1
|
Zhao L, Cunningham CM, Andruska AM, Schimmel K, Ali MK, Kim D, Gu S, Chang JL, Spiekerkoetter E, Nicolls MR. Rat microbial biogeography and age-dependent lactic acid bacteria in healthy lungs. Lab Anim (NY) 2024; 53:43-55. [PMID: 38297075 PMCID: PMC10834367 DOI: 10.1038/s41684-023-01322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
The laboratory rat emerges as a useful tool for studying the interaction between the host and its microbiome. To advance principles relevant to the human microbiome, we systematically investigated and defined the multitissue microbial biogeography of healthy Fischer 344 rats across their lifespan. Microbial community profiling data were extracted and integrated with host transcriptomic data from the Sequencing Quality Control consortium. Unsupervised machine learning, correlation, taxonomic diversity and abundance analyses were performed to determine and characterize the rat microbial biogeography and identify four intertissue microbial heterogeneity patterns (P1-P4). We found that the 11 body habitats harbored a greater diversity of microbes than previously suspected. Lactic acid bacteria (LAB) abundance progressively declined in lungs from breastfed newborn to adolescence/adult, and was below detectable levels in elderly rats. Bioinformatics analyses indicate that the abundance of LAB may be modulated by the lung-immune axis. The presence and levels of LAB in lungs were further evaluated by PCR in two validation datasets. The lung, testes, thymus, kidney, adrenal and muscle niches were found to have age-dependent alterations in microbial abundance. The 357 microbial signatures were positively correlated with host genes in cell proliferation (P1), DNA damage repair (P2) and DNA transcription (P3). Our study established a link between the metabolic properties of LAB with lung microbiota maturation and development. Breastfeeding and environmental exposure influence microbiome composition and host health and longevity. The inferred rat microbial biogeography and pattern-specific microbial signatures could be useful for microbiome therapeutic approaches to human health and life quality enhancement.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA.
| | - Christine M Cunningham
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Adam M Andruska
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Katharina Schimmel
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Md Khadem Ali
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Dongeon Kim
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Shenbiao Gu
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Jason L Chang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Edda Spiekerkoetter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Mark R Nicolls
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford, CA, USA.
- VA Palo Alto Health Care System, Palo Alto, CA, USA.
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA.
| |
Collapse
|
2
|
Bibi Z, Ashraf K, Shehzadi A, Rehman A, Abbas Bukhari D. Evaluation of isolated probiotics on the efficacy of immune system in male and female Wistar rats. Saudi Pharm J 2023; 31:1036-1046. [PMID: 37250360 PMCID: PMC10209143 DOI: 10.1016/j.jsps.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
Probiotics were isolated from fruits and vegetables. Microscopic, biochemical, and molecular tests were carried out for the characterization of strains of probiotics. To assess the effects of isolated probiotics on immunity, male and female (15 + 15) Wistar rats (n = 3) were randomly distributed into 5 groups: 0-day, negative control, positive control (commercially available Lactobacillus acidophilus-14), laboratory isolated probiotics with accession numbers; Lactobacillus plantarum (MZ707748) and Lactobacillus plantarum (MZ729681), respectively. After hematological investigations, the amounts of IgA and IgG in male and female groups were significantly different (p < 0.05). At the same time, the values of Alanine-transaminase (ALT) and Aspartate-aminotransferase (AST) in both genders were average, and there were no differences (p > 0.05). Male probiotic-treated groups had decreased levels of interleukin-6, bilirubin, and creatinine, but female probiotic-treated groups had a slight rise in bilirubin and creatinine values (p = 0.05). Cellular blood count levels of Hematocrit (HCT) and white blood cells (WBC) in male groups showed considerable differences (p < 0.05), while there were no differences (p > 0.05) in female groups. Levels of Red blood cells (RBC) and mean corpuscular hemoglobin concentration (MCHC) showed distinct changes (p < 0.05) in female groups, while these values were insignificant changes (p > 0.05) among male groups. There were considerable differences between the control and groups that were given probiotics. Histopathological results showed no damage to the liver and thymus. A fecal examination of rats was used to examine the viability and survival of Lactobacilli. Based on blood tests, it was observed that the immune system was boosted and improved in probiotic-treated groups compared to control groups.
Collapse
Affiliation(s)
- Zuhra Bibi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Khadija Ashraf
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Areeba Shehzadi
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, 54590 Lahore, Pakistan
| | | |
Collapse
|
3
|
Zhao L, Cunningham CM, Andruska AM, Schimmel K, Ali MK, Kim D, Gu S, Chang JL, Spiekerkoetter E, Nicolls MR. Rat microbial biogeography and age-dependent lactic acid bacteria in healthy lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.541527. [PMID: 37293045 PMCID: PMC10245737 DOI: 10.1101/2023.05.19.541527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The laboratory rat emerges as a useful tool for studying the interaction between the host and its microbiome. To advance principles relevant to the human microbiome, we systematically investigated and defined a multi-tissue full lifespan microbial biogeography for healthy Fischer 344 rats. Microbial community profiling data was extracted and integrated with host transcriptomic data from the Sequencing Quality Control (SEQC) consortium. Unsupervised machine learning, Spearman's correlation, taxonomic diversity, and abundance analyses were performed to determine and characterize the rat microbial biogeography and the identification of four inter-tissue microbial heterogeneity patterns (P1-P4). The 11 body habitats harbor a greater diversity of microbes than previously suspected. Lactic acid bacteria (LAB) abundances progressively declined in lungs from breastfeed newborn to adolescence/adult and was below detectable levels in elderly rats. LAB's presence and levels in lungs were further evaluated by PCR in the two validation datasets. The lung, testes, thymus, kidney, adrenal, and muscle niches were found to have age-dependent alterations in microbial abundance. P1 is dominated by lung samples. P2 contains the largest sample size and is enriched for environmental species. Liver and muscle samples were mostly classified into P3. Archaea species were exclusively enriched in P4. The 357 pattern-specific microbial signatures were positively correlated with host genes in cell migration and proliferation (P1), DNA damage repair and synaptic transmissions (P2), as well as DNA transcription and cell cycle in P3. Our study established a link between metabolic properties of LAB with lung microbiota maturation and development. Breastfeeding and environmental exposure influence microbiome composition and host health and longevity. The inferred rat microbial biogeography and pattern-specific microbial signatures would be useful for microbiome therapeutic approaches to human health and good quality of life.
Collapse
|
4
|
Ceylani T, Allahverdi H, Teker HT. Role of age-related plasma in the diversity of gut bacteria. Arch Gerontol Geriatr 2023; 111:105003. [PMID: 36965198 DOI: 10.1016/j.archger.2023.105003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
Recent studies have demonstrated the efficacy of young blood plasma factors in reversing aging-related deformities. However, the impact of plasma exchange between young and old individuals on gut microbiota remains understudied. To investigate this, we evaluated the effects of plasma exchange between 5-week-old and 24-month-old rats on gut microbiota composition. In this study, old rats were administered 0.5 ml of young plasma, while young rats were administered 0.25 ml of old plasma daily for 30 days. Metagenome analysis was performed on the contents of the cecum after completing plasma transfer. Results showed that transferring young plasma to old rats significantly increased the alpha diversity indices (Shannon and Simpson values), while the Firmicutes to Bacteroidetes ratio decreased significantly. Conversely, transferring aged plasma to young rats led to a significant decrease in Shannon value and F/B ratio but no change in Simpson value. Plasma exchange also caused substantial changes in the top ten dominant genera and species found in the gut microbiota of young and old rats. After young blood plasma transfer, the dominant bacterial profile in the old gut microbiota shifted toward the bacterial profile found in the young control group. Notably, old plasma also altered the gut microbiota structure of young rats toward that of old rats. Our findings suggest that age-related changes in plasma play a crucial role in gut microbiota species diversity and their presence rates.
Collapse
Affiliation(s)
- Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey; Department of Food Quality Control and Analysis, Muş Alparslan University, Muş, Turkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Turkey
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University, Ankara, Turkey.
| |
Collapse
|
5
|
Tse TJ, Guo Y, Shim YY, Purdy SK, Kim JH, Cho JY, Alcorn J, Reaney MJT. Availability of bioactive flax lignan from foods and supplements. Crit Rev Food Sci Nutr 2022; 63:9843-9858. [PMID: 35532015 DOI: 10.1080/10408398.2022.2072807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hyperlipidemia, high levels of blood lipids including cholesterol and triglycerides, is a major risk factor for cardiovascular disease. Traditional treatments of hyperlipidemia often include lifestyle changes and pharmacotherapy. Recently, flaxseed has been approved as a nutrient that lowers blood lipids. Several metabolites of flaxseed lignan secoisolariciresinol diglucoside (SDG), have been identified that reduce blood lipids. SDG is present in flaxseed hull as an ester-linked copolymer with 3-hydroxy-3-methylglutaric acid (HMGA). However, purification processes involved in hydrolysis of the copolymer and enriching SDG are often expensive. The natural copolymer of SDG with HMGA (SDG polymer) is a source of bioactive compounds useful in prophylaxis of hypercholesterolemia. After consumption of the lignan copolymer, SDG and HMGA are released in the stomach and small intestines. SDG is metabolized to secoisolariciresinol, enterolactone and enterodiol, the bioactive forms of mammalian lignans. These metabolites are then distributed throughout the body where they accumulate in the liver, kidney, skin, other tissues, and organs. Successively, these metabolites reduce blood lipids including cholesterol, triglycerides, low density lipoprotein cholesterol, and lipid peroxidation products. In this review, the metabolism and efficacies of flaxseed-derived enriched SDG and SDG polymer will be discussed.
Collapse
Affiliation(s)
- Timothy J Tse
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yajia Guo
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Youn Young Shim
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc., Saskatoon, Saskatchewan, Canada
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Sarah K Purdy
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Korea
| | - Jane Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Martin J T Reaney
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Prairie Tide Diversified Inc., Saskatoon, Saskatchewan, Canada
- Guangdong Saskatchewan Oilseed Joint Laboratory, Department of Food Science and Engineering, Jinan University, Guangdong, China
| |
Collapse
|
6
|
Chen K, Wei X, Kortesniemi M, Pariyani R, Zhang Y, Yang B. Effects of acylated and nonacylated anthocyanins extracts on gut metabolites and microbiota in diabetic Zucker rats: A metabolomic and metagenomic study. Food Res Int 2022; 153:110978. [DOI: 10.1016/j.foodres.2022.110978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 12/18/2022]
|
7
|
Čoklo M, Maslov DR, Kraljević Pavelić S. Modulation of gut microbiota in healthy rats after exposure to nutritional supplements. Gut Microbes 2020; 12:1-28. [PMID: 32845788 PMCID: PMC7524141 DOI: 10.1080/19490976.2020.1779002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Rats are experimental animals, frequently used as model organisms in the biomedical studies, and increasingly used to study the gut microbiota. Specifically, the aim of latter studies is either the elucidation of relationship between intestinal dysbiosis and diseases or the determination of nutrients or pharmaceutical agents which can cause the modulation in the presence or abundance of gut microbiota. AIM Herein, the research studies conducted on the gut microbiota of healthy rats are presented in a summarized and concise overview. The focus is on studies aimed to reveal the shifts in microbial composition and functional changes after exposure to various types of nutritional supplements. METHODS We performed the search of PubMed database using the term "rat gut microbiome microbiota" and examined studies aimed to assess the composition of gut microbiota in physiological homeostasis as well as the effect of various nutritional supplements on the gut microbiota of healthy rats.
Collapse
Affiliation(s)
- Mirna Čoklo
- Department of Biotechnology, Centre for High-throughput Technologies, University of Rijeka, Rijeka, Croatia
| | - Dina Rešetar Maslov
- Department of Biotechnology, Centre for High-throughput Technologies, University of Rijeka, Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- Department of Biotechnology, Centre for High-throughput Technologies, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
8
|
Lock JY, Carlson TL, Yu Y, Lu J, Claud EC, Carrier RL. Impact of Developmental Age, Necrotizing Enterocolitis Associated Stress, and Oral Therapeutic Intervention on Mucus Barrier Properties. Sci Rep 2020; 10:6692. [PMID: 32317678 PMCID: PMC7174379 DOI: 10.1038/s41598-020-63593-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of incompletely understood pathophysiology predominantly affecting premature infants. While NEC is associated with microbial invasion of intestinal tissues, and mucus modulates interactions between microbes and underlying tissues, variations in mucus barrier properties with NEC-associated risk factors have not been investigated. This study explored differences in mucus composition (total protein, DNA, mucin content, sialic acid, and immunoregulatory proteins), as well as structural and transport properties, assessed by tracking of particles and bacteria (E. coli and E. cloacae) with developmental age and exposure to NEC stressors in Sprague Dawley rats. Early developmental age (5 day old) was characterized by a more permeable mucus layer relative to 21 day old pups, suggesting immaturity may contribute to exposure of the epithelium to microbes. Exposure to NEC stressors was associated with reduced mucus permeability, which may aid in survival. Feeding with breastmilk as opposed to formula reduces incidence of NEC. Thus, NEC-stressed (N-S) rat pups were orally dosed with breastmilk components lysozyme (N-S-LYS) or docosahexaenoic acid (N-S-DHA). N-S-LYS and N-S-DHA pups had a less permeable mucus barrier relative to N-S pups, which suggests the potential of these factors to strengthen the mucus barrier and thus protect against disease.
Collapse
Affiliation(s)
- Jaclyn Y Lock
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA
| | - Taylor L Carlson
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Yueyue Yu
- Department of Pediatrics, Section of Neonatology, University of Chicago, Chicago, Illinois, USA
| | - Jing Lu
- Department of Pediatrics, Section of Neonatology, University of Chicago, Chicago, Illinois, USA
| | - Erika C Claud
- Department of Pediatrics, Section of Neonatology, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, Section of Gastroenterology, University of Chicago, Chicago, Illinois, USA
| | - Rebecca L Carrier
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
9
|
KOBAYASHI A, TSUCHIDA S, UEDA A, YAMADA T, MURATA K, NAKAMURA H, USHIDA K. Role of coprophagy in the cecal microbiome development of an herbivorous bird Japanese rock ptarmigan. J Vet Med Sci 2019; 81:1389-1399. [PMID: 31406033 PMCID: PMC6785603 DOI: 10.1292/jvms.19-0014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/15/2019] [Indexed: 01/01/2023] Open
Abstract
The transgenerational maintenance of symbiotic microbes that benefit host nutrition and health is evolutionarily advantageous. In some vertebrate lineages, coprophagy is used as a strategy for effectively transmitting microbes across generations. However, this strategy has still not been studied in birds. Accordingly, the aim of the present study was to evaluate the role of maternal cecal feces consumption by Japanese rock ptarmigan (Lagopus muta japonica) chicks as a strategy for acquiring essential gut microbes. Both the duration of coprophagy behavior by the chicks and the development process of the chick cecal microbiome (n=20 one- to three-week-old chicks, from three broods) were investigated. In all three broods, coprophagy behavior was only observed from 3 to 18 days of age. Furthermore, there was no significant difference in the number of bacterial operational taxonomic units (OTUs) in 1-week-old chicks (n=651) and adults (n=609), and most of the main OTUs observed in the adults were already present in the 1-week-old chicks. These results indicate that, in this precocial bird species, coprophagy may contribute to the early establishment of cecal bacteria that are essential for food digestion and, thus, chick survival. In fact, Japanese rock ptarmigan chicks consume the same food as their hens from the time of hatching. This behavior may have applications to ex-situ conservation.
Collapse
Affiliation(s)
| | - Sayaka TSUCHIDA
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Chubu University, Academy of Emerging Sciences, Kasugai, Aichi 487-8501, Japan
| | - Atsushi UEDA
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Takuji YAMADA
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Koichi MURATA
- Faculty of Bioresource Sciences, Nihon University, Kanagawa 252-0800, Japan
| | - Hiroshi NAKAMURA
- General Foundation Hiroshi Nakamura International Institute for Ornithology, Nagano 380-0934, Japan
| | - Kazunari USHIDA
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
- Chubu University, Academy of Emerging Sciences, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
10
|
Azagra-Boronat I, Massot-Cladera M, Knipping K, Van't Land B, Tims S, Stahl B, Knol J, Garssen J, Franch À, Castell M, Pérez-Cano FJ, Rodríguez-Lagunas MJ. Oligosaccharides Modulate Rotavirus-Associated Dysbiosis and TLR Gene Expression in Neonatal Rats. Cells 2019; 8:E876. [PMID: 31405262 PMCID: PMC6721706 DOI: 10.3390/cells8080876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Colonization of the gut in early life can be altered through multiple environmental factors. The present study aimed to investigate the effects of 2'-fucosyllactose (2'-FL), a mixture of short-chain galactooligosaccharides/long-chain fructooligosaccharides (scGOS/lcFOS) 9:1 and their combination (scGOS/lcFOS/2'-FL) on dysbiosis induced during rotavirus (RV) diarrhea in neonatal rats, elucidating crosstalk between bacteria and the immune system. The dietary interventions were administered daily by oral gavage at days 2-8 of life in neonatal Lewis rats. On day 5, RV SA11 was intragastrically delivered to induce infection and diarrhea assessment, microbiota composition, and gene expression of Toll-like receptors (TLRs) in the small intestine were studied. All dietary interventions showed reduction in clinical variables of RV-induced diarrhea. RV infection increased TLR2 expression, whereas 2'-FL boosted TLR5 and TLR7 expressions and scGOS/lcFOS increased that of TLR9. RV-infected rats displayed an intestinal dysbiosis that was effectively prevented by the dietary interventions, and consequently, their microbiota was more similar to microbiota of the noninfected groups. The preventive effect of 2'-FL, scGOS/lcFOS, and their combination on dysbiosis associated to RV diarrhea in rats could be due to changes in the crosstalk between gut microbiota and the innate immune system.
Collapse
Affiliation(s)
- Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Karen Knipping
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Belinda Van't Land
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
- University Medical Centre Utrecht/Wilhelmina Children's Hospital, Department of Pediatric Immunology, 3584 EA Utrecht, The Netherlands
| | - Sebastian Tims
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Bernd Stahl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Jan Knol
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Maria J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
11
|
Tsuchida S, Maruyama F, Ogura Y, Toyoda A, Hayashi T, Okuma M, Ushida K. Genomic Characteristics of Bifidobacterium thermacidophilum Pig Isolates and Wild Boar Isolates Reveal the Unique Presence of a Putative Mobile Genetic Element with tetW for Pig Farm Isolates. Front Microbiol 2017; 8:1540. [PMID: 28861055 PMCID: PMC5561799 DOI: 10.3389/fmicb.2017.01540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/31/2017] [Indexed: 01/16/2023] Open
Abstract
Genomic analysis was performed on seven strains of Bifidobacterium thermacidophilum, a Sus-associated Bifidobacterium. Three strains from the feces of domestic pigs (Sus scrofa domesticus) and four strains from the rectal feces of free-range Japanese wild boars (S. s. scrofa) were compared. The phylogenetic position of these isolates suggested by genomic analyses were not concordant with that suggested by 16S rRNA sequence. There was biased distribution of genes for virulence, phage, metabolism of aromatic compounds, iron acquisition, cell division, and DNA metabolism. In particular four wild boar isolates harbored fiber-degrading enzymes, such as endoglucanase, while two of the pig isolates obtained from those grown under an intensive feeding practice with routine use of antimicrobials, particularly tetracycline harbored a tetracycline resistance gene, which was further proved functional by disk diffusion test. The tetW gene is associated with a serine recombinase of an apparently non-bifidobacterial origin. The insertion site of the tetW cassette was precisely defined by analyzing the corresponding genomic regions in the other tetracycline-susceptible isolates. The cassette may have been transferred from some other bacteria in the pig gut.
Collapse
Affiliation(s)
- Sayaka Tsuchida
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of GeneticsMishima, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuoka, Japan
| | - Moriya Okuma
- Japan Collection of Microorganisms, RIKEN BioResource CenterTsukuba, Japan
| | - Kazunari Ushida
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
| |
Collapse
|
12
|
The piglet as a model for studying dietary components in infant diets: effects of galacto-oligosaccharides on intestinal functions. Br J Nutr 2015; 115:605-18. [PMID: 26653138 DOI: 10.1017/s0007114515004997] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prebiotic oligosaccharides, including galacto-oligosaccharides (GOS), are used in infant formula to mimic human milk oligosaccharides, which are known to have an important role in the development of the intestinal microbiota and the immune system in neonates. The maturation of the intestines in piglets closely resembles that of human neonates and infants. Hence, a neonatal piglet model was used to study the multi-faceted effect of dietary GOS in early life. Naturally farrowed piglets were separated from the mother sow 24-48 h postpartum and received a milk replacer with or without the addition of GOS for 3 or 26 d, whereafter several indicators of intestinal colonisation and maturation were measured. Dietary GOS was readily fermented in the colon, leading to a decreased pH, an increase in butyric acid in caecum digesta and an increase in lactobacilli and bifidobacteria numbers at day 26. Histomorphological changes were observed in the intestines of piglets fed a GOS diet for 3 or 26 d. In turn, differences in the intestinal disaccharidase activity were observed between control and GOS-fed piglets. The mRNA expression of various tight junction proteins was up-regulated in the intestines of piglet fed a GOS diet and was not accompanied by an increase in protein expression. GOS also increased defensin porcine β-defensin-2 in the colon and secretory IgA levels in saliva. In conclusion, by applying a neonatal piglet model, it could be demonstrated that a GOS-supplemented milk replacer promotes the balance of the developing intestinal microbiota, improves the intestinal architecture and seems to stimulate the intestinal defence mechanism.
Collapse
|
13
|
Early Life Experience and Gut Microbiome: The Brain-Gut-Microbiota Signaling System. Adv Neonatal Care 2015; 15:314-23; quiz E1-2. [PMID: 26240939 DOI: 10.1097/anc.0000000000000191] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Over the past decades, advances in neonatal care have led to substantial increases in survival among preterm infants. With these gains, recent concerns have focused on increases in neurodevelopment morbidity related to the interplay between stressful early life experiences and the immature neuroimmune systems. This interplay between these complex mechanisms is often described as the brain-gut signaling system. The role of the gut microbiome and the brain-gut signaling system have been found to be remarkably related to both short- and long-term stress and health. Recent evidence supports that microbial species, ligands, and/or products within the developing intestine play a key role in early programming of the central nervous system and regulation of the intestinal innate immunity. PURPOSE The purpose of this state-of-the-science review is to explore the supporting evidence demonstrating the importance of the brain-gut-microbiota axis in regulation of early life experience. We also discuss the role of gut microbiome in modulating stress and pain responses in high-risk infants. A conceptual framework has been developed to illustrate the regulation mechanisms involved in early life experience. CONCLUSIONS The science in this area is just beginning to be uncovered; having a fundamental understanding of these relationships will be important as new discoveries continue to change our thinking, leading potentially to changes in practice and targeted interventions.
Collapse
|
14
|
Morel FB, Oozeer R, Piloquet H, Moyon T, Pagniez A, Knol J, Darmaun D, Michel C. Preweaning modulation of intestinal microbiota by oligosaccharides or amoxicillin can contribute to programming of adult microbiota in rats. Nutrition 2015; 31:515-22. [DOI: 10.1016/j.nut.2014.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 12/17/2022]
|
15
|
Abstract
The mammary gland (MG) lacks a mucosa but is part of the mucosal immune system because of its role in passive mucosal immunity. The MG is not an inductive site for mucosal immunity. Rather, synthesis of immunoglobulin (Ig)A by plasma cells stimulated at distal inductive sites dominate in the milk of rodents, humans, and swine whereas IgG1 derived from serum predominates in ruminants. Despite the considerable biodiversity in the role of the MG, IgG passively transfers the maternal systemic immunological experience whereas IgA transfers the mucosal immunological experience. Although passive antibodies are protective, they and other lacteal constituents can be immunoregulatory. Immune protection of the MG largely depends on the innate immune system; the monocytes–macrophages group together with intraepithelial lymphocytes is dominant in the healthy gland. An increase in somatic cells (neutrophils) and various interleukins signal infection (mastitis) and a local immune response in the MG. The major role of the MG to mucosal immunity is the passive immunity supplied to the suckling neonate.
Collapse
|
16
|
Donaldson AE, Lamont IL. Biochemistry changes that occur after death: potential markers for determining post-mortem interval. PLoS One 2013; 8:e82011. [PMID: 24278469 PMCID: PMC3836773 DOI: 10.1371/journal.pone.0082011] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/27/2013] [Indexed: 11/18/2022] Open
Abstract
Death is likely to result in very extensive biochemical changes in all body tissues due to lack of circulating oxygen, altered enzymatic reactions, cellular degradation, and cessation of anabolic production of metabolites. These biochemical changes may provide chemical markers for helping to more accurately determine the time since death (post-mortem interval), which is challenging to establish with current observation-based methodologies. In this study blood pH and changes in concentration of six metabolites (lactic acid, hypoxanthine, uric acid, ammonia, NADH and formic acid) were examined post-mortem over a 96 hour period in blood taken from animal corpses (rat and pig) and blood from rats and humans stored in vitro. The pH and the concentration of all six metabolites changed post-mortem but the extent and rate of change varied. Blood pH in corpses fell from 7.4 to 5.1. Concentrations of hypoxanthine, ammonia, NADH and formic acid all increased with time and these metabolites may be potential markers for post-mortem interval. The concentration of lactate increased and then remained at an elevated level and changes in the concentration were different in the rat compared to the human and pig. This is the first systematic study of multiple metabolic changes post-mortem and demonstrates the nature and extent of the changes that occur, in addition to identifying potential markers for estimating post-mortem interval.
Collapse
Affiliation(s)
- Andrea E. Donaldson
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- * E-mail: (AED); (ILL)
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- * E-mail: (AED); (ILL)
| |
Collapse
|
17
|
Acute ethanol administration inhibits Toll-like receptor 4 signaling pathway in rat intestinal epithelia. Alcohol 2013; 47:231-9. [PMID: 23428594 DOI: 10.1016/j.alcohol.2013.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 12/24/2022]
Abstract
Excess alcohol intake, as in binge drinking, increases susceptibility to microbial pathogens. Alcohol impairs macrophage function by suppression of the Toll-like receptor 4 (TLR4) pathway. This study investigated the effects of acute ethanol intake on the TLR4 pathway in rat intestinal epithelia, which usually encounters luminal antigens at first and participates in the development of intestinal immunity. Twenty Wistar rats were randomly assigned to an ethanol group given ethanol as a 25% (v/v) solution in water at 7.5 g/kg, or a control group given saline, by oral gavage daily for 3 days. The epithelial histology and ultrastructure, the intestinal microflora, peripheral and portal venous plasma lipopolysaccharide (LPS) levels, and somatostatin (SST) levels in the peripheral plasma and small intestine were evaluated. Somatostatin receptor 2 (SSTR2), TLR4, TANK binding kinase-1 (TBK1), activated nuclear factor-κB (NF-κB), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the intestinal mucosa were assayed. LPS responsiveness with or without SST pretreatment was assayed in vitro by quantification of TLR4, TBK1, activated NF-κB, IFN-γ and TNF-α in isolated intestinal epithelia. Mucosal damage was observed in the ethanol group by light and electron microscopy. Escherichia coli cultures were unchanged in rat intestine of the ethanol group compared with controls, but lactobacilli cultures were reduced (p < 0.05). LPS levels increased in peripheral and portal venous plasma (p < 0.05), but mucosal TLR4, TBK1, nuclear NF-κB, IFN-γ and TNF-α were unchanged in the ethanol group. LPS treatment in vitro up-regulated the level of TLR4, TBK1 and nuclear NF-κB as well as the production of IFN-γ and TNF-α in isolated intestinal epithelia in the control (p < 0.05), but not the ethanol group. The stimulatory effects of LPS on intestinal epithelia isolated from the control group were significantly inhibited by SST pretreatment (p < 0.05). The peripheral plasma and intestinal levels of SST and the mucosal expression of SSTR2 in the ethanol group were significantly higher than in the control group (p < 0.05). These findings suggest the hyposensitivity of intestinal epithelial TLR4 to LPS induced by acute alcohol abuse probably through ethanol per se and ethanol-enhanced intestinal mucosal SST pathway may be a novel mechanism for increased susceptibility to intestinal pathogens.
Collapse
|
18
|
The intestinal microbiota in the rat model: major breakthroughs from new technologies. Anim Health Res Rev 2013; 13:54-63. [PMID: 22853927 DOI: 10.1017/s1466252312000072] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammalian intestine harbors a large and diverse community of micro-organisms, known as the intestinal microbiota. Recent developments in molecular profiling methods, mainly based on microbial 16S ribosomal RNA gene sequencing, have provided unprecedented insights into the make-up and diversity of intestinal microbial communities. Using these culture-independent analyses, gut microbiota of several mammals including laboratory rodents, have been revisited. The laboratory rat is one of the major species bred and kept for scientific research. Although this animal is bred in confined environments and subjected to procedures for satisfying health requirements that hamper natural colonization, some major features of mammalian gut microbiota are conserved. However, the gut microbiota varies according to the breeding conditions of the rats and this could impact reproducibility of the experimental models. Determining the non-pathogenic microbial community might be relevant in standards of quality control of laboratory animals. Molecular profiling techniques could be applied to document this information.
Collapse
|
19
|
Barouei J, Moussavi M, Hodgson DM. Effect of maternal probiotic intervention on HPA axis, immunity and gut microbiota in a rat model of irritable bowel syndrome. PLoS One 2012; 7:e46051. [PMID: 23071537 PMCID: PMC3469551 DOI: 10.1371/journal.pone.0046051] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/28/2012] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To examine whether maternal probiotic intervention influences the alterations in the brain-immune-gut axis induced by neonatal maternal separation (MS) and/or restraint stress in adulthood (AS) in Wistar rats. DESIGN Dams had free access to drinking water supplemented with Bifidobacterium animalis subsp lactis BB-12® (3 × 10(9) CFU/mL) and Propionibacterium jensenii 702 (8.0 × 10(8) CFU/mL) from 10 days before conception until postnatal day (PND) 22 (weaning day), or to control ad lib water. Offspring were subjected to MS from PND 2 to 14 or left undisturbed. From PND 83 to 85, animals underwent 30 min/day AS, or were left undisturbed as controls. On PND 24 and 86, blood samples were collected for corticosterone, ACTH and IgA measurement. Colonic contents were analysed for the composition of microflora and luminal IgA levels. RESULTS Exposure to MS significantly increased ACTH levels and neonatal fecal counts of aerobic and anaerobic bacteria, E. coli, enterococci and clostridia, but reduced plasma IgA levels compared with non-MS animals. Animals exposed to AS exhibited significantly increased ACTH and corticosterone levels, decreased aerobic bacteria and bifidobacteria, and increased Bacteroides and E. coli counts compared to non-AS animals. MS coupled with AS induced significantly decreased anaerobes and clostridia compared with the non-stress adult controls. Maternal probiotic intervention significantly increased neonatal corticosterone levels which persisted until at least week 12 in females only, and also resulted in elevated adult ACTH levels and altered neonatal microflora comparable to that of MS. However, it improved plasma IgA responses, increased enterococci and clostridia in MS adults, increased luminal IgA levels, and restored anaerobes, bifidobacteria and E. coli to normal in adults. CONCLUSION Maternal probiotic intervention induced activation of neonatal stress pathways and an imbalance in gut microflora. Importantly however, it improved the immune environment of stressed animals and protected, in part, against stress-induced disturbances in adult gut microflora.
Collapse
Affiliation(s)
- Javad Barouei
- Laboratory of Microbiology, School of Environmental and Life Sciences, the University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | |
Collapse
|
20
|
Nordgård L, Brusetti L, Raddadi N, Traavik T, Averhoff B, Nielsen KM. An investigation of horizontal transfer of feed introduced DNA to the aerobic microbiota of the gastrointestinal tract of rats. BMC Res Notes 2012; 5:170. [PMID: 22463741 PMCID: PMC3364145 DOI: 10.1186/1756-0500-5-170] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Horizontal gene transfer through natural transformation of members of the microbiota of the lower gastrointestinal tract (GIT) of mammals has not yet been described. Insufficient DNA sequence similarity for homologous recombination to occur has been identified as the major barrier to interspecies transfer of chromosomal DNA in bacteria. In this study we determined if regions of high DNA similarity between the genomes of the indigenous bacteria in the GIT of rats and feed introduced DNA could lead to homologous recombination and acquisition of antibiotic resistance genes. RESULTS Plasmid DNA with two resistance genes (nptI and aadA) and regions of high DNA similarity to 16S rRNA and 23S rRNA genes present in a broad range of bacterial species present in the GIT, were constructed and added to standard rat feed. Six rats, with a normal microbiota, were fed DNA containing pellets daily over four days before sampling of the microbiota from the different GI compartments (stomach, small intestine, cecum and colon). In addition, two rats were included as negative controls. Antibiotic resistant colonies growing on selective media were screened for recombination with feed introduced DNA by PCR targeting unique sites in the putatively recombined regions. No transformants were identified among 441 tested isolates. CONCLUSIONS The analyses showed that extensive ingestion of DNA (100 μg plasmid) per day did not lead to increased proportions of kanamycin resistant bacteria, nor did it produce detectable transformants among the aerobic microbiota examined for 6 rats (detection limit < 1 transformant per 1,1 × 10(8) cultured bacteria). The key methodological challenges to HGT detection in animal feedings trials are identified and discussed. This study is consistent with other studies suggesting natural transformation is not detectable in the GIT of mammals.
Collapse
Affiliation(s)
- Lise Nordgård
- GenØk, Centre for Biosafety, Science Park, 9294 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
21
|
Intrauterine growth restriction not only modifies the cecocolonic microbiota in neonatal rats but also affects its activity in young adult rats. J Pediatr Gastroenterol Nutr 2010; 51:402-13. [PMID: 20601908 DOI: 10.1097/mpg.0b013e3181d75d52] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Elucidating why intrauterine growth restriction (IUGR) predisposes to some intestinal pathologies would help in their prevention. Intestinal microbiota could be involved in this predisposition; its initial setup is likely to be altered by IUGR because IUGR delays perinatal intestinal development and strongly interacts with intestinal physiology. Furthermore, because initial colonization determines adult intestinal microbiota, an IUGR-induced defect in initial microbiota would have long-term consequences. Thus, to characterize the effect of IUGR on intestinal microbiota, we compared the composition and activity of cecocolonic microbiota from birth to adulthood in rats with and without IUGR. MATERIALS AND METHODS IUGR was induced by gestational isocaloric protein restriction. Pups were fed by unrestricted lactating mothers. At different ages (days 5, 12, 16, 22, 40, and 100), cecocolonic contents from rats with IUGR and controls were analyzed for concentrations of bacterial end products and numbers of main bacterial groups, and submitted to in vitro fermentation tests. RESULTS IUGR affected gut colonization: bacterial density was increased at day 5 and decreased at day 12. In adulthood, rats with IUGR still differed from controls, harboring fewer Bifidobacterium sp at day 40 and more bacteria related to Roseburia intestinalis at day 100. In vivo, propionate concentration was decreased by IUGR before weaning, whereas the concentrations of other short-chain fatty acids were decreased at day 40, although the in vitro metabolic capability was unaffected overall. CONCLUSIONS We showed that IUGR induced, per se, some neonatal and long-lasting alterations of the intestinal microbiota. The physiological consequences of these changes and their relation to the predisposing effect of IUGR to gut pathologies must now be explored.
Collapse
|
22
|
Colonization of segmented filamentous bacteria and its interaction with the luminal IgA level in conventional mice. Anaerobe 2010; 16:543-6. [PMID: 20674754 DOI: 10.1016/j.anaerobe.2010.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/12/2010] [Accepted: 07/20/2010] [Indexed: 12/22/2022]
Abstract
Segmented filamentous bacteria (SFB) colonize in the ileum. They promote the development of intraepithelial lymphocytes and immunoglobulin A (IgA)-producing cells in the small intestine. In SFB-monoassociated mice, changes in SFB colonization of the small intestine were related to the level of IgA derived from maternal milk during the suckling period and self-produced in the small intestine after weaning. In this study, we investigated whether or not maternal and neonatal IgA influence the colonization of SFB in conventional mice from 18 to 105 days old. The pups were forcedly weaned at 20 days old. SFB could be detected in the distal small intestine after day 22, and their number rapidly reached a maximum on day 28. Thereafter, they gradually declined to one-fourth of the maximum level. The lowest concentrations of IgA in the small intestinal and cecal contents were detected on day 22. Thereafter, they increased as the age of the mice increased. The expression of the polymeric immunoglobulin receptor gene in the distal small intestine increased after weaning. These results suggested that the colonization of SFB in the pre-weaning and post-weaning periods might be prevented with IgA derived from maternal milk and self-produced IgA, respectively.
Collapse
|
23
|
Abstract
It is now widely recognized that probiotics have health-beneficial effects on humans and animals. Probiotics should survive in the intestinal tract to exert beneficial effects on the host's health. To keep a sufficient level of probiotic bacteria in the gastrointestinal tract, a shorter interval between doses may be required. Although adherence to the intestinal epithelial cell and mucus is not a universal property of probiotics, high ability to adhere to the intestinal surface might strongly interfere with infection of pathogenic bacteria and regulate the immune system. The administration of probiotic Lactobacillus stimulated indigenous Lactobacilli and the production of short-chain fatty acids. This alteration of the intestinal environment should contribute to maintain the host's health. The immunomodulatory effects of probiotics are related to important parts of their beneficial effects. Probiotics may modulate the intestinal immune response through the stimulation of certain cytokine and IgA secretion in intestinal mucosa. The health-beneficial effects, in particular the immunomodulation effect, of probiotics depend on the strain used. Differences in indigenous intestinal microflora significantly alter the magnitude of the effects of a probiotic. Specific probiotic strains suitable for each animal species and their life stage as well as each individual should be found.
Collapse
Affiliation(s)
- Yuji Ohashi
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan.
| | | |
Collapse
|
24
|
Benskin CMH, Wilson K, Jones K, Hartley IR. Bacterial pathogens in wild birds: a review of the frequency and effects of infection. Biol Rev Camb Philos Soc 2009; 84:349-73. [DOI: 10.1111/j.1469-185x.2008.00076.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Long-term oral administration of cows' milk improves insulin sensitivity in rats fed a high-sucrose diet. Br J Nutr 2009; 102:1324-33. [PMID: 19566967 DOI: 10.1017/s0007114509990365] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We evaluated the effects of long-term daily cows' milk (CM) administration on insulin resistance induced by a high-sucrose diet. F344 rats, aged 3 weeks, were divided into two groups according to diet (dextrin-fed v. sucrose-fed). These groups were further divided into two groups receiving either CM or artificial milk (AM; isoenergetic emulsion of egg white protein, maltose, lard and minerals). Rats were fed a sucrose- or dextrin-based diet for 7 weeks and orally administered CM or AM at 25 ml/kg following an 8 h fast on a daily basis. Insulin sensitivity was evaluated via postprandial changes in serum glucose and insulin, oral glucose tolerance tests, and fasting serum insulin and fructosamine concentrations. The sucrose-fed rats showed an overall decrease in insulin sensitivity, but postprandial insulin levels were lower in the CM-treated subgroup than in the AM-treated subgroup. Peak serum glucose and insulin concentrations were highest in the sucrose-fed rats, but CM administration reduced peak glucose and insulin values in comparison with AM administration. By area under the curve analysis, insulin levels after feeding and glucose loads were significantly lower in the CM-treated groups than in the AM-treated groups. The CM-treated groups also demonstrated lower fasting insulin and fructosamine levels than the AM-treated groups. Improved insulin sensitivity due to CM administration seemed to be associated with reduced duodenal GLUT2 mRNA levels and increased propionate production within the caecum.
Collapse
|
26
|
Inoue R, Otsuka M, Ushida K. Development of intestinal microbiota in mice and its possible interaction with the evolution of luminal IgA in the intestine. Exp Anim 2009; 54:437-45. [PMID: 16365521 DOI: 10.1538/expanim.54.437] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The development of the intestinal microbiota and the evolution of the fecal IgA in mice were analyzed from 18 to 40 days old by PCR temperature gradient gel electrophoresis (TGGE) and ELISA, respectively. There were two events for the diversification of the intestinal microbiota from suckling to maturity. The first change occurred between days 21 and 22 after birth, when the diversity of the intestinal microbiota showed a remarkable increase at this time. The second change occurred from days 27 to 30 after birth, and the increase in the diversity of the intestinal microbiota ceased. The amount of fecal IgA decreased from days 18 to 20, remained low until day 22, on day 23, it recovered and then continued to increase. This study suggests that there are possible interactions between the development of intestinal microbiota and the evolution of intestinal secretion of IgA in mice, the same as in rats, although the second change in mice intestinal microbiota occurred a few days later than in rats. The decline in maternal IgA supply as the suckling period proceeded presumably allowed the bacterial colonization. As a consequence of this increase in bacterial colonization, the secretion of the self-SIgA was accelerated in the pups.
Collapse
Affiliation(s)
- Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo, Kyoto, Japan
| | | | | |
Collapse
|
27
|
Ushida K, Kameue C, Tsukahara T, Fukuta K, Nakanishi N. Decreasing traits of fecal immunoglobulin A in neonatal and weaning piglets. J Vet Med Sci 2008; 70:849-52. [PMID: 18772564 DOI: 10.1292/jvms.70.849] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The concentration of fecal secretory immunoglobulin A (sIgA) in neonate and weaning piglets was measured daily from 1 day after birth to 50 days of age. The concentration of fecal sIgA started from the level of 10(4) microg/g wet feces 1 day after birth and then increased to a maximal value of up to 10(5) microg/g within a few days of birth. The values constantly declined to between 10(1) and 10(2) microg/g for the next 10 days and were relatively constant until weaning. The level of sIgA in the feces remained very low until at least 50 days of age. The vulnerability of pre- or post-weaning piglets can be explained, at least in part, by this low level of sIgA in the intestine.
Collapse
Affiliation(s)
- Kazunari Ushida
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
28
|
Henare SJ, Mellor DJ, Lentle RG, Moughan PJ. An appraisal of the strengths and weaknesses of newborn and juvenile rat models for researching gastrointestinal development. Lab Anim 2008; 42:231-45. [DOI: 10.1258/la.2007.007034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Research on the impact of bioactive compounds on the development and functional maturation of the gastrointestinal (GI) tract using newborn and juvenile rats has greatly contributed to the knowledge of GI physiology and to the improved clinical management of both premature and full-term newborns. Of the animal models available, two types have been described for use with young rats – maintenance models and substitution models. Maintenance models are those in which the young are reared with the dam and therefore benefit from continuation of natural nutrition and maternal care. Substitution models are those in which the young are reared in the absence of the dam using artificially formulated milk delivered by various means into specific GI sites. In this review, we describe these models and their operation, and discuss the strengths and weaknesses of each. Attention is also given to questions of scientific validity and some animal welfare issues raised by the use of these models.
Collapse
Affiliation(s)
- S J Henare
- Riddet Centre, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| | - D J Mellor
- Riddet Centre, Massey University, Private Bag 11 222, Palmerston North, New Zealand
- Institute of Food Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - R G Lentle
- Institute of Food Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - P J Moughan
- Riddet Centre, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
29
|
Yonejima Y, Mori Y, Ushida K. Effect of a Tablet Containing Probiotic Bacteria and Stomachic Herbs on Human Fecal Microbiota. Biosci Microflora 2008. [DOI: 10.12938/bifidus.27.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yasunori Yonejima
- Research and Development Department, Nitto Pharmaceutical Industries, Ltd
- Laboratory of Animal Science, Kyoto Prefectural University
| | - Yoshiro Mori
- Research and Development Department, Nitto Pharmaceutical Industries, Ltd
| | | |
Collapse
|
30
|
Uenishi G, Fujita S, Ohashi G, Kato A, Yamauchi S, Matsuzawa T, Ushida K. Molecular analyses of the intestinal microbiota of chimpanzees in the wild and in captivity. Am J Primatol 2007; 69:367-76. [PMID: 17177283 DOI: 10.1002/ajp.20351] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Little information is available regarding the intestinal bacteria of chimpanzees in the wild, due to the technical difficulties of studying intestinal bacteria in the field. In this study, molecular-based bacterial analyses were performed to overcome this difficulty because polymerase chain reaction (PCR)-based methods, such as temperature gradient gel electrophoresis (TGGE) and amplified ribosomal DNA restriction analysis (ARDRA), of the bacterial 16S rRNA gene can be applied to ethanol-fixed fecal samples. The common presence of bacteria belonging to the Clostridium rRNA sub-group XIVa, such as Ruminococcus obeum and Eubacterium sp., was indicated for Bossou wild chimpanzees by ARDRA. TGGE on partial 16S rDNA followed by hierarchical clustering analysis showed a systematic difference in the composition of intestinal microbiota between wild and captive chimpanzees. However, several TGGE bands commonly shared by wild and captured chimpanzees were excised, and their sequences were obtained. They were suggested to be the Clostridium leptum subgroup bacteria, Lactobacillus gasseri-like bacterium, and Bifidobacterium pseudocatenulatum- or B. catenulatum-like bacterium. These may be considered as common intestinal bacteria for chimpanzees, and may be transmitted vertically over generations.
Collapse
Affiliation(s)
- Gentaro Uenishi
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
SAKAI Y, TSUKAHARA T, MATSUBARA N, USHIDA K. A cell wall preparation of Enterococcus faecalis strain EC-12 stimulates ?-defensin expression in newly hatched broiler chicks. Anim Sci J 2007. [DOI: 10.1111/j.1740-0929.2006.00410.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Kishimoto A, Ushida K, Phillips GO, Ogasawara T, Sasaki Y. Identification of intestinal bacteria responsible for fermentation of gum arabic in pig model. Curr Microbiol 2006; 53:173-7. [PMID: 16874552 DOI: 10.1007/s00284-005-0219-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Accepted: 04/07/2006] [Indexed: 11/25/2022]
Abstract
Acacia spp. produce gum exudates, traditionally called gum arabic or gum acacia, which are widely used in the food industry such as emulsifiers, adhesives, and stabilizers. The traditional gum arabic is highly variable with average molecular weights varying from 300,000-800,000. For this reason a standardized sample was used for the present experiments, based on a specific species of gum arabic (Acacia(sen)SUPER GUMEM2). The literature indicates that gum arabic can be fermented by the intestinal bacteria to short chain fatty acid, particularly propionate. However, the bacteria responsible for the fermentation have not been determined. In this study, we used enrichment culture of pig cecal bacteria from the selected high molecular weight specific gum arabic of (M(W )1.77 x 10(6)). We found Prevotella ruminicola-like bacterium as a predominant bacterium that is most likely to be responsible for fermentation of the gum arabic used to propionate.
Collapse
Affiliation(s)
- Akio Kishimoto
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan
| | | | | | | | | |
Collapse
|
33
|
Lentle RG, Dey D, Hulls C, Mellor DJ, Moughan PJ, Stafford KJ, Nicholas K. A quantitative study of the morphological development and bacterial colonisation of the gut of the tammar wallaby Macropus eugenii eugenii and brushtail possum Trichosurus vulpecula during in-pouch development. J Comp Physiol B 2006; 176:763-74. [PMID: 16819652 DOI: 10.1007/s00360-006-0097-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 05/15/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
We compared the rates of change of various morphological parameters of the stomach, small intestine, caecum and colon of tammar wallabies and brushtail possums with body mass during in-pouch development. These were correlated with changes in the numbers of bacterial species in the various gut segments. In the pouch-young of both species, the wet tissue masses of all gut segments increased with body mass in a positively allometric manner (i.e. with a body mass exponent > 1), suggesting that the mass of each component was disproportionately low at birth, but increased disproportionately rapidly postnatally. However, the lengths of the wallaby stomach and small intestine scaled isometrically with respect to body mass (i.e. with a body mass exponent around 0.33), which may indicate that the shape of these components changes to the adult form during early neonatal development. Conversely, the length of the caecum and colon of both wallabies and possums scaled in a positively allometric manner with respect to body mass, showing area to volume compensation. This may indicate a more general pattern of disproportionately rapid postnatal enlargement in areas that are distal to the principal sites of neonatal digestion (i.e. the stomach). The numbers of bacterial species present in the various gastrointestinal segments of both species were low in animals aged 100 days or less but there was a significant increase in microbial diversity in the caecum of brushtail possums aged over 100 days. The possum caecum also showed the greatest rate of increase in wet tissue mass relative to body mass. It is postulated that caecal development may act as a nidus for establishment of communities of commensal microflora in the developing marsupial.
Collapse
Affiliation(s)
- R G Lentle
- Institute of Food, Nutrition and Human Health, Massey University, Private bag 11222, Palmerston North, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sakai Y, Tsukahara T, Bukawa W, Matsubara N, Ushida K. Cell preparation of Enterococcus faecalis strain EC-12 prevents vancomycin-resistant enterococci colonization in the cecum of newly hatched chicks. Poult Sci 2006; 85:273-7. [PMID: 16523627 DOI: 10.1093/ps/85.2.273] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of antimicrobials in broilers is considered to be a cause of the appearance of vancomycin-resistant enterococci (VRE). Once VRE penetration occurs, whatever its origin, it is difficult to expel the enterococci from the intestine because of their multiple resistance, whether natural or acquired. In this study, we evaluated the prevention of VRE colonization by the dietary supplementation of a cell-wall preparation of Enterococcus faecalis strain EC-12 (EC-12) in newly hatched broilers that were challenged by experimental infection with VRE. The chicks were fed a basal diet supplemented with 0.05% (wt/wt) EC-12 powder for 15 d. The control group and that administered Lactobacillus sp. were fed the basal diet. The VRE challenge was administered orally when the chicks were 2 d old (d 0). Dietary EC-12 reduced VRE colonization in the intestine from d 3 to 14. Total IgA in the cecal digesta and total IgG in the serum were higher on d 14 in the EC-12 treatment group. However, VRE-specific and EC-12-specific antibodies were not affected in serum. Hence, it appeared that dietary EC-12 stimulated the gut immune system and reinforced the immune reaction against the VRE challenge to accelerate its defecation from the chick intestine.
Collapse
Affiliation(s)
- Y Sakai
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo, Japan
| | | | | | | | | |
Collapse
|
35
|
Bakker-Zierikzee AM, Tol EAF, Kroes H, Alles MS, Kok FJ, Bindels JG. Faecal SIgA secretion in infants fed on pre- or probiotic infant formula. Pediatr Allergy Immunol 2006; 17:134-40. [PMID: 16618363 DOI: 10.1111/j.1399-3038.2005.00370.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Secretory immunoglobulin A (SIgA) plays an important role in the defence of the gastrointestinal tract. The level of faecal SIgA antibody is associated with increased neutralization and clearance of viruses. Formula-fed infants who lack the transfer of protective maternal SIgA from breast milk may benefit from strategies to support maturation of humoral immunity and endogenous production of SIgA. We aimed at studying the effects of standard, prebiotic and probiotic infant formulas on the faecal SIgA levels. At birth, infants of whom the mother had decided not to breastfeed were allocated to one of three formula groups in a randomized, double-blind fashion. Nineteen infants received standard infant formula; 19 received prebiotic formula containing a specific mixture of 0.6 g galacto-oligosaccharides (GOS)/fructo-oligosaccharides (FOS)/100 ml formula and 19 received probiotic formula containing 6.0 x 10(9) cfu Bifidobacterium animalis/100 ml formula. Faecal samples were taken on postnatal day 5, day 10, wk 4 and every 4 wk thereafter until wk 32. SIgA in faeces was determined by an enzyme-linked immunosorbent assay. During the intervention, infants fed on prebiotic formula showed a trend towards higher faecal SIgA levels compared with the standard formula-fed infants reaching statistical significance at the age of 16 wk. In contrast, infants fed on the probiotic formula showed a highly variable faecal SIgA concentration with no statistically significant differences compared with the standard formula group. Formula-fed infants may benefit from infant formulas containing a prebiotic mixture of GOS and FOS because of the observed clear tendency to increase faecal SIgA secretion. Adding viable B. animalis strain Bb-12 to infant formula did not reveal any sign for such a trend.
Collapse
|
36
|
Inoue R, Tsukahara T, Nakanishi N, Ushida K. Development of the intestinal microbiota in the piglet. J GEN APPL MICROBIOL 2005; 51:257-65. [PMID: 16205033 DOI: 10.2323/jgam.51.257] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ryo Inoue
- Laboratory of Animal Science, Kyoto Prefectural University, Shimogamo, Japan
| | | | | | | |
Collapse
|
37
|
Inoue R, Ushida K. Vertical and horizontal transmission of intestinal commensal bacteria in the rat model. FEMS Microbiol Ecol 2003; 46:213-9. [DOI: 10.1016/s0168-6496(03)00215-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|