loftus AEP, Koeleman ES, Kogerman L, Dawson JC, McGivern N, Culley J, Grimes GR, Serrels B, von Kriegsheim A, Brunton VG, Frame MC. Characterisation of a nucleo-adhesome. Nat Commun 2022; 13:3053. [PMID: 35650196 PMCID: PMC9160004 DOI: 10.1038/s41467-022-30556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 05/02/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to central functions in cell adhesion signalling, integrin-associated proteins have wider roles at sites distal to adhesion receptors. In experimentally defined adhesomes, we noticed that there is clear enrichment of proteins that localise to the nucleus, and conversely, we now report that nuclear proteomes contain a class of adhesome components that localise to the nucleus. We here define a nucleo-adhesome, providing experimental evidence for a remarkable scale of nuclear localisation of adhesion proteins, establishing a framework for interrogating nuclear adhesion protein functions. Adding to nuclear FAK's known roles in regulating transcription, we now show that nuclear FAK regulates expression of many adhesion-related proteins that localise to the nucleus and that nuclear FAK binds to the adhesome component and nuclear protein Hic-5. FAK and Hic-5 work together in the nucleus, co-regulating a subset of genes transcriptionally. We demonstrate the principle that there are subcomplexes of nuclear adhesion proteins that cooperate to control transcription.
Collapse
Affiliation(s)
- Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK.
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Billie G C Griffith
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Ana Herrero
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011, Santander, Spain
| | - Alexander E P Loftus
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Emma S Koeleman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Leiden University Medical Center, 2333 ZC, Leiden, The Netherlands
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, 69120, Heidelberg, Germany
| | - Linda Kogerman
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - John C Dawson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Niamh McGivern
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- Almac Diagnostic Services, 19 Seagoe Industrial Estate, Craigavon, BT63 5QD, UK
| | - Jayne Culley
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Graeme R Grimes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Bryan Serrels
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
- NanoString Technologies, Inc., Seattle, WA, 98109, USA
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Valerie G Brunton
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| |
Collapse
|
5
|
Wang Y, Dong L, Liu Y. Targeting Thyroid Receptor Interacting Protein 6 by MicroRNA-589-5p Inhibits Cell Proliferation, Migration, and Invasion in Endometrial Carcinoma. Cancer Biother Radiopharm 2019; 34:529-536. [PMID: 31424277 DOI: 10.1089/cbr.2018.2766] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNA-589-5p (miR-589-5p) has been recently reported to be aberrantly regulated in hepatocellular carcinoma, but its functional role and molecular mechanisms still remains unknown in the endometrial carcinoma (EC) as one of the most common female malignancies. Methods: EC tissues and adjacent tissues were collected to determine the expression of miR-589-5p and thyroid receptor interacting protein 6 (TRIP6) using quantitative real time-PCR. Subsequently, two EC cell lines HEC-1B and AN3CA were transfected with miR-589-5p to achieve miR-589-5p overexpression. Using Cell Counting Kit-8 (CCK-8), a wound healing assay and the Transwell assay, we analyzed cell proliferation, migration and invasion. Dual-luciferase reporter assay confirmed that thyroid receptor interacting protein 6 (TRIP6) was a direct target of miR-589-5p. Results: We first observed that miR-589-5p was down-regulated in EC tissues compared with normal endometrial tissues. MiR-589-5p overexpression significantly suppressed EC cell proliferation, migration and invasion. Thyroid receptor interacting protein 6 (TRIP6) was a direct target of miR-589-5p. Besides, TRIP6 knockdown presented similar effects on cell proliferation, migration and invasion to miR-589-5p overexpression. Furthermore, TRIP6 knockdown efficiently enhanced the effects of miR-589-5p on the above cellular function. Moreover, miR-589-5p up-regulated E-cadherin expression, but down-regulated N-cadherin and Vimentin by targeting TRIP6. Conclusions: In summary, miR-589-5p might function as a tumor suppressor by targeting TRIP6, which will provide new insights into the molecular mechanism underlying the development of EC.
Collapse
Affiliation(s)
- Yuefang Wang
- Department of Gynaecology, People's Hospital of Dezhou, Shandong, China
| | - Liwei Dong
- Department of Reproductive Medicine, People's Hospital of Dezhou, Shandong, China
| | - Yuying Liu
- Department of Oncology, People's Hospital of Dezhou, Shandong, China
| |
Collapse
|
6
|
LIM Protein Ajuba associates with the RPA complex through direct cell cycle-dependent interaction with the RPA70 subunit. Sci Rep 2018; 8:9536. [PMID: 29934626 PMCID: PMC6015067 DOI: 10.1038/s41598-018-27919-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/13/2018] [Indexed: 12/04/2022] Open
Abstract
DNA damage response pathways are essential for genome stability and cell survival. Specifically, the ATR kinase is activated by DNA replication stress. An early event in this activation is the recruitment and phosphorylation of RPA, a single stranded DNA binding complex composed of three subunits, RPA70, RPA32 and RPA14. We have previously shown that the LIM protein Ajuba associates with RPA, and that depletion of Ajuba leads to potent activation of ATR. In this study, we provide evidence that the Ajuba-RPA interaction occurs through direct protein contact with RPA70, and that their association is cell cycle-regulated and is reduced upon DNA replication stress. We propose a model in which Ajuba negatively regulates the ATR pathway by directly interacting with RPA70, thereby preventing inappropriate ATR activation. Our results provide a framework to further our understanding of the mechanism of ATR regulation in human cells in the context of cellular transformation.
Collapse
|
7
|
Sala S, Ampe C. An emerging link between LIM domain proteins and nuclear receptors. Cell Mol Life Sci 2018; 75:1959-1971. [PMID: 29428964 PMCID: PMC11105726 DOI: 10.1007/s00018-018-2774-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/01/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors are ligand-activated transcription factors that partake in several biological processes including development, reproduction and metabolism. Over the last decade, evidence has accumulated that group 2, 3 and 4 LIM domain proteins, primarily known for their roles in actin cytoskeleton organization, also partake in gene transcription regulation. They shuttle between the cytoplasm and the nucleus, amongst other as a consequence of triggering cells with ligands of nuclear receptors. LIM domain proteins act as important coregulators of nuclear receptor-mediated gene transcription, in which they can either function as coactivators or corepressors. In establishing interactions with nuclear receptors, the LIM domains are important, yet pleiotropy of LIM domain proteins and nuclear receptors frequently occurs. LIM domain protein-nuclear receptor complexes function in diverse physiological processes. Their association is, however, often linked to diseases including cancer.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Kemler D, Dahley O, Roßwag S, Litfin M, Kassel O. The LIM domain protein nTRIP6 acts as a co-repressor for the transcription factor MEF2C in myoblasts. Sci Rep 2016; 6:27746. [PMID: 27292777 PMCID: PMC4904203 DOI: 10.1038/srep27746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
The transcription factor Myocyte enhancer factor 2C (MEF2C) plays a key role in the late differentiation of skeletal muscle progenitor cells, the so-called myoblasts. During myoblast differentiation, both MEF2C expression and transcriptional activity are regulated. We have reported that nTRIP6, the nuclear isoform of the focal adhesion LIM domain protein TRIP6, acts as an adaptor transcriptional co-activator for several transcription factors. It interacts with the promoter-bound transcription factors and consequently mediates the recruitment of other co-activators. Based on a described interaction between MEF2C and TRIP6 in a yeast-two-hybrid screen, we hypothesised a co-regulatory function of nTRIP6 for MEF2C. In proliferating myoblasts, nTRIP6 interacted with MEF2C and was recruited together with MEF2C to the MEF2-binding regions of the MEF2C target genes Myom2, Mb, Tnni2 and Des. Silencing nTRIP6 or preventing its interaction with MEF2C increased MEF2C transcriptional activity and increased the expression of these MEF2C target genes. Thus, nTRIP6 acts as a co-repressor for MEF2C. Mechanistically, nTRIP6 mediated the recruitment of the class IIa histone deacetylase HDAC5 to the MEF2C-bound promoters. In conclusion, our results unravel a transcriptional co-repressor function for nTRIP6. This adaptor co-regulator can thus exert either co-activator or co-repressor functions, depending on the transcription factor it interacts with.
Collapse
Affiliation(s)
- Denise Kemler
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Oliver Dahley
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Sven Roßwag
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Margarethe Litfin
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - Olivier Kassel
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, Karlsruhe, Germany
| |
Collapse
|
9
|
Haubner BJ, Moik D, Schuetz T, Reiner MF, Voelkl JG, Streil K, Bader K, Zhao L, Scheu C, Mair J, Pachinger O, Metzler B. In vivo cardiac role of migfilin during experimental pressure overload. Cardiovasc Res 2015; 106:398-407. [DOI: 10.1093/cvr/cvv125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/14/2015] [Indexed: 11/14/2022] Open
|
10
|
Lai YJ, Li MY, Yang CY, Huang KH, Tsai JC, Wang TW. TRIP6 regulates neural stem cell maintenance in the postnatal mammalian subventricular zone. Dev Dyn 2014; 243:1130-42. [DOI: 10.1002/dvdy.24161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yun-Ju Lai
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Ming-Yang Li
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Cheng-Yao Yang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Kao-Hua Huang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Jui-Cheng Tsai
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Tsu-Wei Wang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
- Brain Research Center; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
11
|
The LIM domain protein nTRIP6 recruits the mediator complex to AP-1-regulated promoters. PLoS One 2014; 9:e97549. [PMID: 24819052 PMCID: PMC4018362 DOI: 10.1371/journal.pone.0097549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/18/2014] [Indexed: 01/25/2023] Open
Abstract
Several LIM domain proteins regulate transcription. They are thought to act through their LIM protein-protein interaction domains as adaptors for the recruitment of transcriptional co-regulators. An intriguing example is nTRIP6, the nuclear isoform of the focal adhesion protein TRIP6. nTRIP6 interacts with AP-1 and enhances its transcriptional activity. nTRIP6 is also essential for the transrepression of AP-1 by the glucocorticoid receptor (GR), by mediating GR tethering to promoter-bound AP-1. Here we report on the molecular mechanism by which nTRIP6 exerts these effects. Both the LIM domains and the pre-LIM region of nTRIP6 are necessary for its co-activator function for AP-1. Discrete domains within the pre-LIM region mediate the dimerization of nTRIP6 at the promoter, which enables the recruitment of the Mediator complex subunits THRAP3 and Med1. This recruitment is blocked by GR, through a competition between GR and THRAP3 for the interaction with the LIM domains of nTRIP6. Thus, nTRIP6 both positively and negatively regulates transcription by orchestrating the recruitment of the Mediator complex to AP-1-regulated promoters.
Collapse
|
12
|
Handschick K, Beuerlein K, Jurida L, Bartkuhn M, Müller H, Soelch J, Weber A, Dittrich-Breiholz O, Schneider H, Scharfe M, Jarek M, Stellzig J, Schmitz ML, Kracht M. Cyclin-dependent kinase 6 is a chromatin-bound cofactor for NF-κB-dependent gene expression. Mol Cell 2014; 53:193-208. [PMID: 24389100 DOI: 10.1016/j.molcel.2013.12.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/09/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
Abstract
Given the intimate link between inflammation and dysregulated cell proliferation in cancer, we investigated cytokine-triggered gene expression in different cell cycle stages. Transcriptome analysis revealed that G1 release through cyclin-dependent kinase 6 (CDK6) and CDK4 primes and cooperates with the cytokine-driven gene response. CDK6 physically and functionally interacts with the NF-κB subunit p65 in the nucleus and is found at promoters of many transcriptionally active NF-κB target genes. CDK6 recruitment to distinct chromatin regions of inflammatory genes was essential for proper loading of p65 to its cognate binding sites and for the function of p65 coactivators, such as TRIP6. Furthermore, cytokine-inducible nuclear translocation and chromatin association of CDK6 depends on the kinase activity of TAK1 and p38. These results have widespread biological implications, as aberrant CDK6 expression or activation that is frequently observed in human tumors modulates NF-κB to shape the cytokine and chemokine repertoires in chronic inflammation and cancer.
Collapse
Affiliation(s)
- Katja Handschick
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Knut Beuerlein
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Liane Jurida
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Helmut Müller
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Johanna Soelch
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Axel Weber
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | - Heike Schneider
- Institute of Physiological Chemistry, Medical School Hannover, 30625 Hannover, Germany
| | - Maren Scharfe
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Jarek
- Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Julia Stellzig
- Institute of Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - M Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
13
|
Kalan S, Matveyenko A, Loayza D. LIM Protein Ajuba Participates in the Repression of the ATR-Mediated DNA Damage Response. Front Genet 2013; 4:95. [PMID: 23755068 PMCID: PMC3664778 DOI: 10.3389/fgene.2013.00095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/07/2013] [Indexed: 01/06/2023] Open
Abstract
LIM proteins constitute a superfamily characterized by the presence of a LIM domain, known to be involved in protein-protein interactions. Our previous work has implicated members of the Zyxin family of LIM proteins, namely TRIP6 and LPP, in the repression of the DNA damage response (DDR) at telomeres. Here, we describe a role for Ajuba, a closely related LIM molecule, in repressing the ATR-mediated DDR. We found that depletion of Ajuba led to apparent delays in the cell cycle, accompanied with increased Rb phosphorylation, Chk1 phosphorylation, induction of p53, and cell death. Ajuba could be found in a complex with replication protein A (RPA), and its depletion led to RPA phosphorylation, known to be an early event in ATR activation. We propose that Ajuba protects against unscheduled ATR signaling by preventing inappropriate RPA phosphorylation.
Collapse
Affiliation(s)
- Sampada Kalan
- Department of Biological Sciences, Hunter College , New York, NY , USA
| | | | | |
Collapse
|
14
|
Choi YH, McNally BT, Igarashi P. Zyxin regulates migration of renal epithelial cells through activation of hepatocyte nuclear factor-1β. Am J Physiol Renal Physiol 2013; 305:F100-10. [PMID: 23657850 DOI: 10.1152/ajprenal.00582.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hepatocyte nuclear factor-1β (HNF-1β) is an epithelial tissue-specific transcription factor that regulates gene expression in the kidney, liver, pancreas, intestine, and other organs. Mutations of HNF-1β in humans produce renal cysts and congenital kidney anomalies. Here, we identify the LIM-domain protein zyxin as a novel binding partner of HNF-1β in renal epithelial cells. Zyxin shuttles to the nucleus where it colocalizes with HNF-1β. Immunoprecipitation of zyxin in leptomycin B-treated cells results in coprecipitation of HNF-1β. The protein interaction requires the second LIM domain of zyxin and two distinct domains of HNF-1β. Overexpression of zyxin stimulates the transcriptional activity of HNF-1β, whereas small interfering RNA silencing of zyxin inhibits HNF-1β-dependent transcription. Epidermal growth factor (EGF) induces translocation of zyxin into the nucleus and stimulates HNF-1β-dependent promoter activity. The EGF-mediated nuclear translocation of zyxin requires activation of Akt. Expression of dominant-negative mutant HNF-1β, knockdown of zyxin, or inhibition of Akt inhibits EGF-stimulated cell migration. These findings reveal a novel pathway by which extracellular signals are transmitted to the nucleus to regulate the activity of a transcription factor that is essential for renal epithelial differentiation.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
15
|
Hooper CL, Paudyal A, Dash PR, Boateng SY. Modulation of stretch-induced myocyte remodeling and gene expression by nitric oxide: a novel role for lipoma preferred partner in myofibrillogenesis. Am J Physiol Heart Circ Physiol 2013; 304:H1302-13. [PMID: 23504181 DOI: 10.1152/ajpheart.00004.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prolonged hemodynamic load as a result of hypertension eventually leads to maladaptive cardiac adaptation and heart failure. The signaling pathways that underlie these changes are still poorly understood. The adaptive response to mechanical load is mediated by mechanosensors that convert the mechanical stimuli into a biological response. We examined the effect of cyclic mechanical stretch on myocyte adaptation using neonatal rat ventricular myocytes with 10% (adaptive) or 20% (maladaptive) maximum strain at 1 Hz for 48 h to mimic in vivo mechanical stress. Cells were also treated with and without nitro-L-arginine methyl ester (L-NAME), a general nitric oxide synthase (NOS) inhibitor to suppress NO production. Maladaptive 20% mechanical stretch led to a significant loss of intact sarcomeres that were rescued by L-NAME (P < 0.05; n ≥ 5 cultures). We hypothesized that the mechanism was through NO-induced alteration of myocyte gene expression. L-NAME upregulated the mechanosensing proteins muscle LIM protein (MLP; by 100%; P < 0.05; n = 5 cultures) and lipoma preferred partner (LPP), a novel cardiac protein (by 80%; P < 0.05; n = 4 cultures). L-NAME also significantly altered the subcellular localization of LPP and MLP in a manner that favored growth and adaptation. These findings suggest that NO participates in stretch-mediated adaptation. The use of isoform selective NOS inhibitors indicated a complex interaction between inducible NOS and neuronal NOS isoforms regulate gene expression. LPP knockdown by small intefering RNA led to formation of α-actinin aggregates and Z bodies showing that myofibrillogenesis was impaired. There was an upregulation of E3 ubiquitin ligase (MUL1) by 75% (P < 0.05; n = 5 cultures). This indicates that NO contributes to stretch-mediated adaptation via the upregulation of proteins associated with mechansensing and myofibrillogenesis, thereby presenting potential therapeutic targets during the progression of heart failure.
Collapse
Affiliation(s)
- Charlotte L Hooper
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | | | | | | |
Collapse
|
16
|
Lanni C, Necchi D, Pinto A, Buoso E, Buizza L, Memo M, Uberti D, Govoni S, Racchi M. Zyxin is a novel target for β-amyloid peptide: characterization of its role in Alzheimer's pathogenesis. J Neurochem 2013; 125:790-9. [PMID: 23330981 DOI: 10.1111/jnc.12154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 01/11/2013] [Accepted: 01/11/2013] [Indexed: 11/26/2022]
Abstract
Zyxin is an adaptor protein recently identified as a novel regulator of the homeodomain-interacting protein kinase 2 (HIPK2)-p53 signaling in response to DNA damage. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer 's disease (AD), because of a deregulation of HIPK2 activity, leading to an impaired and dysfunctional response to stressors. Here, we examined the molecular mechanisms underlying the deregulation of HIPK2 activity in two cellular models, HEK-293 cells and SH-SY5Y neuroblastoma cells differentiated with retinoic acid over-expressing the amyloid precursor protein, focusing on the evidence that zyxin expression is important to maintain HIPK2 protein stability. We demonstrated that both beta-amyloid (Aβ) 1-40 and 1-42 induce zyxin deregulation, thus affecting the transcriptional repressor activity of HIPK2 onto its target promoter, metallothionein 2A, which is in turn responsible for the induction of an altered conformational state of p53. We demonstrate for the first time that zyxin is a novel target of Aβ activities in AD. These results may help the studies on the pathogenesis of AD, through the fine dissection of events related to beta-amyloid activities.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Drug Sciences, Centre of Excellence in Applied Biology, University of Pavia, 27100 Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hooper CL, Dash PR, Boateng SY. Lipoma preferred partner is a mechanosensitive protein regulated by nitric oxide in the heart. FEBS Open Bio 2012; 2:135-44. [PMID: 23650592 PMCID: PMC3642136 DOI: 10.1016/j.fob.2012.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 05/27/2012] [Accepted: 05/29/2012] [Indexed: 12/17/2022] Open
Abstract
Adaptor proteins play an important role in signaling pathways by providing a platform on which many other proteins can interact. Malfunction or mislocalization of these proteins may play a role in the development of disease. Lipoma preferred partner (LPP) is a nucleocytoplasmic shuttling adaptor protein. Previous work shows that LPP plays a role in the function of smooth muscle cells and in atherosclerosis. In this study we wanted to determine whether LPP has a role in the myocardium. LPP expression increased by 56% in hearts from pressure overload aortic-banded rats (p < 0.05 n = 4), but not after myocardial infarction, suggesting hemodynamic load regulates its expression. In vitro, LPP expression was 87% higher in cardiac fibroblasts than myocytes (p < 0.05 n = 3). LPP expression was downregulated in the absence of the actin cytoskeleton but not when microtubules were disassembled. We mechanically stretched cardiac fibroblasts using the Flexcell 4000 for 48 h (1 Hz, 5% maximum strain), which decreased total LPP total expression and membrane localization in subcellular fractions (p < 0.05, n = 5). However, L-NAME, an inhibitor of nitric oxide synthase (NOS), significantly upregulated LPP expression. These findings suggest that LPP is regulated by a complex interplay between NO and mechanical cues and may play a role in heart failure induced by increased hemodynamic load.
Collapse
Affiliation(s)
- Charlotte L Hooper
- Institute of Cardiovascular and Metabolic Research. The Schools of Biological Sciences and Pharmacy, University of Reading, Reading Berkshire, United Kingdom
| | | | | |
Collapse
|
18
|
Abstract
Integrating signals from the ECM (extracellular matrix) via the cell surface into the nucleus is an essential feature of multicellular life and often malfunctions in cancer. To date many signal transducers known as shuttle proteins have been identified that act as both: a cytoskeletal and a signalling protein. Here, we highlight the interesting member of the Zyxin family TRIP6 [thyroid receptor interactor protein 6; also designated ZRP-1 (zyxin-related protein 1)] and review current literature to define its role in cell physiology and cancer. TRIP6 is a versatile scaffolding protein at FAs (focal adhesions) involved in cytoskeletal organization, coordinated cell migration and tissue invasion. Via its LIM and TDC domains TRIP6 interacts with different components of the LPA (lysophosphatidic acid), NF-κB (nuclear factor κB), glucocorticoid and AMPK (AMP-activated protein kinase) signalling pathway and thereby modulates their activity. Within the nucleus TRIP6 acts as a transcriptional cofactor regulating the transcriptional responses of these pathways. Moreover, intranuclear TRIP6 associates with proteins ensuring telomere protection and hence may contribute to genome stability. Accordingly, TRIP6 is engaged in key cellular processes such as cell proliferation, differentiation and survival. These diverse functions of TRIP6 are found to be dysregulated in various cancers and may have pleiotropic roles in tumour initiation, tumour growth and metastasis, which turn TRIP6 into an attractive candidate for cancer diagnosis and targeted therapy.
Collapse
|
19
|
Li A, Ponten F, dos Remedios CG. The interactome of LIM domain proteins: The contributions of LIM domain proteins to heart failure and heart development. Proteomics 2012; 12:203-25. [DOI: 10.1002/pmic.201100492] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 12/22/2022]
|
20
|
Lin VTG, Lin FT. TRIP6: an adaptor protein that regulates cell motility, antiapoptotic signaling and transcriptional activity. Cell Signal 2011; 23:1691-7. [PMID: 21689746 PMCID: PMC3156290 DOI: 10.1016/j.cellsig.2011.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 01/02/2023]
Abstract
Thyroid hormone receptor interacting protein 6 (TRIP6), also known as zyxin-related protein-1 (ZRP-1), is an adaptor protein that belongs to the zyxin family of LIM proteins. TRIP6 is primarily localized in the cytosol or focal adhesion plaques, and may associate with the actin cytoskeleton. Additionally, it is capable of shuttling to the nucleus to serve as a transcriptional coregulator. Structural and functional analyses have revealed that through multidomain-mediated protein-protein interactions, TRIP6 serves as a platform for the recruitment of a wide variety of signaling molecules involved in diverse cellular responses, such as actin cytoskeletal reorganization, cell adhesion and migration, antiapoptotic signaling, osteoclast sealing zone formation and transcriptional control. Although the physiological functions of TRIP6 remain largely unknown, it has been implicated in cancer progression and telomere protection. Together, these studies suggest that TRIP6 plays multifunctional roles in different cellular responses, and thus may represent a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Victor T. G. Lin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005
| | - Fang-Tsyr Lin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005
| |
Collapse
|
21
|
Cell Adhesion and Transcriptional Activity - Defining the Role of the Novel Protooncogene LPP. Transl Oncol 2011; 2:107-16. [PMID: 19701494 DOI: 10.1593/tlo.09112] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 12/13/2022] Open
Abstract
Integrating signals from the extracellular matrix through the cell surface into the nucleus is an essential feature of metazoan life. To date, many signal transducers known as shuttle proteins have been identified to act as both a cytoskeletal and a signaling protein. Among them, the most prominent representatives are zyxin and lipoma preferred (translocation) partner (LPP). These proteins belong to the LIM domain protein family and are associated with cell migration, proliferation, and transcription. LPP was first identified in benign human lipomas and was subsequently found to be overexpressed in human malignancies such as lung carcinoma, soft tissue sarcoma, and leukemia. This review portrays LPP in the context of human neoplasia based on a study of the literature to define its important role as a novel protooncogene in carcinogenesis.
Collapse
|
22
|
Sheppard SA, Savinova T, Loayza D. TRIP6 and LPP, but not Zyxin, are present at a subset of telomeres in human cells. Cell Cycle 2011; 10:1726-30. [PMID: 21519191 DOI: 10.4161/cc.10.11.15676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The protection of chromosome ends requires the inhibition of DNA damage responses at telomeres. This inhibition is exerted in great part by the shelterin complex, known to prevent inappropriate ATM and ATR activation. The molecular mechanisms by which shelterin protects telomeres are incompletely understood. Recently, we have implicated for the first time a class of molecules, LIM domain proteins, in telomere protection. This protection occurred through interaction with shelterin, possibly through POT1, and required the pair of LIM proteins TRIP6 and LPP, themselves part of the Zyxin family. The domain similarity between TRIP6, LPP and Zyxin led us to ask whether the latter also interacted with telomeres. Here, we show that there is specificity in the association of LIM proteins with telomeres: Zyxin, despite a high degree of similarity with TRIP6 and LPP, was not detected at telomeres, nor found in a complex with shelterin. TRIP6 and LPP, however, were detected by immunofluorescence at a small subset of telomeres, perhaps those that are critically short. We speculate that specific LIM proteins are part of complex events occurring in the context of the telomere dysfunction response, and possibly at play during the induction of senescence.
Collapse
|
23
|
Sheppard SA, Loayza D. LIM-domain proteins TRIP6 and LPP associate with shelterin to mediate telomere protection. Aging (Albany NY) 2010; 2:432-44. [PMID: 20634563 PMCID: PMC2933890 DOI: 10.18632/aging.100170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
POT1 is the single stranded telomeric overhang binding protein, and is part of the shelterin complex, a group of six proteins essential for proper telomere function. The reduction or abrogation of POT1 DNA binding activity in mammalian cells results in telomere elongation, or activation of the ATR DNA damage response at telomeres. Therefore, overhang binding represents the functionally relevant activity of POT1. To better understand the roles of POT1, we sought to isolate proteins that interact with the DNA binding domain of the protein. A yeast two-hybrid screen was implemented using a C-terminal truncation termed POT1DeltaC, retaining the DNA binding domain. This screen yielded a partial cDNA corresponding to TRIP6, a member of the LIM domain protein family. TRIP6 could co-immunoprecipitate with POT1, TRF2 and TIN2 in human cells, arguing for association with the whole shelterin complex, and was detected at telomeres by ChIP. TRIP6 depletion by siRNA led to the induction of telomere dysfunction induced foci (TIFs), indicating a role in telomere protection. A closely related LIM domain protein, LPP, was also found at telomeres and was also important for repressing the DNA damage response. We propose that TRIP6 and LPP are both required for telomere protection.
Collapse
|
24
|
Renfranz PJ, Blankman E, Beckerle MC. The cytoskeletal regulator zyxin is required for viability in Drosophila melanogaster. Anat Rec (Hoboken) 2010; 293:1455-69. [PMID: 20648572 DOI: 10.1002/ar.21193] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The zyxin family of proteins function as cytoskeletal regulators in adhesion, actin assembly, and cell motility. Though fibroblasts derived from zyxin-null mice show striking defects in motility and response to mechanical stimuli, the mice are viable and fertile. In Drosophila melanogaster, the family is represented by a single homologue, Zyx102. To study the role of zyxin during development, we generated a zyx102 RNA-interference transgenic line that allows for the conditional knockdown of Zyx102. When UAST-zyx102-dsRNAi expression is driven broadly by Actin5C-GAL4, loss of Zyx102 results in lethality during the pharate adult stage, a narrow developmental window during which the fly must molt, resorb molting fluid, fill adult trachea with air, and execute a behavioral program to eclose. Zyx102 knockdown animals attempt to emerge, but their adult trachea do not fill with air. If dissected from the pupal case, knockdown individuals appear morphologically normal, but remain inviable.
Collapse
Affiliation(s)
- Patricia J Renfranz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA
| | | | | |
Collapse
|
25
|
McMichael BK, Meyer SM, Lee BS. c-Src-mediated phosphorylation of thyroid hormone receptor-interacting protein 6 (TRIP6) promotes osteoclast sealing zone formation. J Biol Chem 2010; 285:26641-51. [PMID: 20547766 DOI: 10.1074/jbc.m110.119909] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Osteoclasts resorb bone through the formation of a unique attachment structure called the sealing zone. In this study, a role for thyroid hormone receptor-interacting protein 6 (TRIP6) in sealing zone formation and osteoclast activity was examined. TRIP6 was shown to reside in the sealing zone through its association with tropomyosin 4, an actin-binding protein that regulates sealing dimensions and bone resorptive capacity. Suppression of TRIP6 in mature osteoclasts by RNA interference altered sealing zone dimensions and inhibited bone resorption, whereas overexpression of TRIP6 increased the sealing zone perimeter and enhanced bone resorption. Treatment of osteoclasts with lysophosphatidic acid (LPA), which phosphorylates TRIP6 at tyrosine 55 through a c-Src-dependent mechanism, caused increased association of TRIP6 with the sealing zone, as did overexpression of a TRIP6 cDNA bearing a phosphomimetic mutation at tyrosine 55. Further, LPA treatment caused increases in osteoclast fusion, sealing zone perimeter, and bone resorptive capacity. In contrast, overexpression of TRIP6 containing a nonphosphorylatable amino acid residue at position 55 severely diminished sealing zone formation and bone resorption and suppressed the effects of LPA on the cytoskeleton. LPA effects were mediated through its receptor isoform LPA(2), as indicated by treatments with receptor-specific agonists and antagonists. Thus, these studies suggest that TRIP6 is a critical downstream regulator of c-Src signaling and that its phosphorylation is permissive for its presence in the sealing zone where it plays a positive role in osteoclast bone resorptive capacity.
Collapse
Affiliation(s)
- Brooke K McMichael
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
26
|
Ermolina LV, Martynova NI, Zaraĭskiĭ AG. [The cytoskeletal protein zyxin--a universal regulator of cell adhesion and gene expression]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010; 36:29-37. [PMID: 20386576 DOI: 10.1134/s1068162010010036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The attachment of a cell to an extracellular matrix or the surface of another cells affects not only the cell motility, but also gene expression. In view of this, an important problem is to establish the molecular mechanisms of signal transduction from the receptors of cell adhesion to the nucleus, in particular, to identify and investigate the protein transducers of these signals. One of these transducers, the LIM domain protein zyxin, is predominantly localized at the sites of cell adhesion, where it participates in the assembly of actin filaments. Owing to its location near the inner surface of the membrane, zyxin can interact with the transmembrane receptors of some signaling cascades and affect the signal transduction from the extracellular ligands of these receptors. Furthermore, under particular conditions, zyxin moves from the sites of cell contacts to the nucleus, where it directly participates in the regulation of gene expression. Of particular interest is the function of zyxin as a possible coordinator of gene expression and morphogenetic movements in embryogenesis. The published data discussed in the present review indicate the important role of zyxin in transmitting information from the regions of cell contacts to the genetic apparatus of the cell.
Collapse
|
27
|
Fujita Y, Yamaguchi A, Hata K, Endo M, Yamaguchi N, Yamashita T. Zyxin is a novel interacting partner for SIRT1. BMC Cell Biol 2009; 10:6. [PMID: 19173742 PMCID: PMC2642761 DOI: 10.1186/1471-2121-10-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 01/27/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SIRT1 is a mammalian homologue of NAD+-dependent deacetylase sirtuin family. It regulates longevity in several model organisms and is involved with cell survival, differentiation, metabolism among other processes in mammalian cells. SIRT1 modulates functions of various key targets via deacetylation. Recent studies have revealed SIRT1 protects neurons from axonal degeneration or neurodegeneration. Further, SIRT1 null mice exhibit growth retardation and developmental defects, suggesting its critical roles in neurons and development. RESULTS To identify novel binding partners for SIRT1 in the central nervous system, we performed yeast two-hybrid screening on human fetal brain cDNA library and found that zyxin is a possible binding partner. SIRT1 and zyxin transcript were both preferentially expressed in developmental mouse brain. Zyxin accumulates in the nucleus where it is co-localized with SIRT1 after treatment with leptomycin B in COS-7 cells. Furthermore, SIRT1 deacetylates zyxin, suggesting SIRT1 could interact with nuclear-accumulated zyxin and modulate its function through deacetylation. CONCLUSION Zyxin could be a novel interacting partner of SIRT1. Zyxin is an adaptor protein at focal adhesion plaque, regulating cytoskeletal dynamics and signal transduction to convey signal from the ECM (extracellular matrix) to the nucleus. Our results raise the possibility that SIRT1 regulates signal transmission from ECM to the nucleus by modulating the functions of zyxin via deacetylation.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Neurobiology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Montoya-Durango DE, Velu CS, Kazanjian A, Rojas MEB, Jay CM, Longmore GD, Grimes HL. Ajuba functions as a histone deacetylase-dependent co-repressor for autoregulation of the growth factor-independent-1 transcription factor. J Biol Chem 2008; 283:32056-65. [PMID: 18805794 DOI: 10.1074/jbc.m802320200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth factor independent-1 (Gfi1) is a zinc finger protein with a SNAG-transcriptional repressor domain. Ajuba is a LIM domain protein that shuttles between the cytoplasm and the nucleus. Ajuba functions as a co-repressor for synthetic Gfi1 SNAG-repressor domain-containing constructs, but a role for Ajuba co-repression of the cognate DNA bound Gfi1 protein has not been defined. Co-immunoprecipitation of synthetic and endogenous proteins and co-elution with gel filtration suggest that an endogenous Ajuba.Gfi1.HDAC multiprotein complex is possible. Active histone deacetylase activity co-immunoprecipitates with Ajuba or Gfi1, and both proteins depend upon histone deacetylases for full transcriptional repression activity. Ajuba LIM domains directly bind to Gfi1, but the association is not SNAG domain-dependent. ChIP analysis and reciprocal knockdown experiments suggest that Ajuba selectively functions as a co-repressor for Gfi1 autoregulation. The data suggest that Ajuba is utilized as a corepressor selectively on Gfi1 target genes.
Collapse
Affiliation(s)
- Diego E Montoya-Durango
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Lin FT, Lai YJ. Regulation of the LPA2 receptor signaling through the carboxyl-terminal tail-mediated protein-protein interactions. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:558-62. [PMID: 18501721 DOI: 10.1016/j.bbalip.2008.04.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 01/08/2023]
Abstract
While it is well known that lysophosphatidic acid (LPA) mediates diverse physiological and pathophysiological responses through the activation of G protein-coupled LPA receptors, the specificity and molecular mechanisms by which different LPA receptors mediate these biological responses remain largely unknown. Recent identification of several PDZ proteins and zinc finger proteins that interact with the carboxyl-terminal tail of the LPA2 receptor provides a considerable progress towards the understanding of the mechanisms how the LPA2 receptor specifically mediates LPA signaling pathways. These findings have led to the proposal that there are at least two distinct protein interaction motifs present in the carboxyl-terminus of the LPA2 receptor. Together, these data provide a new concept that the efficiency and specificity of the LPA2 receptor-mediated signal transduction can be achieved through the cross-regulation between the classical G protein-activated signaling cascades and the interacting partner-mediated signaling pathways.
Collapse
Affiliation(s)
- Fang-Tsyr Lin
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.
| | | |
Collapse
|
30
|
Sääf AM, Halbleib JM, Chen X, Yuen ST, Leung SY, Nelson WJ, Brown PO. Parallels between global transcriptional programs of polarizing Caco-2 intestinal epithelial cells in vitro and gene expression programs in normal colon and colon cancer. Mol Biol Cell 2007; 18:4245-60. [PMID: 17699589 PMCID: PMC2043540 DOI: 10.1091/mbc.e07-04-0309] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell-cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell-cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2.
Collapse
Affiliation(s)
| | | | - Xin Chen
- University of California San Francisco, San Francisco, CA 94143; and
| | - Siu Tsan Yuen
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Suet Yi Leung
- Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - W. James Nelson
- Molecular and Cellular Physiology, and
- Biological Sciences and
| | - Patrick O. Brown
- Departments of *Biochemistry
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
31
|
Bai CY, Ohsugi M, Abe Y, Yamamoto T. ZRP-1 controls Rho GTPase-mediated actin reorganization by localizing at cell-matrix and cell-cell adhesions. J Cell Sci 2007; 120:2828-37. [PMID: 17652164 DOI: 10.1242/jcs.03477] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion protein ZRP-1/TRIP6 has been implicated in actin reorganization and cell motility. The role of ZRP-1, however, remained obscure because previously reported data are often conflicting one another. In the present study, we examined roles of ZRP-1 in HeLa cells. ZRP-1 is localized to the cell-cell contact sites as well as to cell-matrix contact sites in HeLa cells. RNA-interference-mediated depletion of ZRP-1 from HeLa cells revealed that ZRP-1 is essential not only for the formation of stress fibers and assembly of mature focal adhesions, but also for the actin reorganization at cell-cell contact sites and for correct cell-cell adhesion and, thus, for collective cell migration. Impairment of focal adhesions and stress fibers caused by ZRP-1 depletion has been associated with reduced tyrosine phosphorylation of FAK. However, maturation of focal adhesions could not be recovered by expression of active FAK. Interestingly, stress fibers in ZRP-1-depleted cells were ameliorated by exogenous expression of RhoA. We also found that total Rac1 activity is elevated in ZRP-1-depleted cells, resulting in abnormal burst of actin polymerization and dynamic membrane protrusions. Taken together, we conclude that that ZRP-1 plays a crucial role in coupling the cell-matrix/cell-cell-contact signals with Rho GTPase-mediated actin remodeling by localizing at cell-matrix and cell-cell contact sites.
Collapse
Affiliation(s)
- Chen-Yu Bai
- Division of Oncology, Department of Cancer Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
32
|
Hu YL, Chien S. Dynamic motion of paxillin on actin filaments in living endothelial cells. Biochem Biophys Res Commun 2007; 357:871-6. [PMID: 17466945 PMCID: PMC2025639 DOI: 10.1016/j.bbrc.2007.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 04/01/2007] [Indexed: 01/09/2023]
Abstract
Our three-dimensional (3-D) images showed that paxillin co-localized on actin filaments as fibrous structures, as well as clusters, in endothelial cells (ECs). In living ECs under flow condition, we monitored concurrently the intracellular dynamics of DsRed2-paxillin and GFP-actin by time-lapse video recording and dual-color fluorescence imaging. The results showed that the dynamic motion of paxillin as fibrous structures was associated with actin filaments, but not with microtubules. Our findings suggest that the actin network plays an important role not only in the assembly/disassembly of paxillin at focal adhesions, but also as a track for the intracellular transport of paxillin, which is involved in signaling pathway.
Collapse
Affiliation(s)
- Ying-Li Hu
- Department of Bioengineering and the Whitaker Institute of Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
33
|
Hervy M, Hoffman L, Beckerle MC. From the membrane to the nucleus and back again: bifunctional focal adhesion proteins. Curr Opin Cell Biol 2006; 18:524-32. [PMID: 16908128 DOI: 10.1016/j.ceb.2006.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 08/02/2006] [Indexed: 01/21/2023]
Abstract
Cell substratum adhesion influences a variety of processes including motility, proliferation and survival. In recent years, it has become clear that there are proteins that are capable of shuttling between cell adhesion zones and the nucleus, providing a mechanism for transcellular coordination and communication. Recent findings have given insight into the physiological signals that trigger trafficking of focal adhesion constituents to the nucleus, where they make diverse contributions to the control of gene expression.
Collapse
Affiliation(s)
- Martial Hervy
- Huntsman Cancer Institute, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
34
|
Takizawa N, Smith TC, Nebl T, Crowley JL, Palmieri SJ, Lifshitz LM, Ehrhardt AG, Hoffman LM, Beckerle MC, Luna EJ. Supervillin modulation of focal adhesions involving TRIP6/ZRP-1. J Cell Biol 2006; 174:447-58. [PMID: 16880273 PMCID: PMC2064240 DOI: 10.1083/jcb.200512051] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 06/25/2006] [Indexed: 01/05/2023] Open
Abstract
Cell-substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)--a peripheral membrane protein that binds myosin II and F-actin in such cells--negatively regulates stress fibers, FAs, and cell-substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor-interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on stress fibers and FAs, apparently by mislocating SV away from FAs. Thus, SV interactions with TRIP6 at FAs promote loss of FA structure and function. SV and TRIP6 binding partners suggest several specific mechanisms through which the SV-TRIP6 interaction may regulate FA maturation and/or disassembly.
Collapse
Affiliation(s)
- Norio Takizawa
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guo B, Sallis RE, Greenall A, Petit MMR, Jansen E, Young L, Van de Ven WJM, Sharrocks AD. The LIM domain protein LPP is a coactivator for the ETS domain transcription factor PEA3. Mol Cell Biol 2006; 26:4529-38. [PMID: 16738319 PMCID: PMC1489114 DOI: 10.1128/mcb.01667-05] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PEA3 is a member of a subfamily of ETS domain transcription factors which is regulated by a number of signaling cascades, including the mitogen-activated protein (MAP) kinase pathways. PEA3 activates gene expression and is thought to play an important role in promoting tumor metastasis and also in neuronal development. Here, we have identified the LIM domain protein LPP as a novel coregulatory binding partner for PEA3. LPP has intrinsic transactivation capacity, forms a complex with PEA3, and is found associated with PEA3-regulated promoters. By manipulating LPP levels, we show that it acts to upregulate the transactivation capacity of PEA3. LPP can also functionally interact in a similar manner with the related family member ER81. Thus, we have uncovered a novel nuclear function for the LIM domain protein LPP as a transcriptional coactivator. As LPP continually shuttles between the cell periphery and the nucleus, it represents a potential novel link between cell surface events and changes in gene expression.
Collapse
Affiliation(s)
- Baoqiang Guo
- Faculty of Life Sciences, University of Manchester, Michael Smith Bldg., Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Solaz-Fuster MC, Gimeno-Alcañiz JV, Casado M, Sanz P. TRIP6 transcriptional co-activator is a novel substrate of AMP-activated protein kinase. Cell Signal 2006; 18:1702-12. [PMID: 16624523 DOI: 10.1016/j.cellsig.2006.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 01/12/2006] [Accepted: 01/16/2006] [Indexed: 11/16/2022]
Abstract
AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that acts as a sensor of cellular energy charge. Once activated it switches on catabolic pathways and switches off many ATP-consuming processes (anabolic pathways) to preserve the energy status of the cell. In order to identify new targets of AMPK action we have performed a two-hybrid screening of a human pancreas cDNA library. As a result, we have identified TRIP6 as a novel target of AMPK action. This protein belongs to the zyxin family of proteins located at the focal adhesion plaques in the plasma membrane, although they may also travel to the nucleus, where they have regulatory properties. We confirmed the physical interaction between the catalytic subunit (AMPK-alpha2) of the AMPK complex and TRIP6 in mammalian cells by two-hybrid and co-immunoprecipitation assays. We also showed that AMPK was able to phosphorylate in vitro TRIP6 at the N-terminus. Finally, we present evidence that transcriptional co-activator properties of TRIP6 were enhanced by AMPK action.
Collapse
|
37
|
|
38
|
Petit MMR, Crombez KRMO, Vervenne HBVK, Weyns N, Van de Ven WJM. The tumor suppressor Scrib selectively interacts with specific members of the zyxin family of proteins. FEBS Lett 2005; 579:5061-8. [PMID: 16137684 DOI: 10.1016/j.febslet.2005.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 07/07/2005] [Accepted: 08/09/2005] [Indexed: 11/28/2022]
Abstract
The zyxin family of proteins consists of five members, ajuba, LIMD1, LPP, TRIP6 and zyxin, which localize at cell adhesion sites and shuttle to the nucleus. Previously, we established that LPP interacts with the tumor suppressor Scrib, a member of the leucine-rich repeat and PDZ (LAP) family of proteins. Here, we demonstrate that Scrib also interacts with TRIP6, but not with zyxin, ajuba, or LIMD1. We show that TRIP6 directly binds to the third PDZ domain of Scrib via its carboxy-terminus. Both proteins localize in cell-cell contacts but are not responsible to target each other to these structures. In the course of our experiments, we also characterized the nuclear export signal of human TRIP6, and show that LIMD1 is localized in focal adhesions. The binding between two of zyxin's family members and Scrib links Scrib to a communication pathway between cell-cell contacts and the nucleus, and implicates these zyxin family members in Scrib-associated functions.
Collapse
Affiliation(s)
- Marleen M R Petit
- Laboratory for Molecular Oncology, Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology VIB, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
39
|
Lai YJ, Chen CS, Lin WC, Lin FT. c-Src-mediated phosphorylation of TRIP6 regulates its function in lysophosphatidic acid-induced cell migration. Mol Cell Biol 2005; 25:5859-68. [PMID: 15988003 PMCID: PMC1168818 DOI: 10.1128/mcb.25.14.5859-5868.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TRIP6 (thyroid receptor-interacting protein 6), also known as ZRP-1 (zyxin-related protein 1), is a member of the zyxin family that has been implicated in cell motility. Previously we have shown that TRIP6 binds to the LPA2 receptor and associates with several components of focal complexes in an agonist-dependent manner and, thus, enhances lysophosphatidic acid (LPA)-induced cell migration. Here we further report that the function of TRIP6 in LPA signaling is regulated by c-Src-mediated phosphorylation of TRIP6 at the Tyr-55 residue. LPA stimulation induces tyrosine phosphorylation of endogenous TRIP6 in NIH 3T3 cells and c-Src-expressing fibroblasts, which is virtually eliminated in Src-null fibroblasts. Strikingly, both phosphotyrosine-55 and proline-58 residues of TRIP6 are required for Crk binding in vitro and in cells. Mutation of Tyr-55 to Phe does not alter the ability of TRIP6 to localize at focal adhesions or associate with actin. However, it abolishes the association of TRIP6 with Crk and p130cas in cells and significantly reduces the function of TRIP6 to promote LPA-induced ERK activation. Ultimately, these signaling events control TRIP6 function in promoting LPA-induced morphological changes and cell migration.
Collapse
Affiliation(s)
- Yun-Ju Lai
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
40
|
Downregulation of TRIP6 Gene Expression Induces Actin Cytoskeleton Rearrangements in Human Carcinoma Cell Lines. Mol Biol 2005. [DOI: 10.1007/s11008-005-0095-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Starczynowski DT, Reynolds JG, Gilmore TD. Mutations of tumor necrosis factor α-responsive serine residues within the C-terminal transactivation domain of human transcription factor REL enhance its in vitro transforming ability. Oncogene 2005; 24:7355-68. [PMID: 16027730 DOI: 10.1038/sj.onc.1208902] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human c-rel gene (REL), encoding an NF-kappaB transcription factor, is amplified or mutated in several human B-cell lymphomas and can transform chicken lymphoid cells in vitro. We have previously shown that certain deletions of C-terminal transactivation sequences enhance REL's transforming ability in chicken spleen cells. In this report, we have analysed the effect of single amino-acid changes at select serine residues in the C-terminal transactivation domain on REL's transforming ability. Mutation of either of two TNFalpha-inducible serine residues (Ser460 and Ser471) to nonphosphorylatable residues (alanine, asparagine, phenylalanine) made REL more efficient at transforming chicken spleen cells in vitro. In contrast, mutation of Ser471 to a phosphorylation mimetic aspartate residue impaired REL's transforming ability, even though it increased REL's inherent transactivation ability as a GAL4-fusion protein. Alanine mutations of several other serine residues within the transactivation domain did not substantially affect REL's transforming ability. Transactivation by GAL4-REL fusion proteins containing either transformation enhancing or nonenhancing mutations at serine residues was generally similar to wild-type GAL4-REL. However, more transforming mutants with mutations at either Ser460 or Ser471 differed from wild-type REL in their ability to transactivate certain kappaB-site reporter genes. In particular, the SOD2 promoter, encoding manganese superoxide dismutase, was activated less strongly by the more transforming REL mutant REL-S471N in transient assays, but REL-S471N-transformed chicken spleen cells had increased levels of MnSOD protein as compared to wild-type REL-transformed cells. Taken together, our results show that mutations of certain serine residues can enhance REL's transforming ability in vitro and suggest that these mutations increase REL-mediated transformation by altering REL's ability to modulate the expression of select target genes. Furthermore, phosphorylation of Ser471 may be involved in REL-mediated modulation of transformation-specific target gene expression. Lastly, these results suggest that similar mutations in the REL transactivation domain contribute to the development of certain human B-cell lymphomas.
Collapse
|
42
|
Woods AJ, Kantidakis T, Sabe H, Critchley DR, Norman JC. Interaction of paxillin with poly(A)-binding protein 1 and its role in focal adhesion turnover and cell migration. Mol Cell Biol 2005; 25:3763-73. [PMID: 15831480 PMCID: PMC1084280 DOI: 10.1128/mcb.25.9.3763-3773.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously identified poly(A)-binding protein 1 (PABP1) as a ligand for paxillin and shown that the paxillin-PABP1 complex undergoes nucleocytoplasmic shuttling. By targeting the paxillin-binding subdomain sequences in PABP1, we have generated mutants of PABP1 that do not bind to cellular paxillin. Here we report that paxillin association is necessary for efficient nuclear export of PABP1 and that RNA interference of paxillin drives the nuclear accumulation of PABP1. Furthermore, ablation of paxillin-PABP1 association impeded a number of indices of cell motility including spreading on fibronectin, cell migration on two-dimensional matrices, and transmigration in Boyden chambers. These data indicate that PABP1 must associate with paxillin in order to be efficiently transported from the nucleus to the cytoplasm and that this event is necessary for cells to remodel their focal adhesions during cell migration.
Collapse
Affiliation(s)
- Alison J Woods
- Department of Biochemistry, University of Leicester, University Road, Leicester LE1 7 RH, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Shibanuma M, Mori K, Kim-Kaneyama JR, Nose K. Involvement of FAK and PTP-PEST in the regulation of redox-sensitive nuclear-cytoplasmic shuttling of a LIM protein, Hic-5. Antioxid Redox Signal 2005; 7:335-47. [PMID: 15706082 DOI: 10.1089/ars.2005.7.335] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The LIM protein Hic-5 is a focal adhesion protein shuttling in and out of the nucleus through the redox-sensitive nuclear export signal, and unlike other focal adhesion proteins including paxillin, the protein most homologous to Hic-5, it accumulates in the nucleus under oxidative conditions and participates in the transcription of c-fos and p21(Cip1) genes. Here, we examined the roles of the interacting partners of Hic-5, focal adhesion kinase (FAK) and protein tyrosine phosphatase PEST (PTP-PEST), in the nuclear translocation of Hic-5 and found that they were inhibitory. Interestingly, the interaction of Hic-5 with FAK was regulated by specific cysteines near the binding site and decreased in cells under oxidative conditions. Its interaction with PTP-PEST was also sensitive to the oxidant. These results suggest that the nuclear-cytoplasmic shuttling of Hic-5 is regulated by its interacting partners at focal adhesions or in the cytoplasm in a redox-sensitive manner, coordinating its role at focal adhesions with that in the nucleus, depending on the redox state of cells. Cytochalasin D or a phorbol ester also induced nuclear accumulation of Hic-5, which was inhibited by scavengers of reactive oxygen species (ROS), suggesting that besides oxidants, endogenously produced ROS induced the nuclear accumulation of Hic-5.
Collapse
Affiliation(s)
- Motoko Shibanuma
- Department of Microbiology, Showa University School of Pharmaceutical Sciences, Hatanodai 1-5-8, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | |
Collapse
|
45
|
Pratt SJ, Epple H, Ward M, Feng Y, Braga VM, Longmore GD. The LIM protein Ajuba influences p130Cas localization and Rac1 activity during cell migration. ACTA ACUST UNITED AC 2005; 168:813-24. [PMID: 15728191 PMCID: PMC2171823 DOI: 10.1083/jcb.200406083] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cell migration requires extension of lamellipodia that are stabilized by formation of adhesive complexes at the leading edge. Both processes are regulated by signaling proteins recruited to nascent adhesive sites that lead to activation of Rho GTPases. The Ajuba/Zyxin family of LIM proteins are components of cellular adhesive complexes. We show that cells from Ajuba null mice are inhibited in their migration, without associated abnormality in adhesion to extracellular matrix proteins, cell spreading, or integrin activation. Lamellipodia production, or function, is defective and there is a selective reduction in the level and tyrosine phosphorylation of FAK, p130Cas, Crk, and Dock180 at nascent focal complexes. In response to migratory cues Rac activation is blunted in Ajuba null cells, as detected biochemically and by FRET analysis. Ajuba associates with the focal adhesion-targeting domain of p130Cas, and rescue experiments suggest that Ajuba acts upstream of p130Cas to localize p130Cas to nascent adhesive sites in migrating cells thereby leading to the activation of Rac.
Collapse
Affiliation(s)
- Stephen J Pratt
- Department of Medicine, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Links between the plasma membrane and the actin cytoskeleton are essential for maintaining tissue integrity and for controlling cell morphology and behavior. Studies over the past several decades have identified dozens of components of such junctions. One of the most recently identified is migfilin, a widely expressed protein consisting of an N-terminal filamin-binding domain, a central proline-rich domain and three C-terminal LIM domains. Migfilin is recruited to cell-matrix contacts in response to adhesion and colocalizes with β-catenin at cell-cell junctions in epithelial and endothelial cells. Migfilin also travels from the cytoplasm into the nucleus, a process that is regulated by RNA splicing and calcium signaling. Through interactions with multiple binding partners, including Mig-2, filamin and VASP, migfilin links the cell adhesion structures to the actin cytoskeleton. It regulates actin remodeling, cell morphology and motility. In nuclei, migfilin interacts with the cardiac transcriptional factor CSX/NKX2-5 and promotes cardiomyocyte differentiation. It probably functions as a key regulator both at cell adhesion sites and nuclei, coordinating multiple cellular processes, and is implicated in the pathogenesis of several human diseases.
Collapse
Affiliation(s)
- Chuanyue Wu
- Department of Pathology, University of Pittsburgh, 707B Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
47
|
Li L, Bin LH, Li F, Liu Y, Chen D, Zhai Z, Shu HB. TRIP6 is a RIP2-associated common signaling component of multiple NF-kappaB activation pathways. J Cell Sci 2005; 118:555-63. [PMID: 15657077 DOI: 10.1242/jcs.01641] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Receptor-interacting protein 2 (RIP2) is a member of the RIP kinase family that has been shown to be crucially involved in inflammation, innate and adaptive immune responses. The physiological and pathological roles of RIP2 are mediated through its involvement in multiple NF-kappaB activation pathways, including those triggered by tumor necrosis factor (TNF), interleukin 1 (IL-1), Toll-like receptor 2 (TLR2), TLR3, TLR4 and Nod1. In this report, we identified the LIM-domain-containing protein TRIP6 as a RIP2-interacting protein in yeast two-hybrid screens. In mammalian cells, TRIP6 interacts with RIP2 in a TNF- or IL-1-dependent manner. Overexpression of TRIP6 potentiates RIP2-mediated NF-kappaB activation in a dose-dependent manner. The LIM domains of TRIP6 are responsible for its interaction with RIP2. TRIP6 also interacts with TRAF2, a protein that is crucially involved in TNF signaling, as well as the IL-1 receptor, TLR2 and Nod1. Overexpression of TRIP6 potentiates NF-kappaB activation by TNF, IL-1, TLR2 or Nod1, whereas a dominant negative mutant or RNA-interference construct of TRIP6 inhibits NF-kappaB activation by TNF, IL-1, TLR2 or Nod1. Moreover, TRIP6 also potentiates RIP2- and Nod1-mediated ERK activation. These data have established a physical and functional association between TRIP6 and RIP2, and suggest that RIP2's involvement in multiple NF-kappaB and ERK activation pathways is mediated through TRIP6.
Collapse
Affiliation(s)
- Lianyun Li
- Department of Cell Biology and Genetics, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Kassel O, Schneider S, Heilbock C, Litfin M, Göttlicher M, Herrlich P. A nuclear isoform of the focal adhesion LIM-domain protein Trip6 integrates activating and repressing signals at AP-1- and NF-kappaB-regulated promoters. Genes Dev 2004; 18:2518-28. [PMID: 15489293 PMCID: PMC529539 DOI: 10.1101/gad.322404] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glucocorticoid receptor (GR)-mediated transrepression of the transcription factors AP-1 and NF-kappaB, responsible for most of the anti-inflammatory effects of glucocorticoids, is initiated by the tethering of GR to the promoters of target genes. We report that this tethering is mediated by a nuclear isoform of the focal adhesion LIM domain protein Trip6. Trip6 functions as a coactivator for both AP-1 and NF-kappaB. As shown by chromatin immunoprecipitation, Trip6 is recruited to the promoters of target genes together with AP-1 or NF-kappaB. In the presence of glucocorticoids, GR joins the Trip6 complex. Reducing the level of Trip6 by RNA interference or abolishing its interaction with GR by dominant-negative mutation eliminates transrepression. We propose that GR tethering to the target promoter through Trip6 forms the basis of transrepression, and that Trip6 exerts its nuclear functions by acting as a molecular platform, enabling target promoters to integrate activating or repressing signals.
Collapse
Affiliation(s)
- Olivier Kassel
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, D-76021 Karlsruhe, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Kadrmas JL, Beckerle MC. The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 2004; 5:920-31. [PMID: 15520811 DOI: 10.1038/nrm1499] [Citation(s) in RCA: 576] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
First described 15 years ago as a cysteine-rich sequence that was common to a small group of homeodomain transcription factors, the LIM domain is now recognized as a tandem zinc-finger structure that functions as a modular protein-binding interface. LIM domains are present in many proteins that have diverse cellular roles as regulators of gene expression, cytoarchitecture, cell adhesion, cell motility and signal transduction. An emerging theme is that LIM proteins might function as biosensors that mediate communication between the cytosolic and the nuclear compartments.
Collapse
Affiliation(s)
- Julie L Kadrmas
- Huntsman Cancer Institute and the Department of Biology, University of Utah, 2000 East, Circle of Hope, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
50
|
Sharp TV, Munoz F, Bourboulia D, Presneau N, Darai E, Wang HW, Cannon M, Butcher DN, Nicholson AG, Klein G, Imreh S, Boshoff C. LIM domains-containing protein 1 (LIMD1), a tumor suppressor encoded at chromosome 3p21.3, binds pRB and represses E2F-driven transcription. Proc Natl Acad Sci U S A 2004; 101:16531-6. [PMID: 15542589 PMCID: PMC534532 DOI: 10.1073/pnas.0407123101] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LIM domains-containing protein 1 (LIMD1) is encoded at chromosome 3p21.3, a region commonly deleted in many solid malignancies. However, the function of LIMD1 is unknown. Here we show that LIMD1 specifically interacts with retinoblastoma protein (pRB), inhibits E2F-mediated transcription, and suppresses the expression of the majority of genes with E2F1-responsive elements. LIMD1 blocks tumor growth in vitro and in vivo and is down-regulated in the majority of human lung cancer samples tested. Our data indicate that LIMD1 is a tumor-suppressor gene, the protein product of which functionally interacts with pRB and the loss of which promotes lung carcinogenesis.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/secondary
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromosomes, Human, Pair 3/genetics
- DNA/genetics
- DNA-Binding Proteins/metabolism
- E2F Transcription Factors
- E2F1 Transcription Factor
- Fibrosarcoma/genetics
- Fibrosarcoma/metabolism
- Fibrosarcoma/pathology
- Genes, Tumor Suppressor
- Humans
- Intracellular Signaling Peptides and Proteins
- LIM Domain Proteins
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Protein Binding
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Retinoblastoma Protein/metabolism
- Subcellular Fractions/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic
- Transplantation, Heterologous
- Tumor Stem Cell Assay
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Tyson V Sharp
- Cancer Research UK, Viral Oncology Group, Wolfson Institute for Biomedical Research, Cruciform Building, University College London, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|